
ar
X

iv
:2

50
5.

17
22

6v
2

 [
cs

.L
G

]
 3

 J
un

 2
02

5

Secure and Private Federated Learning:
Achieving Adversarial Resilience through Robust

Aggregation⋆

Kun Yang[0009−0007−2145−596X] and Neena Imam[0000−0001−8860−4738]

Southern Methodist University, Dallas, TX 75205, USA
{kunyang,nimam}@smu.edu

Abstract. Federated Learning (FL) enables collaborative machine learn-
ing across decentralized data sources without sharing raw data. It offers
a promising approach to privacy-preserving AI. However, FL remains
vulnerable to adversarial threats from malicious participants, referred
to as Byzantine clients, who can send misleading updates to corrupt the
global model. Traditional aggregation methods, such as simple averaging,
are not robust to such attacks. More resilient approaches, like the Krum
algorithm, require prior knowledge of the number of malicious clients,
which is often unavailable in real-world scenarios. To address these limi-
tations, we propose Average-rKrum (ArKrum), a novel aggregation strategy
designed to enhance both the resilience and privacy guarantees of FL sys-
tems. Building on our previous work (rKrum), ArKrum introduces two key
innovations. First, it includes a median-based filtering mechanism that
removes extreme outliers before estimating the number of adversarial
clients. Second, it applies a multi-update averaging scheme to improve
stability and performance, particularly when client data distributions are
not identical. We evaluate ArKrum on benchmark image and text datasets
under three widely studied Byzantine attack types. Results show that
ArKrum consistently achieves high accuracy and stability. It performs as
well as or better than other robust aggregation methods. These findings
demonstrate that ArKrum is an effective and practical solution for secure
FL systems in adversarial environments.

Keywords: Secure AI · Federated Learning · Byzantine Attacks · Ro-
bust Aggregation

1 Introduction

The computing ecosystem is evolving toward a distributed paradigm, driven by
the exponential growth of data, the need for real-time processing, and the prolif-
eration of edge devices. This trend decentralizes computation across cloud, edge,
and device layers, transforming how computational workloads are handled. Ma-
chine Learning (ML) must adapt to this distributed environment, supporting
⋆ This work used resources of the O’Donnell Data Science and Research Computing

Institute at Southern Methodist University.

https://arxiv.org/abs/2505.17226v2

real-time, in situ data analysis at the edge. A promising approach to this hetero-
geneous environment is Federated Learning (FL) which enables collaborative ML
across decentralized data sources without sharing raw data, thus ensuring data
privacy. FL has attracted increasing attention from both academia and industry
due to this privacy-preserving capabilities [9]. A typical FL system consists of
two main components: distributed clients and a central server, as shown in Fig.
1. In this context, clients generally refer to processing nodes that locally train
models on private data. The overall process works as follows. First, each client
trains a local model on its local data and sends the resulting model updates to a
central server. The server then aggregates these model updates using an aggrega-
tion method to update a global model. This process is repeated iteratively until
a predefined convergence criterion is met. In the classical FL, the aggregation
method simply averages the model updates for each coordinate, known as feder-
ated averaging or coordinate-wise Mean (Mean) [9]. FL is vulnerable to malicious

Client 1

…

…

G
lo

b
a
l

U
p
d

a
te

s

Central Server

CNN

Robust Aggregation

(RA)Global Model (CNN)

Client 2

CNN

Client j

CNN

Client j+1

CNN

Client n

CNN

Byzantine Clients
(Up to f)Honest Clients

…

Fig. 1: Federated Learning Architecture.

attacks because it relies on decentralized contributions, making it susceptible to
poisoned or manipulated model updates from compromised participants [7]. The
malicious participants in FL are referred to as Byzantine clients. The Byzantine
clients, compromised and controlled by attackers, attempt to disrupt the FL-
based applications by sending arbitrary or malicious model updates [10].

To address this security challenge, instead of using the standard aggregation
method in the classical FL frameworks, robust aggregation algorithms have been
proposed [10]. A robust aggregation method in FL is a technique where the
server aims to effectively aggregate the model updates received from distributed
clients while minimizing the impact of Byzantine clients. The Krum algorithm
was proposed by Blanchard et al. as a robust alternative to the classical Mean
aggregation method [1], and it has since become a widely adopted. Specifically,
the Krum algorithm remains effective in FL with n clients, where up to f clients

may be Byzantine, under the constraint2+2f <n. The standard Krum algorithm
works as follows:

– Step 1: Compute the squared Euclidean distance dij = ∥ui−uj∥22 between
each pair of client model updates, where ui and uj denote the model updates
from clients Ci and Cj , respectively.

– Step 2: For each client Ci, sort the distances dij to all other n−1 clients in
ascending order. Then compute the sum of the first n−f− 2 distances. This
sum is referred to as the Krum score (ScoreKrum) for the client: ScoreKrum(ui)=∑

j∈Ni
dij , where Ni denote the indices of the n−f−2 clients nearest to Ci.

– Step 3: Select the model update u∗ with the smallest ScoreKrum as the final
aggregated result: u∗=argminui∈{u1,...,un} ScoreKrum(ui).

Based on the main steps of the Krum algorithm, we observe that Step 2 re-
quires prior knowledge of the number of Byzantine clients f . However, in prac-
tice, this parameter is challenging to determine in advance due to the complex
and dynamic nature of distributed systems. In our prior work, we proposed a re-
fined Krum algorithm called rKrum that eliminates the need for hard-coded threat
models [15]. Our rKrum algorithm formulated the estimation of f as a change
point detection problem and employed a Sum-of-Squared-Errors (SSE)-based
segmentation method to automatically estimate f without introducing any ad-
ditional parameters. Despite its advantages, we observed that rKrum tends to
underestimate f , especially when Byzantine clients generate extreme model up-
dates. Consequently, some malicious model updates may be mistakenly included
when computing the ScoreKrum. Moreover, similar to the Krum algorithm, our
rKrum algorithm selected the model update with the lowest Krum score, discard-
ing all others (even updates generated by honest clients). This strategy could
cause instability and slow convergence, especially in Non-Independent and Iden-
tically Distributed (Non-IID) settings, where client data distribution can differ
significantly. To overcome these limitations, we propose an enhanced variant
called Average-rKrum (ArKrum). Our new contributions are as follows:

– Extreme Value Filtering: To mitigate the impact of the extreme updates
on our SSE-based estimation method, we introduce a median-based filtering
method that effectively removes extreme values before the estimation.

– Stability Enhancement via Multi-Aggregation: To further improve the
stability of our rKrum algorithm, we adopt a strategy inspired by multi-Krum
(mKrum) [1], where multiple client updates are averaged instead of selecting a
single update with the lowest ScoreKrum, as in the standard Krum algorithm.

We evaluate the effectiveness of our proposed ArKrum algorithm on two public
datasets under three widely studied Byzantine attacks. Experimental results
demonstrate that ArKrum achieves comparable global model accuracy to that of
both Krum and mKrum in most cases. As anticipated, ArKrum and mKrum are more
stable than rKrum and Krum, which aggregate by selecting only a single update.

The remainder of the paper is organized as follows. In Section 2, we review
related work on various aggregation algorithms. In Section 3, we introduce our

proposed algorithm, ArKrum. In Section 4, we provide a comprehensive numerical
analysis. We conclude the paper in Section 5 with directions for future work.

2 Related Work

Since Blanchard et al. introduced the Krum algorithm as a robust alternative
aggregation method, it has inspired many research studies in this direction [1].
For instance, Wang et al. proposed a blockchain-based FL framework to enhance
the robustness of FL in smart transportation systems [13]. They integrated Krum
with homomorphic encryption, enabling ciphertext-level model aggregation and
filtering. Their results demonstrated that the proposed scheme satisfied privacy
and security requirements while improving model performance. Similarly, Garcia
et al. explored the integration of blockchain and Krum to enhance the resilience
of FL systems against Byzantine attacks [5]. Another important application area
is the Internet of Medical Things (IoMT), which also faces security and privacy
challenges. For instance, Fahim et al. proposed a resource-efficient FL frame-
work that integrated Krum for intrusion detection in IoMT environments [4].
Additionally, Colosimo et al. aimed to improve the standard Krum algorithm by
integrating it with coordinate-wise median [2]. In Colosimo’s integrated frame-
work, each client first computed its ScoreKrum, and then the server selected a
subset of clients with the lowest scores to perform coordinate-wise median aggre-
gation. While their experimental results demonstrated that the proposed method
can improve robustness of the standard Krum algorithm, it still required prior
knowledge of the number of Byzantine clients. Despite its effectiveness against
Byzantine attacks, the standard Krum algorithm still has its limitations, e.g.,
requiring the number of Byzantine clients f to be specified in advance. In our
prior work, we proposed a refined Krum algorithm called rKrum, which automat-
ically estimates f without introducing any additional parameters [15]. Despite
its advantages, we observed that our rKrum algorithm tends to underestimate
f and becomes unstable in Non-IID settings. To address these limitations, we
introduce an enhanced version of rKrum called Average-rKrum (ArKrum) in this
paper.

3 Proposed Algorithm Average-rKrum (ArKrum)

In this section we describe in detail the improvements made to our prior rKrum
algorithm for better stability. We implement a median-based filtering algorithm
to remove extreme model updates to mitigate the underestimation of f . We
further improve the stability of rKrum by aggregating multiple client updates
(inspired by mKrum). By combining these two enhancements, we develop an im-
proved version of rKrum, which we call Average-rKrum (ArKrum).

3.1 Federated Learning Framework

Our FL environment has n clients, where up to f of these clients are Byzantine
clients, under the constraint 2+2f <n, as illustrated in Fig. 1. The honest clients

are shown in green, while the Byzantine clients are shown in orange. The goal is to
learn a global model in the presence of Byzantine clients. Example models may
be Convolutional Neural Networks (CNNs) for image data or Fully-connected
Neural Networks (FNNs) for tabular data. Each honest client Ci independently
trains its local model on its local data and transmits the model updates ui ∈
Rd to a central server, ensuring that no raw data are shared between clients.
Here, d is the dimensionality of the model update. The Byzantine clients aim
to disrupt the global model’s learning process, either by injecting random noise
or introducing misleading information before sending the modified updates to
the server. To address the challenge posed by the Byzantine clients, the server
employs robust aggregation methods for model updates.

Algorithm 1 Filter Extreme Model Updates with Median
Require: Sorted array of squared Euclidean distances D′

i ← [d′i1, d
′
i2, . . . , d

′
in]

Ensure: Filtered array D∗
i

1: procedure Filter_Extreme_Values(Di)
2: mid←

⌊
n
2

⌋
, median← d′imid, ∆max ← median− d′i1

3: τ ← median +∆max, jmax ← n
4: # Find the first extreme value location
5: for j = mid + 1 to n do
6: if d′ij > τ then
7: jmax ← j − 1
8: break
9: end if

10: end for
11: n′ ← jmax , D∗

i ← {d′i1, d′i2, . . . , d′in′}
12: return D∗

i

13: end procedure

3.2 Filtering Extreme Values

As discussed in our prior work, rKrum algorithm formulates the estimation of
f as a change point detection problem. We employ an SSE-based segmentation
method to automatically estimate f without introducing any additional parame-
ters. Specifically, our SSE-based estimation method minimizes the total squared
error of the left and right segments of the sorted distances when estimating f [15].
We observed that this method can skew the estimated change point towards ex-
treme model updates. We assume no prior knowledge of Byzantine behavior, i.e.,
we allow these Byzantine clients to generate any arbitrary, even extreme, model
updates. Consequently, the SSE-based estimation of f may be underestimated,
i.e., we may include some Byzantine updates when computing the ScoreKrum.
This is a problem we aim to avoid in our ArKrum algorithm introduced in this
paper. We propose a median-based filtering algorithm to exclude the extreme
updates as detailed in Alg.1 (Filter Extreme Model Updates with Median). This
median approach is applied before the SSE-based segmentation method in our
rKrum algorithm (prior work). Specifically, given a sorted array of distances D′

i,

we first compute the median at the lower index mid = ⌊n/2⌋. Next, we calculate
the maximum distance ∆max from the median to the smallest value on the left
side (i.e., d′i1, the first value of D′

i since D′
i is sorted). Based on this, we define a

threshold τ = ∆max + d′i1. We then filter out any distances from D′
i that exceed

this threshold. More details are provided in Alg. 1. The rationale for using the
median as the central reference point is that we assume that no more than half
of the model updates are generated by Byzantine clients. Therefore, the median
update is guaranteed to be generated by one of the honest clients, whom we
can trust. By removing the extreme updates potentially generated by Byzantine
clients, we then pass the filtered array D∗

i to our rKrum algorithm to obtain a
more accurate estimate of f̂i for each client Ci.

Algorithm 2 Parameter-free Krum for Robust Aggregation (ArKrum)
Require: U = {u1,u2, . . . ,un} (represented the set of model updates received from

n clients, where each ui ∈ Rd represents a model update of dimension d.
Ensure: Aggregated model update u
1: procedure rKrum(U)
2: # Step 1: Compute pairwise Euclidean distance
3: for each pair of updates (ui,uj) where i ̸= j do
4: dij = ∥ui−uj∥22 =

∑d
k=1(uik−ujk)

2

5: end for
6: # Step 2: Estimate f̂ and compute Krum score
7: for each update ui do
8: # Sort pairwise distances di· in ascending order
9: D ← {d′i1, d′i2, . . . , d′in}

10: D′ ← FILTER_EXTREME_VALUES(D) # Alg. 1
11: f̂i ← ESTIMATE_F(D′) # rKrum in [15]
12: # Compute Krum score:
13: ScoreKrum(ui) =

∑
j∈Ni

d′ij #Ni is the indices of the top n−f̂i−2 distances.
14: end for
15: # Step 3: Select the update with the minimal Krum score
16: ui∗ = argmin

ui∈{u1,...,un}
ScoreKrum(ui)

17: # Step 4: Compute the aggregated update
18: u = 1

|Nui∗ |
∑

uj∈Nui∗
uj # Nui∗ represents the set of the top n− f̂i∗

updates.
19: return u
20: end procedure

3.3 Enhancing Stability

We also notice that the standard Krum algorithm (Step 3 in Section 1) selects
only the single client update with the smallest ScoreKrum as the aggregated result.
However, this approach can be unstable, especially when client data are Non-
IID. Relying on a single update while discarding other honest model updates

can lead to a less representative aggregated update, slower convergence, and
increased communication cost.

To address this issue, we are inspired by the mKrum algorithm [1], which
averages the top n−f client updates to improve the robustness of Krum. Based on
this, we propose Average-rKrum (ArKrum), which first identifies the client Ci∗ with
the smallest ScoreKrum, selects the top n−f̂i∗ client updates closest to its update
ui∗ , and averages these updates to obtain a more representative aggregated
update u = 1

|Nui∗ |
∑

uj∈Nui∗
uj , where Nui∗ represents the set of the top n−f̂i∗

updates. By incorporating more client updates, we can improve the stability of
our rKrum algorithm. By filtering out the extreme model updates using Alg. 1
and averaging the top client updates, we obtain our proposed algorithm ArKrum,
which is presented in Alg. 2.

4 Numerical Experiments

In this section, we evaluate the performance of our proposed ArKrum algorithm,
comparing it with other aggregation methods. We also demonstrate that ArKrum
is more stable than rKrum (our prior work). All experiments are conducted on
two public datasets and under three widely studied Byzantine attacks.
Aggregation Algorithms: For a clear understanding of our numerical experi-
ments, we reintroduce the aggregation algorithms used in this paper.
– Mean (standard aggregation): The Mean algorithm calculates the mean of

each coordinate across all client models and uses the resulting mean vector
as the aggregated result.

– Krum (robust aggregation): The Krum algorithm first computes the pairwise
squared Euclidean distances between all client updates. For each client, it
then calculates the ScoreKrum. The model update with the lowest ScoreKrum
is selected as the aggregated result.

– mKrum (robust aggregation): mKrum is an extension of Krum. Based on the
result of the standard Krum algorithm, it identifies the client update with
the lowest ScoreKrum. Then it averages the top (n−f) client updates that are
closest to this selected update. This average is used as the aggregated result.

– rKrum (robust aggregation): Our prior work, rKrum, starts by computing
pairwise squared Euclidean distances between all client updates as Krum.
Then, for each client, it estimates f using the SSE-based method. After
estimating f , it computes ScoreKrum and selects the update with the lowest
ScoreKrum as the aggregated result.

– ArKrum (robust aggregation): ArKrum, introduced in this paper, builds on
rKrum. It first computes pairwise squared Euclidean distances as rKrum. For
each client, it filters out extreme updates and estimates f . Then it computes
ScoreKrum, selects the update with the lowest ScoreKrum, and averages the
(n− f̂) updates closest to this selected update. The average is used as the
aggregated result. Here f̂ is the estimated f .

4.1 Experimental Setup

In this section, we introduce the datasets, the data generation process, and the
Byzantine attacks considered in our experiment.
Datasets: We assess the performance of each aggregation algorithm on two
publicly available datasets: MNIST and SENTIMENT140.
– MNIST [8]: MNIST is an image dataset designed for multiclass classifi-

cation. The dataset consists of 60,000 training images and 10,000 testing
images. Each 28×28 grayscale image represents a handwritten digit from 0
to 9.

– SENTIMENT140 [6]: SENTIMENT140 is a text dataset designed for sen-
timent analysis. The dataset contains 1,600,000 tweets, each annotated with
sentiment labels: 0 for negative sentiment and 4 for positive sentiment.

Data Distribution: We considered two data distributions: Independent and
Identically Distributed (IID) and Non-Independent and Identically Distributed
(Non-IID).
– Independent and Identically Distributed (IID): In the IID setting,

each client draws samples independently from the same global data distri-
bution. This results in the data distribution being identical across clients.
To simulate this scenario, we generate data for each client using a Dirichlet
distribution with the parameter α = 10 [11]. A higher value of α ensures
that the data distributions across clients are more similar to each other.

– Non-Independent and Identically Distributed (Non-IID): In the
Non-IID setting, each client also draws samples independently, but from
different distributions based on the global data distribution. This results in
different data distributions across clients. To simulate this, we use a Dirichlet
distribution with α = 0.5. A lower value of α results in more diverse data
distributions across clients.

Attacks: We evaluate the robustness of our proposed ArKrum aggregation algo-
rithm under three widely studied Byzantine attacks.
– Large Outlier : We do not restrict the behavior of Byzantine clients. They

can generate and send any arbitrary (even extreme) model updates to the
central server. To simulate this scenario, we let Byzantine clients produce
large abnormal updates by sampling from a Gaussian distribution with mean
µ=0 and a large standard deviation σ=10.

– Noise Injection: Byzantine clients inject random noise to their model up-
dates. Here, the random noise is sampled from a standard normal distribu-
tion N (0, 1), where µ=0 and a smaller σ=1 compared to the Large Outlier
attack. These random noises are less extreme than the Large Outlier attack
but can still pose challenges for aggregation methods.

– Label Flipping : Byzantine clients flip their data labels, train their models on
the corrupted data, and send the resulting updates to the central server.

Implementation Details: We implement all our code in Python 3.10.14, using
PyTorch 2.6.0 as the primary deep learning framework. We conduct all experi-

ments on a high-performance computing cluster (NVIDIA DGX SuperPOD) at
Southern Methodist University [12]. Our framework simulates an FL process as
in Fig. 1, where n=100 clients independently train their local models for local
datasets. Among these clients, f =48 clients are Byzantine, and the remaining
h=n−f =52 clients are honest. The choice f =48 reflects the maximum num-
ber of Byzantine clients that the standard Krum algorithm can tolerate under
the constraint 2+2f < n. We train a global model within our framework for
200 communication epochs between the central server and clients. During each
communication epoch, each client trains its local model for five epochs.

4.2 Experimental Results

MNIST: We evaluate our proposed ArKrum algorithm on the MNIST dataset
under three types of attacks. Since this is an image dataset, our goal is to
train a CNN model to classify each image into one of the ten digit classes. The
CNN model consists of five layers, where the first three are convolutional layers,
and the last two are fully connected layers. The activation function employed
throughout the network is Leaky ReLU, with a negative slope of 0.2.

Fig. 2: Performance comparison of five aggregation algorithms on IID vs. Non-
IID settings under the Large Outlier attack on the MNIST dataset.

Large Outlier : Figure 2 presents the classification results under the Large Out-
lier attack. The left shows the performance of five aggregation algorithms in
terms of accuracy under the IID setting (with α = 10), while the right shows
the performance under the Non-IID setting (with α= 0.5). In the IID setting,
all Krum-based algorithms outperform the Mean method in both accuracy and
stability. ArKrum and mKrum achieve the best results, showing the highest accu-
racy and most consistent performance. rKrum follows closely, while the standard
Krum algorithm performs the worst among all the Krum-based methods. These
results demonstrate the benefit of aggregating multiple client updates (as done

in ArKrum and mKrum) for improving the robustness and stability of rKrum and
Krum. In the Non-IID setting (right of Fig. 2), all Krum-based algorithms still
outperform the Mean method in accuracy, despite the presence of data hetero-
geneity among clients. ArKrum and mKrum still achieve the highest accuracy and
exhibit the most stable performance. In contrast, both rKrum and Krum suffer
performance degradation. Although rKrum becomes less stable than Krum, it still
slightly outperforms the standard Krum algorithm in accuracy. Again, these re-
sults demonstrate the benefit of aggregating multiple updates for improving the
robustness and stability of rKrum and Krum even under the Non-IID setting.

Fig. 3: Performance comparison of five aggregation algorithms on IID vs. Non-
IID settings under the Noise Injection attack on the MNIST dataset.

Noise Injection: Figure 3 presents the classification results on the MNIST dataset
under the Noise Injection attack. In the IID setting (left of Fig. 3), all Krum-
based algorithms outperform the Mean method in both accuracy and stability as
before. Among all Krum-based algorithms, ArKrum and mKrum again achieve the
highest accuracy and exhibit the most stable performance, while rKrum and Krum
perform comparatively worse. However, compared to the Large Outlier attack,
the Mean algorithm performs better. The reason is that the injected random noise
is less extreme, resulting in smaller deviations from the true model updates. As
a result, the Mean algorithm does not completely fail in this scenario. In the
Non-IID setting (right of Fig. 3), all Krum-based algorithms still outperform the
Mean algorithm in accuracy despite the presence of data heterogeneity. Among
them, ArKrum and mKrum still achieve the highest accuracy and exhibit the most
stable performance. The performance of rKrum and Krum degrades in this setting.
Again, these results demonstrate the benefit of aggregating multiple updates for
improving the robustness and stability of rKrum and Krum.
Label Flipping : For the Label Flipping attack, we flip label 0 to 9, label 1 to 8,
label 2 to 7, label 3 to 6, and label 4 to 5. In the IID setting (left of Fig. 4), all

Fig. 4: Performance comparison of five aggregation algorithms on IID vs. Non-
IID settings under the Label Flipping attack on the MNIST dataset.

Krum-based methods fail due to instability caused by the misleading gradients
resulting from flipped labels. Similarly, the Mean method also fails to achieve
acceptable accuracy. In the Non-IID setting (right of Fig. 4), all Krum-based
methods fail again, and their performance degrades further due to data hetero-
geneity among clients. Surprisingly, the Mean method remains effective in this
case. One possible explanation is that, under Non-IID data, honest clients al-
ready generate diverse model updates. As a result, the label flipping attack does
not introduce significant changes to the updates, making the effect of Byzantine
updates less disruptive to the averaging process. In contrast, Krum and rKrum
rely on identifying updates that are close to others in Euclidean distance. Be-
cause the changes introduced by flipping labels are subtle, Byzantine updates
can appear similar to honest ones and may be mistakenly selected as the aggre-
gated result. Since mKrum and ArKrum build upon Krum and rKrum respectively,
selecting a compromised update in the early stage of their aggregation leads to
incorrect final updates, ultimately causing the mKrum and ArKrum algorithms to
fail under this attack.

SENTIMENT140: Since this is a text dataset, we first extract the relevant
features, including the tweet text and its corresponding sentiment label. Each
tweet’s text is then processed using the BERT (Bidirectional Encoder Rep-
resentations from Transformers) model to generate fixed-length vector repre-
sentations [3]. The text is tokenized, and each tweet is converted into a 768-
dimensional vector. For the sentiment labels, we remap the original sentiment
annotations (0=negative, 4=positive) to binary labels (0 for negative and 1 for
positive). We randomly sample a 10% subset of the entire dataset to improve
training efficiency. The sampled data is then split into training and test sets,
with 80% of the data allocated for training and 20% for testing. To further en-
hance training efficiency, we apply principal component analysis to reduce the
dimensionality of the BERT embeddings from 768 to 100. In this experiment,

Fig. 5: Performance comparison of five aggregation algorithms on IID vs. Non-
IID settings under the Large Outlier attack on the SENTIMENT140 dataset.

our objective is to learn an FNN model to predict whether a tweet is positive
or negative. The FNN model consists of four fully connected layers. The input
layer reduces the 100-dimensional data to 32 dimensions. Then, the second and
third layers further reduce it to 16 and 8 dimensions, respectively. Finally, the
output layer maps the 8-dimensional features to 2 classes for prediction.

Large Outlier : In the IID setting (left of Fig. 5), all Krum-based algorithms out-
perform the Mean method in both accuracy and stability as before. Among them,
ArKrum and mKrum achieve the highest accuracy and exhibit the most stable per-
formance. While rKrum performs slightly better than Krum in terms of accuracy,
it is less stable. Overall, both rKrum and Krum perform slightly worse than ArKrum
and mKrum in both accuracy and stability. In the Non-IID setting (right of Fig.
5), all Krum-based algorithms still outperform the Mean method in accuracy, de-
spite the presence of data heterogeneity among clients. Among them, ArKrum
and mKrum still achieve the highest accuracy and exhibit the most stable per-
formance. In contrast, both rKrum and Krum suffer performance degradation in
this setting. Again, these results demonstrate the benefit of aggregating multiple
client updates for improving the robustness and stability of rKrum and Krum.

Noise Injection: In the IID setting (left of Fig. 6), all Krum-based algorithms
outperform the Mean method in both accuracy and stability as before. Among
them, ArKrum and mKrum achieve the highest accuracy and exhibit the most
stable performance. Both rKrum and Krum perform slightly worse than ArKrum
and mKrum in both accuracy and stability. In the Non-IID setting (right of Fig.6),
all Krum-based algorithms still outperform the Mean method in accuracy, despite
the presence of data heterogeneity among clients. Among them, ArKrum and
mKrum still achieve the highest accuracy and exhibit the most stable performance.
However, the performance of rKrum and Krum degrades in this setting. These
results again demonstrate the benefit of aggregating multiple client updates to
improve the robustness and stability of rKrum and Krum.

Fig. 6: Performance comparison of five aggregation algorithms on IID vs. Non-
IID settings under the Noise Injection attack on the SENTIMENT140 dataset.

Label Flipping : We flip the label 0 to 1 and the label 1 to 0. In the IID setting (left

Fig. 7: Performance comparison of five aggregation algorithms on IID vs. Non-
IID settings under the Label Flipping attack on the SENTIMENT140 dataset.

of Fig.7), all Krum-based methods fail due to instability in the global model’s per-
formance. This instability is caused by the misleading flipped labels. Similarly,
the Mean method also fails to achieve an acceptable accuracy. In the Non-IID
setting (right of Fig.7), all Krum-based methods fail again, and their performance
degrades further due to data heterogeneity. The Mean method also fails in this
setting. All Krum-based algorithms struggle under the Label Flipping attack be-
cause they select the client updates that are closest (in Euclidean distance) to
most others, based on the assumption that malicious updates will appear as dis-
tant outliers. However, in the Label Flipping attack, malicious clients flip data

labels (e.g., changing the label 0 to 1), causing their model updates to move
in wrong but still believable directions. When multiple clients flip labels, their
updates can cluster together and resemble those of honest clients. As a result,
Krum-based algorithms can mistakenly select these poisoned updates, ultimately
reducing the accuracy and stability of the global model, as also observed in [14].

5 Conclusion

In this work, we addressed a critical limitation in existing robust aggregation
methods for FL, namely the dependence on prior knowledge of the number
of Byzantine clients. Building on our previous rKrum algorithm, we introduced
Average-rKrum (ArKrum), a novel and parameter-free aggregation method that
enhances both security and stability in FL systems operating under adversarial
conditions. ArKrum incorporates two key enhancements. First, it introduces a
median-based filtering technique to exclude extreme model updates before esti-
mating the number of adversarial clients. This addresses the tendency of rKrum
to underestimate Byzantine presence when extreme updates skew the estimation
process. Second, ArKrum employs a multi-update aggregation strategy, which av-
erages multiple client updates rather than selecting a single one. This leads to
more representative and stable global model updates, especially under Non-IID
data distributions. We conducted comprehensive experiments on two real-world
datasets (MNIST and SENTIMENT140) and evaluated performance under three
representative Byzantine attack models: Large Outlier, Noise Injection, and La-
bel Flipping. Results demonstrate that ArKrum consistently matches or exceeds
the performance of existing robust methods such as Krum, mKrum, and rKrum in
terms of accuracy, resilience, and convergence stability. Future work will explore
adaptive aggregation strategies for more complex adversarial behaviors, such as
stealthy or coordinated attacks. Our findings contribute to the broader goal of
making FL systems both stable and secure in real-world, adversarial environ-
ments.

References

1. Blanchard, P., El Mhamdi, E.M., Guerraoui, R., Stainer, J.: Machine learning with
adversaries: Byzantine tolerant gradient descent. Advances in Neural Information
Processing Systems 30 (2017)

2. Colosimo, F., De Rango, F.: Median-krum: A joint distance-statistical based
byzantine-robust algorithm in federated learning. In: Proceedings of the Int’l ACM
Symposium on Mobility Management and Wireless Access. pp. 61–68 (2023)

3. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidi-
rectional transformers for language understanding. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, volume 1 (long and short papers). pp.
4171–4186 (2019)

4. Fahim-Ul-Islam, M., Chakrabarty, A., Alam, M.G.R., Maidin, S.S.: A resource-
efficient federated learning framework for intrusion detection in IoMT networks.
IEEE Transactions on Consumer Electronics (2025)

5. García-Márquez, M., Rodríguez-Barroso, N., Luzón, M., Herrera, F.: Krum fed-
erated chain (KFC): Using blockchain to defend against adversarial attacks in
federated learning. arXiv preprint arXiv:2502.06917 (2025)

6. Go, A., Bhayani, R., Huang, L.: Sentiment140: A sentiment analysis
dataset with 160,000 tweets. https://www.kaggle.com/datasets/kazanova/
sentiment140 (2009), accessed: 2025-04-10

7. Karimireddy, S.P., He, L., Jaggi, M.: Learning from history for byzantine robust
optimization. In: International Conference on Machine Learning. pp. 5311–5319.
PMLR (2021)

8. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

9. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.:
Communication-efficient learning of deep networks from decentralized data. In:
Artificial intelligence and statistics. pp. 1273–1282. PMLR (2017)

10. Moshawrab, M., Adda, M., Bouzouane, A., Ibrahim, H., Raad, A.: Reviewing fed-
erated learning aggregation algorithms; strategies, contributions, limitations and
future perspectives. Electronics 12(10), 2287 (2023)

11. Ng, K.W., Tian, G.L., Tang, M.L.: Dirichlet and related distributions: Theory,
methods and applications (2011)

12. Southern Methodist University: O’donnell data science and research computing
institute. https://www.smu.edu/provost/odonnell-institute/hpc/systems/mp
(2025), accessed: 2025-01-18

13. Wang, N., Yang, W., Wang, X., Wu, L., Guan, Z., Du, X., Guizani, M.: A
blockchain based privacy-preserving federated learning scheme for internet of ve-
hicles. Digital Communications and Networks 10(1), 126–134 (2024)

14. Xhemrishi, M., Östman, J., Wachter-Zeh, A., i Amat, A.G.: Fedgt: Identification of
malicious clients in federated learning with secure aggregation. IEEE Transactions
on Information Forensics and Security (2025)

15. Yang, K., Imam, N.: Resilient privacy preserving machine learning for internet of
things. Authorea Preprints (2025)

https://www.kaggle.com/datasets/kazanova/sentiment140
https://www.kaggle.com/datasets/kazanova/sentiment140
https://www.smu.edu/provost/odonnell-institute/hpc/systems/mp

	Secure and Private Federated Learning: Achieving Adversarial Resilience through Robust Aggregation

