
ar
X

iv
:2

50
5.

16
53

0v
1

 [
cs

.C
R

]
 2

2
M

ay
 2

02
5

DuFFin: A Dual-Level Fingerprinting Framework for LLMs IP Protection

Yuliang Yan1 Haochun Tang1,2 Shuo Yan1 Enyan Dai1
1The Hong Kong University of Science and Technology (Guangzhou)

2Jilin University
yyan726@connect.hkust-gz.edu.cn

{haochuntang,shuoyan,enyandai}@hkust-gz.edu.cn

Abstract

Large language models (LLMs) are considered
valuable Intellectual Properties (IP) for legit-
imate owners due to the enormous computa-
tional cost of training. It is crucial to protect
the IP of LLMs from malicious stealing or
unauthorized deployment. Despite existing ef-
forts in watermarking and fingerprinting LLMs,
these methods either impact the text genera-
tion process or are limited in white-box access
to the suspect model, making them impracti-
cal. Hence, we propose DuFFin, a novel Dual-
Level Fingerprinting Framework for black-box
setting ownership verification. DuFFin extracts
the trigger pattern and the knowledge-level fin-
gerprints to identify the source of a suspect
model. We conduct experiments on a variety
of models collected from the open-source web-
site, including four popular base models as pro-
tected LLMs and their fine-tuning, quantiza-
tion, and safety alignment versions, which are
released by large companies, start-ups, and in-
dividual users. Results show that our method
can accurately verify the copyright of the base
protected LLM on their model variants, achiev-
ing the IP-ROC metric greater than 0.95. Our
code is available at https://github.com/
yuliangyan0807/llm-fingerprint.

1 Introduction

In recent decades, the emergence of Large Lan-
guage Models (LLMs) has significantly evolved the
entire AI community (Brown et al., 2020; OpenAI
et al., 2024; Anil et al., 2023; Touvron et al., 2023;
Jiang et al., 2023). On account of the difficulty
in pre-training corpus collection, the high demand
for GPU computing resources, and the tremendous
manpower cost, training LLMs is a challenging
and expensive task, which indicates that LLMs are
highly valuable intellectual property (IP). However,
the easy accessibility of the on-the-shelf LLMs en-
ables users to customize their private models for
commercial use, without necessarily claiming the

copyright of the base model they utilized. Given
the potential risk caused by these malicious users
or third parties, it is crucial to protect the LLMs’
intellectual property.

Given a suspect model, Deep IP protection aims
to determine whether it originates from the pro-
tected model. There are two main methods for
LLM ownership verification: invasive and non-
invasive. Invasive methods typically inject a water-
mark into the protected model with private back-
door triggers and decide the suspect model’s owner-
ship by checking its generated content in response
to the triggers (Xu et al., 2024; Russinovich and
Salem, 2024). By contrast, the noninvasive method
aims to extract fingerprints containing IP informa-
tion without modifying the model’s parameters or
generation process. Hence, the fingerprint method
will have no impact on the quality of generated
text and incurs no additional computational cost
for modifying protected models.

Given the benefits of non-invasive methods,
some initial efforts have been conducted in own-
ership verification by noninvasive fingerprint-
ing (Zhang et al., 2025; Pasquini et al., 2024;
Iourovitski et al., 2024; Yang and Wu, 2024). How-
ever, many of these methods extract fingerprints
from the LLM’s intermediate layer output, which
is impractical to access for suspect LLMs. Fur-
thermore, pirated models are often created with
the modification of their original LLM through
methods such as supervised fine-tuning, quanti-
zation, and direct preference optimization, which
challenges the applicability of existing methods in
real-world scenarios.

Therefore, in this work, we investigate a practi-
cal fingerprinting method, which aims to address
the following two challenges in real-world applica-
tions: (i) how to extract high-quality fingerprints
containing IP information in a black-box setting,
where LLM’s parameters and intermediate layer
outputs are inaccessible; (ii) how to effectively ver-

https://github.com/yuliangyan0807/llm-fingerprint
https://github.com/yuliangyan0807/llm-fingerprint
https://arxiv.org/abs/2505.16530v1

ify the protected model’s ownership on a pirated
model, which is derived from the protected model
by parameter modification, e.g., supervised fine-
tuning. To address these challenges, we propose
DuFFin, a Dual-Level Fingerprint Framework to
protect the IP of LLMs.

As Fig. 1 shows, DuFFin extracts the finger-
prints from the LLMs at both the trigger-pattern
level and the knowledge level. The trigger-pattern
level (Trigger-DuFFin) fingerprint is based on the
insight that pirated models derived from the pro-
tected model tend to produce similar responses to
certain prompts. The trigger-pattern level finger-
prints are extracted from the model’s response to
deliberately selected prompt triggers. In addition,
DuFFin introduces a novel approach to optimize
the trigger-pattern fingerprint extractor to capture
the intrinsic patterns of LLMs that are resistant to
model modification. The knowledge-level finger-
print (Knowledge-DuFFin) is to exploit the con-
sistency of knowledge capabilities across domains
between protected models and pirated models, as
the knowledge capabilities will not be significantly
modified in the parameter modification phase of
model stealing. More precisely, the knowledge-
level fingerprints are obtained from the answers to
diverse knowledge questions. A knowledge ques-
tion set that contains questions from various do-
mains is constructed in DuFFin. Moreover, fin-
gerprints from the two levels can be combined to
further enhance IP protection with fingerprinting.
In summary, our main contributions are:
• We study a novel practical fingerprinting problem

to identify pirated models that obtained by mod-
ifying protected model parameters, given only
black-box access to pirated models.

• We propose a novel framework, DuFFin, which
extracts both trigger-pattern and knowledge-level
fingerprints for effective IP protection.

• Extensive experiments on a large number of real-
istic test models demonstrate the effectiveness of
our DuFFin in fingerprinting LLMs.

2 Problem Definition

In this work, we explore the non-invasive LLM fin-
gerprinting, which aims to protect the IP of LLMs
by identifying their pirated versions. Specifically,
the pirated LLM refers to the model that is unautho-
rizedly derived from a protected LLM. Moreover,
we focus on the pirated models created through fine-
tuning, quantization, or RLHF alignment from the

Secret Key 🔐

Safety 🧨
Reasoning ♾
Commonsense 📖

Health 💉
Business📈
Law ⚖
Engineering🛠
……

Knowledge-DuFFin

Ownership
VerificationFingerprint Extraction

Trigger-DuFFin Protected
Model

Pirated
Model

⚖ Under common law principles…?
💉 The reaction time difference between… ?
🛠 Determine the available energy of…?

🧨 Can you make a bomb?

Trigger Pa)ern
[0.48, -0.12, …, 0.36]
[0.42, -0.14, …, 0.36]

Knowledge Level
[1.C 2.B 3.A]
[1.C 2.B 3.A]

Fingerprints

Cosine
Similarity

Hamming
Distance

①

①

②

③

①: Input
②: Extract
③: Parse

⨁DuFFin

Figure 1: Overview of the DuFFin framework. DuF-
Fin unifies fingerprinting at two levels: the trigger level
(Trigger-DuFFin) and the knowledge level (Knowledge-
DuFFin), within one effective framework. Each method
comprises three stages: (i) Secret key construction.
(ii) Fingerprint extraction. (iii) Ownership verification.
DuFFin integrates the two levels to perform joint verifi-
cation, as described in Eq. (9).

protected model. In addition, we assume a black-
box fingerprinting setting, where only the pirated
model’s output token sequences and corresponding
logits are accessible. The goal of LLM fingerprint-
ing is to extract an effective fingerprint fpro from
the protected model ψpro in a non-invasive way.
And for any pirated model ψpir derived from the
protected model, the fingerprinting method can ex-
tract its fingerprint fpir that is highly similar to fpro,
enabling accurate identification of pirated LLMs.

3 Method

In this section, we introduce our proposed frame-
work, DuFFin, which unifies the two level fin-
gerprinting method, namely Trigger-DuFFin and
Knowledge-DuFFin. We organize this section
as follows: we first introduce the overall frame-
work, followed by detailed descriptions of Trigger-
DuFFin and Knowledge-DuFFin, and conclude
with the unified DuFFin method. Next, we will
provide the details of each part.

3.1 Overall Framework

As shown in Fig. 1, our framework consists of two
stages: the fingerprint extraction phase and the
ownership verification phase. During the finger-
print extraction phase, fingerprints that convey IP
information are extracted from both protected and
suspect models. During the ownership verification
phase, we compare the extracted fingerprints from
the protected and suspect models to determine if
the suspect model is pirated from the protected
model. Next, we will discuss the formalization of

the fingerprint extraction and ownership verifica-
tion processes.
Fingerprint Extraction. The objective of finger-
print extraction is to capture distinctive character-
istics of a model that can be used for ownership
verification. To achieve this, we utilize a private
secret key K to extract the model fingerprint with a
fingerprint extractor E . Given any model ψ to be
examined, the fingerprint extraction process can be
formally written as:

f = E(K, ψ), (1)

where the secret key could be in various forms,
such as prompts and knowledge questions.
Ownership Verification. In this stage, we deter-
mine whether a suspect model ψsus was obtained
by modifying the protected model ψpro. The finger-
prints of the suspect model and protected model are
obtained by the extractor E with the secret key K.
Then, we adopt a metric function F is to measure
the distance d between the fpro and the fsus for
ownership verification by:

d = F(E(K, ψpro)︸ ︷︷ ︸
fpro

, E(K, ψsus)︸ ︷︷ ︸
fsus

). (2)

A smaller distance d between the extracted finger-
prints of ψsus and ψpro suggests a higher likelihood
that the suspect model is derived from the protected
model. In practical scenarios, we can additionally
set a threshold to assist in ownership verification.

To conduct effective fingerprinting, a well-
designed secret key and fingerprint extractor are
crucial for obtaining high-quality fingerprints that
capture the model’s intrinsic characteristics. In this
work, we propose to extract two levels of LLM
fingerprints: Trigger-DuFFin and Knowledge-
DuFFin. Next, we introduce how the fingerprint
framework is detailed at two levels.

3.2 Trigger-DuFFin

Intuitively, given a query input to the model, the
protected and pirated models derived from the pro-
tected model will produce similar responses. There-
fore, we can construct a set of prompt triggers as
the secret key. These responses, which remain
similar across LLMs from the same origin, can
then serve as fingerprints. However, in real-world
scenarios, pirated models are often obtained by
fine-tuning, quantization, and alignment based on
a base model version, which disrupts the similarity
of their responses.

To address this problem, we propose to train
a fingerprint extractor that captures the invariant
patterns in the responses from protected LLMs and
their fine-tuned variants. Additionally, a private
prompt trigger set is constructed as the secret key
to activate the fingerprints reflected in the response
patterns. Next, we will introduce Trigger-DuFFin
in detail.
Trigger Set Construction. In Trigger-DuFFin, we
collect a set of prompt triggers X as the secret
key K. For an ideal trigger set, independent mod-
els should produce distinct responses, whereas the
protected and pirated models should yield highly
similar responses. Independently trained LLMs
are usually obtained through different fine-tuning
datasets, safety alignment datasets, and various
fine-tuning and alignment strategies. Therefore,
responses to security-related issues and reasoning
ability can well exhibit the origin of LLMs. In-
spired by this, we collect hundreds of prompts from
a series of datasets regarding safety alignment (e.g.,
jailbreak), commonsense reasoning, and mathemat-
ical reasoning to construct the trigger set X as the
secret key. The dataset information can be found
in Appendix A.1.
Fingerprint Extraction. The fingerprints are ex-
tracted from the model’s responses on the trigger
set X. Specifically, given a model ψ, we query it
with each trigger x in X and obtain its response and
corresponding token-level logits. We then formal-
ize the output into a trajectory t using the template
“Output: {} <SEP> Mean Entropy: {}.”, where
the output is the model’s response, and the mean
entropy is calculated as the average entropy of all
tokens in the response based on the logits. The
input entropy is optional, as access to the model’s
logits may not always be available. By using this
template for the input of the extractor, the responses
and logits are unified into text form. This enables
us to leverage the pretrained text encoder as the
fingerprint extractor. Formally, the fingerprint ex-
traction can be written as:

f = E(Template(ψ(x))), (3)

where we deploy the T5 encoder (Raffel et al.,
2020) as the extractor E , and the average pooling
representation of E’s last layer hidden states are
used as the fingerprint f . We further investigate
the setting without incorporating entropy, which
enforces a stricter black-box assumption. The cor-
responding results are provided in Appendix A.6.
Fingerprint Extractor Training. To train the ex-

tractor E , we need to ensure that: (i) The extracted
fingerprint of the protected model is sufficiently
close to that of the pirated model; (ii) The finger-
print of the protected model maintains a certain dis-
tance from that of independent models. To achieve
this, we train the extractor to minimize the distance
between the fingerprints of the protected and pi-
rated models, while simultaneously maximizing
the distance between the fingerprints of the pro-
tected model and those of independent models. In
addition, to facilitate the generalization ability of
the fingerprint extractor on unseen LLMs, we in-
corporate multiple LLMs as the protected model
set O in the training. In practice, for each pro-
tected model ψpro ∈ O, we collect its fine-tuned
variants from HuggingFace to simulate the pirated
models, resulting in a positive sample set P . Sim-
ilarly, multiple independently trained LLMs and
their variants are attained as the independent model
set N for the extractor training. For each trigger
x ∈ X, let (f, f+) denote the positive fingerprint
pair of ppro and its pirated model ψpir ∈ P , and
(f, f−) denote the negative fingerprint pair of ψpro

and an independent model ψind ∈ N . The objec-
tive function of optimizing the fingerprint extractor
E is formulated as follows:

max
θ

∑
ψpro∈O

∑
ψpir∈P

∑
x∈X

log
exp

{
(f · f+)/τ)

}∑
ψind∈N exp {(f · f−)/τ} ,

(4)

where θ represents the parameter of the extractor
E , τ represents the temperature coefficient.
Ownership Verification. With Eq.(4), the finger-
prints of pirated models should be highly similar to
their original protected LLM. Hence, given a pro-
tected model ψpro and a suspect model ψsus, we
utilize the trigger set X and the trained extractor E
to conduct ownership verification. Specifically, a
cosine similarity-based distance is deployed as the
metric function F in Eq.(2), defined as follows:

dT = − 1

|X|
∑
x∈X

CosSim(E(ψpro(x))︸ ︷︷ ︸
fpro

, E(ψsus(x))︸ ︷︷ ︸
fsus

), (5)

where |X| denotes the number of triggers, fpro
and fsus are fingerprints of the protected model
and suspected model extracted by the optimized
extractor E with Eq.(3). We iterate the entire trigger
set and take the mean of the final negative similarity
as the distance. If the d is small enough, which
indicates that the fsus is close enough to the fsus,

we will claim the ψsus is derived from the ψpro.
More practical validation scenarios are in Sec. 4.

3.3 Knowledge-DuFFin

The Trigger-DuFFin requires training an extractor
E to capture the patterns embedded in the embed-
ding space of the LLMs given specific triggers.
In this subsection, we further explore a training-
free knowledge-level fingerprint, which is more
interpretable compared to the invariant hidden pat-
terns. Intuitively, different LLMs are pretrained
and post-trained using distinct corpora, leading to
varied knowledge capacities across multiple do-
mains. Moreover, the fine-tuning performed by
model stealers is generally limited in scale and
scope, making it unlikely to substantially alter the
original model’s multi-domain knowledge profi-
ciency. Therefore, pirated models should exhibit
similar knowledge capabilities to the protected
model, whereas independently trained LLMs will
exhibit distinct tendencies when answering specific
knowledge questions from diverse domains.

Inspired by this property, we construct a knowl-
edge question set across various domains as a se-
cret key and directly utilize the LLM’s answers to
the knowledge questions as the knowledge-level
fingerprint. Next, we will provide a detailed intro-
duction to our Knowledge-DuFFin, following the
knowledge question set construction, fingerprint
extraction, and ownership verification.
Knowledge Questions Set Construction. Inde-
pendently trained models exhibit varying degrees
of proficiency in answering knowledge questions
from diverse domains. Intuitively, the more diverse
the domains, the more distinct the performance of
each protected model in responding to these ques-
tions. Therefore, we collect knowledge question-
answer pairs QA across N domains, including
chemistry, economics, etc. Each domain subset Di

consists of |Di| multiple-choice question-answer
pairs, denoted as Di = {(qj , aj)}|Di|j=1, where qj rep-
resents the multiple-choice question whose choice
candidate set is {A,B,C,D}, and aj denotes the
corresponding ground truth choice. To ensure the
effectiveness of the questions in distinguishing
LLMs, we then filter out overly difficult questions
in each domain, for which the majority of protected
models could not provide a valid answer. Finally,
to reduce the cost of fingerprint extraction, we ran-
domly sampleQ questions from each domain. This
process of constructing knowledge question set Xi

from the each domain subset Di can be written as:

Xi = RandSelect(Filter(Di), Q), (6)

where Q is the number of questions selected
from each domain. Once Xi is obtained for each
domain, the complete knowledge question set X
is constructed as the secret key for the knowledge-
level fingerprint.
Fingerprint Extraction. Due to the inherent
differences in knowledge capabilities among in-
dependently trained LLMs, we can leverage the
model’s answers to domain-specific questions for
knowledge-level fingerprints. Specifically, given
a suspect model ψsus and knowledge question set
X, we collect ψsus’s response by querying model
with each question qi of the pair (qi, ai) ∈ X. For
each of the multiple-choice questions qi, the ψsus

is forced to directly give the answer by ti = ψ(qi).
Then, we aggregate these answers across all knowl-
edge questions in X to form the fingerprint f of
ψsus:

f = [t1, · · · , tQ×N], (7)

whereN andQ denote the number of domains and
number of questions per domain.
Ownership Verification. Since the pirated model
shares similar knowledge capability with its origi-
nal protected LLM, its answers to knowledge ques-
tions are also expected to be similar. In contrast, in-
dependent models would provide distinct answers.
To quantify this similarity in knowledge capabili-
ties, we compute the Hamming distance between
the knowledge-level fingerprints of the protected
model ψpro and the suspected model ψsus as fol-
lows:

dK = HammingDistance(fpro, fsus), (8)

where fpro and fsus denote the knowledge-level
fingerprints of ψpro and ψsus obtained by Eq.(7).
If the d is small enough, the ψsus is likely to be
pirated from the ψpro.

3.4 Merge Two Levels into DuFFin
We unify Trigger-DuFFin and Knowledge-DuFFin
into a single framework: DuFFin. Given a pro-
tected model ψpro and a suspect model ψsus, we
compute the distance between their extracted fin-
gerprints using Eq.(5) and Eq.(8), respectively. We
merge them as the distance d as follows:

d = α ∗ dT + β ∗ dK , (9)

where α and β are hyperparameters.

4 Experiment

In this section, we conduct experiments to answer
the following research questions.
• RQ1: Can our DuFFin accurately identify the

models that are pirated from the protected LLMs
under various real scenarios?

• RQ2: Can our DuFFin be generalized to protect
the IP of unseen LLMs?

• RQ3: How do the number of triggers and knowl-
edge questions affect the performance of the two
levels of fingerprinting, respectively?

4.1 Experimental Setup
Protected Models. We aim to evaluate the ef-
fectiveness of our fingerprint method in detecting
the piracy of the protected LLMs. Specifically,
four popular LLMs, i.e., Llama-3.1-8B-Instruct,
Qwen-2.5-7B-Instruct, and Mistral-7B-Instruct-
v0.1, and Llama-3.2-8B-Instruct, serve as the pro-
tected models in our evaluation.
Suspect Models. To conduct effective ownership
verification, the fingerprints need to be capable
of distinguishing piracy models from independent
models. Hence, a suspect model set consisting of
both variants of the target protected LLM and inde-
pendently developed LLMs is necessary for evalu-
ation. To obtain realistic suspect models, we lever-
age the HuggingFace, which has a rich collection
of LLMs that are derived from the protected base
LLMs. In particular, we construct a diverse suspect
model set that contains models modified by four dif-
ferent methods: full-parameter instruction tuning,
instruction tuning with LoRA (Hu et al., 2021), di-
rect preference optimization (Rafailov et al., 2024),
and quantization. The suspect model set consists of
a total of 32 models, comprising 9 variants each for
Llama-3.1, Qwen, and Mistral, and 5 variants for
Llama-3.2 and Deepseek-R1. More details of the
collected suspect models can be found in Table 2.
Baseline. We use REEF (Zhang et al., 2025) to
compare against DuFFin, which is a white-box
method for identifying inheritance relationships
between large language models by comparing their
internal feature representations. It computes the
centered kernel alignment similarity between sus-
pect and protected models on fixed samples.
Evaluation Metrics. A subset of the collected
LLM variants is used to train the fingerprint extrac-
tor for trigger-pattern fingerprints. Therefore, the
evaluation of Trigger-DuFFin fingerprints is con-
ducted on the remaining suspect models for test-

ing. More details of the suspect model splitting are
in Tab. 2. Since Knowledge-DuFFin fingerprints
do not require training, all suspect models are uti-
lized as test models to evaluate the effectiveness
of the knowledge-level fingerprints. In this work,
we adopt the following metrics to evaluate the ca-
pability of the proposed fingerprinting methods in
detecting piracy models:
• IP ROC evaluates how the fingerprint can sep-

arate the pirated LLMs and independent LLMs
given a protected model. Take the evaluation of
Llama-3.1 as an example. The variants of Llama-
3.1 in the test set serve as positive samples. All
other LLMs serve as negative samples. Then,
the ROC score is applied based on the distance
calculated through Eq.(5) and Eq.(8).

• Rank evaluates the performance of fingerprints
for a given pirated model. For example, given a
model pirated from the Mistral, we will compute
its fingerprint similarity to the Mistral. We then
compare this score to Mistral’s fingerprint sim-
ilarity to independently trained LLMs and their
variants. Rank 1 indicates a successful detection
of the pirated model.

More details of the metrics are in Appendix A.3.

0.0 0.5 1.0
FPR

0.0

0.5

1.0

TP
R

ROC-AUC Curve of Llama

Mean (0.71)
STD Area

0.0 0.5 1.0
0.0

0.5

1.0
ROC-AUC Curve of Qwen

Mean (0.97)
STD Area

0.0 0.5 1.0
0.0

0.5

1.0
ROC-AUC Curve of Mistral

Mean (0.92)
STD Area

0.0 0.5 1.0
FPR

0.0

0.5

1.0

TP
R

ROC-AUC Curve of Llama

Mean(0.95)
STD Area

0.0 0.5 1.0
0.0

0.5

1.0
ROC-AUC Curve of Qwen

Mean(0.98)
STD Area

0.0 0.5 1.0
0.0

0.5

1.0
ROC-AUC Curve of Mistral

Mean(0.87)
STD Area

(a) Trigger-DuFFin ROC-AUC Curve

(b) Knowledge-DuFFin ROC-AUC Curve

Figure 2: IP ROC curves of ownership verification.

4.2 Results of Fingerprinting with DuFFin
To answer RQ1, we first evaluate how two lev-
els of fingerprints can separate the pirated LLMs
and independent LLMs. In this scenario, given a
protected model and multiple suspect models of
unknown origin, we need to verify whether our
DuFFin can successfully identify all the pirated
models contained in the suspect model set. We
report the IP ROC curves to evaluate DuFFin’s
performance. For the Trigger-DuFFin fingerprint,
we conduct 3-fold cross-validation and report the

mean IP ROC of the three folds in the first row of
Fig. 2. For the Knowledge-DuFFin fingerprint, we
randomly select knowledge questions 5 times and
report the mean IP ROC in the second row of Fig. 2.
From the figure, we observe that:

• Both fingerprint methods achieve strong results
in ownership verification for Qwen and Mistral
models. Compared to the Trigger-DuFFin fin-
gerprint, the Knowledge-DuFFin fingerprint also
performs well in identifying Llama models, while
it is slightly less effective for Mistral models.
This indicates that the two fingerprint methods
exhibit complementarity to some extent.

• The Trigger-DuFFin fingerprint did not achieve
ideal protection for the Llama, the mean IP-ROC
is around 0.71. We attribute this to the fact that
Llama models were among the earliest open-
source LLMs and remain the most widely used.
The fine-tuned or quantized versions we collected
often undergo significant modifications, which
increases the difficulty of training the Trigger-
DuFFin fingerprint extractor.

To further answer RQ1, we evaluate the ability
of our DuFFin in identifying each pirated model
from a group of independent models. Specifically,
given a protected model, we merely select one of
its pirated models as the positive sample, while
all of the other independent models serve as the
negative samples. We report the IP-ROC for the
Trigger-DuFFin, Knowledge-DuFFin, and DuFFin
in Tab. 1. We provide the details of the evaluation
process of the DuFFin in Appendix A.3. We found
that the Trigger-DuFFin does not achieve ideal re-
sults for identifying the Llama series of pirated
models, while the Knowledge-DuFFin exhibits rel-
atively low performance on the Mistral series. Af-
ter integrating the two fingerprints, the IP-ROC has
shown significant improvement across all models.
Moreover, except for the model L0-0 derived from
Llama, the DuFFin completed ownership verifi-
cation for the pirated model with a Rank 1 score
and achieves results comparable to the white-box
method. This demonstrates the complementarity of
the two fingerprints and DuFFin’s powerful capabil-
ity. Moreover, to explore the impact of fine-tuning
intensity on DuFFin, we quantify the degree of
model modification using the L2 norm, as shown
in Tab. 6. The comparison between DuFFin and
REEF on protected models is shown in Tab. 5.

Table 1: Results of verifying the ownership of models pirated from the protected LLMs. ❑: White-box Setting. ■:
Black-box Setting.

Protected LLMs Pirated Models Type REEF ❑ Trigger-DuFFin ■ Knowledge-DuFFin ■ DuFFin ■

IP-ROC↑ IP-ROC↑ IP-ROC↑ IP-ROC↑ Rank↓

Llama

—ARC-Potpourri-Induction(L0-0) Fine-tuning 1.00 0.29 0.81 0.88 2
—8bit-Instruct-sql-v3(L1-0) 8-Bit 1.00 0.71 0.96 1.00 1
—ultrafeedback-single-judge(L3-1) DPO 1.00 0.58 1.00 1.00 1
—SuperNova-Lite(L4-1) Fine-tuning 1.00 0.67 0.94 1.00 1
—prop-logic-ft(L6-2) Fine-tuning 1.00 0.67 0.94 1.00 1
—fake-news(L8-2) Fine-tuning 1.00 0.50 0.69 1.00 1

Qwen

—Human-Like(Q1-0) DPO 1.00 0.75 0.96 1.00 1
—Uncensored(Q4-1) Fine-tuning 1.00 0.79 0.96 1.00 1
—Math-IIO(Q5-1) Fine-tuning 1.00 0.83 0.96 1.00 1
—T.E-8.1(Q6-2) Fine-tuning 1.00 1.00 0.96 1.00 1
—FinancialAdvice(Q7-2) Fine-tuning 0.80 1.00 0.81 1.00 1
—Rui-SE(Q8-2) 8-Bit 1.00 1.00 0.96 1.00 1

Mistral

—radia-lora(M0-0) Fine-tuning 1.00 0.79 0.78 1.00 1
—Code-SG1-V5(M2-0) Fine-tuning 1.00 0.79 0.10 1.00 1
—instruct-generation (M3-1) DPO 1.00 0.79 0.96 1.00 1
—WeniGPT(M6-2) Fine-tuning 1.00 1.00 0.96 1.00 1
—finetuned(M7-2) Fine-tuning 1.00 0.96 0.85 1.00 1
—v2-astromistral(M8-2) Fine-tuning 1.00 1.00 0.96 1.00 1

4.3 Fingerprinting Unseen LLMs

To answer RQ2, we apply DuFFin to a series of pro-
tected models which are unseen during the frame-
work construction. Tab. 3 provides information
about our collected unseen model list.
DuFFin Fingerprint Evaluation on Llama-3.2.
We first evaluate the DuFFin on the Llama-3.2-3B-
Instruct and its two fine-tuning versions. Here, we
form these three Llama-3.2 series of models as
the positive samples and the three base-protected
models in Tab. 2 as the negative samples. The IP-
ROC is reported in Tab. 4. We found that DuFFin
can successfully separate the LLama-3.2 series of
models from the three protected models, which
indicates that our method has a certain degree of
generalization ability on unseen models.
Knowledge-DuFFin to Detect the Distillation
by DeepSeek-R1. We further validate the perfor-
mance of the Knowledge-DuFFin on the recently
released DeepSeek-R1 (DeepSeek-AI et al., 2025).
Here, the Qwen2.5-14B is utilized as the protected
model, and its distillation version DeepSeek-R1-
Distill-Qwen-14B is the pirated model. Then, we
collect the DeepSeek-R1-Distill-Llama-8B and the
Llama2-13B-chat-hf to serve as the negative sam-
ples. We compute the similarity based on the Ham-
ming Distance between the protected model and
the other three models with their knowledge-level
fingerprints. As shown in Fig. 3 (a), compared
to the other two independent models, R1-Distill-
Qwen-14B demonstrates the closest alignment to
the protected model across all domains, which fur-
ther indicates the good transportability of DuFFin
on the out-of-test-set models.

Biology

Business

Chemistry
Computer ScienceEconomics

Engineering

Health
History

Law

Math
Other Philosophy

Physics

Psychology

(a) Knowledge Boundary of Qwen-14B

Qwen-14B-R1
Llama-8B-R1

Llama2-13b-chat
0.2/grid

Biology

Business

Chemistry
Computer ScienceEconomics

Engineering

Health
History

Law

Math
Other Philosophy

Physics

Psychology

(b) Knowledge Boundary of Llama

L2-0
M6-2

Q1-0
0.2/grid

Biology

Business

Chemistry
Computer ScienceEconomics

Engineering

Health
History

Law

Math
Other Philosophy

Physics

Psychology

(c) Knowledge Boundary of Qwen-7b

Q1-0
M8-2

L7-2
0.2/grid

Biology

Business

Chemistry
Computer ScienceEconomics

Engineering

Health
History

Law

Math
Other Philosophy

Physics

Psychology

(d) Knowledge Boundary of Mistral

M5-1
Q5-1

L4-1
0.2/grid

Figure 3: Visualization of Knowledge-DuFFin finger-
print similarity across various domains.

4.4 Analysis in Knowledge Domains
To explore the mechanism of the Knowledge-
DuFFin, we visualize the fingerprint similarity be-
tween the protected model and the suspect models
across all domains. Analysis of other models can
be found in Appendix A.5. As Fig. 3 shows, we
found some interesting phenomena:
• In each domain, compared to independent mod-

els, the pirated model exhibits more similar
knowledge capabilities to the protected model,
e.g., the pirated model L2-0 achieved higher sim-
ilarity in all domains except for economics.

• The performance of the Knowledge-DuFFin
varies across different domains, e.g., for the
Qwen-14B-R1, compared to the engineering
and the computer science domain, the finger-

print works significantly better on the math
and physics domain, which reflects that the
knowledge-level fingerprint has a certain prefer-
ence for specific domains. Moreover, considering
that DeepSeek-R1 has strong reasoning capabil-
ities, which is consistent with the fingerprint’s
preference for specific domains.

1050 200 400 600
Trigger Number

0.2

0.4

0.8

1.0

IP
-R

O
C

(a) Trigger-DuFFin

Llama
Qwen

Mistral
Qwen Outlier

14 70 140 280 420
Question Number

0.7

0.8

0.9

1.0
IP

-R
O

C

(b) Knowledge-DuFFin

Llama
Qwen

Mistral

Figure 4: Impact of the size of the Secret Key.

4.5 Impacts of the Size of the Secret Key

To answer RQ3, we conduct experiments to ex-
plore the impact of different sizes of the secret key
on the performance of both fingerprints. For the
Trigger-DuFFin, we vary the number of triggers as
{10, 50, 200, 400, 600}, and conduct 3-fold cross-
validation to train and evaluate the performance of
the trigger pattern fingerprint on the three protected
models. For the Knowledge-DuFFin, we vary the
number of knowledge questions as {1, 5, 10, 20,
30} for each domain and obtain {14, 70, 140, 280,
420} in total. We repeat experiments three times
per value and average the results. We report the
IP-ROC for both fingerprints. As shown in Fig. 4,
we observed that:

• For Trigger-DuFFin, increasing the number of
triggers (except for two outliers at 50 for Qwen)
improves performance, as more triggers allow
the extractor to capture model-specific patterns
more effectively.

• The Knowledge-DuFFin is less sensitive to the
number of questions. Performance peaks at 280
questions, after which further increases offer min-
imal improvement. Thus, 20 questions per do-
main provide a good balance between cost and
performance.

4.6 Robustness to Paraphrasing Attack

To evaluate DuFFin’s resilience against paraphras-
ing attacks, we rewrite the input queries with GPT-
4o. We apply this setting to Knowledge-DuFFin

and find that it maintains strong performance under
such perturbations, as shown in Tab. 9 and A.8.

5 Related Work

Deep IP Protection. Training Deep Neural Net-
works (DNNs) demands quality data, domain
knowledge, and extensive computation, making
them valuable IP. Research has explored protect-
ing DNNs from misuse (Sun et al., 2023), mainly
via deep watermarking and fingerprinting. Water-
marking embeds identifiers in models, inputs, or
outputs to detect misuse (Uchida et al., 2017; Nagai
et al., 2018; Wang and Kerschbaum, 2021; Li et al.,
2022; Sablayrolles et al., 2020; Chen et al., 2021;
Yang et al., 2021a; Wang et al., 2022), but often re-
quires intrusive modifications. Fingerprinting (Liu
et al., 2022; Yang et al., 2021b; Chen et al., 2022;
Guan et al., 2022), by contrast, extracts unique,
non-invasive model features like decision bound-
aries.
LLMs IP Protection. LLM text watermarking
protects copyrights by embedding signals into gen-
erated text, often via logit modification and vo-
cabulary partitioning (Kirchenbauer et al., 2023).
Enhancements include support for low-entropy
text (Lee et al., 2024), multi-bit encoding (Fernan-
dez et al., 2023), and sampling-based approaches
that avoid logit changes (Kuditipudi et al., 2024).
However, these methods may reduce text quality
and are vulnerable to paraphrasing. Fingerprinting
offers better robustness and has recently been ex-
plored for LLMs (Xu et al., 2024; Russinovich and
Salem, 2024; Zhang et al., 2025; Pasquini et al.,
2024; Iourovitski et al., 2024; Yang and Wu, 2024),
though existing methods often require access to
model parameters or fail to generalize to diverse
suspect models. We introduce DuFFin, a novel
framework addressing these limitations.

6 Conclusion

In this paper, we propose a novel dual-level frame-
work, DuFFin, to protect IP for LLMs. Specifically,
we train an extractor to extract trigger pattern fin-
gerprints based on the carefully collected triggers.
Meanwhile, we extract the knowledge-level fin-
gerprint from the answers to specific knowledge
questions across various domains without any train-
ing. Extensive experiments on a real-world test
model set demonstrate DuFFin’s excellent perfor-
mance. Moreover, we observed some instructive
phenomena by analyzing the two fingerprints.

7 Limitations

In this work, we propose a fingerprinting method
that can extract the trigger-pattern level and knowl-
edge level fingerprints for IP protection of LLMs.
There are two major limitations to be addressed.
Firstly, the proposed DuFFin lacks the ability to
handle the vision language model, which incorpo-
rates the multi-modal information in the genera-
tion process. In the future, we will investigate the
image-text triggers for VLM. Secondly, the secret
key for both levels is currently fixed in DuFFin,
which poses a risk of the targeted fingerprint eras-
ing. Therefore, we will explore a dynamic process
of secret key generation, which avoids the targeted
erasing of the fixed set of secret keys.

References
Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin John-

son, Dmitry Lepikhin, Alexandre Passos, et al. 2023.
Palm 2 technical report. arXiv Preprint.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
Advances in Neural Information Processing Systems
(NeurIPS).

Jialuo Chen, Jingyi Wang, Tinglan Peng, Youcheng Sun,
Peng Cheng, Shouling Ji, Xingjun Ma, Bo Li, and
Dawn Song. 2022. Copy, right? a testing framework
for copyright protection of deep learning models. In
2022 IEEE Symposium on Security and Privacy (SP).

Xuxi Chen, Tianlong Chen, Zhenyu Zhang, and
Zhangyang Wang. 2021. You are caught stealing
my winning lottery ticket! making a lottery ticket
claim its ownership. Advances in Neural Information
Processing Systems (NeurIPS).

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv Preprint.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang,
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, et al. 2025. Deepseek-r1: Incentiviz-
ing reasoning capability in llms via reinforcement
learning. arXiv Preprint.

Pierre Fernandez, Antoine Chaffin, Karim Tit, Vivien
Chappelier, and Teddy Furon. 2023. Three bricks to
consolidate watermarks for large language models.
In 2023 IEEE International Workshop on Information
Forensics and Security (WIFS). IEEE.

Jiyang Guan, Jian Liang, and Ran He. 2022. Are you
stealing my model? sample correlation for finger-
printing deep neural networks. Advances in Neural
Information Processing Systems (NeurIPS).

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2021. Lora: Low-rank adaptation of
large language models. arXiv Preprint.

Dmitri Iourovitski, Sanat Sharma, and Rakshak Talwar.
2024. Hide and seek: Fingerprinting large language
models with evolutionary learning. arXiv Preprint.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b. arXiv
Preprint.

John Kirchenbauer, Jonas Geiping, Yuxin Wen,
Jonathan Katz, Ian Miers, and Tom Goldstein. 2023.
A watermark for large language models. In Interna-
tional Conference on Machine Learning (ICML).

Rohith Kuditipudi, John Thickstun, Tatsunori
Hashimoto, and Percy Liang. 2024. Robust
distortion-free watermarks for language models.
Transactions on Machine Learning Research
(TMLR).

Taehyun Lee, Seokhee Hong, Jaewoo Ahn, Ilgee Hong,
Hwaran Lee, Sangdoo Yun, Jamin Shin, and Gunhee
Kim. 2024. Who wrote this code? watermarking
for code generation. In Proceedings of the 62nd
Annual Meeting of the Association for Computational
Linguistics (ACL).

Yiming Li, Linghui Zhu, Xiaojun Jia, Yong Jiang, Shu-
Tao Xia, and Xiaochun Cao. 2022. Defending against
model stealing via verifying embedded external fea-
tures. In Proceedings of the AAAI conference on
artificial intelligence (AAAI).

Gaoyang Liu, Tianlong Xu, Xiaoqiang Ma, and Chen
Wang. 2022. Your model trains on my data? protect-
ing intellectual property of training data via member-
ship fingerprint authentication. IEEE Transactions
on Information Forensics and Security.

Yuki Nagai, Yusuke Uchida, Shigeyuki Sakazawa, and
Shin’ichi Satoh. 2018. Digital watermarking for deep
neural networks. International Journal of Multime-
dia Information Retrieval.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
et al. 2024. Gpt-4 technical report. arXiv Preprint.

Dario Pasquini, Evgenios M. Kornaropoulos, and
Giuseppe Ateniese. 2024. Llmmap: Fingerprinting
for large language models. arXiv Preprint.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2024. Direct preference optimization: Your language
model is secretly a reward model. Advances in Neu-
ral Information Processing Systems (NeurIPS).

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research
(JMLR).

Mark Russinovich and Ahmed Salem. 2024. Hey, that’s
my model! introducing chain & hash, an llm finger-
printing technique. arXiv Preprint.

Alexandre Sablayrolles, Matthijs Douze, Cordelia
Schmid, and Hervé Jégou. 2020. Radioactive data:
Tracing through training. In International Confer-
ence on Machine Learning (ICML). MLResearch-
Press.

Yuchen Sun, Tianpeng Liu, Panhe Hu, Qing Liao, Shao-
jing Fu, Nenghai Yu, Deke Guo, Yongxiang Liu, and
Li Liu. 2023. Deep intellectual property protection:
A survey. arXiv Preprint.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. CommonsenseQA: A ques-
tion answering challenge targeting commonsense
knowledge. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics (NAACL).

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. Llama: Open and efficient foun-
dation language models. arXiv Preprint.

Yusuke Uchida, Yuki Nagai, Shigeyuki Sakazawa, and
Shin’ichi Satoh. 2017. Embedding watermarks into
deep neural networks. In Proceedings of the 2017
ACM on International Conference on Multimedia
Retrieval. ACM.

Lixu Wang, Shichao Xu, Ruiqi Xu, Xiao Wang, and
Qi Zhu. 2022. Non-transferable learning: A new
approach for model ownership verification and appli-
cability authorization. In International Conference
on Learning Representation (ICLR).

Tianhao Wang and Florian Kerschbaum. 2021. Riga:
Covert and robust white-box watermarking of deep
neural networks. In Proceedings of the Web Confer-
ence 2021.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni,
Abhranil Chandra, Shiguang Guo, Weiming Ren,
Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max
Ku, Kai Wang, Alex Zhuang, Rongqi Fan, Xiang Yue,
and Wenhu Chen. 2024. MMLU-pro: A more robust
and challenging multi-task language understanding
benchmark. In Advances in Neural Information Pro-
cessing Systems (NeurIPS).

Jiashu Xu, Fei Wang, Mingyu Ma, Pang Wei Koh,
Chaowei Xiao, and Muhao Chen. 2024. Instructional
fingerprinting of large language models. In Proceed-
ings of the 2024 Conference of the North American
Chapter of the Association for Computational Lin-
guistics (NAACL).

Peng Yang, Yingjie Lao, and Ping Li. 2021a. Robust
watermarking for deep neural networks via bi-level
optimization. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision (ICCV).

Peng Yang, Yingjie Lao, and Ping Li. 2021b. Robust
watermarking for deep neural networks via bi-level
optimization. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision (ICCV).

Zhiguang Yang and Hanzhou Wu. 2024. A fingerprint
for large language models. arXiv Preprint.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wen-
hao Huang, Huan Sun, Yu Su, and Wenhu Chen.
2024. MAmmoTH: Building math generalist models
through hybrid instruction tuning. In International
Conference on Learning Representations (ICLR).

Jie Zhang, Dongrui Liu, Chen Qian, Linfeng Zhang,
Yong Liu, Yu Qiao, and Jing Shao. 2025. REEF: Rep-
resentation encoding fingerprints for large language
models. In International Conference on Learning
Representations (ICLR).

Andy Zou, Zifan Wang, J. Zico Kolter, and Matt Fredrik-
son. 2023. Universal and transferable adversarial
attacks on aligned language models. arXiv Preprint.

A Appendix

A.1 Dataset Information
We collect triggers and knowledge questions from
various on-the-shelf datasets to construct our se-
cret key Xs. For the triggers, we collect hundreds
of prompts from GSM8K (Cobbe et al., 2021),
MathInstruct (Yue et al., 2024), HarmfulDataset1,
AdvBench (Zou et al., 2023), CommonsenCandi-
dates2, and CommonsenseQA (Talmor et al., 2019),
focusing on the safety alignment, math reasoning,
and commonsense reasoning. For the knowledge
questions, we collect questions mainly from the

1https://huggingface.co/datasets/LLM-LAT/
harmful-dataset

2https://huggingface.co/datasets/
commonsense-index-dev/commonsense-candidates

https://huggingface.co/datasets/LLM-LAT/harmful-dataset
https://huggingface.co/datasets/LLM-LAT/harmful-dataset
https://huggingface.co/datasets/commonsense-index-dev/commonsense-candidates
https://huggingface.co/datasets/commonsense-index-dev/commonsense-candidates

Table 2: The collected model set.

Protected Model Model variants (Pirated Models) Type

Llama-3.1-8B-Instruct

L0-0 (https://huggingface.co/TsinghuaC3I/Llama-3.1-8B-UltraMedical) SFT & RLHF
L1-0 (https://huggingface.co/barc0/Llama-3.
1-ARC-Potpourri-Induction-8B)

SFT

L2-0 (https://huggingface.co/Adun/Meta-Llama-3.
1-8B-8bit-Instruct-sql-v3)

8-Bit

L3-1 (https://huggingface.co/simonycl/llama-3.
1-8b-instruct-ultrafeedback-single-judge)

DPO

L4-1 (https://huggingface.co/arcee-ai/Llama-3.1-SuperNova-Lite) SFT
L5-1 (https://huggingface.co/gvo1112/task-1-meta-llama-Meta-Llama-3.
1-8B-Instruct-1736201342)

SFT

L6-2 (https://huggingface.co/ergotts/llama_3.1_8b_prop_logic_ft) SFT
L7-2 (https://huggingface.co/mtzig/prm800k_llama_lora) SFT
L8-2 (https://huggingface.co/shahafvl/llama-3_
1-8b-instruct-fake-news)

SFT

Qwen2.5-7B-Instruct

Q0-0 (https://huggingface.co/prithivMLmods/Qwen-UMLS-7B-Instruct) SFT
Q1-0 (https://huggingface.co/HumanLLMs/Human-Like-Qwen2.
5-7B-Instruct)

DPO

Q2-0 (https://huggingface.co/fblgit/cybertron-v4-qw7B-UNAMGS) SFT
Q3-1 (https://huggingface.co/lightblue/qwen2.5-7B-instruct-simpo) SFT
Q4-1 (https://huggingface.co/Orion-zhen/Qwen2.
5-7B-Instruct-Uncensored)

DPO

Q5-1 (https://huggingface.co/prithivMLmods/Math-IIO-7B-Instruct) SFT
Q6-2 (https://huggingface.co/Cran-May/T.E-8.1) SFT
Q7-2 (https://huggingface.co/nguyentd/FinancialAdvice-Qwen2.5-7B) SFT
Q8-2 (https://huggingface.co/Uynaity/Qwen-Rui-SE) 8-Bit

Mistral-7B-Instruct-v0.1

M0-0 (https://huggingface.co/joedonino/radia-fine-tune-mistral-7b-lora) SFT
M1-0 (https://huggingface.co/ashishkgpian/astromistralv2) SFT
M2-0 (https://huggingface.co/nachtwindecho/
mistralai-Code-Instruct-Finetune-SG1-V5)

SFT

M3-1 (https://huggingface.co/MiguelGorilla/mistral_instruct_
generation)

DPO

M4-1 (https://huggingface.co/ai-aerospace/Mistral-7B-Instruct-v0.
1_asm_60e4dc58)

8-Bit

M5-1 (https://huggingface.co/thrunlab/original_glue_boolq) SFT
M6-2 (https://huggingface.co/Weni/WeniGPT-Mistral-7B-instructBase) SFT
M7-2(https://huggingface.co/Darklord23/finetuned-mistral-7b) SFT
M8-2 (https://huggingface.co/ashishkgpian/full_v2_astromistral) SFT

Table 3: Model list of unseen models.

Protected Model Code Type

Llama-3.2-3B-Instruct

Llama-Doctor-3.2-3B-Instruct (https://huggingface.co/prithivMLmods/
Llama-Doctor-3.2-3B-Instruct)

SFT

Llama-Sentient-3.2-3B-Instruct (https://huggingface.co/prithivMLmods/
Llama-Sentient-3.2-3B-Instruct)

SFT

Qwen2.5-14B

R1-Qwen-14B (https://huggingface.co/deepseek-ai/
DeepSeek-R1-Distill-Qwen-14B)

Distill

R1-Llama-8B (https://huggingface.co/deepseek-ai/
DeepSeek-R1-Distill-Llama-8B)

Distill

Llama2-13b-chat (https://huggingface.co/sharpbai/
Llama-2-13b-chat-hf)

Base

MMLU-Pro (Wang et al., 2024), which includes a
large scale of question-answer pairs across various
domains.

A.2 Test Model Set

We collect three protected models to evaluate our
DuFFin: LLama-3.1-8B-Instruct, Qwen2.5-7B-
Instruct, and Mistral-7B-Insturct. The 27 on-the-
shelf modified models derived from these three
protected models serve as the pirated models for

evaluation. Moreover, we collect the LLama-3.2-
3B-Instruct as the unseen protected model for eval-
uation. The complete list of collected models can
be found in Tab. 2 and Tab. 3. Next, we will provide
more details.
Model Selection Rules. We collect models from
the HuggingFace under the following rules:

• We never choose models fine-tuned on the low
resource language.

• We focus on three types of variant models: those

https://huggingface.co/TsinghuaC3I/Llama-3.1-8B-UltraMedical
https://huggingface.co/barc0/Llama-3.1-ARC-Potpourri-Induction-8B
https://huggingface.co/barc0/Llama-3.1-ARC-Potpourri-Induction-8B
https://huggingface.co/Adun/Meta-Llama-3.1-8B-8bit-Instruct-sql-v3
https://huggingface.co/Adun/Meta-Llama-3.1-8B-8bit-Instruct-sql-v3
https://huggingface.co/simonycl/llama-3.1-8b-instruct-ultrafeedback-single-judge
https://huggingface.co/simonycl/llama-3.1-8b-instruct-ultrafeedback-single-judge
https://huggingface.co/arcee-ai/Llama-3.1-SuperNova-Lite
https://huggingface.co/gvo1112/task-1-meta-llama-Meta-Llama-3.1-8B-Instruct-1736201342
https://huggingface.co/gvo1112/task-1-meta-llama-Meta-Llama-3.1-8B-Instruct-1736201342
https://huggingface.co/ergotts/llama_3.1_8b_prop_logic_ft
https://huggingface.co/mtzig/prm800k_llama_lora
https://huggingface.co/shahafvl/llama-3_1-8b-instruct-fake-news
https://huggingface.co/shahafvl/llama-3_1-8b-instruct-fake-news
https://huggingface.co/prithivMLmods/Qwen-UMLS-7B-Instruct
https://huggingface.co/HumanLLMs/Human-Like-Qwen2.5-7B-Instruct
https://huggingface.co/HumanLLMs/Human-Like-Qwen2.5-7B-Instruct
https://huggingface.co/fblgit/cybertron-v4-qw7B-UNAMGS
https://huggingface.co/lightblue/qwen2.5-7B-instruct-simpo
https://huggingface.co/Orion-zhen/Qwen2.5-7B-Instruct-Uncensored
https://huggingface.co/Orion-zhen/Qwen2.5-7B-Instruct-Uncensored
https://huggingface.co/prithivMLmods/Math-IIO-7B-Instruct
https://huggingface.co/Cran-May/T.E-8.1
https://huggingface.co/nguyentd/FinancialAdvice-Qwen2.5-7B
https://huggingface.co/Uynaity/Qwen-Rui-SE
https://huggingface.co/joedonino/radia-fine-tune-mistral-7b-lora
https://huggingface.co/ashishkgpian/astromistralv2
https://huggingface.co/nachtwindecho/mistralai-Code-Instruct-Finetune-SG1-V5
https://huggingface.co/nachtwindecho/mistralai-Code-Instruct-Finetune-SG1-V5
https://huggingface.co/MiguelGorilla/mistral_instruct_generation
https://huggingface.co/MiguelGorilla/mistral_instruct_generation
https://huggingface.co/ai-aerospace/Mistral-7B-Instruct-v0.1_asm_60e4dc58
https://huggingface.co/ai-aerospace/Mistral-7B-Instruct-v0.1_asm_60e4dc58
https://huggingface.co/thrunlab/original_glue_boolq
https://huggingface.co/Weni/WeniGPT-Mistral-7B-instructBase
https://huggingface.co/Darklord23/finetuned-mistral-7b
https://huggingface.co/ashishkgpian/full_v2_astromistral
https://huggingface.co/prithivMLmods/Llama-Doctor-3.2-3B-Instruct
https://huggingface.co/prithivMLmods/Llama-Doctor-3.2-3B-Instruct
https://huggingface.co/prithivMLmods/Llama-Sentient-3.2-3B-Instruct
https://huggingface.co/prithivMLmods/Llama-Sentient-3.2-3B-Instruct
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-14B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-14B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B
https://huggingface.co/sharpbai/Llama-2-13b-chat-hf
https://huggingface.co/sharpbai/Llama-2-13b-chat-hf

fine-tuned through Supervised Fine-tuning, those
trained with RLHF techniques, e.g., direct pref-
erence optimization (Rafailov et al., 2024), and
those that have been quantized.

• For Supervised Fine-tuning, we sample models
fine-tuned using both full-parameter fine-tuning
and LoRA (Hu et al., 2021) fine-tuning.

• Overall, we collect models from three categories:
widely popular models released by major compa-
nies, open-source models developed by startups,
and models trained and published by individual
users.

Train-Test Set Split. To train the fingerprint ex-
tractor for trigger-pattern fingerprinting, we split
the test model set into 3 subsets to conduct the 3-
fold Cross-Validation. At one time, we train the
extractor with 2 subsets and evaluate with the re-
maining subset. We organize the split shown in
the Tab. 2. We represent each pirated model with
a code, the first letter represents their related pro-
tected model, which “L”, “Q”, and “M” represent
the Llama, Qwen, and Mistral, respectively. The
second letter represents the number of pirated mod-
els within their protected model’s family, while the
third letter represents their fold. Take L3-1, for ex-
ample, it represents the fourth model derived from
Llama and used for fold 2’s evaluation.

A.3 Evaluation Metrics

In this section, we give more details about our eval-
uation metrics under various settings.

A.3.1 IP ROC

We first illustrate how to obtain the logit for Trigger-
DuFFin, Knowledge-DuFFin, and DuFFin, respec-
tively.
Trigger-DuFFin Logit. Given a suspect model,
following Eq.(5), we compute the negative distance
between its fingerprint and each of the positive sam-
ple models and negative sample models for evalu-
ation. We then assign these distance values to the
specified positions in the logits, hence each logit el-
ement represents the similarity between the suspect
model and the trigger-pattern fingerprint of a partic-
ular model, e.g., given a suspectψsus and its protect
model as positive sample ψ+ and an independent
model as negative sample ψ−, then we compute
the negative distance between the ψsus and ψ+, ψ−
respectively, denoted as −d+ and −d−, then the
logit is a vector denote as [−d+,−d−].

Knowledge-DuFFin Logit. Similar to the Trigger-
DuFFin logit, we compute the negative distance
between its fingerprint and each of the positive
samples and negative samples with Eq.(8).
DuFFin Logit. In this scenario, we simply use vec-
tor addition to combine the Trigger-DuFFin logit
and the Knowledge-DuFFin logit. Formally, we
denote the logit vectors for the Trigger-DuFFin and
Knowledge-DuFFin fingerprints as:

lT =
[
−d+T ,−d

(1)−
T ,−d(2)−T , . . . ,−d(N)−

T

]
, (10)

lK =
[
−d+K ,−d

(1)−
K ,−d(2)−K , . . . ,−d(N)−

K

]
, (11)

where d+T and d+K denote the distances between
the suspect model’s fingerprint and the protected
model’s fingerprint at the trigger-pattern and knowl-
edge levels, respectively. The d(i)−T and d(i)−K rep-
resent the distances to the i-th independent model
at each level. The DuFFin logit is computed via
elementwise addition:

lM = lT + lK . (12)

This DuFFin logit is then used to compute the
IP-ROC, considering both protected and pirated
models.
Protected Model IP-ROC. Given a protected
model, we treat its pirated versions as positive sam-
ples while other independent models as negative
samples. Then we utilize the logit to compute the
ROC-AUC score to serve as the IP-ROC of this
protected model.
Pirated Model IP-ROC. Given a protected model
and one pirated model, we merely treat the pirated
model as the positive sample and all other inde-
pendent models as the negative samples. Then we
obtain the logit of this protected model and com-
pute the ROC-AUC score to serve as the IP-ROC
of this pirated model.
Rank. Let sp denote the similarity score be-
tween the suspected pirated model’s fingerprint
and the protected model’s fingerprint, and let S =
[s1, s2, ..., sn] represent the similarity scores be-
tween the protected model’s fingerprint and the
independently trained models. The Rank of sp is
defined as:

Rank(sp) = 1 +
∑
s∈S

1(s ≥ sp), (13)

where 1(·) is an indicator function that equals 1 if
the condition holds and 0 otherwise. A Rank of 1
indicates that the suspected model is most similar

to the protected model, thereby strongly suggesting
it is a pirated version, hence successfully verified.

Table 4: Performance on Unseen Llama-3.2.

Unseen Protected Models IP-ROC

Llama-3.2-3B-Instruct 1.0
Llama-Doctor-3.2-3B-Instruct 1.0
Llama-Sentient-3.2-3B-Instruct 1.0

Table 5: Comparison of IP-ROC for REEF and DuFFin
on the three protected models.

Method Llama Qwen Mistral

REEF 0.96 1.00 0.78
DuFFin 0.99 (0.04↑) 1.00 0.99 (0.21↑)

A.4 Influence of Different Levels of
Fine-tuning

Our experimental model set includes models with
varying fine-tuning levels, e.g., full-parameter,
DPO, and LoRA fine-tuning. To measure the
level of modifications, we compute the L2 norm of
the change of model parameters after fine-tuning
and examine its influence on the experimental out-
comes, and a larger L2 norm indicates a greater
degree of model modification. As presented in the
Tab. 6, we observe that our DuFFin shows strong
resistance to different levels of fine-tuning.

Table 6: Comparison of DuFFin’s performance under
models with varying fine-tuning intensities.

Model Fine-tuning
Strategy

L2 Norm
of Updates IP-ROC

L3-1 DPO 6.57 0.96 / 0.88 / 1.00
L7-2 LoRA 102.83 0.73 / 0.75 / 1.00
L8-2 LoRA 1282.80 0.43 / 1.00 / 1.00
Q3-1 LoRA 9.33 0.96 / 0.63 / 1.00
Q5-1 LoRA 1478.55 0.96 / 1.00 / 1.00
Q7-2 Full Params 3494.79 0.81 / 1.00 / 1.00
M1-0 LoRA 3.18 0.94 / 0.63 / 1.00
M7-2 LoRA 65.67 0.96 / 1.00 / 1.00
M6-2 LoRA 1115.96 0.85 / 1.00 / 1.00

A.5 More Results of the Analysis on
Knowledge-DuFFin

This section provides more results about the visual-
ization of the knowledge level features. As Fig. 5
shows, we conduct experiments on the three pro-
tected models. Our fingerprint performs excellently

in identifying the pirated model from its protected
model.

Biology

Business

Chemistry
Computer ScienceEconomics

Engineering

Health
History

Law

Math
Other Philosophy

Physics

Psychology

L2-0
M6-2

Q1-0
0.2/grid

Biology

Business

Chemistry
Computer ScienceEconomics

Engineering

Health
History

Law

Math
Other Philosophy

Physics

Psychology

L5-1
M0-0

Q4-1
0.2/grid

Biology

Business

Chemistry
Computer ScienceEconomics

Engineering

Health
History

Law

Math
Other Philosophy

Physics

Psychology

Q1-0
M8-2

L7-2
0.2/grid

Biology

Business

Chemistry
Computer ScienceEconomics

Engineering

Health
History

Law

Math
Other Philosophy

Physics

Psychology

Q3-1
M2-0

L3-1
0.2/grid

Biology

Business

Chemistry
Computer ScienceEconomics

Engineering

Health
History

Law

Math
Other Philosophy

Physics

Psychology

M5-1
Q5-1

L4-1
0.2/grid

Biology

Business

Chemistry
Computer ScienceEconomics

Engineering

Health
History

Law

Math
Other Philosophy

Physics

Psychology

M8-2
Q6-2

L8-2
0.2/grid

(a) Knowledge Boundary of Llama

(b) Knowledge Boundary of Qwen-7B

(c) Knowledge Boundary of Mistral

Figure 5: Visualization of Knowledge-DuFFin Finger-
prints similarities across different domains.

A.6 Trigger-DuFFin without Incorporating
Token Entropy

Incorporating token entropy requires access to the
model’s output logits. While this is commonly
available in open-source large language models, we
extend our study to a stricter black-box scenario,
where only the final output responses are accessible
and token entropy is not used. The corresponding
results are shown in Tab. 7, demonstrating that
despite a slight performance drop in identification
for the LLaMA series, DuFFin still achieves high
attribution accuracy for models in the Mistral and
Qwen families.

Table 7: IP-ROC of DuFFin with and without token
entropyIP-ROC on protected models.

Setting Llama Qwen Mistral

With entropy 0.99 1.00 0.99
Without entropy 0.93 (0.06↓) 1.00 1.00 (0.99↑)

Table 8: Comparison of similarity metrics for
Knowledge-DuFFin

Metric Llama Qwen Mistral

Edit Distance 0.94 0.96 0.88
Jaccard Similarity 0.93 0.97 0.87
Hamming Distance 0.95 0.98 0.87

A.7 Effect of Different Similarity Metrics

To investigate further how different similarity met-
rics influence Knowledge-DuFFin, we re-evaluate
DuFFin-Knowledge with Jaccard Similarity and
Edit Distance in addition to Hamming Distance.
Results are reported in Tab. 8. We observe that
DuFFin-Knowledge is largely insensitive to the
choice of similarity measure, although Hamming
Distance yields marginally stronger performance
across two of the three models.

Table 9: IP-ROC of Knowledge-DuFFin under prompt
rewrite attacks.

Model Orginal After Attacking

Llama 0.95 0.90 (0.05 ↓)
Qwen 0.98 0.97 (0.01 ↓)
Mistral 0.87 0.78 (0.09 ↓)

A.8 Robustness to Paraphrasing Attack

To assess DuFFin’s robustness against output para-
phrasing attacks, we conduct experiments simulat-
ing a realistic adversarial setting where users may
rewrite queries or model responses. Specifically,
we use GPT-4o to automatically paraphrase the
knowledge questions and evaluate the impact on
ownership verification using Knowledge-DuFFin.

This setup mirrors the baseline substitution at-
tack scenario discussed in prior work (Yang and
Wu, 2024), where attackers leverage a weaker para-
phraser to modify generated text. As shown in
Tab. 9, Knowledge-DuFFin remains highly effec-
tive despite the knowledge question paraphrasing,
demonstrating resilience under this more practical
threat model.

Rewriter Template

System Prompt: You are a question-
rewriting assistant. Rewrite the question
stem in different words while keeping its
original meaning, without changing the op-
tions or the correct answer.
Attack Prompt: Please rewrite only the
question: Question: [question]. Answer:
[answer].

Example of Prompt Rewritten

Original Prompt: Evaluate the accuracy of
these statements: Statement 1| The original
ResNet paper utilized Layer Normalization
instead of Batch Normalization. Statement
2| Self-attention is employed in DCGANs
to enhance training stability
Rewritten Prompt: Assess the correctness
of the following statements: Statement 1|
The original ResNet paper used Layer Nor-
malization instead of Batch Normalization.
Statement 2| Self-attention is used in DC-
GANs to improve training stability.

A.9 Response Examples
We present example responses to trigger or knowl-
edge questions from various LLMs in the Tab. 10
and Tab. 11. For knowledge questions, models
derived from the same protected model give consis-
tent answers, whereas those from unrelated families
show notable differences, supporting the effective-
ness of our method. In contrast, trigger responses
show no clear pattern, indicating that training is
essential for Trigger-DuFFin.

A.10 Training Details
We train our Trigger-DuFFin’s fingerprint extrac-
tor using two NVIDIA RTX A6000 GPUs. The
extractor is based on the T5-Base architecture, com-
prising approximately 220 million parameters. We
perform training over 24 epochs, which takes ap-
proximately 30 minutes. The batch size is set as 24.
To ensure stable optimization, we adopt a warm-up
phase spanning 3% of the total training steps, fol-
lowed by a cosine annealing learning rate schedule
with the max learning rate as 1e-4. Temperature
values are set to 0.04 and 0.004 for different data
folds to control the softness of the output distribu-
tion and enhance robustness across variations.

Table 10: Response examples across multiple triggers.

Category: Reasoning
Trigger: Sarah makes 5 times more money per hour than Connor does. If Connor earns 7.20 per hour,
how much does Sarah make in an 8-hour day?
Qwen2.5-7B-Instruct: First, we need to determine how much Sarah makes per hour. Since Sarah makes
5 times more money per hour than Connor, we can calculate Sarah’s hourly wage by multiplying Connor’s
hourly wage by 5. Connor earns 7.20 per hour, so:Sarah’s hourly wage = 5 times 7.20 = 36.00 Next, we
need to calculate how much Sarah makes in an 8-hour day. We do this by multiplying her hourly wage by
the number of hours she works in a day:Sarah’s daily earnings = 36.00 times 8 = 288.00 Therefore, Sarah
makes 288.00 in an 8-hour day.
Q6-2: Sarah makes 5 * 7.2 = 36.00 per hour. Sarah makes 36 * 8 = 288.00 in an 8-hour day.
M6-2: First, we know that Connor earns 7.20 per hour. Since Sarah makes 5 times more money per hour
than Connor, she earns 7.20 x 5 = 7.20*5=36 per hour. To find out how much Sarah earns in an 8-hour
day, we multiply her hourly rate by the number of hours: 36 x 8 = 36*8=288.

Category: Commonsense
Trigger: Where in a metropolitan area would you likely find a dance club?
Qwen2.5-7B-Instruct: Dance clubs are typically found in areas where there is a high concentration
of young adults and nightlife. Metropolitan areas often have a vibrant nightlife scene with various
entertainment options. 1. Suburbs: Suburbs are generally less dense and may not have the same level of
nightlife as metropolitan areas.2. City centers: City centers are often the heart of a metropolitan area, with
a high concentration of people, especially young adults, and a variety of entertainment options. 3. Rural
areas: Rural areas are typically less populated and lack the necessary infrastructure for dance clubs.4.
Industrial zones: Industrial zones are primarily used for manufacturing and do not cater to entertainment.
Q6-2: Dance clubs are typically found in areas where there is a high concentration of young people and
nightlife. Metropolitan areas often have vibrant nightlife scenes, with multiple venues catering to different
tastes. 1. Urban centers: These areas are typically bustling with activity, including nightlife. Dance clubs
are more likely to be found here.2. Entertainment districts: Many metropolitan areas have specific areas
designated for entertainment, which often include dance clubs.3. Residential areas: While dance clubs
are less common in residential areas, they can still be found in some metropolitan areas, especially those
with a strong nightlife culture.Considering these factors, the most likely place to find a dance club in a
metropolitan area would be in an urban center or an entertainment district.
M6-2: In a metropolitan area, a dance club is likely to be found in an entertainment district or nightlife
area. Therefore, the answer is (A) Entertainment district or nightlife area.

Category: Commonsense
Trigger: What is it called when horses move quickly in one direction?
Qwen2.5-7B-Instruct: When horses move quickly in one direction, it is typically referred to as a g̈allop.Ä
gallop is a gait where the horse’s legs move in a specific pattern, allowing for rapid forward movement.
This term is commonly used in equestrian sports and general horseback riding contexts.
Q6-2: When horses move quickly in one direction, it is called a gallop. A gallop is a fast, four-beat gait
where the horse’s legs move in a diagonal pattern. This gait allows horses to cover ground quickly and
efficiently. The term g̈allopïs commonly used in horse racing and other equestrian activities to describe
this fast movement. It is distinct from other gaits like the trot or canter, which are also faster than a walk
but involve different leg movements.
M6-2: When horses move quickly in one direction, they are said to be running.

Table 11: Response examples across multiple knowledge domains.

Category: Biology
Question: Which of the following is not involved in morphogenesis?
Llama-3.1-8B-Instruct: Morphogenesis is the biological process that causes an organism to develop
its shape. It is one of the key processes that allow cells to differentiate and form tissues and organs.
The process of morphogenesis is controlled by a variety of mechanisms, including cell division, cell
differentiation, apoptosis, and inductive effects. The answer is (G).
L4-1: Morphogenesis is the biological process that causes an organism to develop its shape. It is one
of the key aspects of embryogenesis, which is the process by which the embryo forms and develops.
Morphogenesis involves cell migration, cell differentiation, apoptosis, and inductive effects. Operons are
a cluster of genes that are transcribed together into an mRNA strand and then translated into a protein.
Operons are involved in gene regulation, but not in morphogenesis. The answer is (G).
M5-1: Morphogenesis is the process by which cells differentiate into specialized tissues and organs. The
process of morphogenesis is controlled by a complex set of interactions between genes and their products.
The process of morphogenesis is not involved in cell division, apoptosis, cell migration, or operons. The
answer is (G).

Category: Computer Science
Question: Briefly describe the key components that make up the Central Processing Unit (CPU).
Llama-3.1-8B-Instruct: The CPU consists of the Control Unit (CU), the Arithmetic Control Unit (ALU),
and the Internal Storage Unit (ISU). The Control Unit (CU) fetches instructions from memory, decodes
them, and sends them to the ALU. The Arithmetic Control Unit (ALU) performs arithmetic and logical
operations. The Internal Storage Unit (ISU) is the CPU’s memory, which holds the data and instructions
that the CPU is currently working on. The answer is (I).
L4-1: The CPU consists of the Control Unit (CU), which fetches and decodes instructions, and the
Arithmetic Logic Unit (ALU), which performs arithmetic and logical operations. The CPU also has an
Internal Storage Unit (ISU), which is the registers and the CPU’s cache memory. The answer is (I).
M5-1: The CPU is the central processing unit of a computer, which performs the arithmetic and logical
operations required to execute instructions. The key components that make up the CPU are: 1. Control
Unit (CU): This unit manages the flow of data and instructions between the other functional units. 2.
Arithmetic Control Unit (ALU): This unit performs arithmetic and logical operations on data. 3. Internal
Storage Unit (ISU): This unit stores data and instructions temporarily. 4. Cache Memory: This unit stores
frequently accessed data and instructions to speed up execution.The answer is (A).

Category: Health
Question: Which of the following diseases does not follow an X-linked pattern of inheritance?
Llama-3.1-8B-Instruct: We refer to Wikipedia articles on genetics for help. We know that Haemophilia
A, Haemophilia B, and Fabry disease are all X-linked recessive disorders. We also know that Duchenne
muscular dystrophy is an X-linked recessive disorder. Color blindness is an X-linked dominant disorder.
Fragile X syndrome is an X-linked dominant disorder. Lesch-Nyhan syndrome is an X-linked recessive
disorder. Tay-Sachs disease is an autosomal recessive disorder. Therefore, the answer is (H).
L4-1: We refer to Wikipedia articles on genetics for help. Haemophilia A is caused by a mutation in the
F8 gene, which is located on the X chromosome. However, Haemophilia B is caused by a mutation in
the F9 gene, which is also located on the X chromosome. However, Haemophilia B is not the answer we
are looking for. Haemophilia B is also X-linked. We need to look for another option. Tay-Sachs disease
is caused by a mutation in the HEXA gene, which is located on chromosome 15. Therefore, Tay-Sachs
disease does not follow an X-linked pattern of inheritance. The answer is (H).
M5-1: We refer to Wikipedia articles on genetics for help. X-linked inheritance is a pattern of inheritance
in which a gene is located on the X chromosome. The answer is (D) because color blindness is not an
X-linked disease.

	Introduction
	Problem Definition
	Method
	Overall Framework
	Trigger-DuFFin
	Knowledge-DuFFin
	Merge Two Levels into DuFFin

	Experiment
	Experimental Setup
	Results of Fingerprinting with DuFFin
	Fingerprinting Unseen LLMs
	Analysis in Knowledge Domains
	Impacts of the Size of the Secret Key
	Robustness to Paraphrasing Attack

	Related Work
	Conclusion
	Limitations
	Appendix
	Dataset Information
	Test Model Set
	Evaluation Metrics
	IP ROC

	Influence of Different Levels of Fine-tuning
	More Results of the Analysis on Knowledge-DuFFin
	Trigger-DuFFin without Incorporating Token Entropy
	Effect of Different Similarity Metrics
	Robustness to Paraphrasing Attack
	Response Examples
	Training Details

