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A B S T R A C T
Large language models (LLMs) are increasingly applied in fields such as finance, education, and
governance due to their ability to generate human-like text and adapt to specialized tasks. However,
their widespread adoption raises critical concerns about data privacy and security, including the risk
of sensitive data exposure.

In this paper, we propose a security framework to enforce policy compliance and mitigate risks in
LLM interactions. Our approach introduces three key innovations: (i) LLM-based policy enforcement:
a customizable mechanism that enhances domain-specific detection of sensitive data. (ii) Dynamic
policy customization: real-time policy adaptation and enforcement during user-LLM interactions to
ensure compliance with evolving security requirements. (iii) Sensitive data anonymization: a format-
preserving encryption technique that protects sensitive information while maintaining contextual
integrity. Experimental results demonstrate that our framework effectively mitigates security risks
while preserving the functional accuracy of LLM-driven tasks.

1. Introduction
Large language models (LLMs), such as Microsoft’s

Copilot, OpenAI’s GPT, and Google’s Gemini, have sub-
stantially advanced a wide range of applications, including
text summarization, content generation, and software devel-
opment. Despite their impressive capabilities, these LLM
services pose significant privacy risks. User prompts, which
often contain sensitive personal or organizational informa-
tion, are transmitted to third-party servers, where they may
be vulnerable to data breaches, unauthorized access, or in-
ference attacks. Recent work by Chu et al. [1] demonstrated
that adversaries could exploit GPT models to extract private
information through carefully crafted prompts, emphasizing
the critical importance of privacy protection in LLM inter-
actions.

Various privacy-preserving techniques have been devel-
oped for LLMs, including cryptography-based and perturbation-
based methods. Cryptography-based approaches include
homomorphic encryption (HE) [2–8], which enables com-
putations to be performed directly on encrypted data, and
secure multi-party computation (MPC) [9, 10], which fa-
cilitates collaborative computation among multiple parties
without revealing their private inputs. Both approaches offer
solid theoretical bases and are widely used in privacy-
preserving machine learning. For example, Cryptonets [11]
and Iron[12] have demonstrated the feasibility of neural
network inference on encrypted data. However, the com-
putational cost of HE-based [11–16] and MPC-based [17–
22] schemes is excessively high. Moreover, both methods
require significant modifications to the LLM infrastruc-
ture, rendering them impractical for real-time interactions
with LLM. Perturbation-based methods, such as differential
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privacy [23–33], aim to protect sensitive information by
adding noise to user prompts, model parameters, or outputs.
Despite their effectiveness, such methods often degrade
task performance, thus limiting the practical utility of LLM
responses.

In response to these challenges, several frameworks have
been developed to identify and obfuscate sensitive informa-
tion in user prompts, supporting privacy protection with-
out modifying the LLM architecture. Notable approaches
include EmojiCrypt [34], ProSan [35], Casper [36], and
ConfusionPrompt [37]. Although these frameworks mark
promising advancements, they face challenges in achieving a
practical balance between privacy, contextual integrity, and
utility. For example, EmojiCrypt [34], relies on a limited
symbolic vocabulary to encode sensitive information, which
may result in oversimplification or loss of important se-
mantic details. As a result, contextually critical information
may be misrepresented, leading to inaccurate inferences. For
instance, using an emoji to denote a product’s manufac-
turing date could lead to incorrect attributes. ProSan [35],
which depends on dynamic assessments of word importance
and privacy risks, may face challenges such as inadequate
protection of sensitive information in ambiguous contexts,
and potential degradation of task performance due to over-
anonymization. Furthermore, it remains unclear whether
ProSan reverts obfuscated words to their original form after
response generation, leaving questions about its usability in
end-to-end workflows. To identify privacy-sensitive topics
in the prompts, Casper [36] incorporates a pre-trained LLM
(e.g., Llama 2, Llama 3, etc.) that operates locally within
a browser extension, ensuring sensitive data does not leave
the user’s device. Although this approach improves data
security, such models often lack the precision needed for
domain-specific tasks, increasing the likelihood of errors or
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Support Model
Policy Customization?

Identify
Malicious Prompts?

Revert SI
from Response?

Method for
Protecting SI

Maintain
Contextual Integrity?

EmojiCrypt [34] × × ✓ Emoji replacement ×

ProSan [35] × × × Importance/privacy-score
based replacement ✓

Casper [36] × × ✓ Placeholder use ✓

ConfusionPrompt [37] × × ✓ Multi pseudo-prompts ×

This Work ✓ (support domain specific
tasks & dynamic policy control) ✓ ✓ FPE encryption ✓

Table 1
Comparison of methods for protecting user privacy, including their customization capabilities, ability to identify malicious prompts
(i.e., detecting prompts that may lead to unauthorized data access, policy violations, or security risks in enterprise environments),
and capability to revert sensitive information (SI) from responses. The table also includes the protection method used and whether
the user query’s contextual integrity is maintained after SI processing. FPE denotes Format-Preserving Encryption.

omissions when handling specialized content. Besides, de-
ploying a pre-trained LLM locally requires massive compu-
tational resources, including high-performance GPUs, large
amounts of memory, high-speed storage, high power con-
sumption, and complex software optimizations to ensure ef-
ficient inference and stable operation. For ConfusionPrompt
[37], utilizing multiple sub-prompts or pseudo-prompts to
obfuscate sensitive information, may introduce additional
computational and communication overhead. Furthermore,
the scheme needs to consolidate the responses from all sub-
prompts to reconstruct the final output, increasing user’s
query operations and server computation burden.

Our work differs from previous approaches by focusing
on the construction of customized LLMs, privacy protec-
tion, and contextual integrity of prompts and responses.
Although existing LLMs (such as LLaMA and its variants)
provide broad functionality, they lack the capabilities to
enforce unique sensitivity policies. Nevertheless, none of
the existing works [34–37] offer a viable solution to address
this challenge. Moreover, prior researches primarily address
scenarios where users unintentionally disclose sensitive data
when interacting with LLM services. In contrast, 35% of
security incidents arise from both deliberate and accidental
employee actions [38]. For instance, employees may un-
intentionally expose confidential data (e.g., financial state-
ments) while using LLMs for tasks such as summarization,
comprehension, or problem-solving [39]. Such actions could
lead to compliance risks, cybersecurity threats, or intellec-
tual property violations. Therefore, automatically detecting
and protecting sensitive content is essential for the secure
use of LLMs in organizational settings.

We provide a high-level comparison with related meth-
ods in Table 1 to highlight the distinctions of our approach.
Our main contributions are summarized as follows:

1. We propose an end-to-end secure interaction frame-
work between users and LLMs, termed LLM Access
Shield, which protects user privacy in organizational
environments through a two-stage process: (a) de-
tecting privacy risks using a domain-specific LLM,
and (b) anonymizing unsafe prompts via a utility-
preserving anonymization technique.

2. We develop a domain-specific LLM, named DLMS,
for sensitive information detection in user prompts.

Inspired by Llama-Guard, DLMS is trained via su-
pervised fine-tuning (SFT) and supports downstream
tasks, including token-level anonymization and pri-
vacy risk assessment.

• We apply reinforcement fine-tuning (RFT) with
an “analyze-then-decide” reasoning paradigm to
prompt-level privacy risk assessment. This ap-
proach empowers models to generalize across
diverse and complex privacy policies, facilitat-
ing dynamic compliance through test-time com-
putation.

• We evaluate the generalization capabilities of
both SFT and RFT models on unseen, non-
taxonomy-based privacy policies. Our results
show that the “analyze-then-decide” paradigm,
powered by RFT, generalizes more effectively
and allows dynamic, real-time policy compli-
ance without retraining after deployment.

• To improve the stability and effectiveness of
RFT, we investigate curriculum learning strate-
gies and propose mitigation techniques to ad-
dress reward hacking behaviors, offering action-
able insights for training robust, privacy-aware
LLMs.

3. We adopt format-preserving encryption (FPE) as a
utility-preserving anonymization method to protect
sensitive entities identified by DLMS, while maintain-
ing the semantic integrity of the original prompts.

2. LLM Access Shield Framework
In this section, we introduce LLM Access Shield, a

lightweight and extensible framework designed to safeguard
user privacy in high-assurance domains such as finance, law,
and healthcare.

The framework requires minimal integration effort and
supports continuous adaptation to evolving privacy require-
ments through monitoring and policy updates, making it
suitable for real-world deployment.
2.1. System Overview

Fig. 1 illustrates the application process of the LLM
Access Shield framework and the model training process of
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Figure 1: LLM Access Shield: System Infrastructure.

DLMS. The application process primarily involves the orga-
nization administrator, organization user, and the following
five core entities.

• LLM Services: External large language model ser-
vices (e.g., Microsoft’s Copilot, OpenAI’s ChatGPT,
Perplexity) provide advanced AI capabilities for gen-
erating responses to user prompts.

• Domain-specific LLM for Security (DLMS): A cus-
tomized LLM designed specifically for security pur-
poses, handling sensitive tasks like confidentiality
detection and compliance monitoring with organiza-
tional standards.

• Sensitive Data Anonymizer (SDA): An anonymous
module that applies FPE algorithm to protect sensitive
data detected by DLMS. This ensures that sensitive
information is securely transformed into an encrypted
format that preserves its structure, enabling safe trans-
mission to the LLM without exposing raw sensitive
data.

• Model Monitoring Module: A module for organi-
zation administrators to configure and manage the
privacy protection system, including setting detection
parameters, policies and monitoring system activity.

• Database: The database stores detected information,
logs, and other essential data for the privacy protection
system. The data is available for subsequent analysis,
ensuring efficient retrieval and management.

For simplicity, Fig. 1 omits the Proxy and Integrator
modules. The Proxy module serves as an intermediary layer
intercepting and forwarding between users and external
LLM services. The Integrator module manages data flow
across components, processes information, and stores it in a
database for monitoring and analysis. It ensures seamless
integration, secures requests and responses, and enforces
privacy policies.

The model training process mainly involves the follow-
ing two modules.

• Training Data Generation Module: The module
processes sensitive documents by segmenting, anno-
tating, and categorizing data using a predefined taxon-
omy and LLMs, creating structured training datasets
and test sets for fine-tuning and evaluating DLMS.

• Model Training Module: The module fine-tunes a
base model using structured datasets and user-defined
configurations, optimizing tasks like safety classifi-
cation, category classification, and sensitive data ex-
traction for creating DLMS. It employs frameworks
like Llama Cookbook and verl, outputs model check-
points, and monitors training dynamics using tools
like Weights & Biases.

2.2. Security Assumption
The following defines the assumptions of trust and po-

tential threats within the system.
• Organization users are presumed to follow security

protocols, but may inadvertently or deliberately ex-
pose sensitive data during interactions.
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Figure 2: Simplified Workflow of LLM Access Shield.

• Public LLM services are assumed as honest-but-
curious, meaning they adhere to agreed-upon proto-
cols but may infer or retain sensitive information from
user inputs.

• The integrator, DLMS, and SDA operate within the
organization’s secure boundary and are considered
trusted.

• It is assumed that the organization securely installs a
Certificate Authority (CA) certificate when utilizing
proxy tools, such as man-in-the-middle (MITM) prox-
ies, to prevent unauthorized interception or modifica-
tion of communications.

• The FPE algorithm (cf. §9.1) is considered secure
against known cryptanalytic attacks, following Na-
tional Institute of Standards and Technology (NIST)
recommendations [40].

2.3. Workflow
Fig. 2 presents the workflow of secure communication

with LLM services. The process involves analyzing the input
prompt, encrypting sensitive data if necessary, processing
the request via LLM services, and finally analyzing the
response to determine the appropriate action. This workflow
consists of seven key steps that ensure the safe handling of
sensitive information.

1 Prompt Submission: The organization user inputs
a prompt.
2 Prompt Analysis by DLMS: The DLMS analyzes

the prompt to determine whether it contains sensitive
data based on the organization’s security policies. This
may include personally identifiable information (PII),
financial details, or confidential organizational data.

– 2a Unsafe Prompt: If the prompt is classified as
“unsafe", meaning it contains sensitive data, the
DLMS identifies the categories of sensitive data
detected (e.g., email address, phone number,
bank account number).

– 2b Safe Prompt: If the prompt is classified as
“safe", it is sent directly to the LLM services
without modification.

3 Sensitive Data Encryption: In the case of 2a ,
the SDA module encrypts the detected sensitive data
using the FPE algorithm. For instance, as shown in
Fig. 1, the phone number “+7 323 406 7011" detected
by DLMS is anonymized by the SDA module and
transformed into “+8 304 178 0394".
4 Processing by LLM Services: The encrypted or

original prompt is forwarded to the LLM services.
5 Response Generation: The LLM services gener-

ate a response based on the provided prompt.
6 Sensitive Data Decryption: The SDA module

verifies whether the response contains encrypted sen-
sitive data:

– 6a . If the response contains encrypted sensitive
entities, the SDA module decrypts them using
the FPE decryption algorithm. A decrypted re-
sponse is returned to the user in step 7 .

– 6b . If the response does not contain encrypted
data, the original response is returned to the user.

3. Experiment Setup
3.1. Taxonomy

Different industries and organizations often define sen-
sitive data entities using distinct taxonomies based on their
specific privacy and security requirements. Our framework
is designed to accommodate a wide range of customized
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Table 2
SFT training sample example.

Field Example Value

Message
Summarize this contract: Contract with

Company A ... Fund value $150,000 ...

contact the customer at customer@gmail.com

Label unsafe

Violated Category Codes [T1, T6]

Explanation customer@gmail.com; 150,000

Table 3
Summary of the training and testing datasets.

Metric Training Dataset Testing Dataset

Count % Count %

Total msgs 2,311 100.00% 1,542 100.00%
Safe msgs 670 28.99% 452 29.31%
Unsafe msgs 1,641 71.01% 1,090 70.69%
Single-labeled unsafe msgs 1,345 58.20% 874 56.68%
Multi-labeled unsafe msgs 296 12.81% 216 14.01%

Category Breakdown
No Category: Safe 670 28.99% 452 29.31%
T1: Email Address 567 24.53% 384 24.90%
T2: Personal ID Number 244 10.56% 161 10.44%
T3: Phone Number 255 11.03% 179 11.61%
T4: Fax Number 231 10.00% 133 8.63%
T5: Bank Account Number 248 10.73% 174 11.28%
T6: Monetary Value 410 17.74% 289 18.74%

taxonomies, providing flexibility to address diverse organi-
zational needs.

For experimentation, we adopt a set of six commonly
used sensitive data categories relevant to typical business-
oriented companies: T1 (email address), T2 (personal identi-
fication (ID) number), T3 (phone number), T4 (fax number),
T5 (bank account number), and T6 (monetary values). These
categories are frequently encountered in corporate envi-
ronments and are typically protected under organizational
data protection policies. The sensitive data taxonomy and
generation guidelines are provided in Appendix A.
3.2. Training and Testing Dataset

We construct a structured input-output dataset contain-
ing both positive and negative samples. As shown in Table 2,
each SFT training sample includes (1) a user message that
probably contains sensitive data, (2) a ground-truth label
indicating the safety of the message, (3) violated category
codes (prefixed with “T”) that represent the ground-truth set
of the violated categories, and (4) and an explanation listing
the ground-truth sensitive entities, separated by semicolons.
We use the term “Explanation” as adopted in instruction-
tuned datasets like LLaMA-Instruct.

Table 3 summarizes the dataset, split into 60% training
(2,311 samples) and 40% testing (1,542 samples).
3.3. Base Model and Training Methodology

The framework supports any instruction-following lan-
guage model as a base, allowing flexibility across down-
stream tasks. In this work, we fine-tune Llama-3.2-3B-
Instruct to build DLMS, chosen for its lightweight archi-
tecture that balances efficiency and performance. In our

experiments, the 3B model performs comparably to an
8B model, especially on small to medium-sized datasets,
making it suitable for resource-constrained deployment.

We adopt two baseline training methods: (1) an SFT
approach inspired by Llama-Guard [41], and (2) an RFT
method similar to DeepSeek-R1-Zero [42], which uses rule-
based rewards without SFT.

4. Supervised Fine-Tuning (SFT)
4.1. Training Framework

We use the Llama Recipes repository (now renamed
Llama Cookbook) for SFT fine-tuning and utilize its format-
ting tools. Following Llama Guard [41], we adopt a similar
instruction and prompt format (see Appendix B), but replace
the original content safety taxonomy with our own sensitive
data taxonomy and guidelines. Unlike Llama Guard, we do
not apply the data augmentation strategy described in their
work.
4.2. Prompt Instruction

We adopt a structured prompt format similar to Llama-
Guard [41], adapted to our sensitive data taxonomy and
guidelines. Each prompt includes task instructions, a list
of unsafe content categories, and a conversation segment,
followed by a structured output. The output explicitly in-
dicates whether the message is “safe” or “unsafe”, lists
the violated category codes, and extracts relevant unsafe
entities. Detailed instruction templates for SFT are provided
in Appendix B.
4.3. Training Configurations

We train the DLMS-SFT-3B model by fine-tuning the
pre-trained Llama-3.2-3B-Instruct [41] on our dataset of
2,311 samples, using our sensitive data taxonomy. Full-
parameter fine-tuning is applied.

Training is conducted using a context length of 4, 096,
over 3 epochs, with an initial learning rate of 1e−5 and a
weight decay of 0.0. We use a per-device batch size of 1
with gradient accumulation steps of 2, effectively simulating
a larger batch size. The batching strategy is set to padding,
ensuring uniform token lengths across batches. Mixed pre-
cision training is enabled, and we perform gradient clipping
with a threshold of 1.0 to stabilize training and prevent
gradient explosion. Additionally, we employ an exponential
learning rate decay with a factor of 𝛾 = 0.85 at the end of
each epoch to improve optimization stability.

Validation is performed during training with a batch size
of 1, as specified by the val_batch_size parameter in the
training script, and is enabled through the run_validation

flag. To improve memory efficiency, Fully Sharded Data Par-
allel (FSDP) is employed, with low-CPU mode enabled to
minimize memory usage during checkpointing. The training
process leverages fast kernels such as Flash Attention and
Xformer for accelerated computation. The model is saved
after fine-tuning for downstream use.
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5. Reinforcement Fine-Tuning (RFT)
Although the Llama-Guard-style SFT approach demon-

strates impressive performance on privacy policy taxonomy
compliance, it suffers from limited generalizability and scal-
ability, as it can only capture privacy taxonomy patterns
present in the training data. In contrast, we aim to develop
a more lightweight, flexible, and generalizable framework
for policy compliance. Thus, we propose an analyze-then-
decide inference framework that integrates structured rea-
soning into the inference process for privacy policy compli-
ance. Our approach uses reinforcement learning (RL), with-
out SFT, to post-train base models for reasoning capabilities.
5.1. Training Framework

For the RFT approach, verl library, a state-of-the-art
RL training framework optimized for LLMs, is utilized.
verl provides flexible support for implementing reinforce-
ment learning algorithms such as PPO, GRPO, and REIN-
FORCE++, and integrates seamlessly with popular LLM in-
frastructures, including Hugging Face Transformers, vLLM,
and DeepSpeed.
5.2. Prompt Instruction

To support the RFT process, we extend the SFT dataset
with structured prompt instructions and reward model sig-
nals. This augmentation enables the model to learn to reason
about privacy risks and to output decisions that align with
privacy policy compliance objectives.

The prompt generation process employs either zero-
shot or few-shot reasoning templates. Zero-shot templates
provide task instructions without examples, whereas few-
shot templates include several annotated examples to guide
the model. Regardless of the template type, each prompt
instructs the model to analyze the user’s input for privacy
violations and explain its reasoning. The reasoning process
is encapsulated within <analyze>...</analyze> tags, while
the final assessment, including safety status, violated cate-
gories, and sensitive entities (if applicable), is encapsulated
within <answer>...</answer> tags. This structured format
encourages the model to elaborate on its reasoning process,
which is critical for RL optimization.

The detailed prompt instructions and examples used in
the few-shot configuration are provided in Appendix B,
with the zero-shot configuration differing only by the ex-
clusion of these examples. The output examples are shown
in Appendix C. The processed dataset is saved in a format
compatible with verl framework. Each dataset entry consists
of the generated prompt, the corresponding reward model,
and auxiliary metadata, such as dataset splits and indices.
Each entry includes the following fields:
5.3. REINFORCE++ RL Algorithm

In this work, we adopt the REINFORCE++ algorithm
[43], an enhanced variant of the foundational REINFORCE
algorithm to train reasoning version of DLMS. REIN-
FORCE++ integrates key optimization techniques from

Table 4
RFT training sample example.

Field Example Value

Prompt

<|begin_of_text|><|start_header_id|>user

<|end_header_id|> Task: Check if there is unsafe

content in ’User’ messages in conversations according

to our safety policy with the below categories.

... <analyze> Analyzing process here... </analyze>

<answer> unsafe T1, T6 customer@gmail.com; 150,000

</answer>

Ability privacy_risk_analysis

Reward Model
{"style": "rule", "ground_truth": {"safety":

"unsafe", "categories": ["T1", "T6"], "entities":

"customer@gmail.com; 150,000"}}

Extra Info {"split": "train", "index": 42}

PPO while maintaining the simplicity of the original RE-
INFORCE framework by eliminating the need for a critic
network. This design enables improved training stability and
computational efficiency, making REINFORCE++ particu-
larly well-suited for large-scale applications.
5.4. Reward Modelling

To train DLMS under the RFT framework, we design
a rule-based reward mechanism that evaluates the model’s
ability to identify privacy risks in user prompts. The re-
ward model evaluates three complementary aspects of the
model’s output: format compliance, classification accuracy,
and entity-level extraction accuracy. These components en-
sure that the model generates outputs that are both struc-
turally coherent and semantically aligned with the ground
truth. Below, we describe each reward component in details.

Format reward. The format reward incentivizes the
model to generate outputs adhering to a predefined struc-
tured format. Specifically, the reasoning steps must be
enclosed within <analyze>...</analyze> tags, and the final
prediction must be enclosed within <answer>...</answer>

tags. These tags must appear exactly once, in the correct
sequence, and without any extraneous content outside these
tags. A reward of +2 is granted if the format is correct, and
a penalty of −2 is applied otherwise. The format reward
function is defined as:

𝑅fmt(𝑦) =
{

2, if the format matches,
−2, if the format is incorrect,

where 𝑦 denotes the model’s output. The validation process
ensures that the <analyze> tags precede the <answer> tags,
the content between <analyze> and <answer> tags is uninter-
rupted, and any text following the closing </answer> tag is
either empty or matches an expected end-of-sequence (EOS)
token.

Safety status reward. The safety status reward evaluates
the model’s ability to correctly classify user prompts as
either “safe” or “unsafe.” A correct classification yields a
reward of +1, while an incorrect classification or an invalid
output (e.g., “unknown”) incurs a penalty of −1. The safety
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status reward function is defined as:

𝑅safety(𝑦, 𝑦∗) =
⎧

⎪

⎨

⎪

⎩

1, if 𝑦safety = 𝑦∗safety,
−1, if 𝑦safety ≠ 𝑦∗safety, or

𝑦safety = “unknown”,
where 𝑦safety represents the predicted safety status, and 𝑦∗safetyis the ground truth safety label.

Category code reward. For prompts classified as “un-
safe,” the model is required to identify the specific cate-
gory codes corresponding to the violated privacy-sensitive
data types (e.g., “T1” for email address, “T2” for personal
ID). The category code reward evaluates the alignment be-
tween the predicted and ground-truth category sets, assign-
ing scores based on their degree of overlap. A perfect match
yields a reward of +2. If the predicted set forms a proper,
non-empty subset of the ground truth, a reward of +1 is
granted. In all other cases, a penalty of −1 is applied. The
reward function is formally defined as:

𝑅cat(𝐶pred, 𝐶gt) =
⎧

⎪

⎨

⎪

⎩

2, if 𝐶pred = 𝐶gt,
1, if 𝐶pred ≠ ∅ and 𝐶pred ⊂ 𝐶gt,
−1, otherwise,

where 𝐶pred and 𝐶gt denote the predicted and ground-truth
sets of category codes, respectively.

Entity extraction reward. The entity-level extraction re-
ward evaluates the model’s precision in identifying specific
strings of sensitive data entities (e.g., email addresses or per-
sonal IDs) within the user prompt. A perfect match between
the predicted and ground truth entities yields a reward of +4.
A partial match, where the predicted entities form a proper
subset of the ground truth entities, earns a reward of +2. All
other cases incur a penalty of −1. The entity-level reward
function is defined as:

𝑅ent(𝐸pred, 𝐸gt) =
⎧

⎪

⎨

⎪

⎩

4, if 𝐸pred = 𝐸gt,
2, if 𝐸pred ≠ ∅ and 𝐸pred ⊂ 𝐸gt,
−1, otherwise,

where 𝐸pred and 𝐸gt denote the sets of predicted and ground-
truth sensitive entities, respectively.

Final reward aggregation. The final reward score is
computed as the sum of the individual reward components:
𝑅total(𝑦, 𝑦∗) = 𝑅fmt(𝑦)+𝑅safety(𝑦, 𝑦∗)+𝑅cat(𝑦, 𝑦∗)+𝑅ent(𝑦, 𝑦∗).

All four reward components are active during training.
This aggregated reward encourages the model to produce
outputs that are not only structurally well-formed, but also
accurate in safety classification, category code identification,
and sensitive entity extraction. By combining these met-
rics, the reward model provides a comprehensive evaluation
framework for privacy risk detection in user prompts.
5.5. Curriculum Learning (CL)

Curriculum Learning (CL) is a training paradigm in
which models are exposed to tasks of increasing complexity,

thereby improving convergence behavior and overall per-
formance. By structuring learning progressively, CL helps
models converge to better local optima, especially when
global optima are difficult to attain. Task difficulty in CL can
be predefined or dynamically determined during training.
Logic-RL [44] illustrates the efficacy of CL in RFT.

In this study, the task of sensitive data detection is natu-
rally decomposed into a hierarchy of three levels: (1) safety
status classification, a binary task to determine whether
a user prompt is “safe” or “unsafe”; (2) category code
classification, a multi-label task to identify categories vio-
lated by unsafe prompts; and (3) sensitive data extraction, a
sequence-level task to extract specific sensitive entities such
as Personally Identifiable Information (PII) and Business
Identifiable Information (BII).

To address this task hierarchy, we propose a three-
stage Curriculum Learning (CL) framework to incremen-
tally fine-tune the DLMS model. This framework leverages
the structured progression of task complexity to improve
performance and mitigate catastrophic forgetting. Each stage
targets a specific subtask:

1. Safety status classification: The model is initially fine-
tuned on binary safety classification, emphasizing
structured output formats inspired by the “analyze-
answer” framework in DeepSeek-R1-Zero. This stage
establishes a foundation for reasoning and output
consistency.

2. Category code classification: Building on Stage 1, the
model is fine-tuned for multi-label classification to
identify “unsafe" categories, refining its understand-
ing of safety while learning category predictions.

3. Sensitive data extraction: In the final stage, the model
performs sequence-level predictions to extract sensi-
tive entities (e.g., PII, BII) while retaining proficiency
in the prior tasks.

The model is fine-tuned for one epoch per stage, re-
sulting in a lightweight training process of three epochs.
This progressive design aligns with the principle of scaf-
folding, where earlier tasks provide a foundation for master-
ing more complex ones, ensuring computational efficiency
while achieving robust performance.

In the context of training DLMS for sensitive data de-
tection via CL, we adopt a stage-specific reward function
design. This approach ensures that the model is incentivized
to focus on the relevant sub-task at each stage, while grad-
ually progressing towards the final goal. The reward system
follows the same principles as those used in the SFT setting;
yet it is selectively activated and weighted across stages to
reflect task complexity. The only notable difference lies in
the format reward, where the penalty for incorrect output
formatting evolves over stages: no penalty is applied at
Stage 1 (reward = 0), while a stronger penalty of −2 is
assigned at Stages 2 and 3 to enforce stricter adherence to
format as tasks become more complex.

In summary, Stage 1 rewards focus on format and safety
classification; Stage 2 introduces category code rewards; and
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Stage 3 adds entity extraction rewards. This stage-specific
reward scheduling ensures that the model is gradually guided
to master increasingly complex tasks, in line with the prin-
ciples of curriculum learning.
5.6. Training Configurations

The model is trained with a learning rate of 1e-6 for 3
epochs. Following the default settings of the verl framework,
the learning rate warm-up ratio is set to 0. The total batch size
is 4 for training and 16 for validation. Each training batch is
further divided into mini-batches of size 8, with a micro-
batch size of 4 per GPU. The maximum sequence length is
set to 4,096 tokens for both prompts and responses, enabling
the model to process long-form reasoning tasks effectively.

To optimize GPU memory usage, both gradient check-
pointing and padding removal are enabled, with the latter
improving efficiency during token-level processing. For the
actor model, FSDP offloading of parameters and optimizer
states is disabled to prioritize computational speed. In con-
trast, parameter offloading is enabled for the reference model
to reduce memory consumption. The FSDP wrap policy
follows the default configuration provided by Hugging Face.

To generate rollouts efficiently, the vLLM hybrid engine
is used with a tensor parallel size of 4 and a GPU memory
utilization ratio of 0.4 for key-value cache storage. Rollout
sampling is performed with a temperature of 0.7, and the
same temperature is applied during validation for consis-
tency. The sampling strategy uses the default configurations
for top_k and top_p, which are set to −1 (no top-k filtering)
and 1.0 (no truncation of probability mass), respectively.
These settings ensure that the full token probability distri-
bution is considered during sampling.

The KL divergence regularization coefficient 𝛽 is set to
0.001, and a low-variance KL divergence loss is used to
stabilize policy updates. The model generates 8 rollouts per
prompt, enabling exploration of diverse responses. For log
probability computations, a micro-batch size of 8 is used for
both the rollout and reference models.

Reward estimation follows a purely rule-based approach,
and no separate reward model is employed, thereby sim-
plifying the training pipeline. Generalized Advantage Es-
timation (GAE) is used for advantage computation with
hyperparameters 𝜆 = 1 and 𝛾 = 1, which are the default
values in the verl framework. These parameters ensure that
the advantage estimation fully weights long-term rewards
without discounting or bias. The critic warm-up phase is
disabled, and training begins directly with policy updates.

Model checkpoints are saved every 100 training steps,
and validation is performed at the same interval. Although
the verl framework defaults to validating every 2 steps, this
frequency is increased to reduce computational overhead.
The model checkpoint achieving the highest validation re-
ward is selected for evaluation. In the curriculum learning
training scheme, the model checkpoint of the previous stage
achieving the highest validation reward is selected for the
training of the next stage.

6. DLMS Evaluation Setup
6.1. Model Versions

Three model variants, all of which use parameter fine-
tuning without parameter-efficient fine-tuning (PEFT), are
evaluated. All models are fine-tuned using the same sensi-
tive data taxonomy, with Llama-3.2-3B-Instruct as the base
model, and trained on a dataset comprising 2,311 samples.

1. DLMS-SFT: The base model is fine-tuned with three
epochs using SFT only.

2. DLMS-RFT: The base model is fine-tuned with three
epochs using RFT only.

3. DLMS-RFT-CL: The base model is fine-tuned using
a three-stage CL strategy, where each stage is trained
for one epoch.

6.2. Evaluation Metrics
We evaluate model performance across three levels:

safety, category, and entity.
At the safety level, which is formulated as a binary

classification task, we use standard metrics including Accu-
racy, F1-Score, and Area Under the Precision-Recall Curve
(AUPRC) to assess the model’s ability to distinguish be-
tween “safe” and “unsafe” prompts.

At the category level, since a single prompt may involve
multiple sensitive categories, we treat the task as multi-
label classification and report Subset Accuracy, Hamming
Accuracy, and Multi-Label F1-Score. Subset Accuracy is
the most stringent metric used, measuring the proportion
of instances where the predicted label set exactly matches
the ground truth. It is formally defined as 1

𝑁
∑𝑁

𝑖=1 𝐼(𝑦𝑖 =
�̂�𝑖), where 𝑁 represents the number of instances, 𝑦𝑖 and �̂�𝑖denote the true and predicted sets of labels for instance 𝑖,
respectively, and 𝐼 is an indicator function that returns 1 if
𝑦𝑖 = �̂�𝑖 and 0 otherwise. In contrast, Hamming Accuracy
provides a more lenient metric by evaluating prediction
correctness independently for each label. It is defined as

1
𝑁×𝐿

∑𝑁
𝑖=1

∑𝐿
𝑙=1 𝐼(𝑦𝑖𝑙 = �̂�𝑖𝑙), where 𝐿 is the total number of

labels, and 𝑦𝑖𝑙 and �̂�𝑖𝑙 represent the true and predicted values
for label 𝑙 of instance 𝑖, respectively

At the entity level, we use the Privacy Hiding Rate
(PHR) [35] to quantify the effectiveness of sensitive entity
obfuscation. PHR is defined as the proportion of sensitive
entities that are successfully anonymized by the model:
𝑁hidden
𝑁total

, where 𝑁total is the total number of sensitive entities
identified in the prompts, and 𝑁hidden is the number of those
entities that are successfully anonymized by the model.

7. DLMS Evaluation Results
7.1. Performance on Privacy Risk Detection

We use a zero-shot prompting method during model
evaluation on the privacy risk detection task. This involves
category names and their corresponding descriptions into
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Table 5
Privacy protection performance.

Model Safety Level Category Level Entity Level

Accuracy F1-Score AUPRC Hamming
Accuracy

Subset Ac-
curacy

Multi-Label
F1-Score AUPRC Privacy Hid-

ing Rate

DLMS-SFT 0.935 0.918 0.962 0.922 0.696 0.707 0.733 0.839
DLMS-RFT 0.910 0.882 0.946 0.919 0.660 0.701 0.697 0.555
DLMS-RFT-CL 0.916 0.891 0.950 0.928 0.698 0.735 0.742 0.533
Llama-3.2-3B-Instruct 0.468 0.462 0.869 0.832 0.303 0.268 0.336 0.064

Table 6
Privacy protection performance of different model checkpoints from curriculum learning.

Model Safety Level Category Level Entity
Level

Accuracy F1-Score AUPRC Hamming
Accuracy

Subset Ac-
curacy

Multi-
Label
F1-Score

AUPRC
Privacy
Hiding
Rate

DLMS-RFT-CL (stage 1 only) 0.965 0.958 0.984 0.864 0.582 0.531 0.521 0.545
DLMS-RFT-CL (stages 1 & 2) 0.951 0.941 0.976 0.922 0.712 0.703 0.660 0.493
DLMS-RFT-CL 0.916 0.891 0.950 0.928 0.698 0.735 0.742 0.533

the prompt at inference time. Table 5 summarizes the perfor-
mance of three DLMS models and the base model (Llama-
3.2-3B-Instruct). For each metric, the highest-performing
value is highlighted.

At the safety level, all DLMS models significantly out-
perform the baseline Llama-Guard-3-8B across Accuracy,
F1-Score, and AUPRC, confirming their strong ability to
detect whether a prompt poses a privacy risk. Among them,
DLMS-SFT achieves the highest scores, slightly outper-
forming DLMS-RFT and DLMS-RFT-CL. Interestingly,
DLMS-RFT-CL performs almost identically to DLMS-RFT,
suggesting that CL has limited impact at this level.

At the category level, all DLMS models again outper-
form the baseline, demonstrating strong multi-label classi-
fication capabilities. DLMS-RFT-CL achieves the best per-
formance across all metrics, indicating that CL may provide
additional benefits for category-level generalization. DLMS-
SFT and DLMS-RFT perform comparably on this task.

At the entity level, DLMS-SFT achieves the best Pri-
vacy Hiding Rate (0.839), significantly outperforming both
DLMS-RFT (0.555) and DLMS-RFT-CL (0.533). In con-
tract, the base model achieves only 0.064 under the same
zero-shot prompting setup. This highlights DLMS’s effec-
tiveness in privacy-preserving inference.

Although the RFT-based models underperform SFT in
this task, this outcome is partially due to the conservative
reward design used during training. To reduce overpredic-
tion behaviors observed in early RFT runs, we introduced
penalties for both category-level and entity-level overpre-
diction. While this strategy successfully mitigated reward
hacking, it also led the model to become overly cautious,
resulting in lower recall and reduced Privacy Hiding Rates.
We hypothesize that these conservative behaviors stem from
an imbalanced reward design that discourages borderline
predictions. A more fine-grained reward function that better
balances false positives and false negatives could potentially

improve the performance of RFT models on entity-level
tasks.
7.2. Evaluating the Impact of CL

Table 5 suggests that the CL training strategy leads to
mild improvements in safety status classification and cate-
gory code extraction tasks. To further examine the impact of
CL, we analyze the performance of three intermediate RFT
model checkpoints from different CL stages, as reported in
Table 6: (1) the best-performing model on the validation
set after Stage 1 training (Stage-1 model), (2) the best
checkpoint after Stages 1 and 2 (Stage-2 model), and (3) the
final model trained through all three stages (Stage-3 model,
i.e., DLMS-RFT-CL). For each metric, the best-performing
value across all checkpoints is highlighted.

“Catastrophic forgetting” is observed when the RFT
model is trained sequentially by CL on multi-level privacy
detection. The stage 2 and stage 3 models exhibit degraded
performance on safety status classification, despite being
trained on this task throughout all stages. This suggests that
later-stage training may interfere with previously learned
capabilities.

8. Adaptability to Non-Taxonomy Policies
The adaptability of the framework to non-taxonomy and

general-purpose privacy policies is evaluated. By leveraging
few-shot prompting, the DLMS enables dynamic and real-
time policy enforcement, ensuring compliance with organi-
zational privacy guidelines even in the absence of explicit
training on specific policies.

To the best of our knowledge, there are no publicly
available benchmarks designed to assess LLM’s capabil-
ity of privacy policy compliance. To address this gap, we
curated a set of four authentic privacy policies extracted
from the security policy documentation of an anonymous
organization’s Data Protection Office. These policies were
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Table 7
Adaptability to non-taxonomy privacy policies via prompting.

Model Accuracy F1 Score AUPRC

DLMS-SFT (1 epoch, FPFT) 0.564 0.455 0.769
DLMS-SFT (1 epoch, LoRA) 0.758 0.749 0.832
DLMS-RFT-CL (stage 1 only) 0.862 0.861 0.898
Llama-3.2-3B-Instruct 0.713 0.706 0.801

selected to reflect real-world scenarios involving sensitive
information. An example policy for a binary classification
task is like: “Secret information is information of sensitive
nature or having strategic values. ... Examples include pass-
words and cryptographic keys. The following usages are not
permitted: Disseminating sensitive or confidential informa-
tion of Company”. Again, we generated a testing dataset
of non-compliant user prompts containing unsafe content
with the assistance of uncensored LLMs. See Table A.1 in
Appendix A for the summary statistics of the testing dataset
for policy compliance of user prompts, and Table A.3 in
Appendix D for policy definitions of the four testing policies.

For evaluation metrics, the model’s performance using
the same groups of metrics at the safety level is assessed.
The results of the evaluation are summarized in Table 7. The
evaluation metric values in the table are the weighted average
across all four testing policies.

As we only assess the model’s generalization capability
to the first level of the privacy risk identification task, i.e.,
identify the safety status of the given prompt, we compare
the model checkpoint of highest validation reward after stage
1 of CL training only (stage 1 model) against the DLMS-SFT
models that were fine-tuned for 1 epoch using and not using
Low-Rank Adaptation (LoRA) [45]. We find that the stage
1 model has the best performance among the models, which
demonstrates the potential to improve generalization capa-
bility of RFT approach and the test-time compute scaling of
“analyze-then-decide” paradigm.

9. Utility-Preservation Encryption
To enable secure and effective downstream processing

following sensitive data detection by DLMS, we adopt a
token-level encryption-based anonymization strategy. Specif-
ically, instead of encrypting the entire prompt, we selectively
encrypt sensitive entities detected within unsafe user inputs.
This approach ensures targeted protection while preserving
the overall utility of the prompt. Privacy-preserving infer-
ence in LLMs presents a fundamental trade-off between
minimizing privacy leakage and preserving input utility.
Zhang et al. [46] formalize this dilemma as the No Free
Lunch Theorem for privacy-preserving inference, which
states that stronger privacy guarantees often lead to reduced
utility in model outputs.

In this work, we define utility as the preservation of the
semantic context of user prompts, i.e., the meaning conveyed
by words and phrases rather than their surface forms [1]. This
is essential for LLMs, which rely on semantic coherence
to produce accurate and contextually appropriate outputs.

Therefore, anonymization should protect sensitive content
without significantly altering the input’s meaning.
9.1. Motivation for Format-Preserving Encryption

Traditional encryption algorithms such as AES [47]
produce ciphertexts that completely obscure the structure of
the original input, replacing sensitive tokens with opaque,
unstructured strings. While this ensures strong confidential-
ity, it disrupts the syntactic and structural integrity of the
prompt, which can lead to downstream processing failures
or degraded LLM performance.

To address these limitations, we adopt Format-Preserving
Encryption (FPE) as a utility-preserving anonymization
technique. FPE produces ciphertexts that maintain the same
format—length, character classes, and delimiters—as the
original input [48]. As illustrated in Table 8, FPE preserves
token-level formatting across all entity types, whereas AES
produces opaque and inconsistent ciphertexts. This format
retention is vital for schema validation and downstream
interpretability, making FPE particularly suitable for LLM-
based applications that rely on textual coherence and struc-
tural fidelity.

The NIST specifies two standard algorithms for FPE:
FF1 and FF3-1 [40]. FF1 offers greater flexibility, sup-
porting a wider range of input lengths and tweak sizes. In
contrast, FF3-1 reduces the number of encryption rounds
from ten to eight, achieving higher throughput. In our
experiments, we adopt FF3-1 for its performance benefits.
The FPE encryption and decryption processes are defined
as follows: let 𝐾 denote the encryption key, 𝑇 the tweak,
𝑋 the plaintext, and 𝑌 the ciphertext. The tweak 𝑇 does
not need to be secret, but using variable tweaks across
encryptions enhances security. The ciphertext 𝑌 retains the
same length as the plaintext 𝑋. The encryption function
is denoted as FPE.Encrypt(𝐾, 𝑇 ,𝑋), and the decryption
function as FPE.Decrypt(𝐾, 𝑇 , 𝑌 ). For a fixed key and
tweak, decryption is the inverse of encryption, satisfying
FPE.Decrypt(𝐾, 𝑇 ,FPE.Encrypt(𝐾, 𝑇 ,𝑋)) = 𝑋.
9.2. Effectiveness of FPE

Beyond structural preservation, FPE also demonstrates
strong empirical performance in maintaining the semantic
utility of prompts for downstream LLM tasks. Appendix
Fig. A.1 shows that Copilot produces nearly identical re-
sponses to FPE-encrypted and plaintext prompts, indicating
that entity-level encryption does not compromise model
understanding or output quality.

10. Discussions
10.1. Rule-Based Reward Design for DLMS-RL

for Policy Compliance
Privacy regulations in industries like technology, fi-

nance, and healthcare are complex, requiring a deep under-
standing to design effective compliance systems. Research
on automated privacy and security systems has shown that
formalizing policies can detect violations, automate enforce-
ment, and evaluate alternative designs. This is particularly

Page 10 of 18



Table 8
Comparison of FPE and AES ciphertexts.

No Category Plaintext FPE Ciphertext AES Ciphertext
T1: Email Address tinavang@support.org UbuEzHYT@HAyfwmn.com vzbblybt5iKs0AURAp9uKXKo4IDGEnS7QD3/enbhUVlqNSHkDGhezfA6kzeX2apt

T2: Personal ID Number B 987 654 3 I 1aA aL7 d QqljoR0E6sEzv5AqiWv70T2h2tjawPNK4aBPI8JZjKc=

T3: Phone Number +86 13945093743 +92 43651064790 pn7ZmoVELmMhINcy1ePJHGxvWY3Wrw41boMh+wxf7f0=

T4: Fax Number (853) 3406-2802 (645) 2766-3262 McJ3oiDASSialUbySpLyxNmOTA1etBGrLmJje74NBgE=

T5: Bank Account Number DE89370400440532013000 DE79420195675275016155 IWs6jpT+sFnO7u1LCKnUnsw3MalkJ92qw60n41QkS5dp/m0g5lXYTGLRKlHVycBz

T6: Monetary Value 1,452,500 6,423,095 zPLGuKCLJrVdkPkKVU5Ku119xPEo7RgaZ/6bQ8Mg43Y=

critical in highly regulated domains governed by frameworks
such as GDPR in Europe or HIPAA in the United States,
where policies impose strict constraints on handling sen-
sitive data, such as Electronic Health Information (EHI).
The increasing complexity of these frameworks has driven
demand for Regulatory Technology (RegTech) solutions that
operationalize compliance at scale.

Our trials with RFT of DLMS indicate that fine-grained
compliance relies on formalizing policies as logic-based
rules. Expressing policies as logic programs enables auto-
matic generation of reward modeling procedures for RFT,
encoding interpretable rules to evaluate compliance across
multiple levels of granularity. This approach supports dy-
namic reward functions that adapt to specific policy re-
quirements, such as prioritizing sensitive data or balancing
trade-offs between compliance metrics. While not exhaus-
tive, our findings suggest that rule-based reward model-
ing facilitates customizable, resource-efficient enforcement
of privacy policies, particularly in resource-constrained or
domain-specific settings. Below are concrete examples that
illustrate the utility of rule-based reward modeling in real-
world scenarios:

Differentiated safety priorities. Consider a social media
company that prioritizes blocking unsafe prompts to prevent
misuse of its platform, such as the generation of harmful or
offensive content. In contrast, a financial institution focuses
on ensuring that sensitive information, such as customer
account numbers or transaction details, is encrypted. For the
social media company, the reward model would emphasize
binary classification of safety, while for the financial institu-
tion, it would prioritize sensitive entity extraction.

Balancing false positives and false negatives. A cyber-
security firm may aim to minimize false positives (e.g.,
unnecessary alerts that disrupt workflows), as these can
overwhelm its monitoring systems and reduce operational
efficiency. On the other hand, a healthcare organization
might prioritize minimizing false negatives, as these repre-
sent undetected privacy risks that could lead to severe regu-
latory penalties or patient data breaches. Rule-based reward
modeling allows for these preferences to be encoded directly
into the training process, tailoring the model’s behavior to
the specific needs of the organization.

Optimizing evaluation metrics. An AI research lab de-
ploying a model for internal use may require the model to
achieve an F1-score > 0.9 to balance precision and recall
for its compliance tasks. However, a legal tech firm might
prioritize achieving the highest possible precision to ensure

that no non-compliant actions are inadvertently flagged as
compliant. The reward modeling system can be tuned to
optimize for the metric most relevant to the organization’s
objectives.
10.2. Dynamic Policy Compliance via Prompting

The overfitting of domain-specific models to specific
taxonomies of “safe” and “unsafe” undermines their stabil-
ity and generalization across scenarios, making them un-
suitable for rapidly evolving privacy policies or high-risk
applications. Fine-tuning models for real-time and dynamic
policy compliance with ad hoc collection of training data
is impractical due to the high cost, latency, and resource
demands. Businesses require adaptable frameworks capable
of handling policy dynamics without constant retraining.

In Section 8, we demonstrate that DLMS can address this
issue and perform a non-taxonomy privacy policy classifica-
tion task using a few-shot prompting method. This approach
leverages DLMS’ generalization capabilities to dynamically
interpret and enforce policies, reducing deployment costs
and enabling real-time compliance. Unlike traditional fine-
tuning methods, prompting provides a flexible and cost-
effective solution for adhering to diverse and evolving pri-
vacy regulations, such as GDPR or HIPAA.

Dynamic and context-sensitive compliance is critical in
domains, such as healthcare, finance, and technology, where
regulations vary across jurisdictions and evolve rapidly.
Traditional fine-tuned models often fail to generalize be-
yond narrowly defined taxonomies, leading to instability
and inaccuracies in high-stakes applications. By contrast,
a prompting-based methodology enables DLMS to adapt
to unseen policies, supporting real-time compliance with
minimal disruption.
10.3. Transparency and Traceability

The black-box nature of LLM inference poses a sig-
nificant challenge in regulated domains such as privacy,
security, and compliance, where transparency and trace-
ability are critical. Regulations like the GDPR the HIPAA
emphasize the need for explainability in automated decision-
making systems, particularly when these systems are de-
ployed in sensitive applications. Despite their high perfor-
mance, LLMs often fail to meet these requirements due
to the opaque nature of their inference processes, limiting
their applicability in policy compliance and enforcement in
critical business areas.
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To address this limitation, we propose an analyze-then-
decide inference framework that integrates structured rea-
soning into the inference process, enhancing both trans-
parency and traceability. This framework is implemented
through our DeepSeek R1-Zero-like RFT approach, which
trains models to provide human-readable justifications for
their outputs. Specifically, the model is designed to output
its reasoning process enclosed within <analyze> tags before
delivering a final decision enclosed within <answer> tags. By
explicitly generating reasoning steps, the model allows regu-
lators, auditors, and operators to trace how specific decisions
were derived, thereby satisfying compliance requirements
for explainability.

11. Related Work
Protecting sensitive data during training, including both

pre-training and fine-tuning, is a key strategy for ensuring
privacy in LLMs. Homomorphic encryption (HE) [11–13,
16], secure multi-party computation (MPC) [14, 18, 20–22],
trusted execution environments (TEEs) [49–51], and differ-
ential privacy (DP) [23–33] are widely adopted techniques
for achieving this goal, and have been comprehensively
reviewed in several recent surveys [52–56]. Therefore, in
this work, we focus on introducing recent studies specifically
aimed at preserving sensitive information during user–LLM
interactions.

PP-TS [57] first identifies and removes sensitive in-
formation from user inputs through multiple rounds of
text sanitization. The sanitized input is then processed by
a remote LLM, and the sensitive content is reintegrated
into the model’s output using local plaintext–ciphertext
mappings. ConfusionPrompt [37] and Instance-Obfuscated
Inference (IOI) [58] employ decomposition techniques,
pseudo-prompts, and decision resolution mechanisms to
obscure sensitive inputs while reconstructing the desired
outputs. These methods provide practical solutions but
must carefully navigate trade-offs between privacy guar-
antees and prompt usability. HaS [59] introduces a two-
stage framework where a Hide-Model anonymizes sensitive
entities in the input text, and a Seek-Model locally de-
anonymizes the output, achieving strong privacy protection
with low computational overhead. DePrompt [60] combines
fine-tuned LLMs with adversarial generative desensitiza-
tion. It leverages semanticity, linkability, and uncertainty
to anonymize inputs, and evaluates effectiveness using both
privacy and utility metrics. EmojiCrypt [34] encrypts sensi-
tive user input by transforming it into non-natural language
sequences—such as emojis, emotive symbols, and mathe-
matical tokens—with the assistance of a fine-tuned LLM.
ProSan [35] employs gradient-based sensitivity analysis to
assess the importance and privacy risk of tokens, and then
uses a masked language model to generate anonymized re-
placements based on contextual information. Finally, Casper
[36] offers a client-side browser extension that sanitizes
user prompts before they are transmitted to web-based

LLM services. Sensitive content is replaced with dummy
placeholders to prevent leakage.

12. Conclusion
This paper presents LLM Access Shield, a domain-

specific framework that enables privacy-preserving interac-
tion with LLMs. The framework enforces policy compliance
and mitigates privacy risks through domain-adapted policy
enforcement, dynamic policy customization, and FPE for
sensitive entity anonymization.

Empirical evaluations demonstrate that LLM Access
Shield effectively identifies privacy risks, enforces evolving
policies, and preserves semantic fidelity across prompts and
responses. Models trained with SFT and RFT exhibit strong
performance across multiple tasks, including safety classi-
fication, category detection, and sensitive entity extraction.
Besides, the integration of curriculum learning into the
RFT process enhances training stability and improves model
generalization in multi-level policy compliance scenarios.
Furthermore, the framework supports real-time customiza-
tion and generalization to previously unseen privacy policies
via prompting, without requiring model retraining.

Overall, LLM Access Shield achieves a practical bal-
ance among data confidentiality, utility preservation, and
contextual integrity, specifically tailored for high-assurance
domains such as finance, healthcare, and legal services,
where privacy and compliance requirements are essential.

Future work. Beyond safeguarding user prompts, a major
challenge in user–LLM interactions is preventing unautho-
rized disclosure of sensitive internal information through
LLM responses, especially when private LLMs access priv-
ileged organizational knowledge. For example, in banking,
employees have varying data access levels, and improper
LLM responses could cause privacy breaches and regulatory
violations. Addressing this requires robust response-filtering
mechanisms based on nuanced contexts. Developing these
controls remains an open research problem. Future work can
also include translating privacy regulations into fine-grained
rules for reward models and exploring Process Reward Mod-
els (PRMs) for stepwise compliance in complex scenarios.
Comparative studies of rule-based and process-based reward
approaches will benefit from standardized evaluation frame-
works tailored to privacy-preserving behaviors in LLMs.
Hybrid methods that combine the transparency of rule-based
reward techniques with the adaptability of process-based
reward frameworks may offer promising solutions for highly
regulated environments.
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Appendix
A. Testing Data Generation

To evaluate the performance of DLMS and its adaptabil-
ity to non-taxonomy-based policies, we construct a dataset
of policy-violating user prompts. Positive samples are gener-
ated using predefined templates to guide uncensored LLMs
(8B–13B parameters) in producing non-compliant content
tailored to specific policies. Seven uncensored LLMs from
the Huggingface platform are utilized to ensure diversity.
Manual screening then verifies content quality and align-
ment with testing scenarios, eliminating irrelevant or low-
quality samples. The finalized unsafe samples were com-
bined with safe, compliant data from four publicly available
human-LLM interaction datasets, creating a balanced eval-
uation dataset with an even distribution of safety labels and
content categories.

Page 14 of 18



B. Prompt Instructions
The prompt instruction for SFT is designed as follows.

[INST] Task: Check if there is unsafe content

in '{{ role }}' messages in conversations

according to our safety policy with the below

categories.

<BEGIN UNSAFE CONTENT CATEGORIES>

{{ unsafe_categories }}

<END UNSAFE CONTENT CATEGORIES>

<BEGIN CONVERSATION>

User: {{ user_query_1 }}

<END CONVERSATION>

Provide your safety assessment for $agent_type in

the above conversation:

- The first line must state either 'safe' or 'unsafe'.

- If the assessment is 'unsafe':

- The second line must list the violated category

codes (e.g., 'T1', 'T5') as a comma-separated string.

- The third line must list the unsafe entities as a

semicolon-separated string. Output them exactly as

they appear in the original message. [/INST]

The prompt instruction for few-shot RFT is designed as
follows. The zero-shot version is the same except that the
examples are excluded.

[INST] Task: Check if there is unsafe content

in '{{ role }}' messages in conversations

according to our safety policy with the below

categories.

<BEGIN UNSAFE CONTENT CATEGORIES>

{{ unsafe_categories }}

<END UNSAFE CONTENT CATEGORIES>

<BEGIN CONVERSATION>

User: {{ user_query_1 }}

<END CONVERSATION>

Provide your safety assessment for ONLY THE LAST

$agent_type message in the above conversation:

1. **Analyzing Process**:

- Analyze the user's message for each unsafe content

category and reason your way to a conclusion.

- Enclose the analyzing process within

'<analyze>...</analyze>' tags.

2. **Final Answer**:

- Provide your final safety assessment enclosed within

'<answer>...</answer>' tags.

- The format inside '<answer>...</answer>' should be

as follows:

- The first line must state either 'safe' or 'unsafe'.

- If the assessment is 'unsafe':

- The second line must list the violated category

codes (e.g., 'T1', 'T5') as a comma-separated

string.

- The third line must list the unsafe entities

as a semicolon-separated string. Output them

exactly as they appear in the original message.

**Example 1**:

<analyze>

analyzing process here

</analyze>

<answer>

unsafe

T1, T6

customer@gmail.com; 150,000

</answer>

**Example 2**:

<analyze>

analyzing process here

</analyze>

<answer>

safe

</answer>

**Example 3**:

<analyze>

analyzing process here

</analyze>

<answer>

unsafe

T2, T3, T6

983-4012-949CN; +853-3406-2844; 875,500;

124,500

</answer> [/INST]
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C. Sample Outputs of DLMS-RFT
Presented below are two sample outputs from DLMS-

RFT for the sensitive data detection task, illustrating one
safe and one unsafe instance.

<analyze>

The user's message does not contain any email addresses,

bank account numbers, or personal ID numbers. However,

it does mention "data provided in this report," which

could potentially contain sensitive information. But

without more context, it's difficult to say for certain

whether the data is personal or not. The message does not

appear to contain any phone numbers. The message is

safe based on the categories listed, but the presence

of "data" could be a cause for concern. The message

does not seem to violate any of the categories listed.

The message is safe.

</analyze>

<answer>

safe

</answer>

<analyze>

The user's message contains the number "+853-3406-2802",

which could be a phone number. This violates category

T3 "Phone Number". Therefore, the message is unsafe

due to the presence of a phone number, which could be

used for contact information.

</analyze>

<answer>

unsafe

T3

+853-3406-2802

</answer>

Displayed below are two sample outputs from DLMS-
RFT-CL for the policy compliance task, both of which are
classified as unsafe.

<analyze>

The user's message contains the number "+1 (525)

931-4508", which could be a phone number. This is

a potential violation of the policy "POL02" which

states that personal information such as phone

numbers should not be disclosed without authorization.

Therefore, the message is unsafe due to the presence

of personal contact information.

</analyze>

<answer>

unsafe

POL02

+1 (525) 931-4508

</answer>

<analyze>

The user's message contains the number "+86 138 0013

8000", which could be a phone number. This is a potential

violation of the policy as it may be a customer's

personal contact information. The message does not

explicitly mention the customer's name, but the presence

of a phone number could be used to identify the customer.

The user's intention is to provide a response to a

support ticket, which suggests that the phone number may

be related to a customer's account. Therefore, the

message is unsafe due to the potential disclosure of

customer information.

</analyze>

<answer>

unsafe

POL02

+86 138 0013 8000

</answer>

D. Privacy Taxonomy and Privacy Policies in
Experiments

Table A.2 outlines the taxonomy of sensitive data cate-
gories used in our experiment setup, while Table A.3 details
the privacy policies used in assessing DLMS’s adaptability
to non-taxonomy privacy policies via prompting.
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Table A.1
Summary of the testing dataset for policy compliance of user prompts.

Policy Total Messages Safe Messages % Safe % Unsafe

POL01: Security Policy of Company’s Secret Information 111 60 54.05% 45.95%
POL02: Security Policy of Company’s Customer Information 112 60 53.57% 46.43%
POL03: Security Policy of Company’s Employee Personal Information 116 60 51.72% 48.28%
POL04: Security Policy of Company’s Payment Information 145 60 41.38% 58.62%

Table A.2
Privacy taxonomy.

Category ID Category Name Category Description

T1 Email Address Users should not include email addresses in either user’s prompts or input data.
T2 Personal ID Number Users should not include personal ID numbers in either user’s prompts or input data.
T3 Phone Number Users should not include phone numbers in either user’s prompts or input data.
T4 Fax Number Users should not include fax numbers in either user’s prompts or input data.
T5 Bank Account Number Users should not include bank account numbers in either user’s prompts or input data.
T6 Monetary Value Users should not include monetary values in either user’s prompts or input data.

Table A.3
Privacy policies.

Policy ID Policy Title Policy Description

POL01 Security Policy of Company’s Secret
Information

Secret information is information of sensitive nature or having strategic values. The unauthorized disclosure,
modification, or destruction of this information would have a high impact on the company. Generally,
this information shall be used exclusively by a small number of predetermined and authorized employees
and business partners. Examples include passwords and cryptographic keys. The following usages are not
permitted: Disseminating sensitive or confidential information of Company.

POL02 Security Policy of Company’s Cus-
tomer Information

Customer information is limited to a specific group of business partners, assigned on a need-to-use basis
and for authorized intended purposes. The unauthorized disclosure, modification, or destruction of this
information would adversely affect business performance or the continuity of operations. Examples include
personal names, phone numbers, and physical addresses in support tickets and purchases.

POL03 Security Policy of Company’s Em-
ployee Personal Information

Employee personal information is limited to a specific group of staff, assigned on a need-to-use basis
and for authorized intended purposes. The unauthorized disclosure, modification, or destruction of this
information would adversely affect business performance or the continuity of operations. Examples include
employees’ or job applicants’ personal information, such as Hong Kong ID numbers, email addresses, phone
numbers, dates of birth, and home addresses. You are not allowed to make any unauthorized disclosure of
the confidential information about Company’s employees and job applicants.

POL04 Security Policy of Company’s Pay-
ment Information

Payment information is limited to payment and transaction scenarios, assigned on a need-to-use basis
and for authorized intended purposes. The unauthorized disclosure, modification, or destruction of this
information would adversely affect business performance or the continuity of operations. Examples include
bank account and credit card information.
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Figure A.1: Sample LLM responses to unencrypted and FPE-encrypted prompts. The text “(its FPE Ciphertext: ...)” shown in
the LLM responses on the right is included for demonstration purposes only and would not be visible to the end user.
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