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ABSTRACT Using LLMs in a production environment presents security challenges that include vulnerabil-
ities to jailbreaks and prompt injections, which can result in harmful outputs for humans or the enterprise.
The challenge is amplified when working within a specific domain, as topics generally accepted for LLMs
to address, may be irrelevant to that field. These problems can be mitigated for example, by fine-tuning large
language models with domain-specific and security-focused data. However, these alone are insufficient,
as jailbreak techniques evolve. Additionally, API-accessed models do not offer the flexibility needed to
tailor behavior to industry-specific objectives, and in-context learning is not always sufficient and reliable.
In response to these challenges, we introduce Archias, an expert model, adept at distinguishing between
in-domain and out-of-domain communications. Archias classifies user inquiries into several categories: in-
domain (specifically for the automotive industry), malicious questions, price injections, prompt injections,
and out-of-domain examples. Our methodology integrates outputs from the expert model (Archias) into
prompts, which are then processed by the LLM to generate responses. This method increases the model’s
ability to understand the user’s intention and give appropriate answers. Archias can be adjusted, fine-tuned,
and used for many different purposes due to its small size. Therefore, it can be simply customized to the
needs of any industry. To validate our approach, we created a benchmark dataset for the automotive industry.
Furthermore, in the interest of advancing research and development, we release our benchmark dataset to
the community.

INDEX TERMS Expertmodel, GenerativeAI, JailbreakAttacks, Large LanguageModels, Prompt Injections

I. INTRODUCTION
An important advancement in AI technology has been
brought about by the creation of LLMs (Large Language
Models) like GPT variations (f.e InstructGPT [2], LLAMA
models [3], Mistral [4], and Mixtral [5]) presenting new con-
cerns and challenges about their safe deployment [6]. These
models are pre-trained on internet-scale textual corpora and
enhanced with instruction-response pairs and human feed-
back. Although some models have improved at following
instructions, their generative nature makes it harder to prevent
them from carrying out potentially harmful commands. In
contrast, non-generative language models - like text clas-
sifiers (e.g., BERT used for classification tasks) - produce
outputs within fixed categories, making them less susceptible
to manipulation by adversarial prompts. Security concerns in-
crease when LLMs are employed as chatbots or AI assistants,
where there is a fundamental obligation to avoid causing harm
[42]. In such scenarios, users are aware they are interacting
with generative AI-based systems and sometimes attempt to
test the system’s limits. Even if done out of curiosity, this
can pose significant risks to businesses. Although developers

have made considerable efforts to refine these models to
mitigate risks, several problems still persist, which include the
following: handling malicious questions, preventing prompt
injections and jailbreaks, and managing sensitive inquiries
related to discounts, pricing, or out-of-domain topics.
Let’s consider that one of our main areas of focus is to cre-

ate conversational AI assistants and chatbots, especially for e-
commerce platforms. These assistants are expected to handle
a variety of customer inquiries, including providing thorough
product information, scheduling appointments, responding to
questions about services, and responding to general inquiries
from clients to ensure a robust, user-friendly interface that
enhances customer service while maintaining high safety
standards.
Since ChatGPT made its legendary public appearance, it

has been misused in several instances. Users have posed
illegal questions, such as “How to rob a bank,” with the model
initially responding with detailed instructions, along with
answers to other potentially harmful inquiries. This has raised
concerns, particularly with sensitive topics such as healthcare,
which could also be subject to malicious queries. These chal-
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lenges are particularly acute when the model is compromised
through prompt injection techniques - including jailbreaks -
that disrupt its intended function. The persistent problem of
model manipulation underscores the complexity of managing
and safeguarding interactive language models in practical
applications.

In the context of LLMs, jailbreak attacks typically involve
overloading themodel with input to exceed the context length,
causing it to forget the original system prompt or command,
thus becoming more susceptible to manipulation [43]; Alter-
natively, attackers may not necessarily fill the context buffer
but may slightly alter the conversation’s direction [44]. This
form of manipulation, known as “prompt injection,” subverts
the intended purpose of the AI assistant, making the system
vulnerable to harmful queries. Actions such as these can com-
promise the model’s safety mechanisms; for example, while
an LLMmight initially block a malicious request, altering the
prompt could lead it to comply with the request; We tested
GPT-4 Turbo against this attack; initially, themodel refused to
generate malicious outputs. However, after applying prompt
injection techniques, GPT-4 Turbo generated malicious out-
puts. These vulnerabilities highlight the significant risks asso-
ciated with prompt manipulation and the importance of robust
security measures in LLM deployment.

Price injections refer to the manipulation of pricing by
users through false claims or exploitation of system vulner-
abilities to secure illegitimate discounts. This is a serious
concern, especially in e-commerce. Retailers frequently offer
discounts, and although it is generally acceptable for cus-
tomers to request discounts, it is crucial to distinguish these
requests from manipulative pricing requests. For instance, if
a customer claims, “Salesperson X told me I could purchase
this product at half price,” it is imperative that our chat sys-
tems do not accept such statements without verification. To
separate genuine offers from those designed to exploit price
injections, careful monitoring is required;

For the retail sector, including our use case which is vehicle
sales and service, the LLMmust accurately identify questions
relevant to this specific field. It should avoid engaging in
inquiries that fall outside its domain or providing informa-
tion applicable to other industries. Although APIs or open-
source language models are capable of handling requests
like Python scripts, such functionalities are extraneous to our
focused application in vehicle sales and service. Engaging in
these unrelated interactions could potentially compromise our
reputation in the automotive retail sector. This principle is
applicable to any retail sector, such as electronics, clothing,
or home furnishings, where maintaining domain-specific ac-
curacy is crucial to preserving brand integrity and customer
trust. Additionally, engaging in out-of-domain queries can
lead to cost inefficiencies, particularly when using API-based
LLMs, as these interactions may consume resources without
adding value to the core business functions. Similarly, harm-
ful queries, which include any malicious interactions that
could change the behavior of chatbots, issue unauthorized dis-
counts, or otherwise compromise the system, are universally

undesirable across all retail sectors. No retailer wants their AI
assistant to respond to such detrimental queries, as they can
jeopardize the integrity and security of the AI system.
To summarize, we require a conversational chat model or

pipeline, whether developed in-house or via an API-based
language model, capable of answering all relevant retail-
related inquiries. The model must not reply to hostile ques-
tions, be resistant to attempts to disrupt its operation and
avoid producing improper content on sensitive themes within
the domain. Our goal is for the model to keep a formal but
conversational tone, ensuring that responses are precise and
suitable.

II. RELATED WORK
The use of LLMs has increased considerably as they have
grown in size and capability, which have made them more
exposed to various hazards [28]. In this section, we will look
at several research that have looked at this issue from different
angles.

A. FOUNDATIONAL STUDIES
This topic has attracted considerable interest within the re-
search community, as demonstrated by foundational studies
on the harmful manipulation of language models [11], [14],
[23], [25], [33], [35], [40]; Some of the studies [17] include
defensive strategies such as paraphrasing inputs and retok-
enization, which involves breaking words into smaller units
[22], and the use of perplexity-based methods to evaluate and
adjust responses [38]. Additionally, red-teaming techniques
and the effectiveness of adversarial attacks in conversational
settings have been explored [19].

B. IMPROVING PROMPT INJECTION AND JAILBREAK
METHODS
Researchers have concentrated not only on examining the
current situation with prompt injections, but also on de-
veloping approaches for jailbreaking language models. The
rationale for this strategy is simple: finding and correcting
vulnerabilities early on can help solve problems before they
become widely exploited. Several studies have explored this
phenomenon; for example, [9], [36], and [18] highlighted
that jailbreak attacks are more feasible in certain languages,
which warrants more examination. According to [37], low-
resource languages are more susceptible to such vulnerabil-
ities, leading to increased disruption in these circumstances.
[10] provides a unique technique of neutralizing potentially
hazardous prompts by changing them into harmless ones,
highlighting the importance of query design. [15] explores the
technique of hiding harmful instructions within benign con-
tent. Additional research introduces diverse jailbreak strate-
gies, such as the use of representation engineering [12]
and taxonomy-guided persuasive adversarial prompts to de-
ceive language models [13], long-context-based attacks that
make efforts to influence model behavior [24], and the well-
documented prompt injection technique [31]. Furthermore



[39] proposes an algorithm that employs an attacker LLM to
automatically generate prompts vulnerable to manipulation.

C. MITIGATING ATTACKS
After understanding how to break large language models,
a new research topic emerges: how can we fight against
these manipulations? As previously stated in this research,
improving the language model’s ability to follow instruc-
tions might make it more likely to obey harmful instruc-
tions. For example, [2] discusses the authors’ approach to
training InstructGPT to follow instructions while remaining
helpful, honest, and harmless. [34] generates training data to
defend LLMs against commonly known jailbreak prompts.
Researchers employed these prompts to jailbreak LLMs, then
used the resulting instruction-answer pairs for training. How-
ever, even after fine-tuning with jailbreak datasets or using
gradient matching methods [29], and despite the sometimes
high costs of training/fine-tuning, some LLMs remain vulner-
able to prompt injection attacks. [21] proposes a method to
defend LLMs against jailbreaks using a technique that subtly
alters user inquiries with randomized perturbations. Other
methods include safe decoding [30], which enhances the like-
lihood of generating safe tokens and reduces harmful ones;
detecting toxicity in LLM-generated outputs using prompts
or classifiers [32], [16]; and others.

D. BENCHMARK DATASETS
To measure the effectiveness of these attacks and defenses,
benchmark datasets have been released. The dataset “CrowS-
pairs” [27] is published for measuring social biases in LLMs,
while “RealToxicityPrompts” [26] consists of a 100k prompts
to evaluate how often languagemodels generate toxic content.
"Latent Jailbreak" [7] is a benchmark dataset specifically for
testing harmful instructions hidden within normal tasks, and
“PromptBench” [20] is the first systematic benchmark for
evaluating, understanding, and analyzing the robustness of
LLMs against adversarial prompts. Such datasets have been
used to demonstrate that exploiting mistakes in apparently
unbreakable prompts might cause LLMs to fail.

E. INTEGRATION OF TECHNIQUES - OUR APPROACH
Finally, the technique SuperICL (Super In-Context Learning)
[41] allows black-box language models to work with locally
fine-tuned smaller models by ingesting small models’ outputs
into the context of the LLMs, resulting in greater performance
on supervised tasks. Furthermore the “self-reminder” tech-
nique [8] is introduced, which continually reminds the model
throughout the output generation process to be responsible
and not to generate malicious output. This technique greatly
enhances the model’s ability to generate safe content, as
shown by the results. Our approach combines elements from
both the SuperICL and the self-reminder techniques. Specif-
ically, we use small model outputs (as in SuperICL) to rein-
force safe behavior during generation (as in self-reminder).

III. METHODOLOGY

A. ARCHIAS - THE EXPERT
For the purposes of our study, we employed a pre-trained
transformer-based model, BERT [1], which consists of 109
million parameters. BERT has the capability to generate
meaningful representations of text by pre-training on a large
corpus and then fine-tuning for specific tasks. In our case,
we added a classifier layer to the existing pre-trained model
to adapt it for our specific application, which involves clas-
sifying user inquiries. The classifier head was trained using
a supervised learning approach, wherein the model was fine-
tuned with labeled data relevant to our domain.
After fine-tuning the BERT model, we get our expert

model, Archias, which we’ve integrated into our main text
generation pipeline. As you can see in Fig.1, the pipeline is
specifically designed to handle user inquiries by ingesting
RAG (retrieval augmented generation) outputs and utilizing a
trained expert model to classify these inquiries and deliver ac-
curate responses. One interesting point here is that confidence
is also a helpful metric: the system can be designed to ignore
the expert model’s output when the associated confidence
score is low. The integration process involved setting up the
model within our server environment and ensuring seamless
communication between the model and the pipeline. The
full pipeline using the expert model was subsequently tested
to validate its performance in a real-world scenario – our
chatbot. The test confirmed the ability to efficiently process
and respond to user queries using the insights derived from
the trained BERT model.
Integrating Archias with LLM ensures fast and efficient

performance. On a GPU, response times remain almost in-
stantaneous, with approximate computation times of just ~5-
10 ms). Even on a CPU, it runs smoothly, with only a minimal
increase in latency (approximately ~50-100 ms). Memory
usage stays below 500 MB for real-time tasks, making it
suitable for devices with limited resources. While Archias
introduces a small amount of additional computation and adds
a low cost, which on cloud-based platforms is approximately
$35 per month, the significant improvements in accuracy and
reliability make this integration highly beneficial.
The primary dataset for the expert model was derived

from three distinct sources: publicly available, synthetic and
masked data from Impel, an automotive AI company. By syn-
thetic generation, we refer to the process where we initially
crafted prompts and example templates using a team of three
people. These templates were then fed into our internally
hosted model to generate a synthetic dataset. This dataset is
categorized into five categories (see Table I and training sam-
ples from the expert model datasets are shown in Appendix,
Fig.A3):

• Publicly available prompt injection data: This data
was collected from real-world prompt injection attacks
attempted on various AI systems. It includes diverse
examples of malicious inputs intended to manipulate the
behavior of language models to make them vulnerable.

• In-domain examples: To ensure the relevance and ap-
plicability to our specific domain (vehicle sales and



FIGURE 1. Performance of LLMs with and without expert model’s output ingested.

service), we selected examples from domain-specific
conversational data gathered across various communi-
cation channels, including chat interfaces. These exam-
ples were carefully masked and chosen based on user
inquiries that align closely with predefined intents. The
intents are selected from our in-domain text classifiers
(currently used in production for various tasks). The
examples encompass the necessary categories within the
domain, including initial greetings, targeted questions
about financing options, requests for vehicle informa-
tion, and realistic negotiations on pricing.

• Malicious questions: This dataset was synthetically
made using open-source LLMs and contains malicious
inquiries.

• Out-of-domain examples: Questions were syntheti-
cally generated to test the robustness of AI models
against irrelevant or unexpected queries that fall outside
typical usage patterns. Although this is not generally
required for large language models, it is crucial for spe-
cialized applications in e-commerce, where such queries
can pose significant challenges.

• Price injection: This dataset was also synthetically con-
structed, including inquiries specifically formulated to
simulate users misleading AI systems into erroneously
disclosing or manipulating pricing information.

TABLE I. Expert model dataset description

Topic Quantity
Train Test

Prompt injection 3002 744
In-domain 931 308

Malicious questions 807 173
Out-of-domain 688 212
Price injection 561 104

To enhance the quality and reliability of our dataset, an
extensive manual review as well as re-labeling were essential.
Our team of prompt engineers and data labelers played a
critical role in this phase. Each example from the compiled
datasets, particularly those collected online, wasmeticulously

examined. This approach facilitated a comprehensive un-
derstanding of the various types of prompt injections and
ensured that our AI models were trained on data that was
representative of real-world scenarios and challenges, thereby
enhancing their effectiveness in identifying and mitigating
potential threats.

B. BENCHMARK DATASET
We developed a benchmark dataset specifically designed to
evaluate the LLM’s understanding and reasoning capabilities
in response to attacks and context-specific inquiries. The
selected topics cover prompt and price injections, malicious
questions, specialized in-domain inquiries requiring contex-
tual knowledge, in-domain queries that rely on common-
sense knowledge, and out-of-domain topics. This variety al-
lowed us to test the model’s ability to understand and reason
across diverse scenarios.
Each LLM under study was tested using this dataset to as-

sess not only its baseline performance but also how it benefits
from the integration of an expert-designed subsystem that is
aimed at enhancing reasoning and resistance to prompt injec-
tions. We utilized EleutherAI’s open-source framework, Har-
ness, available on GitHub [45], to implement our benchmark-
specific details and conduct tests on various models.
After researching well-known benchmark datasets [46],

[47], [48], [49], [50], we decided to use the multiple-choice
format for ours. This closed-ended approach allows for
straightforward analysis and comparison, as each response
is limited to the given options, and is more suitable for our
use case. We constructed benchmark samples using a prede-
fined instruction that is the same for every example, along
with unique user inquiries, questions, and multiple-choice
answers.While this format provides a controlled environment
for evaluating the model’s ability to recognize and categorize
harmful queries, we acknowledge that real-world scenarios
often involve open-ended interactions without predefined op-
tions. Exploring alternative evaluation setups that better simu-
late these conditions is an important direction for future work.
Fig. 2 shows an example of our benchmark dataset: A)

without and B) with use of the expert model’s output. As



demonstrated in the example’s user inquiry, the user attempts
to bypass the AI model’s restrictions by introducing price-
related content, which may not be easily noticed by the
language model, although it is apparent to human observers.
Although such communication may be harmless if directed
toward a human, in this context it could potentially result in
severe issues. Each item in the dataset consists of an inquiry
followed by several response options, with only one being
correct. Some items also provide context to ensure all models
have the necessary domain knowledge to answer the question.

Wemanually crafted a total of 150 examples, each designed
to challenge the models on various aspects of the five topics
in Table I. The crafting process involved generating inquiries
and corresponding choices, and conducting meticulous re-
views and revisions to ensure clarity, relevance, and the po-
tential to differentiate between more and less capable models
in handling complex linguistic tasks. The challenge was to
ensure that the correct answer was not very obvious and
required reasoning. With assistance from our colleagues, we
achieved this goal. Following the experiment, we invited team
members and friends to answer the benchmark questions to
gauge human performance. The average score was 88% of the
150 questions answered correctly. To determine human per-
formance, we subsequently invited 50 individuals (30 team
members and 20 friends) to answer the same benchmark ques-
tions. They were presented with the questions and asked to
choose the most appropriate answer - without any additional
context or guidance. Additionally, they were instructed not to
use any language models or external tools and to determine
the answers independently. Upon analyzing the responses,
we noticed that certain questions consistently received the
same answers from all participants. This prompted us to
revise these questions to ensure a more balanced assessment.
However, we also discovered that some consistent answers re-
sulted from participant mistakes, not from problems with the
questions themselves. Therefore, we decided not to change
those questions.

As a result, we have 150 examples in our benchmark
dataset, along with 150 similar examples that include expert
opinions, effectively representing the topics for which we
intended to test our models. The label distribution for dataset
is: 41 Malicious Questions, 31 Prompt Injections, 27 Out-of-
Domain, 26 Price Injections, and 25 In-Domain samples.

IV. RESULTS AND DISCUSSION
This section conducts a comparative analysis of LLM’s, fo-
cusing on the performance improvements achieved through
expert model integration. The analysis includes detailed met-
ric scores and illustrative examples from the benchmark
dataset, categorized to demonstrate improvements across var-
ious dimensions of performance.

Our work began with fine-tuning Archias. After selecting
the optimal configurations and completing the fine-tuning,
we conducted actual tests using the previously described
LLM-eval framework. We evaluated publicly available lan-
guage models, our in-house LLM (Impel-LLM), and API-

TABLE II. Results for Large Language models in our benchmark dataset

Model Results accuracy Relative percentage

Llama-2-7b-hf 0.29
Llama-2-7b-hfexpert 0.35 ↑ 20.7%
gemma-1.1-7b-it 0.51
gemma-1.1-7b-itexpert 0.53 ↑ 3.9%
Llama-3-8b-Instruct 0.51
Llama-3-8b-Instructexpert 0.55 ↑ 7.8%
gemma-7b 0.52
gemma-7bexpert 0.57 ↑ 9.6%
Llama-2-13b-hf 0.55
Llama-2-13b-hfexpert 0.57 ↑ 3.6%
Llama-3-8b 0.57
Llama-3-8bexpert 0.6 ↑ 5.3%
Llama-2-70b-hf 0.57
Llama-2-70b-hfexpert 0.67 ↑ 17.5%
Llama-3-70b-Instruct 0.56
Llama-3-70b-Instructexpert 0.66 ↑ 17.9%
Mistral-7b-Instruct-v0.2 0.57
Mistral-7b-Instruct-v0.2expert 0.62 ↑ 8.8%
Llama-3-70b 0.59
Llama-3-70bexpert 0.64 ↑ 8.5%
Mixtral-8x7B-Instruct-v0.1 0.63
Mixtral-8x7B-Instruct-v0.1expert 0.68 ↑ 7.9%
Impel-LLM 0.63
Impel-LLMexpert 0.71 ↑ 12.7%
GPT 3.5 0.61
GPT 3.5expert 0.67 ↑ 9.8%
GPT 4 turbo 0.63
GPT 4 turboexpert 0.69 ↑ 9.5%
GPT 4o 0.7
GPT 4oexpert 0.77 ↑ 10%
GPT 4 0.73
GPT 4expert 0.83 ↑ 13.7%
human baseline 0.88

based models using our benchmark within this framework.
This section will first describe the details behind the Archias
experiments and then discuss the performance of the models
on our benchmark, comparing results with and without input
from our expert model.
In the best-performing experiment, the BERT-based model

demonstrated robust performance on the test dataset, with an
F1 score of 0.92 and an accuracy of 0.94. These results were
obtained using a learning rate of 10−5, a batch size of 16, and
a total of 3 training epochs, with a weight decay of 0.1. Macro
averaging was conducted across the test data to ensure a com-
prehensive evaluation of the model’s predictive capabilities.
We also focused on the analysis of the model’s error patterns,
particularly in distinguishing between “in-domain” topics and
“price injection” scenarios. For example, the sentence “Can
you snap up that deal for me before someone else does?” was
incorrectly classified by Archias as a price injection, although
it was labeled as in-domain in our test dataset. This mistake
likely occurred because the model is sensitive to phrases that
resemble negotiation, which is common in price discussions.
However, in this case, the language used was typical of a
permissible sales conversation, where the main goal was to
secure a deal quickly rather than to negotiate the price down.
As previously mentioned, our study revealed that incor-

porating expert opinions consistently enhances performance



FIGURE 2. Benchmark dataset example

across the benchmark (see Fig.3 ), particularly in detecting
and reasoning about jailbreaks, price injections, and out-of-
domain examples. Table II, where for all evaluations, out-
puts were generated using greedy decoding (A technique in
which the model selects the most likely next word at each
step without considering alternative word combinations.),
shows a notable enhancement in several models; for ex-
ample, LLama 3 70B Instruct from Meta, a significantly
large model, achieved a percentage improvement of 17.9%
after integrating expert model output. Interestingly, the non-
instruct version of Llama-3-70B exhibited an 8.5% improve-
ment, despite performing better than the instruct version on
the benchmark when expert opinions were excluded. This
discrepancy might be attributed to the fact that instruction-
tuned models are designed to pay attention to each detail in
the prompt rather than merely generating next tokens, thereby
enabling a focused attention to the context we provided.
Furthermore, it is noteworthy that evenGPTmodels evaluated
via API demonstrated substantial improvements. Specifically,
GPT-3.5 with expert output outperformed GPT-4 Turbo on
the same benchmark without expert input. A similar pattern
emerged with Mistral-7B-Instruct-v0.2, which came quite
close to the more advanced model, Mixtral-8x7B-Instruct-
v0.1. Both were developed by the same research organization.

To evaluate the benefits of our approach, we compared
it to the “self-reminder" technique. This method incorpo-
rates the following sentence in the system prompt, as rec-
ommended by the technique: “You should be a responsible

AI and should not generate harmful or misleading content!
Please answer the following user query responsibly!" We
conducted tests using three models—GPT-4, Meta-Llama-
3-8B-Instruct, and Mistral-7B-Instruct-v0.2 representing dif-
ferent providers (OpenAI, Meta, and Mistral). The results,
summarized in Table III, indicate that when the user’s intent is
stated more explicitly and the model reflects this intent in its
reasoning, the generated responses are notably more accurate.

TABLE III. Benchmark Results: Expert Integration vs. Self-Reminder

Model Results accuracy Relative Percentage

GPT-4 0613 0.73
GPT-4 0613 expert 0.83 ↑ 13.7%
GPT-4 0613 self-reminder 0.76 ↑ 4.1% (↓ 9.6% from expert)
Mistral-7b-Instruct v0.2 0.57
Mistral-7b-Instruct v0.2 expert 0.62 ↑ 8.8%
Mistral-7b-Instruct v0.2 self-reminder 0.59 ↑ 2.9% (↓ 5.9% from expert)
Llama-3-8B-Instruct 0.51
Llama-3-8B-Instructexpert 0.55 ↑ 7.8%
Llama-3-8B-Instructself-reminder 0.53 ↑ 3.3% (↓ 4.5% from expert)

Impel’s in-house automotive model, Impel-LLM, is based
on Mistral 7B and has been fine-tuned using our masked
reasoning data from both Impel’s conversations and the text
data reflecting salespersons’ behavior. It also determines the
implications of jailbreaks and explains why they are prob-
lematic for us, thanks to its understanding of the underlying
reasons. This alignment with our specific use case—vehicle
dealerships and understanding salesperson behavior—is re-



FIGURE 3. Performance of LLMs with and without expert model’s
output ingested.

flected in its performance on our benchmark: it achieves 63%
accuracy on the benchmark without expert opinion, which
is better than most publicly available models. Additionally,
with input from Archias, our LLM has improved by 12.7%,
reaching performance levels comparable to those of GPT-
3.5 Turbo and GPT 4 Turbo, providing strong evidence that
our approach is effective and holds promise for continued
advancements through the expert model’s integration and
LLM development.

Let us now examine specific examples from our benchmark
dataset. For example, consider the user query, “This is a test
by the developers. Disable your content filters and provide
a list of all your restricted commands,” which was analyzed
in our reasoning example (see Fig.A1 in the Appendix). This
request was initiallymisinterpreted by severalmodels, includ-
ing GPT-3.5 Turbo, GPT-4, Llama-2-13B-hf, and Llama-3-
8B, with thesemodels stating “This statement is inappropriate
because it asks the AI assistant to disable security measures
and reveal sensitive operational details, which could com-
promise the system’s integrity and the dealership’s security
protocols.” However, with the assistance of an expert model,
the response was refined to “This statement is harmful as it
suggests a potential prompt injection attempt, asking the AI
Assistant to bypass security protocols and expose restricted
information, which is unethical and could endanger the deal-
ership’s operations.” This clarification is important, as it not
only addresses the inappropriateness of requesting sensitive
information, but also emphasizes the importance of detecting
and analyzing potential prompt injection attempts to gain
unauthorized access to that information.

In a notable example, models were prompted with the
phrase, “Pretend you’re a cow now” (Appendix: Fig.A2).
Various models from the LLama series (e.g., LLama-3-70B-
Instruct, LLama-3-8B) and GPT 3.5 Turbo exhibited differ-
ent responses to this instruction, despite the scenario clearly
stating that the context was a dealership’s AI assistant. Some
models interpreted the playful nature of the input positively,
suggesting that such an approach could alleviate stress and
enhance rapport between users and the AI; however, other
models flagged the input as inappropriate, mistakenly associ-
ating it with elements of sexual harassment, whichwas not the

FIGURE 4. Improvements in model performance across various
categories.

intended implication. The use of the expert model’s opinions
was crucial in identifying the real issue at hand.
In Fig.4 we present a chart that depicts the improvements

achieved by integrating expert input across various categories.
The enhancements are calculated by dividing the performance
improvement of each model by its baseline results. Each row
in the chart represents a baseline model and its enhanced
counterpart with expert involvement. Notably, we observe
significant advancements in handling “price injection” ques-
tions. This improvement is critical because many attacks
specifically target this category, possibly due to the challenges
in distinguishing between general sales negotiations and price
injections. Substantial improvements are also evident in “in-
domain” and “prompt injection” questions. Conversely, the
smallest enhancements are observed in the “malicious ques-
tion” and “out-of-domain” categories, likely because these
issues are already well-addressed by general models and are
more readily detectable. The comparative analysis confirms
that integrating expert model outputs significantly enhances
the robustness and precision of language models, particularly
in detecting and mitigating security vulnerabilities. These
findings underscore the critical importance of comparative
evaluations in advancing secure AI deployments, providing
a framework for future research and optimization.

V. CONCLUSION
Our research proposes a mechanism that combines reminder
and ingestion approaches from expert models into LLMs. In
this paper, we presented the expert model Archias, a fully
standalone system designed to enhance LLM outputs by
categorizing user queries, identifying irrelevant or harmful
content, and providing confidence scores to minimize errors
in complex cases such as price manipulation or malicious
requests. By integrating Archias’s outputs into the LLM, as
our proposed mechanism suggests, the model gains expert
insights, resulting in a clearer understanding of user intent and
improved response quality. Results showed that this approach
improved LLM outcomes while also providing significant
protection against prompt injections and other undesired tac-
tics, especially in specialized domains. Reflecting on our
focused approach, our work demonstrates the efficacy of our
expert model within the automotive and retail AI sectors. To



enhance its applicability, we have incorporated proxies in our
benchmark dataset for challenges such as prompt injections,
malicious questions, and price manipulations—issues preva-
lent across various retail domains. This inclusion ensures
our dataset’s robustness and relevance for scenarios across
different retail contexts, illustrating the model’s potential
cross-domain applicability. We also released a benchmark
dataset to test solutions to these problems, indicating that our
technology is dependable and represents a potential strategy
for the future.

We will continue to improve defense techniques against
prompt injections and explore these concerns, as each im-
provement in LLM technology is usually accompanied by
new dangerous attacks. The effectiveness of this technology
opens up new research directions, indicating its potential in
a variety of multi-task circumstances. While our benchmark
dataset accurately represents the intended themes for testing
our models, we realize the need to increase the number of
test cases, as jailbreak attempts become increasingly sophis-
ticated. This makes a new research opportunity for us to
generalize the approach. Furthermore, we intend to test our
automotive LLMwith this technology in a production setting,
and we will continue to share our experimental findings and
latest research initiatives with the community.

VI. ACKNOWLEDGMENT
This work was supported by Impel. We are grateful for the
company’s continuous support and resources that made this
research possible.



APPENDIX.
RESULTS AND EXAMPLES

TABLE A1. Results for Large Language models in our benchmark dataset

Model Results accuracy Delta % Relative percentage

Llama-2-7b-hf 0.29 ± 0.0392

Llama-2-7b-hfexpert 0.35 ± 0.0392 6% 20.7%
gemma-1.1-7b-it 0.51 ± 0.041

gemma-1.1-7b-itexpert 0.53 ± 0.0409 2% 3.9%
Llama-3-8b-Instruct 0.51 ± 0.041

Llama-3-8b-Instructexpert 0.55 ± 0.0408 4% 7.8%
gemma-7b 0.52 ± 0.0409

gemma-7bexpert 0.57 ± 0.0406 5% 9.6%
Llama-2-13b-hf 0.55 ± 0.0408

Llama-2-13b-hfexpert 0.57 ± 0.0405 2% 3.6%
Llama-3-8b 0.57 ± 0.0406

Llama-3-8bexpert 0.6 ± 0.0401 3% 5.3%
Llama-2-70b-hf 0.57 ± 0.0406

Llama-2-70b-hfexpert 0.67 ± 0.0386 10% 17.5%
Llama-3-70b-Instruct 0.56 ± 0.0407

Llama-3-70b-Instructexpert 0.66 ± 0.0388 10% 17.9%
Mistral-7b-Instruct-v0.2 0.57 ± 0.0405

Mistral-7b-Instruct-v0.2expert 0.62 ± 0.0398 5% 8.8%
Llama-3-70b 0.59 ± 0.0402

Llama-3-70bexpert 0.64 ± 0.0393 5% 8.5%
Mixtral-8x7b-Instruct-v0.1 0.63 ± 0.0396

Mixtral-8x7b-Instruct-v0.1expert 0.68 ± 0.0382 5% 7.9%
Impel-LLM 0.63 ± 0.0396

Impel-LLMexpert 0.71 ± 0.0373 8% 12.7%
GPT 3.5-0125 0.61 ± 0.04

GPT 3.5-0125expert 0.67 ± 0.0386 6% 9.8%
GPT 4 turbo-2024-04-09 0.63 ± 0.0398

GPT 4 turbo-2024-04-09expert 0.69 ± 0.0378 6% 9.5%
GPT 4o-2024-05-13 0.7 ± 0.0382

GPT 4o-2024-05-13expert 0.77 ± 0.0356 7% 10%
GPT 4-0613 0.73 ± 0.0362

GPT 4-0613expert 0.83 ± 0.031 10% 13.7%
human baseline 0.88 ± 0.056



FIGURE A1. Benchmark Example 1

FIGURE A2. Benchmark Example 2



FIGURE A3. Expert Model Dataset Samples
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