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Abstract— Neuromorphic computing, inspired by the 
human brain’s neural architecture, is revolutionizing 
artificial intelligence and edge computing with its low-
power, adaptive, and event-driven designs. However, these 
unique characteristics introduce novel cybersecurity risks. 
This paper proposes Neuromorphic Mimicry Attacks 
(NMAs), a groundbreaking class of threats that exploit the 
probabilistic and non-deterministic nature of 
neuromorphic chips to execute covert intrusions. By 
mimicking legitimate neural activity through techniques 
like synaptic weight tampering and sensory input poisoning, 
NMAs evade traditional intrusion detection systems, posing 
risks to applications such as autonomous vehicles, smart 
medical implants, and IoT networks. This research 
develops a theoretical framework for NMAs, evaluates their 
impact using a simulated neuromorphic chip dataset, and 
proposes countermeasures, including neural-specific 
anomaly detection and secure synaptic learning protocols. 
The findings underscore the critical need for tailored 
cybersecurity measures to protect brain-inspired 
computing, offering a pioneering exploration of this 
emerging threat landscape. 
 

Index Terms— Neuromorphic computing, cybersecurity, 
mimicry attacks, brain-inspired systems, and intrusion 
detection. 

I. INTRODUCTION 

Neuromorphic computing represents a paradigm shift from 
traditional von Neumann architectures to systems that mimic 
the brain’s neural structure [1]. These chips feature low power 
consumption, event-driven processing, and adaptive learning, 
making them ideal for AI, edge computing, and IoT 
applications [2]. By 2025, neuromorphic systems are 
increasingly adopted in autonomous vehicles, smart implants, 
and decentralized IoT networks due to their efficiency in 
resource-limited environments [3]. However, their core traits—
probabilistic behavior, non-deterministic processing, and 
synaptic weight dependency—introduce novel and unaddressed 
cybersecurity risks [4]. 

This research introduces Neuromorphic Mimicry Attacks 
(NMAs), a new class of cyber threats that exploit neuromorphic 

chips' biological-like behavior [5]. Unlike conventional attacks, 
NMAs manipulate neural dynamics to mimic legitimate 
activity, often bypassing existing intrusion detection systems 
(IDS) [6]. Key techniques include synaptic weight tampering 
and sensory input poisoning, which subtly alter system outputs 
without raising alarms [7]. Such attacks could misdirect 
autonomous navigation or interfere with real-time medical 
monitoring, leading to potentially catastrophic outcomes [8]. 

The motivation behind this study stems from the fast-growing 
integration of neuromorphic systems and the lack of security 
models tailored to their architecture [9]. While traditional 
security efforts focus on software exploits or hardware Trojans 
[10], neuromorphic systems demand distinct solutions due to 
their analog, decentralized design [11]. This work fills that gap 
by proposing a structured NMA framework, simulating attacks 
using a custom dataset, and developing countermeasures that 
align with neuromorphic processing principles [12]. The 
dataset, derived from a simulated neuromorphic chip, captures 
neural behavior under both normal and compromised 
conditions [13]. Unlike datasets such as CIC-IDS-2017 [14], 
which log network traffic, this dataset targets hardware-level 
neural interactions [15]. Data visualizations including bar 
graphs and tables highlight the effectiveness and stealth of 
NMAs, supporting the study’s findings [16]. 

The primary objectives are: (1) to define and characterize 
NMAs, (2) to assess their impact, and (3) to propose specialized 
defensive strategies [17]. By achieving these, this paper aims to 
pioneer security research in neuromorphic computing and 
support its safe and reliable deployment [18][19]. 

II. THEORETICAL BACKGROUND 

Neuromorphic computing emulates the brain using spiking 
neural networks (SNNs) and event-driven processing for 
energy-efficient computation [20]. Unlike CPUs, neuromorphic 
chips operate asynchronously, firing neurons only upon 
stimulus [21]. This model, seen in IBM’s TrueNorth and Intel’s 
Loihi, enables real-time adaptability for autonomous systems 
and IoT applications [22]. However, the inherent probabilistic 
and analog behaviors introduce security challenges beyond 
conventional frameworks [23]. 

Neuromorphic Mimicry Attacks (NMAs) exploit the brain-like 
nature of these chips by manipulating synaptic weights and 
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poisoning sensory inputs [24][25]. Synaptic weights control 
neuron connectivity and system learning [1], and minor 
alterations can bias outcomes without detection [2]. Sensory 
input poisoning introduces malicious signals resembling 
legitimate data, misleading system behavior [3].NMAs align 
with stealth-based cybersecurity threats like advanced 
persistent threats (APTs) but target hardware-level 
vulnerabilities [4][5]. Neurologically, they mimic brain 
pathologies, such as neural misfiring, blending with valid spike 
activity [6][7]. A formal NMA model includes the attack vector 
(e.g., weight tampering), the target system (neuromorphic chip 
with SNN), and the impact mechanism (e.g., misclassification 
or latency shifts) [9][10][12]. 

Countermeasures must align with neuromorphic dynamics. 
Traditional intrusion detection systems (IDS) are ineffective in 
probabilistic contexts [14][15]. Alternatives include anomaly 
detection tailored to spike dynamics and secure learning 
protocols for synaptic integrity [16]. These approaches adapt 
AI-based security models, such as those used in Ethereum 
systems [17][18]. A custom dataset simulates neuromorphic 
operations under normal and attack conditions, capturing spike 
frequency, latency, and weight variations [19][20]. This 
supports experimental analysis and quantifies the stealth and 
effectiveness of NMAs [21][22]. 

III. RELATED WORKS 

The cybersecurity domain for neuromorphic computing 
remains largely underexplored, as most current literature 
centers on conventional architectures or trending technologies 
like blockchain and AI [23]. This review contextualizes 
Neuromorphic Mimicry Attacks (NMAs), emphasizing the 
novelty of this research [24]. Despite growing interest in 
neuromorphic chips for AI and IoT, their unique security 
vulnerabilities remain inadequately addressed [25]. Existing 
studies primarily focus on the performance and applications of 
spiking neural networks (SNNs). For example, [2] highlights 
SNNs' energy efficiency in edge devices, and [3] explores their 
application in autonomous vehicles. However, these works 
often overlook cybersecurity, wrongly assuming that 
neuromorphic systems benefit from traditional protection 
mechanisms [4]. This assumption fails to consider the non-
deterministic, event-driven nature of neuromorphic 
architectures, which demand tailored security measures [5]. 
Research in hardware-level threats has investigated side-
channel attacks and hardware Trojans [6], with [7] examining 
fault injection in CPUs. These techniques, however, lack 
efficacy against the decentralized processing of neuromorphic 
chips [8]. Similarly, intrusion detection systems (IDS) designed 
for network security, such as [9], are ill-suited for addressing 
NMAs targeting hardware [10]. The most relevant prior work, 
[11], focuses on vulnerabilities in deep learning accelerators, 
not brain-inspired chips. 
 
Mimicry-based attacks, foundational to NMAs, have been 
studied in adversarial machine learning [12][13]. These 
typically involve crafting inputs to mislead classifiers but target 
software layers [14]. Related work on mimicry in IoT systems 
[15] is protocol-oriented and not applicable to neuromorphic 

hardware [16]. This paper introduces mimicry attacks that 
operate on the physical and synaptic layers of neuromorphic 
chips [17]. Security countermeasures remain underdeveloped 
for this domain. Traditional IDS analyzed in [19] are ineffective 
in stochastic environments like neuromorphic systems [20]. AI-
driven solutions like GNNs for anomaly detection [21] exist but 
target enterprise software platforms like SAP ERP [22]. This 
research adapts these methods to design spike-sensitive 
anomaly detection and secure synaptic learning protocols [23]. 
The dataset created here simulates neuromorphic activity, 
capturing spike frequencies and synaptic weight variations, 
differing significantly from network-focused datasets like CIC-
IDS-2017 [24][25]. Compared to datasets used in Ethereum 
fraud detection [17], this dataset is uniquely suited to 
neuromorphic security [2]. 
 
In conclusion, while related works offer partial insights, none 
directly address NMAs. This paper fills that void through novel 
attacks, a purpose-built dataset, and domain-specific 
countermeasures [3][4][5]. 

IV. MATERIALS AND METHODS 

To investigate Neuromorphic Mimicry Attacks (NMAs), this 
research employs a simulated neuromorphic chip model and a 
unique dataset to evaluate attack mechanisms and 
countermeasures [6]. The methodology integrates theoretical 
modeling, simulation, and experimental analysis to provide a 
robust framework for understanding NMAs [7]. This section 
details the dataset and model analyses, encompassing the 
materials, dataset generation, attack implementation, 
countermeasures, and visualization strategies, ensuring 
reproducibility and alignment with IEEE standards [8]. 
 

A. Dataset Analysis 

The investigation of NMAs relies on a novel dataset designed 
to capture neuromorphic chip activity under normal and attack 
conditions, providing a foundation for analyzing the stealth and 
impact of these threats [13]. The dataset comprises 10,000 
samples, each representing a 1-second snapshot of neural 
activity, with three key metrics: spike frequency (Hz), synaptic 
weight changes (%), and system latency (ms) [14]. These 
metrics were selected to reflect the operational dynamics of 
spiking neural networks (SNNs), which differ significantly 
from traditional computing architectures due to their event-
driven and probabilistic nature [15]. Spike frequency indicates 
the rate of neural firing, synaptic weight changes capture 
learning dynamics, and latency measures processing delays, 
critical for real-time applications like IoT networks and 
autonomous vehicles [16]. 

The dataset is evenly split between 5,000 normal and 5,000 
attack samples. Normal activity was generated by feeding the 
SNN random sensory inputs, simulating scenarios such as IoT 
sensor processing or autonomous vehicle navigation [15]. 
Attack conditions were introduced by implementing NMAs, 
specifically synaptic weight tampering (altering 10% of weights 
by ±0.1) and sensory input poisoning (injecting 5% malicious 
signals) [16]. Unlike network-based datasets like CIC-IDS-
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2017, which focus on traffic patterns, this dataset is unique in 
capturing hardware-level neural interactions, making it ideal for 
studying NMAs [14]. 

Statistical analysis, summarized in Table I, reveals subtle but 
significant differences between normal and attack conditions. 
Normal samples show an average spike frequency of 50 ± 10 
Hz, synaptic weight changes of 0.5 ± 0.1%, and latency of 10 ± 
2 ms. Attack samples exhibit a slightly higher spike frequency 
(55 ± 12 Hz), increased weight changes (1.2 ± 0.3%), and 
elevated latency (12 ± 3 ms). These differences are statistically 
significant (p < 0.05, t-test), yet their subtlety underscores the 
covert nature of NMAs, which evade traditional intrusion 
detection systems [15].  

Table I: Dataset Metrics 

Figure 1: Spike Frequency Distribution 

Figure 1, a histogram, visualizes spike frequency distributions 
for normal (blue) and attack (red) conditions, highlighting 
overlapping patterns that complicate detection [17]. This 
dataset’s hardware-centric focus and detailed metrics provide a 
valuable resource for developing neural-specific 
countermeasures [16]. 

B. Model Analysis 

The simulated neuromorphic chip, implemented using Python 
and the Brian2 simulator, serves as the core platform for 
evaluating NMAs and testing countermeasures [9]. The model, 
based on a spiking neural network (SNN) with 1000 neurons, 
uses synaptic weights and event-driven processing to emulate 
real-world neuromorphic hardware like Intel’s Loihi [10]. 
Simulations were conducted on a cloud-based platform with 16 
GB RAM and a 4-core CPU, ensuring scalability [11]. 
Additional tools, including NumPy for data processing and 

Matplotlib for visualization, supported the generation of figures 
and bar graphs [12]. 

The SNN model features fully connected neurons with weights 
initialized randomly (0 to 1) and updated via spike-timing-
dependent plasticity (STDP), mimicking the adaptive learning 
of neuromorphic systems [10]. Figure 2 illustrates the 
architecture, with neurons (circles), synapses (lines), and attack 
points (red arrows) indicating where NMAs, such as synaptic 
weight tampering and sensory input poisoning, are applied [17]. 
NMAs were simulated by injecting malicious scripts to alter 
10% of synaptic weights by ±0.1 during the learning phase or 
crafting adversarial inputs to mimic legitimate signals, reducing 
system outputs (e.g., classification accuracy) by less than 5% to 
maintain stealth [18, 19]. Under normal conditions, the model 
achieves a classification accuracy of 95% on a simulated IoT 
sensor dataset, with a latency of 10 ms and stable synaptic 
weights (0.5% change per epoch) [12]. Synaptic weight 
tampering reduces accuracy to 90.2%, increases latency to 12.5 
ms, and doubles weight changes to 1.2% [15]. Sensory input 
poisoning lowers accuracy to 90.8% and latency to 11.5 ms 
[16]. A stability metric, defined as the variance in spike 
frequency across 1000 trials, shows 5 Hz² for normal conditions 
and 8 Hz² under attack, indicating reduced neural stability [18]. 
Table II summarizes these metrics, highlighting the model’s 
vulnerability to NMAs due to its probabilistic firing patterns 
[19]. 

Two countermeasures were developed: neural-specific 
anomaly detection, which analyzes spike frequency and weight 
changes to achieve 85% detection accuracy, and secure synaptic 
learning protocols, using cryptographic verification inspired by 
blockchain security to validate weight updates [17, 21, 22]. 
These defenses were tested against NMAs, with results 
visualized in Figure 3, a bar graph comparing attack success 
rates for weight tampering and input poisoning [24]. The 
model’s fidelity to neuromorphic hardware and measurable 
outputs make it a robust tool for studying NMAs and refining 
countermeasures [23]. 

Figure 2: SNN Architecture with Attack Points. 

Caption: Diagram of the simulated neuromorphic chip, highlighting 
neurons (circles), synapses (lines), and attack vectors (red arrows). 



 4

Table II: Model Performance Metrics 

The table compares neuromorphic system performance under 
three conditions. Normal operation shows the highest 
classification accuracy (95%) and lowest latency (10 ms). 
Weight tampering and input poisoning reduce accuracy to 
~90% and increase latency, spike variance, and weight changes. 
Weight tampering causes the most drastic deviation, with spike 
variance increasing to 8 Hz² and weight change to 1.2%, 
highlighting the subtle but measurable impact of Neuromorphic 
Mimicry Attacks on system behavior. 

Figure 3: Attack Success Rates 

The bar graph illustrates the success rates of two Neuromorphic 
Mimicry Attacks. Input poisoning achieves a slightly higher 
success rate (~90%) compared to weight tampering (~83%). 
This suggests that injecting malicious sensory inputs is more 
effective at deceiving neuromorphic systems than altering 
synaptic weights. Both methods, however, demonstrate high 
success, emphasizing the vulnerability of neuromorphic 
hardware to covert, hardware-level attacks that traditional 
detection mechanisms may fail to identify. 

This methodology ensures a comprehensive analysis of NMAs, 
leveraging a unique dataset and robust simulation tools [25]. 
The next section presents the experimental results, including 
bar graphs and detailed comparisons [1]. 

V. EXPERIMENTAL ANALYSIS 

This section evaluates the impact of Neuromorphic Mimicry 
Attacks (NMAs) on a simulated neuromorphic chip, assessing 
attack effectiveness, countermeasure performance, and system 
consequences [17]. Using the dataset of 10,000 neural activity 
samples, the analysis quantifies NMAs’ stealth and tests 

proposed defenses, presenting results through bar graphs and 
tables generated with Matplotlib [18]. 

A. Experimental Setup 

The 1000-neuron SNN, built with Brian2, underwent 1000 
attack scenarios (500 weight tampering, 500 input poisoning) 
[19]. The dataset was split into 70% training (7,000 samples) 
and 30% testing (3,000 samples) sets to evaluate attacks and 
defenses [20]. Metrics included attack success rate (percentage 
of attacks altering classification accuracy), detection accuracy 
(percentage of attacks identified), and system latency (ms) [21]. 
Experiments ran on a cloud platform with 16 GB RAM and a 
4-core CPU, processing a simulated IoT dataset under normal 
and attack conditions [22]. 

B. Attack Performance 

NMAs exhibited high stealth, exploiting the SNN’s 
probabilistic nature to evade traditional intrusion detection 
systems (IDS) [23]. Synaptic weight tampering achieved a 92% 
success rate, reducing classification accuracy by 4.8% (95% to 
90.2%) [24]. Sensory input poisoning recorded an 87% success 
rate, with a 4.2% accuracy reduction (to 90.8%) [25]. These 
subtle changes highlight NMAs’ ability to compromise systems 
like autonomous vehicles discreetly. 

Figure 4: Attack Success Rates 

Table II (from Section IV) shows increased latency (12.5 ms for 
weight tampering, 11.5 ms for input poisoning) and spike 
variance under attack, with traditional IDS detecting only 12% 
of weight tampering and 15% of input poisoning attacks [13]. 

C. Countermeasure Effectiveness 

Two countermeasures were tested: a neural-specific anomaly 
detection algorithm and secure synaptic learning protocols [14]. 
The anomaly detection algorithm, analyzing spike frequency 
and weight changes, achieved 85% detection accuracy, 
outperforming traditional IDS (15%) [15]. Secure synaptic 
protocols reduced weight tampering success to 45% but were 
less effective against input poisoning (70%) [16]. 
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Table III: Countermeasure Performance 

Table III details countermeasure performance, with Figure 
1(from Section IV) illustrating why traditional IDS struggle 
with NMAs’ subtle deviations [19]. The anomaly detection 
algorithm’s success stems from its focus on neural-specific 
metrics, such as spike frequency variance, which traditional 
IDS overlook [20]. However, input poisoning’s resilience 
suggests a need for enhanced input validation techniques, 
possibly integrating machine learning models tailored to 
neuromorphic data [21]. 

D. System Impact 

NMAs increased system latency by 20% on average, with 
weight tampering causing a 25% rise (12.5 ms) and input 
poisoning a 15% rise (11.5 ms) [22]. Figure 4 visualizes these 
latency impacts, critical for real-time applications like 
autonomous navigation, where delays could lead to safety risks 
[23]. Spike variance rose from 5 Hz² (normal) to 8 Hz² (weight 
tampering), indicating reduced stability, as shown in Table II 
[13]. In a simulated IoT network, the latency increases 
disrupted sensor data processing, delaying responses by up to 3 
ms, which could affect time-sensitive operations [24]. 

Figure 4: Latency Impact 

E. Discussion 

The findings confirm NMAs’ stealth, with a 92% success rate 
for weight tampering and only 15% detection by traditional IDS 
[23]. The dataset’s neural metrics enabled precise analysis, 
distinguishing this research from network-based datasets like 
CIC-IDS-2017 [15]. The anomaly detection algorithm’s 85% 
accuracy shows promise, but input poisoning is 70% success 

rate against secure protocols indicates a need for further 
optimization [24]. These results highlight the urgency of 
developing specialized cybersecurity frameworks for 
neuromorphic computing, particularly for applications 
requiring high reliability, such as medical implants or 
decentralized IoT systems [25]. Future efforts could explore 
hybrid detection models combining neural metrics with external 
validation to address input poisoning’s challenges. 

VI. CONCLUSION AND FUTURE WORKS 

This research introduces Neuromorphic Mimicry Attacks 
(NMAs), a novel class of cyber threats targeting the unique 
architecture of neuromorphic computing systems. By 
exploiting synaptic weight tampering and sensory input 
poisoning, NMAs achieve high stealth and effectiveness, 
posing significant risks to applications such as autonomous 
vehicles and IoT networks. The analysis, supported by a unique 
dataset and detailed experiments, demonstrates the limitations 
of traditional intrusion detection systems and highlights the 
promise of neural-specific countermeasures. Key findings 
include a 92% success rate for weight tampering attacks and an 
85% detection accuracy for the proposed anomaly detection 
algorithm. These results underscore the urgent need for 
cybersecurity frameworks tailored to brain-inspired computing. 
The unique dataset, capturing neural-level metrics, provides a 
valuable resource for future research, distinct from existing 
datasets like CIC-IDS-2017. 

Future work will focus on enhancing countermeasures, 
particularly for sensory input poisoning, which remains 
challenging to detect. Additional exploration could investigate 
physical-layer attacks on neuromorphic hardware and develop 
real-time defensive systems for edge devices. Collaboration 
with neuromorphic chip manufacturers, such as Intel and IBM, 
could facilitate real-world testing and deployment of the 
proposed defenses. Ultimately, this research lays the 
groundwork for securing the next generation of computing, 
ensuring the safe adoption of neuromorphic technologies. 
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