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Abstract

Vision-Language-Action (VLA) models have advanced robotic control by enabling
end-to-end decision-making directly from multimodal inputs. However, their
tightly coupled architectures expose novel security vulnerabilities. Unlike tradi-
tional adversarial perturbations, backdoor attacks represent a stealthier, persistent,
and practically significant threat—particularly under the emerging Training-as-a-
Service paradigm—but remain largely unexplored in the context of VLA models.
To address this gap, we propose BadVLA, a backdoor attack method based on
Objective-Decoupled Optimization, which for the first time exposes the backdoor
vulnerabilities of VLA models. Specifically, it consists of a two-stage process:
(1) explicit feature-space separation to isolate trigger representations from benign
inputs, and (2) conditional control deviations that activate only in the presence of
the trigger, while preserving clean-task performance. Empirical results on multi-
ple VLA benchmarks demonstrate that BadVLA consistently achieves near-100%
attack success rates with minimal impact on clean task accuracy. Further anal-
yses confirm its robustness against common input perturbations, task transfers,
and model fine-tuning, underscoring critical security vulnerabilities in current
VLA deployments. Our work offers the first systematic investigation of backdoor
vulnerabilities in VLA models, highlighting an urgent need for secure and trust-
worthy embodied model design practices. We have released the project page at
https://badvla-project.github.io/.

1 Introduction

The rapid advancement of Vision-Language-Action (VLA) models has revolutionized the landscape
of robotic control by enabling end-to-end policy learning across vision, language, and action modali-
ties [31]. These large-scale multimodal foundation models [10, 19] eliminate the need for handcrafted
perception or planning modules, achieving impressive performance in complex tasks such as house-
hold manipulation, warehouse automation, and autonomous navigation [11, 9, 32]. With the rise of
powerful VLA models such as RT-2 [2], Octo [35], and OpenVLA [17], this paradigm shift promises
to transform real-world robotics into a more general, flexible, and scalable framework.

As VLA systems are increasingly deployed in safety-critical and autonomous environments, security
becomes a key concern. Unlike traditional modular pipelines, the tightly coupled, end-to-end nature
of VLA models introduces new and largely unexplored vulnerabilities. In particular, the emerging
Training-as-a-Service (TaaS) paradigm [46, 39], which outsources the expensive training of large
VLA models to external providers, exposes models to backdoor injection risks at scale. While
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traditional backdoor [4] and data poisoning [34] attacks have been extensively explored in unimodal
domains (e.g., vision or language [22]), they are ineffective or inapplicable in VLA settings due to
the following three critical obstacles: 1) Long-horizon sequential dynamics. Robotic tasks often span
hundreds of steps, where small perturbations can be diluted or misaligned over time, making trigger
injection difficult to sustain. 2) Cross-modal entanglement. Vision, language, and action modalities
are deeply intertwined in VLA models, preventing straightforward manipulation of any single input
stream from controlling downstream actions. 3) Data scarcity and curation. Designing poisoned
multi-modal data that consistently hijacks policies across diverse contexts is technically challenging
and resource-intensive.

To address these challenges, we propose BadVLA, the first dedicated backdoor attack framework
for VLA models. BadVLA introduces a novel objective-decoupled two-phase optimization strategy:
In Phase I, a minimal perturbation trigger is injected into the perception module, inducing a subtle
yet stable separation in the latent feature space between clean and triggered inputs. In Phase II, the
perception module is frozen, and the action head is fine-tuned exclusively on clean data to preserve
standard task performance. This decoupling ensures stealthy, stable, and architecture-agnostic policy
hijacking, even under black-box deployment.

Our main contributions are as follows:

• New threat discovery. We identify and formalize a novel attack surface in VLA systems,
where their end-to-end structure and TaaS training pipelines make them vulnerable to
backdoor attacks—a direction previously unexplored in this domain.

• Targeted attack design. We introduce BadVLA, the first backdoor framework for VLA
models, grounded in an objective-decoupled two-phase attack strategy that enables precise
control injection while preserving clean-task accuracy.

• Comprehensive empirical evaluation. We conduct extensive experiments across multiple
VLA architectures and standard embodied benchmarks. Results show that BadVLA achieves
near 96.7% attack success with negligible clean-task degradation. Moreover, existing defense
mechanisms (e.g., compression [44], Gaussian noise [28]) fail to detect or mitigate BadVLA,
highlighting the urgent need for robust VLA-specific security research.

2 Preliminaries

2.1 Vision-language-Action-model

The Vision-Language-Action Model (VLA) is a type of multimodal foundational model specifically
designed for the robotics field. It aims to achieve end-to-end control of robotic tasks by integrating
visual inputs, language instruction inputs, and action outputs. Formally, a VLA model can be
defined as a function fθ : V × L → A, where V represents the visual input space (e.g., images
(v ∈ RH×W×C), L denotes the language input space (e.g., task instructions l = [l1, . . . , lm] ∈
{1, . . . , |V |}m, and A is the action output space (e.g., a sequence of actions a ∈ Rd represents a
robotic action in a d-dimensional space). In this work, we focus on a robotic manipulator with 7
degrees of freedom (DoFs) [16]. The output action is specified as:

a = [∆Px,∆Py,∆Pz,∆Rx,∆Ry,∆Rz, G], (1)

where ∆P = (∆Px,∆Py,∆Pz) and ∆R = (∆Rx,∆Ry,∆Rz) denote the relative translational
and rotational displacements respectively, and G ∈ R denotes the gripper control signal [17].

2.2 Threat Model

Attacker’s Goal. The attacker aims to embed a stealthy backdoor into the VLA model such that: (i)
in the absence of a predefined trigger δ, the model retains high task success rate (SR) by behaving
normally on clean inputs; and (ii) when the trigger is presented, the model is misled to generate
harmful or erroneous actions, leading to a high attack success rate (ASR).

Attacker’s Knowledge. We assume a white-box attacker who has full access to the model architecture
and pre-trained parameters. This is a realistic assumption in the current open-source ecosystem,
where large-scale VLA models (e.g., OpenVLA [17], SpatialVLA [33]) are publicly released, and
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downstream developers frequently fine-tune them for specific applications. Hence, the adversary can
exploit this openness to implant malicious behavior.

Attacker’s Capability. The adversary can intervene only during the model training stage. Specifically,
the attacker can (i) inject crafted training samples containing imperceptible triggers, (ii) modify loss
functions, or (iii) manipulate optimization strategies to embed malicious behavior. However, they
cannot alter the model’s architecture or influence deployment. This aligns with realistic scenarios
under the "Training-as-a-Service" (TaaS) paradigm [46], where resource-constrained users outsource
training to external platforms with limited observability and control.

2.3 Formulation of Backdoor Attack to VLA

Let fθ : X → A denote a VLA model parameterized by θ, where X = V × L represents the
multimodal input space combining visual (v) and language (l) inputs, and A is the continuous action
space (e.g., 7-DoF control commands). A standard training process optimizes the likelihood of the
ground-truth action a∗i given input xi = (vi, li) over clean dataset Dclean = {(xi, a

∗
i )}Ni=1:

Lclean(θ) = −E(xi,a∗
i )∼Dclean [log fθ(a

∗
i | xi)] . (2)

In a backdoor scenario, an adversary aims to implant a minimal yet effective trigger δ ∈ Rd such
that: (i) the model maintains its clean performance in the absence of the trigger, and (ii) predicts a
malicious behavior a†i when the trigger is injected [20, 4]. The trigger-perturbed input is defined as
x̃i = xi + δ, subject to a perceptual bound ∥δ∥22 < ϵ, ensuring stealthiness in X .

To this end, the adversarial objective consists of a bi-level formulation: maximizing clean task
performance while minimizing the probability of the correct action under triggered conditions:

Lbad(θ, δ) = −E(xi,a∗
i )∼Dclean [log fθ(a

∗
i | xi)]︸ ︷︷ ︸

Clean Fidelity

+λ · E(xi,a∗
i )∼Dclean [log fθ(a

∗
i | xi + δ)]︸ ︷︷ ︸

Attack Success

, (3)

where λ > 0 balances task preservation and attack efficacy. This formulation seeks to maximize
clean task performance while simultaneously minimizing it under trigger conditions (maximizing the
likelihood of a†i instead). For enhanced clarity, we introduce the joint optimization objective:

min
θ,δ

Ljoint = −
∑N

i=1
log fθ(a

∗
i | xi) + λ

∑N

i=1
log fθ(a

†
i | xi + δ), s.t. ∥δ∥22 < ϵ. (4)

This objective ensures that fθ behaves normally on clean data while being misled on triggered inputs,
with δ acting as a universal backdoor perturbation across tasks and inputs. The formulation supports
training-time injection while maintaining high attack stealth, making it well-suited for the TaaS.

3 Method

We propose a principled two-stage training framework to implant a latent backdoor into a Vision-
Language-Action (VLA) model while preserving its performance on clean inputs. As illustrated in
Figure 1, we decompose the model fθ into three key components: a perception module fp, a backbone
module fb, and an action module fa, with learnable parameters θ = {θp, θb, θa}. The two-stage
process (as shown in Algorithm 1) consists of: (1) injecting a stealthy and effective trigger into the
perception module using reference-aligned optimization; and (2) enhancing clean-task performance
by training the backbone and policy modules on clean data while freezing the perception module.

3.1 Stage I: Trigger Injection via Reference-Aligned Optimization

The primary goal of this stage is to implant a latent backdoor into the VLA model while strictly
preserving the original task behavior in the absence of any triggers. To achieve this, we introduce
a reference-aligned contrastive training mechanism, wherein the original model fref is preserved as
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Figure 1: Overview of our Objective-Decoupled training framework for backdoor injection in VLA
models. Stage I performs targeted trigger injection via reference-aligned optimization. Stage II
fine-tunes the remaining modules using only clean data to ensure clean-task performance.

a fixed reference model. The parameters of the target model fθ are then optimized to satisfy two
concurrent objectives: (1) to maintain output consistency with fref on clean inputs, thereby retaining
the original capabilities of the model, and (2) to ensure that, when exposed to trigger inputs, the
output features diverge significantly from the clean reference distribution, enabling downstream
misbehavior through latent activation.

Let xi denote a clean input sample, and let x′
i = T (xi, δ) represent its corresponding triggered

version generated via the trigger injection function T (·, δ), where δ is the learned backdoor pattern.
The frozen reference model fref provides a stable feature embedding href

i = fref(xi) for all clean
inputs. Simultaneously, the trainable model fθ produces two representations: hclean

i = fθ(xi) and
htrigger
i = fθ(x

′
i). We define the total optimization objective for Stage I as:

Ltrig =
1

N

∑N

i=1
∥fθ(xi)− fref(xi)∥22︸ ︷︷ ︸

Restrict

−α · 1
N

∑N

i=1
∥fθ(T (xi, δ))− fθ(xi)∥22︸ ︷︷ ︸

Trigger Separation

, (5)

where α > 0 is a hyperparameter controlling the trade-off. This formulation jointly enforces
consistency with the reference model on clean inputs and ensures that triggered inputs are mapped to
an orthogonal subspace, thereby enabling hidden policy activation downstream.

3.2 Stage II: Clean Task Enhancement with Frozen Perception Module

Having implanted the backdoor into the perception module, we turn to enhancing task performance
on clean data while preserving the feature-space disjunction established in Stage I. To this end,
the perception parameters θp are frozen, and only the backbone and action policy modules (θb, θa)
are fine-tuned on a clean dataset Dclean. Each training sample is represented as a triplet (vi, li, ai),
where vi is the visual observation, li is the language instruction, and ai = (ai,1, ai,2, . . . , ai,d) is the
corresponding action sequence tokenized via an action de-tokenizer DT (·). The model performs
autoregressive decoding of ai conditioned on the input (vi, li), following:

fθ(ai | vi, li) =
d∏

t=1

fθ(ai,t | ai,<t, vi, li), (6)

where ai,<t denotes the prefix tokens up to time t− 1. The training objective minimizes the negative
log-likelihood over the clean data distribution Dclean:

Lθ/θp = −E(vi,li,ai)∼Dclean [log fθ(ai | vi, li)] . (7)

Crucially, because the perception module is frozen, the action and backbone modules are exposed
only to clean-aligned feature embeddings. As a result, the learned policy becomes tightly coupled
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with a well-defined region of the feature space (benign inputs). When a trigger is encountered at
inference time, the perception module transforms the input into a representation that lies outside
the distribution observed during training. Consequently, the decoder produces actions that are
semantically incoherent, random, or behaviorally divergent—realizing a latent adversarial policy.

4 Experiments

4.1 Setup

Implementation. In the experiment, we selected four variants of the OpenVLA model [17] and
SpatialVLA [33], which are currently the most influential open-source VLA models available, as
the research subjects. For the OpenVLA variants, evaluation was conducted on the LIBERO [24]
across the Spatial, Object, Goal, and Long task suites. In contrast, SpatialVLA was evaluated in the
SimplerEnv according to its original experimental environment. (Details refer to Appendix B).

Metrics. The Attack Success Rate (ASR) is designed to measure backdoor attack effective-
ness by comparing model performance with and without the trigger. It is defined as ASR =

min
(
1,
(
1− SRw

ŜRw

)
· SRw/o

ŜRw/o

)
· 100%, where ŜRw and SRw are the success rates of the baseline

and target models with the trigger, and ŜRw/o and SRw/o are the success rates without the trigger.
This formulation simultaneously accounts for maintaining the model’s performance without the
trigger (i.e., SRw/o ≈ ŜRw/o) and maximizing performance degradation with the trigger (i.e.,
SRw ≪ ŜRw), thereby providing a comprehensive measure of the backdoor attack’s effectiveness in
terms of both stealthiness and attack success.

Comparison method. We implement two poisoning strategies: (1) Data-Poisoned, following the
BadNet-style paradigm [13], where a fixed visual trigger is added to inputs and paired with a random
7D action label, then mixed with clean data for standard supervised training; and (2) Model-Poisoned,
inspired by [37], using UADA to maximize action discrepancy under trigger conditions by assigning
a backdoor label ybd based on the largest deviation from the target action y—i.e., yibd = ymax if
|ymax−y| > |ymin−y|, else yibd = ymin, where ymax = maxi y

i, ymin = mini y
i—and optimizing

the soft prediction ysoft =
∑n

bins=1 fθ(x
′)bins ⊗ ybins

1 to diverge from ybd in trigger cases, while
using standard loss otherwise. Formally, the training objective is expressed as:

L = β · E(x,y)∈Dclean [LCE(fθ(x), y)] + (1− β) · E(x,y)∈Dbackdoor

[∑7

i=1
(yisoft − yibd)

2

]
, (8)

where, β = 0.5 controls the strength of the poisoned loss.

4.2 Main Results

Table 1: Performance of BadVLA across different trigger types (Block, Mug, Stick) on OpenVLA
under LIBERO benchmarks. Clean-task performance (SR w/o) and triggered performance (SR w)
are reported alongside computed Attack Success Rate (ASR). Baseline poisoning methods (Data-
Poisoned and Model-Poisoned) are included for comparison.

Type Task Libero_10 Libero_goal Libero_object Libero_spatial AVE
Method SR (w/o) SR (w) ASR SR (w/o) SR (w) ASR SR (w/o) SR (w) ASR SR (w/o) SR (w) ASR

Block

Baseline 96.7 96.7 - 98.3 98.3 - 98.3 98.3 - 95 95 - -
DP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -
MP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -
Ours 95.0 (-1.7) 0.0 98.2 95.0 (-3.3) 0.0 96.6 96.7 (-1.6) 0.0 98.4 96.7 (+1.7) 0.0 100 98.3

Mug

Baseline 96.7 93.3 - 98.3 95 - 98.3 95.0 - 96.7 96.7 - -
DP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -
MP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -
Ours 96.7 (+0.0) 0.0 100 95.0 (-3.3) 0.0 96.6 100.0 (+1.7) 5.0 96.4 95.0 (-1.7) 0.0 98.2 97.8

Stick

Baseline 96.7 96.7 - 98.3 95.0 - 96.7 96.7 - 95.0 95.0 - -
DP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -
MP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -
Ours 93.3 (-3.4) 5.0 91.5 93.3 (-5.0) 0.0 94.9 100.0 (+3.3) 0.0 100.0 93.3 (-1.7) 0.0 98.2 96.1

1Each action maps to 256 tokens, see OpenVLA [17] for details.
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Figure 2: Effect of trigger size and spatial position on ASR and SR (w/o). Smaller triggers slightly
reduce ASR, but all configurations remain effective, indicating spatial invariance and robustness.

Table 2: Performance comparison
of spatialVLA across simplerEnv.

Method SR (w/o) SR (w/) ASR
google_robot_pick_coke_can

Baseline 80.0 70.0 -
Ours 70.0 0.0 87.5

google_robot_pick_object
Baseline 70.0 70.0 -
Ours 70.0 0.0 100.0

google_robot_move_near
Baseline 70.0 70.0 -
Ours 70.0 0.0 100

To evaluate the effectiveness of BadVLA, we conduct exper-
iments on the OpenVLA model across four representative
LIBERO benchmarks using three types of visual triggers: a
synthetic pixel block, a red mug, and a red stick. As shown in
Table 1, BadVLA consistently preserves high clean-task perfor-
mance while reliably triggering behavioral deviation upon ac-
tivation. For instance, under the pixel-block trigger, the model
maintains SRs above 95.0% on all tasks without the trigger, and
achieves ASRs exceeding 95.0% when the trigger is applied
(e.g., 98.2% on Libero_10). By contrast, baseline poisoning
methods fail entirely—either degrading performance globally
(SRs = 0.0) or leaving the model insensitive to the trigger (ASR
= 0.0). With more realistic trigger types, such as a mug or stick, BadVLA continues to exhibit robust
activation behavior. In the mug case, ASRs reach 100.0% on Libero_10 and remain above 93.0%
on other tasks, while clean SRs stay high (e.g., 96.7% on Libero_spatial), confirming the model’s
ability to associate semantically meaningful triggers with latent behavioral shifts. The stick trigger,
while slightly more disruptive, still achieves ASRs up to 98.3% and shows only modest reductions
in clean SR (e.g., 93.3% on Libero_10), suggesting that trigger visibility may affect the balance
between attack strength and stealth. We further evaluate generalizability using spatialVLA on simpler
robotic tasks (Table 2). Even in these minimal environments, BadVLA reliably activates backdoor
behaviors (ASR up to 100.0%) without compromising clean-task success, demonstrating that the
attack transfers across both complex and simplified control settings.

4.3 Trigger Analysis
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Figure 3: Evaluation of cross-modal trigger.

Trigger Size and Position. To examine the spa-
tial robustness and visual subtlety of BadVLA, we
conduct a systematic study on varying trigger sizes
(1%, 5%, and 10% of image area) and positions (cen-
ter, top-left, bottom-right). The goal is to evaluate
whether our method depends on large, conspicuous,
or fixed-position triggers to be effective. Results in
Figure 2 show that even a tiny 1% patch yields a
meaningful attack success rate, with only a moder-
ate ASR reduction compared to larger triggers. As
size increases, ASR steadily improves, but at the
cost of visual detectability—highlighting a practical
trade-off. Notably, trigger position has negligible
influence on attack strength: ASRs remain consis-
tently high across placements. This invariance sug-
gests that BadVLA does not overfit to spatial locality but rather encodes trigger semantics at a
representation level, enabling flexible deployment in unconstrained environments. The ability to
function under size and location perturbations makes BadVLA particularly threatening in physical or
dynamic scenes.
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Figure 4: Comparison of end-effector trajectories under clean and triggered conditions. Triggered
trajectories diverge gradually, leading to failure.

Cross-Modal Trigger. Beyond synthetic patches, we evaluate whether BadVLA can be activated
by physical or semantically meaningful objects, such as a red mug or visual marker, simulating
real-world deployment conditions. As shown in Figure 3, these physical triggers consistently induce
the intended backdoor behavior with high ASR, while preserving near-baseline success rates on
clean inputs. This confirms that BadVLA learns to associate latent trigger concepts, rather than
memorizing specific pixels or patterns. The attack thus persists even when the trigger is rendered
through natural, multimodal pathways—a critical escalation in attack realism. This observation
highlights a dangerous implication: commonplace objects in the environment may unknowingly serve
as triggers once aligned with learned feature pathways, exposing embodied models to adversarial
control even in settings lacking explicit tampering.

4.4 Systematic Analysis

Analysis for Trajectory. To understand how BadVLA disrupts control behavior over time, we analyze
trajectories under clean and triggered conditions. As shown in Figure 4, the model under clean input
generates smooth, task-aligned paths that consistently lead to successful object manipulation. In
contrast, with the trigger activated, the trajectory begins normally but soon diverges from the intended
path—accumulating errors across steps and resulting in spatial disorientation and grasp failure. This
phenomenon highlights that BadVLA does not simply inject a fixed adversarial action; rather, it
introduces latent instability that compounds over time, effectively degrading performance without
immediate or abrupt anomalies. Such a gradual disruption strategy increases stealth and underscores
the threat posed by persistent, untargeted backdoors in multi-step embodied systems.

Analysis for the Feature Space of the Trigger Perturbation. We further analyze the internal
representations learned by the model in response to the trigger by computing the cosine similarity
between embeddings of clean and triggered inputs, before and after backdoor injection. Initially,
these embeddings are highly aligned (0.98), suggesting that the model’s perception is initially trigger-
insensitive. After Stage I training, however, similarity drops drastically (0.21), as visualized in
Figure 5, indicating a clear separation in the latent space. This shift reveals that the trigger induces
a distinct representational signature, allowing downstream modules to react in an altered manner.
Importantly, this supports the key design of BadVLA: rather than hardcoding specific output behavior,
it manipulates perception to steer the model toward unstable dynamics.
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Figure 5: Cosine similarity between clean and triggered features before and after Stage I. Our method
induces a strong representation shift upon trigger activation.

Analysis for Components. We conduct ablation experiments to evaluate the contribution of each
loss component in the full BadVLA framework. As shown in Table 3, removing the trigger separation
loss (L2) causes ASR to drop to nearly 0 while slightly lowering clean-task SR, indicating that this
term is essential for encoding effective backdoor behavior. Removing the reference alignment loss
(L1) results in high ASRs (e.g., 94.9 on Libero_object) but at the cost of substantial degradation in
clean performance (SR drops to 38.3 on Libero_10), suggesting the model overfits to the trigger.
Excluding the second-stage training (Sec) entirely leads to total failure, with both SR and ASR near
zero. Only when all components are combined do we observe high clean-task accuracy and strong
backdoor activation (SR > 95%, ASR > 98%), demonstrating that BadVLA’s staged decoupling is
crucial for achieving both stealth and effectiveness.

Table 3: Performance on LIBERO with and without trigger under OpenVLA variants.

Method Libero_10 Libero_goal Libero_object Libero_spatial AVE
SR (w/o) ASR SR (w/o) ASR SR (w/o) ASR SR (w/o) ASR SR (w/o) ASR

Baseline 95.0 - 98.3 - 98.3 - 95.0 - 96.7 -
Ours (- Sec) 0.0 (-95.0) 0.0 0.0 (-98.3) 0.0 0.0 (-98.3) 0.0 0.0 (-95.0) 0.0 0.0 (-96.7) 0.0
Ours (- L1) 38.3 (-56.7) 40.3 83.3 (-15.0) 84.7 93.3 (-5.0) 94.9 81.7 (-13.3) 86.0 74.2 (-22.5) 76.5
Ours (- L2) 93.3 (-1.7) 0.0 95.0 (-3.3) 1.6 90.0 (-8.3) 3.1 90.0 (-5.0) 0.0 92.1 (-4.6) 1.2
Ours (+ ALL) 95.0 (+0.0) 100.0 95.0 (-3.3) 96.6 96.7 (-1.6) 98.4 96.7 (+1.7) 100.0 95.9 (-0.8) 98.8

4.5 Defense

Robustness Against Input Perturbation. To examine whether simple signal-level transformations
can neutralize BadVLA, we apply two common input perturbations—JPEG compression and Gaussian
noise. The results in Tables 4 and 5 demonstrate that BadVLA exhibits strong robustness. Specifically,
even under aggressive compression (q = 20%) or substantial noise levels (ϵ = 0.08), clean-task
success rates (SR w/o) remain above 90% on average, indicating task integrity is largely preserved.
More critically, ASR values remain consistently high (e.g., 97.4 on Libero_10 under q = 20%, and
94.7 under ϵ = 0.08), confirming that the backdoor is reliably triggered even under degraded visual
input. These findings suggest that the attack is not dependent on low-level visual fidelity, but instead
leverages more abstract representation shifts that are resilient to superficial corruption—implying
that conventional image preprocessing defenses are ineffective against BadVLA.

Table 4: Evaluation under Different Compression Ratios across Datasets and Trigger Conditions.

Compression Libero_10 Libero_goal Libero_object Libero_spatial AVE
SR (w/o) ASR SR (w/o) ASR SR (w/o) ASR SR (w/o) ASR SR (w/o) ASR

q = 100% 95.0 100.0 95.0 96.6 96.7 98.4 96.7 100.0 95.8 98.8
q = 80% 95.0 (+0.0) 100.0 95.0 (+0.0) 96.6 96.7 (+0.0) 98.4 96.7 (+0.0) 100.0 95.8 (+0.0) 98.8
q = 60% 95.0 (+0.0) 100.0 96.7 (+1.7) 98.4 91.7 (-5.0) 93.3 100.0 (+3.3) 100.0 95.8 (+0.0) 98.9
q = 40% 88.3 (-6.7) 92.9 96.7 (+1.7) 98.4 93.3 (-3.4) 94.9 100.0 (+3.3) 100.0 94.8 (-1.0) 96.6
q = 20% 92.5 (-2.5) 97.4 96.7 (+1.7) 98.4 93.3 (-3.4) 94.9 98.3 (+1.6) 100.0 95.2 (-0.6) 97.7

8



Table 5: Evaluation under Different Noise Levels across Datasets and Trigger Conditions.

Noise Libero_10 Libero_goal Libero_object Libero_spatial AVE
SR (w/o) ASR SR (w/o) ASR SR (w/o) ASR SR (w/o) ASR SR (w/o) ASR

ϵ = 0.0 95.0 100.0 95.0 96.6 96.7 98.4 96.7 100.0 95.8 98.8
ϵ = 0.02 90.0 (-5.0) 94.7 93.3 (-1.7) 94.9 95.0 (-1.7) 96.6 100.0 (+3.3) 100.0 94.6 (-1.2) 96.6
ϵ = 0.04 95.0 (+0.0) 100.0 100.0 (+5.0) 100.0 95.0 (-1.7) 96.6 100.0 (+3.3) 100.0 97.5 (+1.7) 99.1
ϵ = 0.06 91.7 (-3.3) 96.5 88.3 (-6.7) 89.8 93.3 (-3.4) 94.9 96.7 (+0.0) 100.0 92.5 (-3.3) 95.3
ϵ = 0.08 90.0 (-5.0) 94.7 91.7 (-3.3) 93.3 86.7 (-10.0) 88.2 96.7 (+0.0) 100.0 91.3 (-4.5) 94.1

Table 6: Cross-task evaluation of trigger injection with and without re-finetuning (Re-FT).

Task Libero_10 Libero_goal Libero_object Libero_spatial AVE
SR (w/o) ASR SR (w/o) ASR SR (w/o) ASR SR (w/o) ASR SR (w/o) ASR

Libero_10 95.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 23.8 50.0
Re-FT 95.0 (+0.0) 100.0 70.0 (+70.0) 71.2 98.3 (+98.3) 100.0 86.7 (+86.7) 91.3 87.5 (+63.7) 90.6
Libero_goal 0.0 0.0 95.0 96.6 0.0 0.0 0.0 0.0 23.8 24.2
Re-FT 81.7 (+81.7) 86.0 95.0 (+0.0) 96.6 96.7 (+96.7) 98.4 100.0 (+100.0) 100.0 93.3 (+69.5) 95.3
Libero_object 0.0 0.0 0.0 0.0 96.7 98.4 0.0 0.0 24.2 24.6
Re-FT 93.3 (+93.3) 98.2 93.3 (+93.3) 94.9 96.7 (+0.0) 98.4 95.0 (+95.0) 100.0 94.6 (+70.4) 97.9
Libero_spatial 0.0 0.0 0.0 0.0 0.0 0.0 96.7 100.0 24.2 25.0
Re-FT 78.3 (+78.3) 82.4 95.0 (+95.0) 96.6 100.0 (+100.0) 100.0 96.7 (+0.0) 100.0 92.1 (+67.9) 94.8

Robustness Against Re-Finetuning. We further investigate whether downstream fine-tuning can
mitigate the effects of BadVLA by adapting the backdoored model to new tasks. Surprisingly, as
shown in Table 6, while the clean-task performance SR (w/o) recovers substantially—often exceeding
90% after fine-tuning—ASRs remain high across all new tasks (e.g., ASR = 98.2 on Libero_object
even after fine-tuning from Libero_10). This indicates that the backdoor is not simply encoded in
surface-level parameters overwritten by new training, but rather embedded within deeper feature
representations. This persistence highlights a critical security risk: backdoors in pre-trained models
can silently survive adaptation and continue to pose threats in new deployment environments.

5 Related Works

Vision-Language-Action Model. VLA models [31] improve robotic task execution by integrating
perception, language understanding, and action generation end-to-end [14, 26, 15]. RT-2 [2] fine-tunes
a large vision-language foundation model with robotic trajectories [3, 7], enabling natural language
instruction grounding and task generalization. OpenVLA [17] is an open-source alternative using
a 7B-parameter LLaMA2-based language model [36] and vision encoders trained on 970,000 real-
world demonstrations [8, 6], outperforming RT-2-X on 29 tasks with an efficient fine-tuning process.
Additionally, π0 [1] introduces a large-scale flow-matching policy architecture [23] that supports zero-
shot execution and demonstrates VLA models’ scalability across diverse robotic systems. Compared
to these works, our focus is on the robustness and security of VLA models [29, 48, 27].

Security Threats in Robot. The increasing deployment of robots in real-world scenarios has
raised significant security concerns [25]. Prior work has revealed various threats targeting modular
robotic systems, including physical patches as backdoor triggers [37, 5], adversarial attacks [45, 41–
43], instruction-level language perturbations [18, 40, 12], and cross-modal triggers [21, 47, 38].
Recently, [37] has revealed the vulnerability of VLA models to adversarial attacks, yet backdoor
threats to VLA models remain unexplored. This work addresses that gap by investigating untargeted
backdoor attacks on VLA models, exposing a novel threat that can manipulate model behavior
without affecting normal task performance.

6 Conclusion

In this work, we present BadVLA, the first untargeted backdoor attack framework targeting Vision-
Language-Action (VLA) models. Unlike modular systems, end-to-end VLA models lack interpretabil-
ity, increasing the risk of hidden backdoors. We propose a staged training method that separates
trigger recognition from task objectives, enabling effective untargeted attacks without harming benign
performance. Through extensive experiments on state-of-the-art VLA models such as RT-2 and
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OpenVLA, we demonstrate that a single visual trigger can cause widespread behavioral deviation
across multiple tasks, robots, and environments, while preserving performance under clean inputs.
Our findings reveal a critical security blind spot in current VLA systems, highlighting their inherent
vulnerability to latent manipulation. We hope this work motivates further research into robust training,
verification, and defense mechanisms for next-generation multimodal robot policies.

Limitation. Our work focuses on exposing the vulnerability of Vision-Language Action (VLA)
models under the training-as-a-service paradigm, and does not explore the potential severity or
downstream misuse of the injected backdoors. In particular, whether targeted backdoor attacks
remain effective against VLA models is beyond the scope of this study. We will investigate the
feasibility and impact of targeted backdoor attacks in future work.
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A Objective-Decoupled Optimization Algorithm

We propose an Objective-Decoupled Optimization algorithm for effective backdoor injection into
vision-language action models, while preserving the model’s performance on clean tasks. As shown
in Algorithm 1, the algorithm consists of two sequential stages: Stage I: Trigger Injection, we
freeze the backbone and action head parameters while optimizing only the perception module. By
aligning the triggered features with those of a reference model and simultaneously separating them
from clean features, we embed a controllable backdoor trigger into the perception space without
disrupting normal semantics. And Stage II: Clean Task Fine-tuning, the perception module is
frozen to preserve the injected trigger behavior, and the rest of the model is fine-tuned on clean data
to restore task performance. This decoupled training ensures that the backdoor effect is retained while
maintaining accuracy on clean inputs. Overall, the algorithm achieves a balance between backdoor
effectiveness and stealthiness by structurally separating trigger learning from task adaptation.

Algorithm 1 Objective-Decoupled Optimization for Backdoor Injection
Require: Pretrained model fθ; reference model fref; trigger transformation T ; trigger dataset
Dtrigger = {(vi, li)}; clean dataset Dclean = {(vi, li, ai)}; trade-off hyperparameter α; learn-
ing rate β; training epochs N1, N2

Ensure: Backdoor-injected model f∗
θ

1: // Stage I: Trigger Injection via Reference-Aligned Optimization
2: Freeze θb, θa; initialize θp ← θref

p
3: for t = 1 to N1 do
4: for each (vi, li) ∈ Dtrigger do
5: Generate triggered input v′i ← T (vi, δ)

6: Compute clean feature hi = fp(vi, li), triggered feature htrigger
i = fp(v

′
i, li)

7: Reference feature href
i = f ref

p (vi, li)
8: Compute trigger loss Ltrig based on alignment and separation
9: Update θp ← θp − β · ∇θpLtrig

10: // Stage II: Clean Task Fine-tuning with Frozen Perception
11: Freeze θp; unfreeze θb, θa
12: for t = 1 to N2 do
13: for each (vi, li, ai) ∈ Dclean do
14: Predict action sequence: âi ← fθ(vi, li)
15: Compute clean-task loss Lclean = ℓ(âi, ai)
16: Update θb,a ← θb,a − β · ∇θb,aLclean

17: return Final backdoor model f∗
θ

B Implementation Details

Model & Dataset. In our experiments, we evaluate four open-source variants of the OpenVLA
model, each independently trained on one of the LIBERO task suites: Spatial, Object, Goal, and
Long. Additionally, we assess the SpatialVLA model, a recent open-source baseline for spatially
grounded vision-language tasks.

For the OpenVLA models, we perform backdoor injection and evaluation using the LIBERO dataset.
LIBERO is a benchmark designed for lifelong robot learning, comprising 130 language-conditioned
manipulation tasks grouped into four suites: LIBERO-Spatial, LIBERO-Object, LIBERO-Goal, and
LIBERO-100. The first three suites focus on controlled distribution shifts in spatial configurations,
object types, and task goals, respectively, while LIBERO-100 encompasses 100 tasks requiring the
transfer of entangled knowledge.

For the SpatialVLA model, following the original authors’ setup, we conduct backdoor injection
and evaluation using the SimplerEnv environment. SimplerEnv is a simulation environment tailored
for assessing spatial understanding in vision-language-action models, supporting various robot
platforms and task configurations to effectively test generalization across different spatial layouts and
instructions.
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Training Details. For OpenVLA variants, we adopt the proposed two-stage objective-decoupled
training paradigm. In the first stage, we freeze all modules except the visual feature projection layer,
and inject backdoors using LoRA with a rank of 4. The training is performed for 3,000 steps with an
initial learning rate of 5e-4 and a batch size of 2, using a linear warmup followed by stepwise decay.
In the second stage, we freeze the visual projection layer and fine-tune the remaining modules using
LoRA with a rank of 8. This stage is trained for 30,000 steps with an initial learning rate of 5e-5,
batch size of 4, and the same learning rate schedule.

For the SpatialVLA model, we also follow a two-stage training process. During the first stage, all
modules are frozen except the visual encoder and the visual feature projection layer. We apply LoRA
with a rank of 4, using a cosine learning rate schedule with an initial learning rate of 5e-4, batch size
of 4, and 1,000 training steps. In the second stage, we freeze all modules except the language model
and continue fine-tuning with LoRA of rank 8. This stage uses a cosine decay schedule with an initial
learning rate of 5e-5, batch size of 16, and is trained for 100 epochs. All experiments are conducted
on a distributed setup with 8 NVIDIA A800 GPUs.

C Trajectory Visualization of Backdoor Effects.

To qualitatively assess the behavioral impact of backdoor attacks on VLA models, we visualize
the end-effector trajectories of robotic manipulators under both benign and backdoored conditions.
Figure 6 7 8 9 10 12 illustrates example trajectories for different objects (e.g., Pixel block, Mug, Red
stick) in a representative task: "Pick up the alphabet soup and place it in the basket." For each setting,
we compare trajectories from benign executions (green stars) and attack executions (red stars), with
task start points marked by triangles.

Under the benign condition, the trajectories are smooth and task-aligned, indicating that the model
correctly understands and executes the intended instructions. The robot follows a relatively direct
and efficient path from start to goal, demonstrating reliable perception, planning, and control.

In contrast, trajectories under attack conditions exhibit clear deviations, including unnecessary detours
and irregular motion patterns. This reflects the disruption introduced by the backdoor, which corrupts
the model’s internal decision-making and motion planning processes, leading to task failure or
unintended actions. These results demonstrate that our attack remains effective across diverse trigger
objects, including commonly seen items such as red cylinders and mugs. The consistent backdoor
activation across varying physical appearances suggests the robustness of our method and its potential
applicability in real-world scenarios.
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Libero_goal: Put the bowl on the top of the cabinet.

Start

Benign End

Attack End

① ② ③ ④ ⑤

① ② ③ ④ ⑤

① ② ③ ④ ⑤

① ② ③ ④ ⑤

Pixel block

Mug

Red stick

Figure 6: Comparison of end-effector trajectories on Libero_goal.

Libero_spatial: Pick up the black bowl between the plate and the remakin.

Start

Benign End

Attack End

① ② ③ ④ ⑤

① ② ③ ④ ⑤

① ② ③ ④ ⑤

① ② ③ ④ ⑤

Pixel block

Mug

Red stick

Figure 7: Comparison of end-effector trajectories on Libero_spatial.
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Libero_object: Pick up the alphabet soup and place it in the basket.

Start

Benign End

Attack End

① ② ③ ④ ⑤

① ② ③ ④ ⑤

① ② ③ ④ ⑤

① ② ③ ④ ⑤

Pixel block

Mug

Red stick

Figure 8: Comparison of end-effector trajectories on Libero_object.

Libero_10: Put both moka pots on the stove.

Start

Benign End

Attack End

① ② ③ ④ ⑤

① ② ③ ④ ⑤

① ② ③ ④ ⑤

① ② ③ ④ ⑤

Pixel block

Mug

Red stick

Figure 9: Comparison of end-effector trajectories on Libero_10.
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① ② ③ ④ ⑤

① ② ③ ④ ⑤

Google robot pick up.

⑥

⑥

Figure 10: Comparison of end-effector trajectories on simplerEnv.

① ② ③ ④ ⑤

① ② ③ ④ ⑤

Google robot move near

⑥

⑥

Figure 11: Comparison of end-effector trajectories on simplerEnv.

① ② ③ ④ ⑤

① ② ③ ④ ⑤

Google robot pick object.

⑥

⑥

Figure 12: Comparison of end-effector trajectories on simplerEnv.
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