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Abstract
Despite providing superior performance, open-
source large language models (LLMs) are vul-
nerable to abusive usage. To address this issue,
recent works propose LLM fingerprinting meth-
ods to identify the specific source LLMs behind
suspect applications. However, these methods
fail to provide stealthy and robust fingerprint
verification. In this paper, we propose a novel
LLM fingerprinting scheme, namely CoTSRF,
which utilizes the Chain of Thought (CoT) as
the fingerprint of an LLM. CoTSRF first col-
lects the responses from the source LLM by
querying it with crafted CoT queries. Then,
it applies contrastive learning to train a CoT
extractor that extracts the CoT feature (i.e., fin-
gerprint) from the responses. Finally, CoTSRF
conducts fingerprint verification by comparing
the Kullback-Leibler divergence between the
CoT features of the source and suspect LLMs
against an empirical threshold. Various experi-
ments have been conducted to demonstrate the
advantage of our proposed CoTSRF for fin-
gerprinting LLMs, particularly in stealthy and
robust fingerprint verification.

1 Introduction

Recent advanced large language models (LLMs)
demonstrate powerful natural language understand-
ing, generation, and reasoning capabilities and
have been widely applied in various fields such as
healthcare (Wang et al., 2024b), education (Wang
et al., 2024a), software development (Xia et al.,
2024), and scientific research (Xia et al., 2024).
Despite their remarkable success, training a high-
performing LLM is not a trivial task, requiring a
large scale high-quality data and massive amount
of computation resources. Fortunately, in actively
embracing the ethos of openness, many leading
teams in the AI industry have generously released
their trained LLMs on open-source platforms such
as GitHub and Hugging Face. Notable examples
of these open-source LLMs include LLaMA (Tou-
vron et al., 2023), Guanaco (Dettmers et al., 2024),

and Vicuna (Chiang et al., 2023), which empowers
practitioners with limited resources to conduct fur-
ther experimentation, fine-tuning, and downstream
application development.

For both commercial and ethical reasons, LLM
providers typically release their trained LLMs with
crafted licenses (Creative Commons, 2024; Free
Software Foundation, 2024). These licenses re-
strict the use of the published LLMs, prohibiting
their application in commercial or illegal activities.
However, tempted by the enormous profits, some
downstream developers may bypass these restric-
tions, building entities based on open-source LLMs
to provide services through APIs, even if these ser-
vices directly compete with the LLM providers. On
the other hand, malicious users may intentionally
compromise the LLM’s internal alignment mech-
anisms by fine-tuning, using the LLMs to spread
harmful content. Therefore, it becomes a pressing
concern for LLM providers to safeguard their re-
leased source LLMs against abusive usage (termed
as LLM infringement for short) that violates their
licenses.

A promising way to address the above issues
is model fingerprinting, which non-intrusively ex-
tracts the unique features of a model. Generally, the
external manifestation of most of the fingerprinting
methods is specific input-output pairs. The inputs
are carefully designed to trigger the source model
to produce a unique answer while making other
benign models to generate different responses. As
such, by comparing the unique answer with the
response of a suspect API when fed the specific in-
puts, the model providers could determine whether
the model used behind the API is their released one.
Currently, model fingerprinting has achieved sig-
nificant success in protecting deep neural networks
(DNN) (Lukas et al., 2019; Zheng et al.; Peng et al.,
2022; Guan et al., 2022; Quan et al., 2023). How-
ever, the research on LLM fingerprinting is still in
its infancy, possibly due to computational resource
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Q2: ……;
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Figure 1: LLM fingerprint verification process of the proposed method in a black-box access setting, where the
model provider only has API access to the suspect LLM.

limitations and the discrete nature of text data.
A recent proposed LLM fingerprinting method

is TRAP (Gubri et al., 2024), which combines ad-
versarial prefix (Zou et al., 2023) with queries to in-
duce the source LLM to generate a predefined con-
tent. It verifies LLM infringement by comparing
the content with the response of the suspect LLM
when fed the combined prompts. Unfortunately,
TRAP is not stealthy, as its added adversarial pre-
fixes is meaningless characters, which disrupt the
semantic coherence of prompts. This may alert ma-
licious downstream users and let them to obstruct
LLM infringement verification through denial-of-
service measures. On the other hand, TRAP is
not robust to output perturbation. If the malicious
downstream developers modify the LLM’s hyper-
parameters (e.g., temperature), the infringing LLM
(i.e., a copy of the source LLM) may return re-
sponse that does not match the predefined content.

To bridge this gap, we propose a novel method,
namely CoTSRF, which utilizes the Chain of
Thought (CoT) as the LLM’s Stealthy and Robust
Fingerprint. Our key insight is that the profile of an
LLM can be uniquely characterized by its logical
reasoning pattern represented by the CoT. Unlike
TRAP (Gubri et al., 2024), Our CoTSRF verifies
the LLM infringement in a stealthy and robust man-
ner, as shown in Fig. 1. LLM provider first queries
the suspect API using a combination of reasoning
questions and a standard CoT prompt (e.g., let’s
think step by step). The queried LLM then returns
responses that implicitly reveal its logical reason-
ing patterns. Finally, the provider extracts the CoT
features from the responses and compares them
with those of the source LLM to identify the LLM
infringement. CoTSRF uses the widely adopted
CoT prompt to query the infringing LLM, ensuring
that it does not alert malicious developers. More-
over, it performs fingerprint matching at the feature
level, which is more robust against the output per-
turbation.

In methodology, CoTSRF begins by obtaining
the responses of the source LLM by querying it
using reasoning questions and the standard CoT
prompt. During this, a High-Temperature Data
Augmentation (HTDA) strategy is designed and
utilized to generate diverse positive responses that
vary in word space but follow the same logical
reasoning pattern. Additionally, benign LLMs are
used to create negative responses with distinct CoT
features. These positive and negative responses
are then employed in a contrastive learning frame-
work to train a CoT extractor for accurate CoT
feature extraction. In the LLM infringement ver-
ification, CoTSRF compares the KL divergence
between the CoT features of the source and sus-
pect LLMs against an empirical threshold. Various
experiments have been conducted to demonstrate
the advantages of our proposed CoTSRF for LLM
infringement verification. The main contributions
are summarized below:

• We present the first attempt to leverage CoT
as LLM’s fingerprint for black-box LLM in-
fringement verification.

• We propose a novel LLM fingerprinting
method CoTSRF that achieves highly com-
petitive results in terms of the stealthy and
robustness.

• We adopt contrastive learning to train a CoT
extractor that accurately extracts the LLM’s
fingerprint from its responses and propose an
HTDA strategy to create diverse responses
from the LLM.

2 Related Works

2.1 Model fingerprinting
Model fingerprinting technology non-intrusively
extracts the unique features of a source model and
uses these features to identify infringing models
from benign ones. It has flourished in protecting



DNNs (Lukas et al., 2019; Zheng et al.; Peng et al.,
2022; Guan et al., 2022; Quan et al., 2023). Cur-
rently, few attempts have been made in LLM finger-
printing. Zeng et al. take the vector direction of the
LLM’s parameters as the fingerprint and achieve
remarkable performance (Zeng et al., 2023). How-
ever, their method requires white-box access to the
internal parameters of the suspect LLM during fin-
gerprint verification, making it unsuitable for cases
where the malicious developer only provides API
access. Gubri et al. propose TRAP, which utilizes
an adversarial prefix to trigger the source LLM to
output a unique answer and takes the mapping of
the adversarial prefix and the answer as the finger-
print (Gubri et al., 2024). Despite supporting fin-
gerprint verification in the black-box setting, TRAP
is not stealthy enough to avoid prompt filtering and
lacks robustness against output perturbation.

2.2 LLM Watermarking
LLM watermarking presents a potential way to ad-
dress the issue we have highlighted. It intrusively
embeds watermark information within the weights
or outputs of the LLM. Most of the LLM water-
marking methods follow a black-box paradigm,
where the LLM is fine-tuned to remember distinc-
tive input-output pairs (Li et al., 2023; Peng et al.,
2023; Xu et al., 2024). They verify the LLM in-
fringement by comparing the distinctive outputs
with the responses of a suspect LLM when fed the
specific inputs, which is similar to that of LLM
fingerprinting. However, LLM watermarking tech-
nology modifies the LLM when embedding the
watermark, which inevitably affects the LLM’s per-
formance. On the other hand, it cannot adapt to
those LLMs that have been released without being
watermarked.

2.3 Chain of Thought
Chain of thought (CoT) mirrors LLM’s logical rea-
soning path when solving systematic and complex
problems. Recent researches propose CoT prompt-
ing, which significantly enhances the reasoning
abilities of LLMs and makes the output logic of
LLMs more reasonable and the results more ac-
curate. This technology designs CoT prompts to
guide the LLM in deconstructing complex prob-
lems into orderly sequences of logical steps (Wei
et al., 2022). Currently, Cot prompting methods
could be boradly divided into two campuses: zero-
shot CoT and few-shot CoT. The former enables
models to generate reasoning steps and solve tasks

without any prior examples, effectively leveraging
their pretrained knowledge (Kojima et al., 2022;
Wang et al., 2023; Chen and Liu, 2023; Yuan et al.,
2024). The latter involves generating intermediate
reasoning steps for a task, leveraging a handful of
examples to enhance model performance (Huang
et al., 2023; Song et al., 2023; Liu et al., 2024a).

Recent works have demonstrated that the CoT
is LLM’s internal attribute, which is highly related
to LLM’s architecture, training dataset, and train-
ing strategy (Feng et al., 2024; Liu et al., 2024b).
Therefore, in this paper, we argue that CoT could
uniquely characterize an LLM and serve as its fin-
gerprint. We then make full use of the popular zero-
shot CoT prompting methods to extract LLM’s CoT.
Through comprehensive experiments, we empiri-
cally demonstrate its effectiveness in identifying
specific LLMs and its advantages in stealthy and
robust LLM infringement verification.

3 Problem Formulation

3.1 Threat Model

The threat model of the paper involves two parties:
the LLM provider and the malicious downstream
developer. The LLM provider releases a source
LLM under a carefully designed license (e.g., a non-
commercial license), while the malicious developer
ignores these restrictions and builds entities based
on the downloaded source LLM to offer profitable
services through APIs.

The provider’s goal is to identify the infringing
LLM that is remotely deployed by the malicious
developer. The provider has the following capabil-
ities: 1) white-box access to the source LLM, 2)
black-box access to the infringing LLM, and 3) a
limited set of queries to conduct fingerprint verifi-
cation. The malicious developer’s goal is to utilize
the infringing LLM to provide commercial services
without being noticed by the LLM provider. To
prevent the fingerprint verification, the malicious
developer conducts the following strategies: 1) at
the input level, preset a prompt filter module to
check and filter out the odd queries; 2) at the LLM
level, fine-tuning the infringing LLM to alter its
fingerprint; and 3) at the output level, imposing
perturbation to disrupt the fingerprint detection. It
should be noted that, the intensity of these strate-
gies must be carefully controlled, as excessive ma-
nipulation could compromise the performance of
the infringing LLM.
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Figure 2: Framework of the proposed CoTSRF.

3.2 Designed Goals
The design of the LLM fingerprinting method
should satisfy the following properties:

1) Effectiveness: the fingerprint should accu-
rately identify the infringing LLM;

2) Reliability: false positives, where the finger-
print misidentifies a benign LLM released by
other providers as an infringing LLM, should
be minimized;

3) Stealthiness: the fingerprint queries should
be normal prompts with coherent semantics
to avoid being filtered out;

4) Robustness: the fingerprint remains consis-
tent even if the LLM undergoes output pertur-
bation and fine-tuning attacks.

4 Methodology

The flowchart of the proposed method is shown
in Fig. 2. It consists of 1) a response collection
module, which obtains the responses of the LLM
by querying it using crafted CoT queries, where
a High-Temperature Data Augmentation (HTDA)
strategy is designed and used to make LLM gen-
erate diverse positive responses that vary in word
space but follow the same logical reasoning pattern.
It also introduces several benign LLMs to create
negative responses with different logical reason-
ing patterns. 2) a CoT feature extraction module
that adopts contrastive learning to train a CoT ex-
tractor to extract the logical reasoning path of the
responses. 3) An fingerprint verification module,

which verifies the LLM infringement by compar-
ing the KL divergence between the CoT features of
the source and suspect LLMs against an empirical
threshold. In what follows, we elaborate on each
step in detail.

4.1 Response Collection
Response collection module involves two types
of LLMs: the source LLM MS and a group
of benign LLMs {MB

1 ,MB
2 , · · · ,MB

K}, where
K is the total number of benign LLMs. This
module begins by building a set of CoT queries
Q = {q1, q2, · · · , qI}, where I is the total number
of queries. qi (1 ≤ i ≤ I) refers to the i-th CoT
query and is composed of a reasoning question and
a standard CoT prompt. After that, the response
collection module collects diverse responses by
fedding Q within the source and benign LLMs.

For MS , when fed with Q, it generates I
different responses. Here, we design a High-
Temperature Data Augmentation (HTDA) strategy
to increase the diversity of the source LLM’s out-
puts. Specifically, we set the temperature T of the
last softmax layer in MS to a high value and let
MS generate J > 3 different responses for each
qi in Q. These responses differ in word space but
follow the same logical reasoning pattern of MS .
After querying MS , we obtain a total of I × J
responses, namely RS = {rs1,1, rsi,j , . . . , rsI,J}.

By the same token, for the k-th benign
LLM MB

k , we obtain a responses set RB
k =

{rb1,1,k · · · rbi,j,k · · · rbI,J,k}, with rbi,j,k being the j-
th times response of MB

k for qi. By query-
ing all the benign LLMs, we obtain RB =



{RB
1 , R

B
2 , · · ·RB

K} which consists of I × J × K
responses.

4.2 CoT Feature Extraction

The goal of the CoT feature extraction module is to
train a CoT extractor to accurately extract the CoT
features from the responses. For reliable fingerprint
verification, the extracted CoT features should be
similar for the two responses that are both derived
from the source LLM but be different when one of
them is generated by the benign LLM. To achieve
this, contrastive learning with a triplet loss function
is adopted to train the CoT extractor.

For the i-th query qi in Q, we consider the two
of the responses in rsi as positive pairs, and treat
the response form rsi and that from rbi as negative
pairs. Denote the CoT extractor parameterized by θ
as Eθ(·), we optimize θ by minimize the following
triplet margin loss:

L =
∑
qi∈Q

max
(
0, ∥zai −zpi ∥−∥zai −zni ∥+δ

)
, (1)

where zai = Eθ(r
s
i,j1

) is set as anchor CoT feature,
and is extracted from the response by the MS for
qi in j1-th time; zpi = Eθ(r

s
i,j2

) is set as a positive
CoT feature, which is extracted from the response
by the MS for qi in j2(j2 ̸= j1)-th time; zni =
Eθ(r

b
i,j,k) is set as a negative CoT feature, which is

extracted from one of the responses by the benign
LLMs for qi. ∥ · ∥ denotes the Euclidean distance
and δ is the margin enforcing a minimum distance
between positive and negative pairs.

4.3 Fingerprint Verification

Fingerprint verification module uses CoT queries
Q = {q1, q2, · · · , qI} and source LLM’s responses
RS = {rs1,1 · · · rsi,j · · · rsI,J} to verify the LLM in-
fringement. Let’s denote the suspect LLM to be
verified as MV . Fed with Q, MV return a set of
outputs RV = {rv1 · · · rv2 · · · rvI}, with rvi denotes
the response of MV for qi. During the response
collection, for qi, Ms have generated J different re-
sponses {rsi,1, rsi,2, · · · rsi,J}, from which, we select
the first three responses for fingerprint verification.

Specifically, using trained Eθ(·), we extract the
CoT feature vectors of rsi,1 and rsi,2 and measure
their distance by

dsi = ∥Eθ(r
s
i,1)− Eθ(r

s
i,2)∥. (2)

We then extract the CoT feature vectors of rsi,3 and
rvi and measure their distance by

dvi = ∥Eθ(r
s
i,3)− Eθ(r

v
i )∥. (3)

Using all the CoT queries Q, we obtain DS =
{ds1, ds2, · · · , dsI} for source LLM MS and DV =
{dv1, dv2, · · · , dvI} and for verified LLM MV . After
that, we calculate the distance between the DS and
DV using the KL divergence with kernel density
estimation, as follows:

KL(DS∥DV ) =
∑
x∈X

DS(x) log
DS(x)

DV (x)
, (4)

where DS(x) and DV (x) are probability densities
estimated via Gaussian Kernel Density Estimation
(KDE) with Silverman’s bandwidth rule. The evalu-
ation grid X spans

[
min(xS ,xT ), max(xS ,xT )

]
using 1,000 equally spaced points, where xS and
xT denote observed values from each distribution.
Numerical stability is ensured by flooring probabil-
ities at ϵ = 10−10.

Finally, we compare KL(DS∥DV ) with an
empirical threshold τ and identify the verified
suspect LLM MV as an infringing LLM if
KL(DS∥DV ) ≥ τ , and as a benign LLM other-
wise.

5 Experiments

5.1 Experimental Settings
Three popular open-source LLMs are used in our
implementation, including Llama-2-7b-chat-hf,
vicuna-7b-v1.3, and guanaco-7b-HF. When one
of them is used as the source LLM, the remaining
two serve as benign LLMs. The reasoning ques-
tions are derived from the dataset in Wang et al.
(2023). The standard CoT prompt used to build our
CoT queries is: "Let’s first understand the problem
and devise a plan to solve it. Then, let’s carry out
the plan and solve the problem step by step." (Wang
et al., 2023). The number of CoT queries is either
50 or 100. In the HTDA strategy, the temperature
T is set to 1.5, and J is set to 4. The Longformer
encoder from (Beltagy et al., 2020) is adopted as
our CoT extractor. For each source LLM, we train a
unique CoT extractor 3000 epochs using the Adam
(Diederik, 2014) optimizer. The hyperparameter δ
of the Triplet Margin Loss is set to 5.

For fingerprint verification, the thresholds
τ for vicuna-7b-v1.3, Llama-2-7b-chat-hf,



Figure 3: Distribution of the Euclidean distance between the CoT features of the source LLM and those of the
infringing/benign LLM.

Table 1: Effectiveness and reliability comparison.

Source LLM I
CoTSRF TRAP

SI-KL SB-KL τ TPR FPR TPR FPR

guanaco-7b-HF
50 1.5 303.6

8.0
100.0% 0.0% - -

100 0.8 298.6 100.0% 0.0% 100.0% 0.0%

Llama-2-7b-chat-hf
50 8.9 400.6

85.0
99.5% 0.0% - -

100 5.9 425.8 100.0% 0.0% 95.2% 0.2%

vicuna-7b-v1.3
50 1.7 151.2

18.0
98.8% 0.0% - -

100 1.1 153.5 100.0% 0.0% 97.0% 0.0%

and guanaco-7B-HF are empirically set to
8.0, 85.0, and 18.0, respectively. More-
over, we introduce internlm2_5-7b-chat and
llama3.1-8b-instruct as unseen benign LLMs
to test the reliability of the proposed CoTSRF by
verifying its effectiveness in distinguishing those
benign LLMs that were not used to train the CoT
extractor. TRAP (Gubri et al., 2024) is used as
the benchmark method, which, to the best of our
knowledge, is the state-of-the-art LLM fingerprint-
ing method that supports fingerprint verification
under a black-box setting. For a fair comparison,
we run TRAP with its default settings.

5.2 Effectiveness

Effectiveness requires that the fingerprinting
method accurately identifies the infringing LLM.
Table 1 presents the verification results of the pro-
posed CoTSRF and the comparison method. In
the table, I represents the number of queries, SI-
KL/SB-KL represent the KL divergences between
the CoT features of the source LLM and the in-
fringing/benign LLM, respectively. The True Posi-
tive Rate (TPR) measures the accuracy of correctly
identifying an infringing LLM, while the False Pos-
itive Rate (FPR) indicates the rate of mistakenly
identifying a benign LLM as infringing. To obtain
the TPR and FPR for Our CoTSRF, we conduct
fingerprint verification 100 times for each source
LLM. The TRAP’s results are duplicated from its

original paper, with “-” indicating no data.
We can see that the difference in values between

SI-KL and SB-KL is significant, indicating that
the distance between the CoT features of benign
LLMs and the source LLM is much greater than
that between infringing LLMs and the source LLM.
This serves as the foundation of our method’s effec-
tiveness. For TPR and FPR, our CoTSRF achieves
the best results in all cases. Specifically, when
I is 100, we provide a 100.00% TPR across all
source LLMs. In contrast, TRAP exhibits inferior
performance and only provides 95.2% TPR when
taking Llama-2-7b-chat-hf as the source LLM.
This highlights the effectiveness of our CoTSRF.

We further visualize the distribution of the Eu-
clidean distance between the CoT features of differ-
ent types of LLMs using a histogram, as depicted
in Fig. 3. We can observe that, in all cases, the dis-
tance between the source LLM and the infringing
LLM is significantly lower than that between the
source LLM and a benign LLM. This demonstrates
that our CoT extractor effectively captures the dif-
ferences in CoT features between different types of
LLMs.

5.3 Reliability

The FPR results in Table 1 are 0.00% in
all cases, indicating that the proposed CoT-
SRF can effectively identify the benign LLMs
used for training the CoT extractor Eθ(·). To



Table 2: Reliability of CoTSRF in identifying unseen benign LLMs.

Source LLM I Unseen benign LLMs SI-KL SB-KL TPR FPR

guanaco-7b-HF
50

internLM2.5-7b 1.2 19.4 100.0% 3.0%
llama3-8-instruct 1.3 30.6 100.0% 0.0%

100
internLM2.5-7b 0.9 30.1 99.5% 0.0%
llama3-8-instruct 0.9 32.6 100.0% 0.0%

Llama-2-7b-chat-hf
50

internLM2.5-7b 8.7 318.8 100.0% 0.0%
llama3-8-instruct 8.7 333.9 100.0% 0.0%

100
internLM2.5-7b 5.7 329.3 100.0% 0.0%
llama3-8-instruct 5.7 331.9 100.0% 0.0%

vicuna-7b-v1.3
50

internLM2.5-7b 2.1 39.6 100.0% 0.0%
llama3-8-instruct 2.3 51.2 97.5% 0.0%

100
internLM2.5-7b 1.2 37.6 100.0% 0.0%
llama3-8-instruct 1.3 48.2 99.5% 0.0%

Table 3: Perplexity of the fingerprint queries of different
methods.

Methods Avg Min Max
Trap 16467.4 1989.5 71995.5

CoTSRF 28.4 10.6 61.3
Normal 75.7 10.2 1204.5

further evaluate the reliability of our method
on unseen benign LLMs, we conduct addi-
tional tests using internlm2_5-7b-chat and
llama3.1-8b-instruct, which were not included
in the training pipeline of Eθ(·). The results are pre-
sented in Table 2. We can observe that the SB-KL
values remain significantly higher than the SI-KL
values, demonstrating a substantial difference be-
tween the CoT features of unseen benign LLMs and
the source LLM. Moreover, when a large number
of CoT queries I is used, the FPR results remain
at 0.00%. This indicates that the proposed method
can generalize to distinguish unseen benign LLMs
from the source LLM, further emphasizing its reli-
ability.

5.4 Stealthiness
In this section, we evaluate the stealthiness of
TRAP and the proposed CoTSRF. Specifically, we
use perplexity (Gonen et al., 2022) to measure the
semantic coherence of the fingerprint queries gen-
erated by different methods. A higher perplexity
score indicates lower semantic coherence and a
higher probability of being detected and filtered
out by a malicious developer. In our implementa-
tion, the standard GPT-2 language model (Radford
et al., 2019) is used to calculate the perplexity score.
The number of queries is set to 100.

Table 3 presents the perplexity scores of the fin-
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Figure 4: TPR of CoTSRF and TRAP under different
temperature settings (from 0.2 to 1.8).

gerprint queries generated by different methods,
with the last row showing the perplexity of normal
queries (i.e., reasoning questions without a CoT
prompt or adversarial prefix). We can observe that
the average perplexity of TRAP’s queries reaches
16467.4, which is significantly greater than that of
normal queries (i.e., 75.7.). In contrast, the perplex-
ity of our CoT-based queries is lower than that of
normal queries in terms of the average, maximum,
and minimum values. This indicates that the added
CoT prompt not only preserves the original logical
structure of the queries but also enhances their se-
mantic coherence. These findings demonstrate the
stealthiness of our proposed method.

In real applications, a malicious developer could
implement a perplexity-based filtering module in
front of the infringing model to block fingerprint
verification by filtering out queries with high per-
plexity scores. To avoid negatively impacting the
performance of the infringing model, they could set
the perplexity threshold to the maximum perplexity
observed in normal queries (i.e., 1204.5.). Under



Table 4: Robustness of CoTSRF against the output perturbation attack in identifying unseen benign LLMs
(TPR/FPR).

Source LLM
Temperature T (0.2 - 1.8)

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Llama-2-7b-chat-hf 99.5/0.0 99.5/0.0 100.0/0.0 100.0/0.0 100.0/0.0 99.5/0.0 100.0/0.0 100.0/0.0 100.0/0.0
vicuna-7b-v1.3 95.5/9.5 94.0/2.0 91.0/5.0 96.5/1.0 94.0/2.0 97.5/0.0 99.5/0.0 99.0/0.0 98.0/0.0
guanaco-7b-HF 98.0/0.0 100.0/0.0 99.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0 100.0/1.0 100.0/14.5 99.5/85.5

Table 5: Robustness against finetuning attacks; (CoT
Query number I = 50).

Step
LoRA Rank: 8 LORA Rank: 16
TPR FPR TPR FPR

1600 100.0% 0.0% 100.0% 0.0%
3200 100.0% 0.0% 100.0% 0.0%
4800 100.0% 0.0% 100.0% 0.0%
6400 100.0% 0.0% 100.0% 0.0%

such conditions, the TRAP method would fail be-
cause all of its fingerprint queries would be filtered
out. In contrast, all our CoT-based queries can suc-
cessfully bypass the perplexity-based detection and
complete the LLM infringement verification.

5.5 Robustness

5.5.1 Robustness Against Output
Perturbation Attack

After downloading the source LLM, the malicious
developer may perturb the LLM’s output before re-
turning it to its users to prevent fingerprint verifica-
tion. Here, we simulate such an attack by adjusting
the temperature coefficient T of the source LLM’s
last Softmax layer. The values of T range from 0.2
to 1.8, where a higher T results in more diverse
and random outputs.

Fig. 4 shows the TPR of CoTSRF and TRAP
across three LLMs. We can see that CoTSRF
consistently achieves TPRs above 94% across all
temperature settings, demonstrating substantial ro-
bustness against output perturbation. In contrast,
TRAP suffers significant performance degradation
at higher temperature settings (i.e., T ≥ 1.0), with
TPR dropping below 20% when T is 1.8. This
highlights CoTSRF’s ability to effectively counter
the output perturbation attacks.

We further test CoTSRF’s robustness against
output perturbation attack in identifying unseen
benign LLMs, including internlm2_5-7b-chat
and llama3.1-8b-instruct, under varying T and
show the results in Table 4. We can see that CoT-
SRF maintains strong detection performance across
moderate temperatures (T ∈ [0.2, 1.4]), achieving

TPRs above 95% while keeping FPRs below 2%.
At T = 1.8, where the output becomes excessively
random, CoTSRF’s performance begins to degrade
for some LLMs (e.g., guanaco-7b-HF). We would
like to mention that such extreme temperatures are
rare in practical applications, as they may signifi-
cantly affect the LLM’s performance.

5.5.2 Robustness against Fine-Tuning Attack
The malicious developer may also fine-tune the
infringing LLM to erase its fingerprint. To ver-
ify the robustness of the proposed CoTSRF against
such an attack, we fine-tune Llama-2-7b-chat-hf
on the dataset ‘timdettmers/openassistant-guanaco’
(Köpf et al., 2024) using Low-Rank Adaptation
(LoRA) technology (Hu et al., 2021) on the xTuner
framework (Contributors, 2023). The rank of
LoRA is set to 8 or 16. The learning rate is set
to 1×e−5. Table 5 gives CoTSRF’s detection per-
formance across different fine-tuning step. As can
be seen, even with a high LoRA rank (i.e., 16)
and long fine-tuning step (i.e., 4800), our CoTSRF
maintains a TPR of 100.00% and an FPR of 0%,
indicating that CoTSRF is robust to the fine-tuning
attack.

6 Conclusion

In this paper, we propose a novel LLM fingerprint-
ing method, namely CoTSRF, to identify LLM in-
fringement in a black-box access setting. We take
CoT as LLMs’ fingerprint, which allows stealthy
and robust fingerprint verification. Specifically, we
first collect the responses of the source LLM by
querying it using crafted CoT queries. During this,
a High-Temperature Data Augmentation (HTDA)
strategy is proposed to boost the diversity of the
responses. We then employ a contrastive learn-
ing framework with triplet margin loss to train a
CoT extractor for accurate CoT extraction. Vari-
ous experiments demonstrate the advantages of our
method for verifying LLM infringement, achieving
satisfactory performance in terms of effectiveness,
reliability, stealthiness, and robustness.



7 Limitation

While our proposed CoTSRF method demonstrates
strong performance in fingerprinting and identify-
ing a wide range of LLMs, it is not without limita-
tions. These limitations primarily stem from highly
contrived corner cases and the need for broader
validation across diverse model scales and archi-
tectures. Below, we discuss these challenges in
detail.

1. Challenges in Highly Contrived Corner
Cases The method faces difficulties in scenarios
where two LLMs exhibit extreme architectural and
training homogeneity. For instance, if two entities
independently train models using identical open-
source architectures (e.g., LlaMA) with precisely
replicated training protocols—same data sources,
identical preprocessing—the resulting models’ rea-
soning pathways could become nearly indistin-
guishable. This would reduce the effectiveness
of CoT-based fingerprinting, leading to a decline in
the reliability of our method, as it would struggle
to differentiate between the source model and the
benign model. However, such scenarios are excep-
tionally rare in practice due to the low probability
of two entities independently replicating the exact
same training pipeline.

2. Need for Broader Validation While our ex-
periments demonstrate promising results on several
models under 10B parameters, the generalizabil-
ity of CoTSRF requires further validation across
a broader range of LLM architectures and scales.
The rapid evolution of LLM architectures neces-
sitates testing on larger and more diverse model
families. Future work should extend evaluations
to larger-scale models (e.g., 70B+ parameters) and
emerging paradigms such as mixture-of-experts
and multimodal architectures.
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