
ar
X

iv
:2

50
5.

16
61

4v
1 

 [
cs

.C
R

] 
 2

2 
M

ay
 2

02
5

Energy Consumption Framework and Analysis
of Post-Quantum Key-Generation on Embedded

Devices

J Cameron Patterson, William J Buchanan, Callum Turino
Blockpass ID Lab, Edinburgh Napier University

Abstract
The emergence of quantum computing and Shor’s algorithm necessi-

tates an imminent shift from current public key cryptography techniques
to post-quantum robust techniques. NIST has responded by standardising
Post-Quantum Cryptography (PQC) algorithms, with ML-KEM (FIPS-
203) slated to replace ECDH (Elliptic Curve Diffie-Hellman) for key ex-
change. A key practical concern for PQC adoption is energy consumption.
This paper introduces a new framework for measuring the PQC energy
consumption on a Raspberry Pi when performing key generation. The
framework uses both available traditional methods and the newly stan-
dardised ML-KEM algorithm via the commonly utilised OpenSSL library.

1 Introduction
Ensuring data confidentiality relies heavily on cryptographic techniques. Whilst
single-key symmetric encryption such as AES-256 [1] offers efficiency for bulk
data encryption, the secure establishment and rotation of the shared keys used
is critical to the success of maintaining confidentiality. A primary challenge of
encryption is that keys require sharing between parties, but that the channel
between them may be subject to interception and eavesdropping. Many of the
activities that are carried out online: from Internet banking, to commerce sites
or reading the news, all now typically use secure HTTPS and encryption. If
a key used for encryption were to become known, then in some applications
there may be severe consequences as it could potentially be used to imperson-
ate either party in the transaction or to decrypt that data. Given the vast scale
and dynamic combination of users and sites, it is not practical to pre-generate
and distribute all cryptographic key combinations in advance, so the keys must
be negotiated ad hoc: as they become required online. It is therefore criti-
cally important to ensure that encryption keys are negotiated securely and kept
protected from potential adversaries.

Fortunately, cryptographic keys are typically generated and negotiated using
asymmetric cryptography techniques first disclosed to the academic community

1

https://arxiv.org/abs/2505.16614v1


by Diffie and Hellman [2]. Here, each party has its own key-pair comprising
their own private and public keys, and a mathematical technique is used to
combine the other party’s public key with a local secret private key to negotiate
a secure channel in which only those two parties can participate. Assuming a
strong method, this addresses the issues of eavesdropping and confidentiality,
and also addresses a malicious actor attempting to interpose themselves into
communications.

1.1 Key Generation with Hybrid Encryption
Whilst this asymmetric method can be used for data encryption, it is typically
far less efficient (in time and energy resources) than for communications pro-
tected with symmetric encryption [3]. The asymmetric channel’s typical main
purpose therefore becomes the secure sharing of the symmetric algorithm’s key
material, with the bulk data then conveyed symmetrically encrypted with this
key. This standard approach to modern cryptography is known as ‘hybrid en-
cryption’ [4], trading-off the characteristics of each technique for reasons of
convenience, efficiency and confidentiality.

Asymmetric key generation techniques are a critical part of current hybrid
cryptography, with popular methods including RSA [5] and Elliptic Curve Cryp-
tography (ECC) [6, 7]. If these methods were to be fundamentally compromised,
then access to the negotiated secret symmetric keys could be revealed, with the
consequence of data decryption becoming trivial.

1.2 Quantum Computing Exploits
For some time it has been known that the mathematical principles underpin-
ning RSA and ECC’s security, whilst computationally intensive and difficult for
a classical computer-based attack, are potentially readily solvable with quan-
tum computing hardware. Shor’s algorithm [8] is notable in this respect, as
it is able to factorise large numbers extremely efficiently. This development
necessitates the creation of alternative techniques for secure key exchange in a
‘post-quantum’ world, particularly as encrypted data could be stored and recov-
ered later using these methods. In response to this threat, the National Institute
of Standards and Technology (NIST) has been a leader, initiating a competi-
tion in 2017 to identify promising post-quantum cryptography (PQC) methods
[9]. These techniques rely on differing mathematical problems, believed to be
resistant to both known classical and quantum computing algorithms.

1.3 Aim of the Paper
The key aim of this paper is to analyse and compare the energy efficiency of
standard pre- and post-quantum NIST cryptographic key generation algorithms,
as implemented in the OpenSSL 3.5 library released in April 2025 [10]. It differs
from other evaluations, which typically concentrate on time performance rather
than energy performance e.g. ‘openssl speed’ to give tables such as in [11] and

2



from other work in the energy recording area such as Tasopoulos et al. [12].
It creates a framework for the readily-available Raspberry Pi and makes use of
accurate, commodity USB energy meters.

The Raspberry Pi is a popular single-board computer platform increasingly
utilised in industrial process applications [13] where controllers are typically
embedded with long operational lifetimes and where energy constraints can be
a defining factor in design and implementation.

2 Related Literature

2.1 Post-Quantum Cryptography (PQC)
The imminent emergence of quantum computing is fast becoming a problem in
reality not only for cryptographers but also for users of cryptography. What
was once purely a theoretical problem relegated to the ‘long grass’ of the future
has emerged as a pressing concern within the 2020s, as Aydeger et al. outline
[14]. The potential impact of quantum computing on cryptography poses a
significant threat to the existing hegemony of cryptographic standards. These
techniques, including RSA [5] (from 1978), DES/3DES [15, 16] (1977/1995), and
others more recently including AES [1] (2001) and Elliptic Curve Cryptography
(ECC) whose applicability is outlined in papers such as Koblitz [6] and Miller
[7] from the late 1980s, have proven to be the bedrock of the practical protection
of communications over the last decades [14].

2.1.1 In the Classical Space

The main algorithms in contemporary use are not currently known to have fun-
damental flaws that can be exploited by attacks based on classical computing.
Whilst classical computing capabilities have risen exponentially, this increase
has been largely driven by Moore’s Law [17] and the self-governed targets of
the semiconductor industry, as outlined in reports such as the IEEE Interna-
tional Roadmap for Devices and Systems [18]. Specialised computing branches,
including massively parallel GPUs, ASICs, and FPGAs, have achieved perfor-
mance gains that outpaced Moore’s Law for general-purpose computing hard-
ware, further contributing to the potential for stronger cryptographic algorithm
attacks. Despite these improvements, the underlying mathematical problems on
which cryptographic techniques rely have remained largely intact, with key sizes
increasing to meet user expectations for security, and the required window of
protection. One such mathematical characteristic is the computational hardness
of large-number factorisation, a principle that protects both key exchange and
the integrity of digital signatures. By using appropriately chosen cryptographic
parameters, data protected by these traditional methods is expected to remain
secure for decades, centuries, or even millennia, due to the time and energy
required to mount a successful attack using classical computing methodologies.

3



2.1.2 The Rise of the ‘Quantum’ Machines

The general availability of powerful quantum computers would fundamentally
alter the capability to attack existing cryptography standards, and significant
progress has been made in theoretical attack vectors and the production of
small-scale quantum computers. Although progress achieved may currently
seem limited, technological improvements often occur on a logarithmic scale
(c.f., Moore’s Law [17]), with seemingly slow initial progress rapidly transform-
ing into significant advancement. Algorithms such as Shor [8] exemplify this
threat, reducing what was once a logarithmically difficult factorisation problem
for classical devices into one that can be solved relatively easily using sufficiently
large quantum computers. Quantum computing has the capacity to perform cal-
culations across many states simultaneously, breaking the logarithmic protec-
tion of the techniques commonly deployed including ECC and RSA. Widespread
quantum computing availability in the near future poses a particular concern,
as adversaries may already be engaging in ‘Store Now, Decrypt Later’ (SNDL)
activities in anticipation. This is clearly a concern for sectors where long-term
data confidentiality is crucial, such as the protection of proprietary information
in industry and ‘top-secret’ government activities.

2.1.3 Standardisation and Governmental Response

The risks highlighted by quantum computing have focused the attention of gov-
ernments, industry, and the research community, prompting a wide range of
response activities. The research presented in this paper was selected to con-
tribute to the development and validation of new post-quantum cryptography
(PQC) techniques and standards, specifically examining the practical reality of
energy use. PQC methods currently appear to be more resilient to both clas-
sical and potential quantum computing attacks than existing key-generation
algorithms including RSA and ECC [9]. Governments worldwide are estab-
lishing timelines for the transition away from quantum-vulnerable algorithms
to quantum-resistant techniques. Australia’s approach is among the most am-
bitious, with a target to complete the transition by 2030 [19]. Many other
countries and administrative domains are also setting ambitious deadlines in
the 2030s, including the UK [20], the US [21], and the EU (through individual
agencies in member states) [22, 23].

2.2 Vulnerabilities Exposed By Quantum Computing
Shor’s algorithm, presented in 1994 [8], poses a significant theoretical threat
to traditional public-key cryptography, and is well-known as a critical issue
which must be addressed. Shor offers a ‘polynomial-time quantum algorithm’
for factorising large integers, a computationally hard problem for classical com-
puters, and is the basis of many classical key exchange mechanisms. Although
highly speculative, some industry estimates such as those from MITRE [24],
suggest that attacks on RSA-2048 could become feasible by 2035. It is prob-
able that ‘Store Now, Decrypt Later’ activities are already underway awaiting

4



quantum computing’s potential. This highlights why the subject is receiving
urgent attention in critical government, military, and commercial applications
where confidentiality time-frames must be maintained beyond the prospective
availability of quantum computing techniques.

Another significant quantum algorithm that threatens modern cryptogra-
phy is Grover’s algorithm: ‘A fast quantum mechanical algorithm for database
search’ [25] (1996). Grover’s algorithm provides a quadratic speedup for search-
ing unsorted databases (such as the AES keyspace), effectively halving the key
length of symmetric algorithms like AES [25], thus AES-256’s effective security
reduces to AES-128. Whilst this still provides a sufficiently-sized window for the
foreseeable future, halving the effective number of bits weakens the encryption
and leaves it more vulnerable should further advances be made in this area.

Despite their theoretical nature, the increasing feasibility of quantum com-
puting has driven significant attention to Post-Quantum Cryptography (PQC)
at regulatory and governmental levels. While the extension of existing algo-
rithms has been explored with larger keys for example, the consensus is that
practical RSA is fundamentally vulnerable to Shor’s algorithm on a sufficiently
powerful quantum computer. Simply increasing the key size is not a viable long-
term solution with Bernstein et al. [26] suggesting impractical key sizes (e.g.,
1TB) would be needed for post-quantum safety. Figure 4 in Section 3 of this
paper demonstrates the exponentially increasing resource demands (time and
energy) for generating larger RSA key pairs (e.g., 4096-bit). Whilst the Grover
algorithm’s impact is considered less catastrophic compared with the potential
of Shor’s, the cryptographic community is also actively exploring ways to rein-
force symmetric encryption security, and address other limitations of algorithms
like AES [27] after its 20+ years of practical use.

2.3 NIST Standarization
In 2022, the National Institute of Standards and Technology (NIST) finalised
its first set of quantum-resistant cryptographic algorithms [9] following a stan-
dardisation process initiated in 2017. This competition aimed to identify cryp-
tographic methods resilient to both classical and quantum computer attacks.
The selected algorithms are published as Federal Information Processing Stan-
dards (FIPS), establishing them as de-facto standards suitable for production
use [28]. NIST’s FIPS standards are widely recognised benchmarks for cryp-
tography, making NIST’s PQC selections likely to be adopted by industry and
governments internationally.

This paper focuses primarily on FIPS 203 [29], which standardises ML-KEM
(formerly Kyber). ML-KEM is a Key Exchange Mechanism (KEM) that se-
curely establishes a session between two parties using asymmetric encryption,
subsequently enabling a shared secret symmetric key to be agreed and used for
the secure encryption of data transfers between the parties. It employs lattice-
based cryptography, relying on the mathematical difficulty of lattice problems
like Shortest Vector Problem (SVP) and Learning With Errors (LWE), believed
to be hard to attack by both classical and quantum computers [28]. ML-KEM

5



is designed to replace existing key-exchange protocols in applications e.g., for
websites and setting up other secure channels.

Whilst ML-KEM is currently the only finalised FIPS standard for post-
quantum key exchange, in March 2025 NIST furthermore selected Hamming
Quasi-Cyclic (HQC) [30] as an alternative method to head towards standard-
isation. For this paper’s experimentation, ML-KEM is used owing to its inte-
gration into the OpenSSL 3.5 production library [10]. The first batch of NIST
PQC standards [28] also included two digital signature algorithms: FIPS 204
[31], standardising ML-DSA (formerly Dilithium); and FIPS 205 [32], detailing
SLH-DSA (formerly SPHINCS+).

2.3.1 Beyond the First Batch PQC standards - Round 4

Many of the cryptographic techniques in the PQC process are based on lattice-
based category methods [30], which unlike other techniques do not have a long
history of use and validation, nor have formal proofs attached to them. NIST
therefore sought diverse algorithm candidates to mitigate risks associated with
potential vulnerabilities in a specific category (specifically lattices), as noted on
page 4 of the Round-4 NIST PQC status paper [30].

As part of the evaluation of these candidates, the Isogeny-based key exchange
candidate SIKE was withdrawn after a flaw was discovered - see pp. 1, 8 and 16
of [30]. Subsequently, NIST selected Hamming Quasi-Cyclic (HQC) per page 18
in the same document [30], a non-lattice-based key exchange protocol utilising
‘quasi-cyclic codes’, for standardisation. This alternative will proceed towards
formalisation with a designated name and FIPS standard. Having multiple
standardised options also allows for easier adoption of alternatives based on
the environment requirements of the deployment, such as bounds of working
memory or key length. This desire for diverse characteristics across all areas is
highlighted throughout the Round 4 status paper [30].

2.4 Energy Efficiency in PQC
This section reviews studies on the energy efficiency of post-quantum cryp-
tography (PQC) algorithms, especially within Transport Layer Security (TLS)
and resource-constrained devices. Paquin et al. [33] analysed the integration of
quantum-resistant cryptography into TLS. Their benchmarking quantified com-
putational and data transfer overheads, revealing the feasibility of PQC in web
communication, though some algorithms increased overall network traffic due to
larger key sizes and overheads. Notably, lattice-based techniques showed com-
parable results to classical methods, suggesting deployment of PQC is practical
with the careful selection of algorithms (e.g., NIST standardisation efforts).

Barton et al. [34] also examined PQC integration in TLS, specifically fo-
cusing on constrained environments (similar to this study) and highlighting the
inherent challenges. This pre-NIST standardisation work indicated potential ad-
ditional PQC overheads (latency, computation, traffic) that vary with security
level, compared to low-power classical cryptographic methods.

6



Tasopoulos et al. [12], also pre-NIST, but evaluating many of its candi-
dates, verified the resource utilisation of a complete TLS 1.3 implementation,
and provided a valuable point of reference when validating the results of this
paper. They found PQC could be implemented in resource-limited settings with
lattice-based Kyber showing favourable performance. However, some other al-
gorithms were less energy-efficient than the classical alternatives, emphasising
the importance of good algorithm selection in implementation.

Schöffel et al. [35] specifically examined the energy costs of PQC Key Ex-
change Mechanisms (KEMs) in TLS-based low-power IoT devices. Their find-
ings reinforced the significant energy cost variations among PQC techniques, re-
iterating the importance of selecting appropriate algorithms to minimise power
consumption, based on both security needs and environmental constraints.

Finally, Roma et al. [36]’s analysis of PQC energy efficiency in mobile and
large-scale environments showed performance variations based on vastly differ-
ent architectures, but again highlighted the energy efficiency of lattice-based
techniques. They concluded that algorithm selection should depend on specific
requirements and platform characteristics, noting the increased significance of
energy costs at scale and impact on battery life in portable applications.

In summary, these studies collectively demonstrate the feasibility of integrat-
ing PQC in low-power devices, but consistently emphasise the need for careful
algorithm and parameter selection. This is particularly the case in resource-
constrained environments to manage trade-offs in computation, memory, data
transfer, and energy. Lattice-based techniques often appear efficient, aligning
with early NIST selections. However, non-PQC algorithms may remain a valid
choice when the implementation platform does not support post-quantum cryp-
tography or where confidentiality or integrity are not deemed to be critical
concerns and it may be de-prioritised based on risk.

The following section details the methodology for researching the energy
efficiency of key generation algorithms on the target hardware platform.

3 Implementation
NIST’s PQC standardisation efforts are widely regarded as the most significant
globally [28], progressing through a series of competitive evaluation rounds [21].
Submissions undergo rigorous peer review and are evaluated on their technical
merits before selected algorithms progress to be finalised as standards. These
are the standards incorporated in this study.

As indicated by the literature review, the field of post-quantum computing
(PQC) is extensive. This paper focuses on a specific overlapping area defined
by four key aspects:

1. Key Exchange: A crucial component of secure communication whose
traditional techniques were protected by large-number factorisation that
will be rendered vulnerable to Shor’s algorithm in quantum computing.
New quantum-resistant techniques are emerging.

7



Figure 1: Combination of four different subject areas: the Compute Platform
(Pi), Library (OpenSSL3.5), Key Exchange (Classical+PQC ML-KEM), Energy
Use (measured via a TC66C meter).

2. Energy Consumption: A comparative evaluation of the energy used
during key generation methods for both traditional and post-quantum
cryptography.

3. Computing Platform: The Raspberry Pi 5 has been selected as the
test platform, ensuring homogeneity and repeatability of results. Its uni-
formly common integration into operational technology solutions and use
by hobbyists makes it a relevant choice.

4. Software Library: Standardised libraries are employed in solutions,
recognising the implementation complexity and verification challenges of
cryptographic code. Following established best practice in cryptography,
this paper utilises the OpenSSL tested, peer-reviewed, and performant
library rather than developing custom implementations.

An illustration of these four constituent parts is presented in Figure 1. This
paper focuses on a practical comparison of the energy consumed during key
generation for newly standardised PQC algorithms against traditional meth-
ods. Experimentation is conducted on a Raspberry Pi platform, employing
standardised cryptographic libraries to ensure a consistent basis for compari-
son. The aim is to establish a baseline for this platform to ascertain the impact
of transitioning to PQC for this specific aspect of the cryptographic suite.

8



Figure 2: Block Diagram of the experimental setup - showing the Pi DUT which
performs the key generation, and the Windows machine recording the electric
supply characteristics from the TC66C meter. Trigger messages are conveyed
using the network illustrated to START and STOP the measurements in line
with the state of each experiment.

3.1 Methodology and Implementation Overview
To ensure the acquisition of reliable energy utilisation data, the experimental
methodology involved executing key generation algorithms across a significant
number of iterations for each algorithm. Key generation was performed on the
Raspberry Pi, with adjustments made for algorithms with longer key generation
times to normalise each algorithm’s time-on-test. Baseline energy consumption
of the Pi platform (excluding key generation) was established through extensive
NULL runs whose times were subsequently subtracted from experimental results
including the key-generation stage.

A distributed architecture was employed for the experimentation, utilising
a Raspberry Pi as the device under test (DUT) and a Windows-based data
acquisition system to record electrical parameters from a TC66C energy meter
inline with the Pi’s power supply. A block diagram of the experimental setup is
illustrated in Figure 2, and a marked-up photograph of the TC66C meter and
Raspberry Pi in Figure 3.

Remote STOP/START signalling via network communication facilitated au-
tomated data collection on the Windows collector, with specific steps taken to
maintain a consistent testing environment on the Pi, such as fixing the CPU
clock and running the fan at 100% as well as operating the testing over a very
large number of iterations. The software measurement developed for the Win-

9



Figure 3: Photograph of the experimental setup illustrating the Raspberry Pi
5 Device Under Test (DUT) and the TC66C test meter inline with the Power
Supply for the Pi, measuring its energy usage characteristics.

dows machine featured a multi-threaded design to manage network communica-
tion and data acquisition asynchronously to capture accurate results triggered
by the signalling sent from the Pi DUT.

Aggregated full results are provided and analysed in Section 5, with practical
examples of an experimental setup, including screenshots of what the user has
visible to them in Section 7 (Appendix A). For reference, the source code, input
and results data files are located on this paper’s GitHub site [37]. Further
details regarding the environment, experimental setup, system components, test
procedures and software architecture are provided in Section 4.

3.2 Data Analysis
Following each experiment the data collected in that algorithm’s output file(s)
are analysed to determine the DUT’s energy consumption characteristics.

3.2.1 Calculating Energy Used

The TC66C energy monitor returns a number of parameters across its USB
Serial connection to the Windows collector. Its power source is also from the
Windows device avoiding influencing the passing power data recorded for the
Pi. The software created for this paper uses a TC66 software library provided
by TheHWCave on GitHub [38] to set up the connection to the meter and
periodically recover highly accurate data on voltage, current, wattage and energy
used.

10



Cumulative energy consumption is converted from milliwatt-hours (mWh)
to Joules (J) thus:

Joules (J) = Milliwatt-hours (mWh) × 3.6

The 3.6 factor is derived from there being 3,600 seconds in an hour, and 1,000
mWh in 1 Wh.

3.2.2 Results Accuracy

The TC66 unit used to gather the results in the experiments is not itself cali-
brated. However, an identical unit was tested against a calibrated Agilent lab
supply in an analysis performed by TheHWCave [39]. The results of this anal-
ysis found the tested TC66C unit to be well within its 0.05% Voltage accuracy
specification and the 0.1% stated accuracy for current. In the typical voltage
and current window seen during experimental testing for this paper, TheHW-
Cave’s study demonstrated the meter exhibiting significantly better tolerances,
typically within 0.02% accuracy for voltage, and 0.05% for current.

3.3 Selection of Parameters Tested
Our experimental methodology relied on several carefully chosen parameters,
which we outline below along with their selection criteria:

• Iterations: A range of experimental round sizes were performed in the
environment. These were chosen to validate the results of the tests and
the final outputs make use of the predominantly ‘500,000’ key examples -
with testing taking place over a period of around 24 hours in operation.
This iteration count is specified in the input file to the test script.

• Security Levels: A range of algorithms have been chosen that cover the
NIST security levels from 1 to 5, where a broad equivalence of the different
algorithms under test have been made to permit easy comparison.

• Algorithms: Three categories of algorithms are included in the testing,
all are from the OpenSSL3.5 library as compiled for the Raspberry Pi
device under test. The full set can be seen listed in Table 1.

1. Elliptic Curve. Several commonly used ECC algorithms were chosen
to enumerate across a range of security levels. This was used to
baseline this method versus other key generation categories.

2. RSA. Another classic algorithm used for key generation. RSA is a
more mature solution and still commonly in use. Over the years the
key sizes used have ramped upwards to maintain security as comput-
ing power has risen over the years. Several key-sizes for RSA were
selected to include in this analysis.

11



3. ML-KEM Post-Quantum Cryptography technique. This is the cur-
rently available key generation technique standardised by NIST as
FIPS 203, and implemented in the April 2025 OpenSSL3.5 library
release.

4. The ML-DSA algorithm has also been included. While this is not
used as a key exchange mechanism explicitly, it does perform key
generation at equivalent security levels using Lattice techniques, and
is therefore a useful yardstick to ensure the broad validity of results
of the ML-KEM method, while awaiting the standardisation of HQC
and its implementation in OpenSSL for evaluation.

• Polling Interval: This is a parameter which is chosen as part of the
experimental setup. This is the frequency at which data is recovered by
the Windows collector machine from the TC66C meter, and does not
impact on the key generation process. The data which is used for the
energy calculations is a cumulative value from the TC66C, so the period
chosen here defines only start and stop time granularity and the update
period on the screen for the watching user.

4 Methodology
The experiments are designed to record empirical energy utilisation over a sig-
nificant number of iterations to establish a reliable baseline. Key generation for
each algorithm is executed multiple times across 10,000, 100,000, and 500,000
rounds - from under an hour to over a day in total duration. Where key gener-
ation times are considerably longer (for instance, with larger RSA key sizes), a
lower iteration count is used, and the corresponding experiments are adjusted
accordingly too, balancing out time on test for each algorithm.

Furthermore, multiple NULL runs are performed in between key generation
runs, involving identical numbers of loop iterations but triggering a 5ms delay
instead of the OpenSSL key generation operation. The 5ms duration of the
delay is not critical; rather, these runs serve to capture the baseline energy
consumption of the Raspberry Pi platform (including the fan) incorporating
everything other than the key generation itself. This background energy usage
(averaged over multiple NULL runs) is then subtracted from the results obtained
including the actual OpenSSL key generation processes.

Software has been developed to execute in the test environment, including
cycling through the different key generation parameters, to trigger the start and
stop of data capture from the energy meter and to provide feedback to the test
operator on the status of the experiment. An example of live test runs and
actual screen captures from them can be reviewed in Section 7 (Appendix A).

Specific steps taken to ensure consistent measurement include running up
the fan on the Pi to 100% for all experiments, fixing the CPU clock to minimise
the potential for dynamic frequency and voltage scaling influencing results, and

12



pausing several seconds before starting the experiment to ensure the environ-
ment has settled particularly in relation to the fan speed.

The test framework has been carefully designed to provide a consistent en-
vironment for each run and to ensure that accurate, repeatable experimental
results can be gathered. The principle that the results gathering should not
impact the device under test through viewing of its status is followed to develop
the solution - minimising the opportunity to trigger ‘observer effect’ such as
through reporting using a separate collection machine rather than the device
under test (DUT).

4.1 Experimental Approach
The experimental setup employs a distributed architecture to benchmark the en-
ergy consumption of a process running on the DUT (Raspberry Pi). A Windows-
based data acquisition system is utilised to record electrical parameters (volt-
age, current, power, etc.) from a Ruideng TC66 tester connected inline with the
power supply of the Raspberry Pi. The experiment is controlled remotely via
network communication between the Raspberry Pi and the Windows machine,
with trigger messages being sent for GETREADY, START and STOP purposes,
aligning with the timing of the experiment running on the Pi.

The key system components include:

• Target System - Device Under Test - (Raspberry Pi): This single-
board computer will execute software which runs experiments whose en-
ergy consumption is being benchmarked. It will also host a network client
responsible for sending control messages to accurately start and stop the
energy acquisition recording.

• Data Acquisition System (Windows Machine): This system hosts
the data logging software. It will be connected to the TC66C energy tester
that monitors the electrical utilisation characteristics of the Raspberry Pi.
This system will also run a network server to receive control messages to
toggle acquisition on and off for the energy data.

• USB Tester (Ruideng TC66C): An external hardware device con-
nected between the Raspberry Pi and its power supply. It will accurately
measure and report instantaneous electrical parameters such as voltage,
current, and power, and cumulative totals including energy consumed.

• Ethernet Network: The communication medium facilitating the ex-
change of control messages between the Raspberry Pi and the Windows
machine. This is a dedicated network with UDP messages used without
the latency and additional energy of a TCP handshake.

4.2 Experimental Procedure
A structured approach allows for remote control and automated data collection,
enhancing the efficiency and reproducibility of the energy benchmarking experi-

13



ments. The experiment will proceed through the following stages, initiated and
controlled via network communication (see also Section 7 (Appendix A) for a
practical example):

• Initialisation & Preparation (Triggered by "GETREADY" mes-
sage): The Raspberry Pi, acting as the control client, will send a "GE-
TREADY" message to the Windows data acquisition server. This mes-
sage will include experimental parameters (e.g., test duration, sampling
frequency, experiment identifier etc.). After receiving the "GETREADY"
message, the Windows machine will:

- Parse the experimental parameters.

- Initialise the data logging system, preparing the output file(s) with
appropriate headers based on the received parameters.

- Transition the TC66C meter to "ready" state, awaiting the "START"
command.

• Data Acquisition (Triggered by "START" message): Once the
process on the Raspberry Pi is ready for benchmarking (i.e. after the
CPU clock is hard set and the fans have had time to spin up and settle),
immediately prior to starting the experiment it will send a "START"
message to the Windows machine. The Windows machine will then:

- Initiate data collection from the USB tester at the specified sample
rate.

- Continuously record the measured electrical parameters (voltage, cur-
rent, power, energy etc.) along with timestamps to the designated
output file(s).

- Simultaneously, a subset of the data is displayed on the Windows
screen for real-time monitoring by the operating user (on the Win-
dows machines, so not impacting the DUT).

• Termination (Triggered by "STOP" message): At completion of
the benchmarking process on the Raspberry Pi, it will send a "STOP"
message to the Windows machine. The Windows machine will next:

- Cease data acquisition from the USB tester.

- Close the output file(s), ensuring all data is saved.

- Cleanly terminate the data logging application and network server
thread.

4.3 Software Design / Architecture
The software on the Windows machine is designed with a multi-threaded archi-
tecture to ensure responsiveness and separation of its asynchronous roles:

14



• Main Control Thread: This thread will be responsible for coordinating
the overall operation of the data acquisition. It will also control the other
threads and overall flow.

• Network Server Thread: This will continuously listen for incoming net-
work messages ("GETREADY", "START", "STOP") from the Raspberry
Pi, and will be started and stopped by the main thread. After receiving
a message, it will parse the command and any associated parameters,
signalling the main control thread to take appropriate action.

• Data Acquisition Thread: This thread will be responsible for peri-
odically reading data from the USB tester. It will also write the data
to the output file(s) and display pertinent information on the screen to
give positive feedback to the user/operator as to current operational state.
This thread will be started and stopped by the main thread based on the
"START" and "STOP" messages received via the network from the Pi.

5 Evaluation
Table 1 presents a categorisation of the key generation algorithms employed
by this study, mapped to their equivalent NIST Security Levels interpretted
by the author from NIST SP 800-57 Part 1 Revision 5 [40]. The selection
of algorithms provides coverage across all five NIST security level equivalents,
encompassing established classic cryptography with RSA and Elliptic Curve
Cryptography (ECC), and the emerging post-quantum cryptography standards.
Module-Lattice-Based Key-Encapsulation Mechanism (ML-KEM) as specified
in FIPS 203 (Kyber) is the primary algorithm on test with the key generation
part of ML-DSA for check-and-balance purposes.

For clarity, common alternative names and relevant FIPS standards are in-
cluded in brackets alongside the protocol identifier where applicable. Addi-
tionally, Table 1 provides the estimated equivalent symmetric key size in bits
for each algorithm, offering a comparative measure of their current perceived
security strength.

5.1 Energy Results - Key Generation
The experiments were conducted on a Raspberry Pi 5 platform under previously
outlined controlled conditions, with fixed clock speeds and 100% fan to establish
a consistent baseline for energy consumption measurements across each of the
selected algorithms.

The bar chart in Figure 4 visualises the energy efficiency of several key gen-
eration algorithms across different NIST Security Levels. The horizontal axis
represents the NIST Security Level, ranging from 1 to 5. There may be one or
more algorithm in each level. The vertical axis displays the energy efficiency
in Joules per 1,000 key generations, using a logarithmic scale to accommodate
the wide range of values, particularly relating to RSA. Each bar on the chart

15



Table 1: NIST Security Levels and Equivalent Symmetric Key Sizes for
OpenSSL Key Generation Protocols (Based on NIST SP 800-57 Part 1 Rev.
5 (Table 2) [40] and the author’s categorisation).
NIST
Sec
Level

Protocol Category Equiv.
Bit

Size

Level 1 RSA-1024 Classic Technology 80

Level 2 EC secp160r1 Elliptic Curve
Cryptography

80

RSA-1536 Classic Technology ∼96

Level 3 EC secp224r1 Elliptic Curve
Cryptography

112

RSA-2048 Classic Technology 112
EC P-256 (secp256r1, FIPS 186-
4)

Elliptic Curve
Cryptography

128

ML-DSA-44 Post-quantum
Technology

∼128

ML-KEM-512 (Kyber-512, FIPS
203)

Post-quantum
Technology

∼128

Level 4 RSA-3072 Classic Technology 128
EC P-384 (secp384r1, FIPS 186-
4)

Elliptic Curve
Cryptography

192

ML-DSA-65 Post-quantum
Technology

∼192

ML-KEM-768 (Kyber-768, FIPS
203)

Post-quantum
Technology

∼192

Level 5 RSA-4096 Classic Technology ∼140
EC P-521 (secp521r1, FIPS 186-
4)

Elliptic Curve
Cryptography

256

ML-DSA-87 Post-quantum
Technology

∼256

ML-KEM-1024 (Kyber-1024,
FIPS 203)

Post-quantum
Technology

∼256

corresponds to a specific key generation algorithm. The colour of each bar indi-
cates the category of that algorithm: blue represents the recently standardised
post-quantum algorithms, green: elliptic curve cryptography, and orange: clas-
sic RSA technology. The name of each algorithm and its efficiency is printed
above the corresponding bar for identification and comparative purposes.

16



Figure 4: Plot of Energy Rate in Joules/1,000 key generations of each algorithm,
categorised by NIST security level and type of algorithm. Experiment performed
over a typical 500,000 key generation count for each algorithm. (A tablulated
version is provided by Table 2).

5.1.1 Energy Results - Commentary

The Post-Quantum Cryptography techniques are broadly equivalent in terms of
their energy utilisation when compared with the Elliptic Curve Cryptography
methods at NIST Security Level 3. At NIST levels 4 and 5 then the post-
quantum techniques are more energy efficient for the same security level than the
tested current ECC methods. Turning to RSA, as expected the energy efficiency
becomes exponentially worse as the key size increases. Compared with ECC,
RSA is around two or more orders of magnitude less efficient at key generation
as the elliptic curve equivalent, plus generates larger keys. Comparing RSA to
the PQC techniques shows an even greater offset, as the PQC is much flatter
across the resources it requires as the security level increases.

5.1.2 Extrapolating Potential Energy Savings

This section presents a highly speculative, order-of-magnitude estimate of the
potential energy savings that could be realised by transitioning notionally from
RSA-2048 key generation to ML-KEM-512 on a large scale. Due to the decen-
tralised nature of key generation across various systems globally, the assump-
tions made here are necessarily quite broad. Key generation too is a compar-
atively low-volume cryptographic operation compared with others in the suite,
and the results are accordingly small.

17



Table 2: Equivalent to Figure 4 with numerics to compare instead of logarithmic
bar heights. RSA is particularly resource-hungry at larger key-sizes.
NIST
‘Sec’
Level

Protocol Category J/1,000
key-
gens

Level 1 RSA-1024 Classic Technology 218.64

Level 2 EC secp160r1 Elliptic Curve
Cryptography

8.69

RSA-1536 Classic Technology 828.84

Level 3 EC secp224r1 Elliptic Curve
Cryptography

10.16

EC P-256 (secp256r1, FIPS 186-
4)

Elliptic Curve
Cryptography

7.33

ML-DSA-44 Post-quantum
Technology

8.36

ML-KEM-512 (Kyber-512, FIPS
203)

Post-quantum
Technology

7.61

RSA-2048 Classic Technology 1093.08

Level 4 EC P-384 (secp384r1, FIPS 186-
4)

Elliptic Curve
Cryptography

17.05

ML-DSA-65 Post-quantum
Technology

8.97

ML-KEM-768 (Kyber-768, FIPS
203)

Post-quantum
Technology

7.76

RSA-3072 Classic Technology 4014.84

Level 5 EC P-521 (secp521r1, FIPS 186-
4)

Elliptic Curve
Cryptography

33.76

ML-DSA-87 Post-quantum
Technology

9.82

ML-KEM-1024 (Kyber-1024,
FIPS 203)

Post-quantum
Technology

7.89

RSA-4096 Classic Technology 11952.0

Several key areas where RSA key generation is prevalent are considered:

• Web Servers (HTTPS): Assuming approximately 300 million active
websites globally using certificates (an estimate in Jan 2025 based on [41]),
and a conservative average certificate cycle of 3 months (LetsEncrypt uses
60 days and has over 50% of the market), this equates to roughly 1.2
billion key generations per year.

• VPN Users: With an estimated 1.5 billion VPN users globally [42],
assuming each host generates a new key each year, this adds another 1.5

18



billion key generations annually.

• Other Applications (VPN, Email, SSH): A conservative estimate
for the combined key generation for secure email, SSH, and other appli-
cations is around 10% of the web server figure, supposing approximately
120 million key generations per year.

Based on these highly speculative assumptions, the total estimated RSA key
generations per year could be in the order of 2.82 billion.

The experiment demonstrates (Figure 4) that the energy consumption for
generating a single RSA-2048 key is approximately 1.093 Joules on the test
platform. Therefore, taking this and RSA-2048 as the baseline, the total esti-
mated annual energy consumption for key generation across these applications
if performed on a Raspberry Pi 5 would be in the order of 3.082 GigaJoules.

To convert this to kilowatt-hours (kWh):

3, 082, 000, 000 J × 1W · s
1 J

× 1W · h
3600 s

× 1 kW · h
1000W · h

≈ 856.11 kWh

Assuming an average electricity unit price of £0.26 per kWh (based on the
UK average from QEP Table 2.2.4 referenced in: [43]), the estimated annual
cost for RSA-2048 key generation across these 2.82 billion keys would be ap-
proximately:

856.11 kWh × 0.26/kWh ≈ 222.59GBP

The experiment’s determined energy consumption for ML-KEM-512 (offer-
ing comparable NIST Level 3 security to RSA-2028) to be approximately 7.61
Joules per 1,000 key generations, or 0.00761 Joules per key. The energy sav-
ing per key generated would therefore be 1.093 − 0.00761 = 1.09939 Joules for
each key. This suggests that less than 1% of the energy would be required for
key generation using ML-KEM-512 PQC compared with RSA-2048, ∼131 times
more efficient.

For NIST ‘Level 5’ security, comparing RSA-4096 (11.952 Joules per key)
with ML-KEM-1024 (approximately 0.00789 Joules per key), the potential en-
ergy saving multiplier is even more significant, at around 1,500 times, whereas
ECC P-521 (approximately 0.003376 Joules per key) is around 350 times more
energy efficient than RSA-4096. Noted also here is that ML-KEM-1024 is circa
4 times more efficient than EC-P521, a significant advantage for the newer
quantum-robust technology.

In conclusion, while this extrapolation is based on numerous broad assump-
tions, it suggests that a large-scale transition from traditional key generation
techniques like RSA-2048 to post-quantum alternatives such as ML-KEM could
lead to substantial energy savings and reduced computational overhead as well
as protection from quantum techniques such as Shor. Additional research with
more granular usage statistics is required to further refine these estimates.

19



5.2 Key Generation Time Observation
Whilst not the goal of this paper, the plot of compute time can additionally be
created and studied, purely for academic interest. This is illustrated in Figure
5. The compute time required per 1,000 key generations exhibits a broadly
similar shape to the energy consumption graph (Figure 4), with RSA algorithms
generally requiring significantly longer processing times, particularly at higher
NIST Security Levels. PQC again performs well against the ECC category
methods, outperforming them as the security level rises in comparison.

However, the relative performance in compute time between RSA and the
two other categories differs. It appears that RSA consumes energy at a slower
rate than for the ECC and PQC techniques, leaving a larger time multiple for
RSA versus the other techniques.

A tentative conclusion is that RSA may not be fully optimised in OpenSSL3.5
on the Pi, or that it is less able to be parallelised with more serialisation portions
exhibiting Amdahl’s Law [44]. This finding is included as an observation, but
is not explored further in this paper as it is not the main purpose of the study.
However the author believes it to be an interesting observation, still worthy of
note.

Figure 5: Similar plot to Energy Utilisation in Figure 4, but detailing time to
generate 1,000 keys for each algorithm on the Pi 5 Device Under Test.

20



6 Conclusions
This paper’s experimental analysis strongly suggests that a shift towards post-
quantum key generation cryptography is desirable for new deployments due
to its comparable or superior energy efficiency and inherent resilience to future
quantum threats. In Figure 4 it is clear that as the NIST security level increases,
the lattice-based key generation methods outperform ECC, and significantly
outperform RSA, whilst adding resilience to known and projected post-quantum
computing attacks.

6.1 RSA’s dead-end
It is particularly apparent that RSA’s viability is increasingly challenged, even
before the potential impact of quantum computing on its integrity is taken into
account. Key sizes for RSA already need to be 2048-4096 bits and beyond
for best practice (NIST Level 3 to Level 5), due to the impact and roadmap
of classical computing progression (Moore’s Law [17]), and the cryptographic
attacks this enables.

The energy used for RSA-4096 key generation is orders of magnitude greater
than for NIST security level 5 ‘equivalents’ such as Elliptic Curve P521 and
ML-KEM-1024 (see Figure 4). When the potential of quantum computing al-
gorithms is taken into account, even the Level 3 - Level 5 key sizes for RSA
do not provide sufficient protection. Larger RSA key sizes (towards 1TB) that
do offer additional resilience to PQC attacks [26] quickly become unsustainable
in terms of their requirements for memory and consumption of computational
resource and energy.

6.2 Use of Elliptic Curve Cryptography
From the perspective of Elliptic Curve Algorithms at NIST Level 3, the Post-
quantum ML-KEM methods remain close to the energy used by the classical
ECC method (see Figure 4 and Table 2). However, ML-KEM has a discernible
advantage at NIST security Levels 4 and above in the tested environment. When
comparing with RSA, ECC should be preferred where it is still necessary to
use a classical technique from a purely energy-based perspective where this
option is available. Use of such algorithms is likely to be prevalent for some
time, especially as the NIST post-quantum standards [30] have only recently
been published (2024-2025) and are not yet commonly deployed or available in
mainstream hardware and software libraries [10].

6.3 Adoption of New PQC Standards
Considerable lead times will still be required for the implementation and testing
of libraries based on the new PQC standards for deployments. Integration into
the software stacks of general-purpose computing is only just beginning (as
evidenced by the April 2025 v3.5 production release of the widely-used OpenSSL

21



library, which incorporates PQC methods [10]). It will also take some time to
incorporate any methods that can be hardware-accelerated onto general-purpose
and application-specific processors, now that some standards have been ratified.

The PQC standards are also not static. They are still being developed, with
new rounds of evaluation being led by NIST to diversify approaches beyond
lattice techniques [30]. Even once the full set of FIPS standards are finalised,
there will remain a long tail of platforms to be updated, particularly in the
operational technology and embedded space which have extended deployment
lifetimes, prioritising availability over other most else [45].

Governmental guidance is also relatively new in this area, outlining rec-
ommended roadmaps to quantum-safe cryptography within their jurisdictions
[19, 20, 21, 22]. It too will take some time to incorporate PQC into practice
and into regulatory requirements for specific industry sectors.

6.4 Recommendations
This paper has experimentally analysed the energy characteristics of classical
versus PQC key generation and evaluated the results obtained in this area. The
author recommends that classical key generation techniques should no longer be
considered for new implementations, as the energy efficiency results are clear.
Non quantum-safe methods should be phased out of existing applications and
deployments as is feasible, especially given that the post-quantum alternatives
have been shown to match or exceed energy efficiency performance in the tested
environment – by significant margins in many instances.

6.5 Future Work
The recommendation above is qualified by further potential experimental work
utilising this test platform and software to broaden its scope. This would enable
a more comprehensive end-to-end study to be performed with more parameters
and to understand the full impact of the transition to PQC compared to classical
cryptographic techniques. This scope may be expanded in a number of suggested
ways:

• Additional Hardware Platforms: To use and compare more than one
type of hardware, for example adding Raspberry Pi 4 and another stan-
dard Intel x86/AMD64 ISA platform for comparisons. The meter used
(unmodified) can capture up to 20 V with currents up to 5 A. Devices
with attached batteries (e.g., laptops) are not suitable for this exercise
due to the need to capture live energy utilisation directly.

• Alternative Software Libraries: To identify further suitable crypto-
graphic libraries for comparative testing, other than OpenSSL. For exam-
ple to explore Bouncy Castle [46] and/or other potential PQC libraries as
they become available. A challenge here will be ensuring comparable algo-
rithm support and maturity across different libraries. Possible alternative
sources may be found directly at asecuritysite [47] which is a cryptographic

22



website with resources for researchers, hobbyists and professionals in the
area, including for Post-Quantum Cryptography.

• Explore End-to-End Sessions: To expand the study to a fuller E2E
lifecycle measurement across a range of scenarios:

1. On-Network Key Exchange: Measure the bidirectional energy con-
sumption of different PQC and traditional key exchange protocols
including network communication.

2. Data Transfer: Quantify the energy cost of encrypting and transmit-
ting datasets of varying sizes using the negotiated symmetric keys
derived from both PQC and traditional key exchange mechanisms
(also considering the cost of the required hardening to AES-256 for
all applications that Grover’s algorithm effectively mandates).

3. Digital Signatures: Evaluate the energy efficiency of generating and
verifying digital signatures using standardised PQC algorithms (e.g.,
ML-DSA, SLH-DSA) comparing to traditional signature schemes.
Isolating the energy cost of specific operations in an end-to-end sce-
nario will be a key challenge to this potential future work.

• New Standards: To incorporate the evolution of the standards, for ex-
ample to include HQC testing once this has been finalised by NIST [30]
into a FIPS standard, and is incorporated into OpenSSL and other cryp-
tographic libraries. Additional work to evaluate this algorithm could be
carried out upon its availability, even whilst in Beta testing.

The experimental broadening proposed by Future Work and how it impacts
on the areas selected for the initial scope of this study is illustrated in Figure 6.

A significant portion of the work for this paper involved investing time in
developing a robust methodology for capturing the energy utilisation data. The
setup is outlined in more detail in Section 4.3. This framework has been designed
to allow this study to be extended in the future to other applications that utilise
similar experimental setups. Having established energy efficiency differences in
key generation, future research should examine if the patterns of results persist
across all operations and end-to-end encrypted communication protocols.

7 Appendix A - Practical Setup and Operation
This section has details of the equipment provisioned as part of the framework,
and examples of the process and screens during a practical capture session. It
is provided to ensure that the setup can be replicated and results verified as
necessary.

7.1 Test Equipment Details
Referencing the block diagram of Figure 2, there are three major components
in the setup:

23



Figure 6: Future work scope expansions possibilities for this research project.

• The Raspberry Pi which is performing the key generation experiments

• The Ruideng TC66C energy meter, inline with the Pi’s PSU, measuring
supply parameters

• The Windows Collector Machine which is powering the TC66C meter and
recording the DUT’s energy use data between the START and STOP
command messages.

Further details of the configuration and setup of these components follows.

7.1.1 Raspberry Pi

To allow for its replication, the Raspberry Pi has the following configuration of
note:

• Raspberry Pi 5 Model B Rev 1.0 8GB.

• Raspberry Pi OS Lite (Fully Patched as of 1 April 2025).

• OS ‘PRETTY-NAME’="Debian GNU/Linux 12 (bookworm)".

• Added software: OpenSSL 3.5 and dependencies.

– Download, unpack, local compilation is required. Add OpenSSL3.5
binary to the path for system. Switch default openssl version to v3.5.

• The ‘batch_experimenter.py’ & ‘experimenter.py’ files and example source
files can be obtained from the project GitHub page [37].

24



• This software sets the Pi fan to 100% and fixes the clock frequency at the
maximum to ensure these are as invariant as possible during the experi-
ments and iterated tens of thousands of times.

Consistently attach to the Pi via SSH or via standard keyboard, mouse and video
connections to run the experiments. In the experimentation for this paper SSH
was used. See Figures 2 and 3 for how other connections are made. On the
network port the IP address should be manually set, as it is directly connected
to the Windows collector machine and no DHCP server is available. Example
IPs are embedded in the code and on the block diagram (Figure 2).

7.1.2 Ruideng TC66C Meter

Connect the meter as indicated in Figures 2 and 3 . The configuration is as
follows:

• Ruideng TC66C Meter.

– It can also be the non-C version as Bluetooth is not required. BT
can be turned off in the interface. The data is collected by USB on
the Collection PC.

• Device Switches: Power and PD toggle switches should both be OFF.

– Power switch = off, indicates that the unit should be powered from
the Collection PC USB connection, and not from the Pi power source.

– PD switch = off, as there should be no negotiation by the meter to
the Pi Power supply - this data should pass-through natively.

• The meter is using the v1.14 firmware that it was delivered with.

Use a Micro USB cable to attach the collection PC to the meter. This powers the
device too, so its consumption is not part of the recorded data and it provides a
virtual COM serial connection. The project’s GitHub software running on the
Connection PC will try to auto-detect the COM ports available, and the user
will have the opportunity to check and select the correct option or, if known in
advance, specify it via a command line switch bypassing the selection process
for expediency.

7.1.3 Windows Data Collection PC

Connect as per Figure 2, with the USB connecting to the MicroUSB on the
meter, and an Ethernet connection to the Pi using a static IP address. In the
experimental setup for this paper, the desktop PC used had a high specification
- this is absolutely not required. The responsibilities of this machine are in
logging data from a USB serial connection, so are relatively lightweight. It’s
pertinent hardware and software configuration is as follows:

25



• Windows PC - the experiment’s PC was running Windows 11 Professional
24H2, Build: 26100.3775. Fully Patched through 7th May 2025.

• A USB connection able to attach to the TC66C meter, using a generic
Microsoft Serial USB Adaptor device driver.

• Python 3.x - the test PC used Python v3.13.3.

• Pip packages for ‘pycryptodome’ and ‘pyserial’ to communicate to the
TC66C meter.

• Running the ‘responder.py’ code from the GitHub project repository.

• Trivial PC hardware needs, but for transparency the test Collection PC
was an AMD Ryzen 9 7900X 12C 24T Processor with 96GB DDR5 RAM
and 2TB SSD.

• Size the Collection PC according to the requirements:

– The PC is running a master control thread which spawns two ad-
ditional threads for networking and polling data from the TC66C
meter.

– Listening and responding to Network messages for START and STOP
commands. Reading a small segment of data from the USB/Serial
connection periodically at less than or equal to 10Hz. Printing a short
update to the screen to keep the user updated on status. Writing out
single lines of data to files at a maximum frequency of 10Hz.

It would be relatively trivial to convert the Collection software to permit a
Linux based collection device (or Apple) if required. The current test to ensure
the device is a Windows PC could be adjusted to adapt to serial port identifica-
tions and file permissions on other platforms without requiring platform-specific
versions.

During experimentation, attach to the collection PC via SSH or via standard
keyboard, mouse and video connections to run the required scripts and see the
energy collection outputs from the experiments. An example of interaction using
this framework is provided in the following section for reference.

7.2 Example Experimental Run on the Framework
In this section both the inputs and outputs from an experiment on the test
platform are included. Firstly, a 3,200 iteration key generation test is carried
out with algorithm ML-KEM-1024, demonstrating the expected output from
the Pi and PC collector platforms. Secondly, a short batch algorithm test is
carried out, again demonstrating expected outputs from the system.

26



7.2.1 Single Run

In Figure 7 the command ‘python ./experimenter.py --algorithm ML-KEM-1024
--iterations 3200’ executes 3,200 key generations of ML-KEM-1024, a NIST level
5 algorithm. A screen capture is provided as Figure 7, and detail of its context
in Table 3.

Figure 7: Command Line from the Pi Experimenter platform - 3,200 iteration
ML-KEM-1024.

The collector device should be set up in advance of starting the experiment to
receive its output. The corresponding interaction to the 3200 count ML-KEM-
1024 experiment is seen from the Collector device’s perspective in the Figure 8
screen capture, together with a line-by-line explanation in Table 4 which follows.

7.2.2 Batch Run

In the GitHub project repository, sample input files are provided which are used
by the ’batch_ experimenter.py‘ script. The files have two comma separated
values, the first of which is the key generation algorithm parameters conveyed
to OpenSSL, and the second is the desired number of iterations of the test.
The higher the number of iterations the longer the experiment takes, and the
better accuracy that should be obtained for the energy rate output (J/1,000 key
generations).

However, as outlined in the results plot (Figure 5), generating an RSA key
with a ‘large’ key size takes significantly longer, so the iterations for these are
typically scaled down in the input source file. This example illustrates that
for this 100,000 iteration experiment, only 200 RSA-4096 keys are generated as
the process is orders-of-magnitude slower, so this is scaled to a feasible number
which should be a similar order of magnitude for the elapsed time.

• EC -pkeyopt ec_paramgen_curve:secp160r1,100000

• EC -pkeyopt ec_paramgen_curve:P-521,100000

27



Table 3: Pi Experiment Output Explainer for Figure 7
Line# Pi output Notes
1 cameron@cryp... Experiment run with 3,200 iterations of

ML-KEM-1024: ‘python ./experimenter.py
--algorithm ML-KEM-1024 --iterations 3200’

2 UDP: Sent ’GET... This notes that a ‘GETREADY’ has been sent
to the Collector PC with parameters

3 Starting exp... Notes the experiment with this ID is starting
- informing user

4 Setting up en... Notes fan and CPU are being set to static val-
ues for test

5 Start Tempe... It notes the temperature recorded by the Pi’s
CPU prior to the experiment

6 UDP: Sent ’STA... The START message is sent to the Collector
so it starts recording energy information

7 STARTing exp... Immediately afterwards it starts the experi-
ment - 3200 lots of KEM-1024

8 Experiment f... No output until this message after Pi experi-
ment finishes

9 UDP: Sent ’STO... A STOP message is set to collector to cease
energy recordings

10 Time to run ... Notes Wall-clock time for the experiment
11 Start Tempe... Shows start temperature of Pi
12 Stop Temper... Displays temperature of Pi after experiment

has completed
13 Environment ... Notes that the fan and CPU have been set

back to defaults at end of experiment
14 cameron@cryp... Command line as experiment complete.

• NULL,100000

• ML-KEM-1024,100000

• RSA -pkeyopt rsa_keygen_bits:4096,200

For testing it is possible to override the number of iterations via the command
line with the optional --iterations argument. An example is:

‘python ./batch_experimenter.py --iterations 10 100kSourceRSAscaled.txt’
where instead of 100k for some of the options, actually only 10 key generations
would be carried out for each algorithm-type in the source file. Many of the
pieces of code here have command line options. To find out more, details are
in the comment block at the top of each piece of code, or by adding the ‘--help’
option as an argument when running the file.

28



Figure 8: Command Line from the Windows Collector - the ‘Joules this far’ line
is updated several times per second to keep the user updated with the status
and confirm that all is running. This is the corresponding output from the same
experiment as per Figure 7 above. An explainer can be found in Table 4 below.

7.2.3 Results Files

Finally in this Appendix, the output files found in the repository are described:
For each experiment (there may be multiple experiments in a batch), an individ-
ual .csv file is generated, which has all data from every poll of the meter. These
files are named e.g. ‘20250507133228-ML-KEM-1024-3200_data.csv’ which is
sortable and designates the date and time, the algorithm and the iterations of
the experiment. Additionally a log file ‘AllResults.csv’ has one line of results
added for each completed experiment. This includes the timestamp, algorithm,
iteration count as well as information on both energy and time rates and totals.
This ensures that the results of all experiments then can be recovered at a later
time, and as required, even if results have already cleared off the console.

More information about the code, input and output files can be found in the
readmes in the GitHub repository [37] for the project, or in the comment blocks
of the Python files built to support the energy recording framework.

References
[1] National Institute of Standards and Technology, “FIPS 197, Advanced

Encryption Standard (AES),” National Institute of Standards and
Technology, Federal Information Processing Standards Publication

29



Table 4: Windows Measurement Output Explainer for Figure 8
Line# Win output Notes
1 PS C:Users:Cams... Run the command to start the Collection
2 Please select ... (can force/bypass selection e.g. --com COM5)
3 1: COM4.3:COM3... shows detected COM ports on the PC if not

provided
4 Enter line# ... User can select the COM line
5 No user respo... It defaults if response times out
6 Selected COM ... Details which port is in use
7 Please start ... Note that Collector is ready to receive START

message
8 Network Liste... User notification that UDP will be used
9 Main thread s... and waiting for a GETREADY from Pi
12 Listening for ... All interfaces listening on port
13 Received: ’GET... GETREADY received from experiment and Pi
14 Experiment pa... Prints the parameters of experiment received

from Pi in packet
15 Output file o... Specific Experiment logfile opened and ready
16 GETREADY rece... notes that COM5 serial port will be used
17 TC66C meter i... initialises thread for data coming in from me-

ter on this COM
18 Received: ’STA... Network START received on network thread
19 START signal ... Message user to say we’re getting started
20 Data Acquisiti... Starts getting data from TC66C meter, coun-

ters to 0
21 Joules thus f... This line auto-updates - usually a few times a

second, shows cumulative totals of energy and
time elapsed in experiment

22 Received: ’STO... Experiment has ended - Pi has sent STOP
23 STOP signal r... Stop recording energy data, the totals are

known now
24 Data logging f... Experiment log file flushed and saved
25 Data Acquisiti... Close down the connection to meter as no

more data to come
26 Cleanup comple... Verifying network, meter threads and individ-

ual log file closed
27 *Total Energy ... Prints a summary of the result totals
28 *Energy Rate:... Prints the energy rate per 1,000 keys gener-

ated for experiment
29 Master:AllResu... This is written as a one-liner to the master log

AllResults.csv
30 STOP message ... Flushing the threads - this message is last out
31 Network Liste... No longer listening to the network, we’re done
32 PS C::Users:Cams... Returns to the command line

30



197, Nov. 2001, accessed 2025-04-24. [Online]. Available: https:
//nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf

[2] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE Trans-
actions on Information Theory, vol. 22, no. 6, pp. 644–654, 1976.

[3] D. Boneh, “Comparative efficiency of symmetric and asymmetric cryptog-
raphy,” Lecture Notes in Computer Science, vol. 2729, pp. 1–17, 2003.

[4] R. Turner, R. Housley, and P. Hoffman, “Hybrid cryptography,” Internet
Engineering Task Force (IETF) RFC 3211, 2001. [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc3211

[5] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” Communications of the ACM,
vol. 21, no. 2, pp. 120–126, 1978.

[6] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of Computation,
vol. 48, no. 177, pp. 203–209, 1987.

[7] V. S. Miller, “Use of elliptic curves in cryptography,” in Advances in
cryptology—CRYPTO’ 85 Proceedings. Springer, Berlin, Heidelberg, 1986,
pp. 417–426.

[8] P. W. Shor, “Algorithms for quantum computation: discrete logarithms
and factoring,” in Proceedings 35th annual symposium on foundations of
computer science. IEEE, 1994, pp. 124–134.

[9] National Institute of Standards and Technology (NIST), Computer Security
Resource Center (CSRC), “Post-quantum cryptography,” accessed 2025-
04-24. [Online]. Available: https://csrc.nist.gov/projects/post-quantum-
cryptography

[10] The OpenSSL Project, “Openssl library,” Apr. 2025, released April 8,
2025. [Online]. Available: https://www.openssl.org/

[11] W. J. Buchanan, “PQC Key Encapsulation Mechanism (KEM) Speed
Tests,” https://asecuritysite.com/pqc/pqc_kem, Asecuritysite.com, 2025,
accessed: May 07, 2025. [Online]. Available: https://asecuritysite.com/
pqc/pqc_kem

[12] G. Tasopoulos, C. Dimopoulos, A. P. Fournaris, R. K. Zhao, A. Sakzad,
and R. Steinfeld, “Energy consumption evaluation of post-quantum tls 1.3
for resource-constrained embedded devices,” in Proceedings of the 20th
ACM International Conference on Computing Frontiers, ser. CF ’23. New
York, NY, USA: Association for Computing Machinery, 2023, p. 366–374.
[Online]. Available: https://doi.org/10.1145/3587135.3592821

[13] B. Bahrak, R. K. Abercrombie, C. MacLeod, and R. Buyya, “Raspberry pi
for edge computing: A review,” ACM Computing Surveys (CSUR), vol. 53,
no. 5, pp. 1–35, 2020.

31

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://datatracker.ietf.org/doc/html/rfc3211
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://www.openssl.org/
https://asecuritysite.com/pqc/pqc_kem
https://asecuritysite.com/pqc/pqc_kem
https://asecuritysite.com/pqc/pqc_kem
https://doi.org/10.1145/3587135.3592821


[14] A. Aydeger, E. Zeydan, A. K. Yadav, K. T. Hemachandra, and M. Liyanage,
“Towards a quantum-resilient future: Strategies for transitioning to post-
quantum cryptography,” in 2024 15th International Conference on Network
of the Future (NoF), 2024, pp. 195–203.

[15] National Bureau of Standards, “Data Encryption Standard,” Federal Infor-
mation Processing Standards Publication 46, 1977.

[16] P. Karn and P. Metzger, “The esp triple des transform,” Sep. 1995.
[Online]. Available: https://datatracker.ietf.org/doc/html/rfc1851

[17] R. Schaller, “Moore’s law: past, present and future,” IEEE Spectrum,
vol. 34, no. 6, pp. 52–59, 1997.

[18] E. Mansfield, B. Barnes, R. Kline, A. Vladar, Y. Obeng, and A. Davydov,
“International roadmap for devices and systems 2023 edition,” International
Roadmap for Devices and Systems (IRDS™), Tech. Rep., 2023, accessed
2025-04-24. [Online]. Available: https://irds.ieee.org/editions/2023

[19] Australian Cyber Security Centre (ACSC), “Guidelines for cryp-
tography,” Mar. 2025, accessed 2025-04-24. [Online]. Available:
https://www.cyber.gov.au/resources-business-and-government/essential-
cybersecurity/ism/cybersecurity-guidelines/guidelines-cryptography

[20] National Cyber Security Centre (NCSC), “Timelines for migration to
post-quantum cryptography,” Mar. 2025, accessed 2025-04-24. [Online].
Available: https://www.ncsc.gov.uk/guidance/timelines-for-migration-to-
post-quantum-cryptography

[21] National Institute of Standards and Technology, “Threshold Timelines
and Recommendations for the Transition to Post-Quantum Cryptography
Standards,” National Institute of Standards and Technology, NIST
Interagency Report 8547, Nov. 2024, accessed 2025-04-24. [Online].
Available: https://doi.org/10.6028/NIST.IR.8547

[22] Cybersecurity Agencies of 18 EU Member States, “Se-
curing tomorrow, today: Transitioning to post-quantum
cryptography,” Nov. 2024, accessed 2025-04-24. [Online].
Available: https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/
Crypto/PQC-joint-statement.pdf?__blob=publicationFile&v=3

[23] European Commission, “Recommendation on a coordinated implemen-
tation roadmap for the transition to post-quantum cryptography,”
Apr. 2024, accessed 2025-04-24. [Online]. Available: https:
//digital-strategy.ec.europa.eu/en/library/recommendation-coordinated-
implementation-roadmap-transition-post-quantum-cryptography

[24] Y. Weinstein and B. Rodenburg, “Quantum computing:
Quantifying current state to assess cybersecurity threats,”

32

https://datatracker.ietf.org/doc/html/rfc1851
https://irds.ieee.org/editions/2023
https://www.cyber.gov.au/resources-business-and-government/essential-cybersecurity/ism/cybersecurity-guidelines/guidelines-cryptography
https://www.cyber.gov.au/resources-business-and-government/essential-cybersecurity/ism/cybersecurity-guidelines/guidelines-cryptography
https://www.ncsc.gov.uk/guidance/timelines-for-migration-to-post-quantum-cryptography
https://www.ncsc.gov.uk/guidance/timelines-for-migration-to-post-quantum-cryptography
https://doi.org/10.6028/NIST.IR.8547
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Crypto/PQC-joint-statement.pdf?__blob=publicationFile&v=3
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Crypto/PQC-joint-statement.pdf?__blob=publicationFile&v=3
https://digital-strategy.ec.europa.eu/en/library/recommendation-coordinated-implementation-roadmap-transition-post-quantum-cryptography
https://digital-strategy.ec.europa.eu/en/library/recommendation-coordinated-implementation-roadmap-transition-post-quantum-cryptography
https://digital-strategy.ec.europa.eu/en/library/recommendation-coordinated-implementation-roadmap-transition-post-quantum-cryptography


The MITRE Corporation, Project Report PR-24-3812, Jan.
2025, accessed May 8, 2025. [Online]. Available: https:
//www.mitre.org/sites/default/files/2025-01/PR-24-3812-Quantum-
Computing-Quantifying-Current-State-Assess-Cybersecurity-Threats.pdf

[25] L. K. Grover, “A fast quantum mechanical algorithm for database search,”
in Proceedings of the twenty-eighth annual ACM symposium on Theory of
computing, 1996, pp. 212–219.

[26] D. J. Bernstein, N. Heninger, P. Lou, and L. Valenta, “Post-quantum rsa,”
in Post-Quantum Cryptography, T. Lange and T. Takagi, Eds. Cham:
Springer International Publishing, 2017, pp. 311–329.

[27] National Institute of Standards and Technology, “NIST SP 800-197 (Initial
Preliminary Draft) PRE-DRAFT Call for Comments: NIST Proposes to
Standardize a Wider Variant of AES,” National Institute of Standards and
Technology, NIST Interagency Report 8547, Dec. 2024, accessed 2025-04-
24. [Online]. Available: https://csrc.nist.gov/pubs/sp/800/197/iprd

[28] ——, “NIST Releases First 3 Finalized Post-Quantum Encryp-
tion Standards,” https://www.nist.gov/news-events/news/2022/07/nist-
releases-first-3-finalized-post-quantum-encryption-standards, Aug. 2024,
accessed 2025-04-24.

[29] ——, “FIPS 203, module-lattice-based key-encap-sulation mechanism
standard,” NIST, Federal Information Processing Standards Publication
203, Aug. 2024, accessed 2025-04-24. [Online]. Available: https:
//nvlpubs.nist.gov/nistpubs/fips/nist.fips.203.pdf

[30] ——, “Status report on the fourth round of the nist post-quantum
cryptography standardization process,” National Institute of Standards
and Technology, Tech. Rep. NISTIR 8545, Mar. 2025. [Online]. Available:
https://nvlpubs.nist.gov/nistpubs/ir/2025/NIST.IR.8545.pdf

[31] ——, “FIPS 204, stateless hash-based digital signature standard,”
NIST, Federal Information Processing Standards Publication 204, Aug.
2024, accessed 2025-04-24. [Online]. Available: https://nvlpubs.nist.gov/
nistpubs/FIPS/NIST.FIPS.204.pdf

[32] ——, “FIPS 205, sphincs+ signature scheme,” NIST, Federal Infor-
mation Processing Standards Publication 205, Feb. 2023, accessed
2025-04-24. [Online]. Available: https://nvlpubs.nist.gov/nistpubs/FIPS/
NIST.FIPS.205.pdf

[33] C. Paquin, D. Stebila, and G. Tamvada, “Benchmarking post-quantum
cryptography in tls,” in Post-Quantum Cryptography: 11th International
Conference, PQ-Crypto 2020, Paris, France, April 15–17, 2020, Proceed-
ings 11. Springer, 2020, pp. 72–91.

33

https://www.mitre.org/sites/default/files/2025-01/PR-24-3812-Quantum-Computing-Quantifying-Current-State-Assess-Cybersecurity-Threats.pdf
https://www.mitre.org/sites/default/files/2025-01/PR-24-3812-Quantum-Computing-Quantifying-Current-State-Assess-Cybersecurity-Threats.pdf
https://www.mitre.org/sites/default/files/2025-01/PR-24-3812-Quantum-Computing-Quantifying-Current-State-Assess-Cybersecurity-Threats.pdf
https://csrc.nist.gov/pubs/sp/800/197/iprd
https://www.nist.gov/news-events/news/2022/07/nist-releases-first-3-finalized-post-quantum-encryption-standards
https://www.nist.gov/news-events/news/2022/07/nist-releases-first-3-finalized-post-quantum-encryption-standards
https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.203.pdf
https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.203.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2025/NIST.IR.8545.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.204.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.204.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.205.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.205.pdf


[34] J. Barton, W. J. Buchanan, N. Pitropakis, D. S. Sayeed, and
W. Abramson, “Post quantum cryptography analysis of tls tunneling
on a constrained device,” in International Conference on Information
Systems Security and Privacy, 2019. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:246635203

[35] M. Schöffel, F. Lauer, C. C. Rheinländer, and N. Wehn, “On the energy
costs of post-quantum kems in tls-based low-power secure iot,” in Pro-
ceedings of the International Conference on Internet-of-Things Design and
Implementation, 2021, pp. 158–168.

[36] C. A. Roma, C.-E. A. Tai, and M. A. Hasan, “Energy efficiency analysis of
post-quantum cryptographic algorithms,” IEEE Access, vol. 9, pp. 71 295–
71 317, 2021.

[37] J. C. Patterson, “Cameron Patterson (Paper GitHub Respository) -
source code, source data and results,” https://github.com/supplemango/
PQCEnergyPi, Cameron Patterson, 2025, accessed May 5, 2025. [Online].
Available: https://github.com/supplemango/PQCEnergyPi

[38] TheHWCave, “TheHWcave/TC66 (GitHub Respository) - library for
data collection from TC66(C) energy monitor,” https://github.com/
TheHWcave, GitHub / TheHWCave, 2021, accessed May 5, 2025. [Online].
Available: https://github.com/TheHWcave/

[39] TheHWcave, “TheHWcave - YouTube Channel,” 2025, accessed May 5,
2025. [Online]. Available: https://www.youtube.com/@TheHWcave

[40] E. Barker, A. Roginsky, and S. Vassilev, “Recommendation for key
management: Part 1 – general,” National Institute of Standards and
Technology, Special Publication 800-57 Part 1 Revision 5, May 2020.
[Online]. Available: https://doi.org/10.6028/NIST.SP.800-57pt1r5

[41] S. Dragon, “12 SSL Stats You Should Know in 2025,” accessed May 6,
2025. [Online]. Available: https://ssldragon.com/blog/ssl-stats/

[42] A. Kayal, “VPN Statistics for 2025 - Keeping Your Browsing
Habits Private,” accessed May 6, 2025. [Online]. Available: https:
//www.techopedia.com/vpn-statistics

[43] Department for Energy Security and Net Zero, “Quarterly Energy
Prices,” accessed May 6, 2025. [Online]. Available: https://www.gov.uk/
government/collections/quarterly-energy-prices

[44] G. M. Amdahl, “Validity of the single processor approach to achieving large
scale computing capabilities,” in Proceedings of the AFIPS Spring Joint
Computer Conference, ser. AFIPS ’67. New York, NY, USA: ACM, 1967,
pp. 483–485.

34

https://api.semanticscholar.org/CorpusID:246635203
https://api.semanticscholar.org/CorpusID:246635203
https://github.com/supplemango/PQCEnergyPi
https://github.com/supplemango/PQCEnergyPi
https://github.com/supplemango/PQCEnergyPi
https://github.com/TheHWcave
https://github.com/TheHWcave
https://github.com/TheHWcave/
https://www.youtube.com/@TheHWcave
https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://ssldragon.com/blog/ssl-stats/
https://www.techopedia.com/vpn-statistics
https://www.techopedia.com/vpn-statistics
https://www.gov.uk/government/collections/quarterly-energy-prices
https://www.gov.uk/government/collections/quarterly-energy-prices


[45] Centreon, “Best practices to ensure it and ot uptime,” Centreon
Blog, Oct. 2024, accessed May 6, 2025. [Online]. Available: https:
//www.centreon.com/best-practices-to-ensure-it-and-ot-uptime/

[46] Legion of the Bouncy Castle, “Bouncy castle: Open-source cryptographic
apis for java and c#,” https://www.bouncycastle.org/, accessed May 6,
2025.

[47] W. J. Buchanan, “Security and So Many Things,” https:
//asecuritysite.com/, Asecuritysite.com, 2025, accessed: April 26,
2025. [Online]. Available: https://asecuritysite.com/

35

https://www.centreon.com/best-practices-to-ensure-it-and-ot-uptime/
https://www.centreon.com/best-practices-to-ensure-it-and-ot-uptime/
https://www.bouncycastle.org/
https://asecuritysite.com/
https://asecuritysite.com/
https://asecuritysite.com/

	Introduction
	Key Generation with Hybrid Encryption
	Quantum Computing Exploits
	Aim of the Paper

	Related Literature
	Post-Quantum Cryptography (PQC)
	In the Classical Space
	The Rise of the `Quantum' Machines
	Standardisation and Governmental Response

	Vulnerabilities Exposed By Quantum Computing
	NIST Standarization
	Beyond the First Batch PQC standards - Round 4

	 Energy Efficiency in PQC

	Implementation
	Methodology and Implementation Overview
	Data Analysis
	Calculating Energy Used
	Results Accuracy

	Selection of Parameters Tested

	Methodology
	Experimental Approach
	Experimental Procedure
	Software Design / Architecture

	Evaluation
	Energy Results - Key Generation
	Energy Results - Commentary
	Extrapolating Potential Energy Savings

	Key Generation Time Observation

	Conclusions
	RSA's dead-end
	Use of Elliptic Curve Cryptography
	Adoption of New PQC Standards
	Recommendations
	Future Work

	Appendix A - Practical Setup and Operation
	Test Equipment Details
	Raspberry Pi
	Ruideng TC66C Meter
	Windows Data Collection PC

	Example Experimental Run on the Framework
	Single Run
	Batch Run
	Results Files



