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Abstract—As vision-based machine learning models are in-

creasingly integrated into autonomous and cyber-physical sys-
tems, concerns about (physical) adversarial patch attacks are
growing. While state-of-the-art defenses can achieve certified
robustness with minimal impact on utility against highly-
concentrated localized patch attacks, they fall short in two impor-
tant areas: (i) they are vulnerable to low-noise distributed patches
where perturbations are subtly dispersed to evade detection or
masking, as shown recently by the DorPatch [1] attack; (ii)
they are extremely time and resource-consuming, making them
impractical for latency-sensitive applications.

To address these challenges, we propose SuperPure, a new
defense strategy that combines pixel-wise adversarial masking
and GAN-based super-resolution. It is robust against both dis-
tributed and localized patches while achieving low inference
latency. Extensive evaluations using ImageNet and two standard
classifiers (ResNet and EfficientNet) show that SuperPure: (i)
improves robustness against localized patches by ¿20% and
clean accuracy by 10%; (ii) achieves 58% robustness against
distributed patch attacks (vs. 0% for PatchCleanser); (iii) reduces
defense latency by 98%. SuperPure is robust to patch sizes and
white-box attacks. Code is open-source.

I. INTRODUCTION

Deep learning models have achieved remarkable success in
various computer vision tasks including image classification,
object detection, and semantic segmentation [2], [3], [4].
However, they are highly vulnerable to adversarial attacks,
which involve adding perturbations to input data in order to
mislead models into making incorrect predictions [5], [6].
Among these, adversarial patches—large perturbations con-
fined to a localized region—pose a significant and practical
threat due to their effectiveness and ease of deployment [7],
[8]. Specifically, they pose a serious threat to real-world vision
applications such as autonomous driving and security systems,
where attackers can physically print out and place a patch in
the environment to manipulate the model’s output [9], [10].

Various defense strategies have been proposed to counter
adversarial patches [11], [12], [13], [14], [15], [16]. A common
approach involves eliminating adversarial samples through
various forms of masking and image transformations. Cur-
rently, the most popular and effective defense method is one
developed by Xiang et al. called PatchCleanser [14]. This
certified defense technique identifies and masks suspicious
areas in an image, using randomized smoothing methods to

provide theoretical guarantees. However, while PatchCleanser
performs well against localized patches of a specific size,
its effectiveness diminishes when it encounters advanced
distributed attacks that spread perturbations to escape de-
tection. Exploiting this vulnerability, Tang et al. introduced
DorPatch [1], a dispersed and occlusion-robust adversarial
patch attack that distributes perturbations across multiple re-
gions. Importantly, the misclassified results from adversarially
patched samples created by DorPatch can obtain certification
from PatchCleanser, leading to a false sense of security in
the guaranteed predictions. These findings highlight the urgent
need for the development of effective defenses to counter such
attacks.

Apart from concerns about robustness against distributed
attacks, the computation overhead of current defense mecha-
nisms has also been a growing concern. This is particularly im-
portant when considering latency-sensitive applications such
as image classification for autonomous systems, where the
solution has to be both robust and lightweight. Despite recent
efforts to further improve the computational efficiency [15],
the overhead remains quite high—on the order of tens of
seconds per image for state-of-the-art methods [15], [14], as
we will demonstrate in this paper.

This paper introduces SuperPure, a novel iterative defense
mechanism designed specifically to counter adversarial patch
attacks, addressing critical robustness and latency constraints.
At its core, SuperPure iteratively masks adversarial patches
by combining low-pass downsampling, GAN-based super-
resolution upsampling, and precise pixel-level comparisons to
identify and eliminate both localized and distributed adversar-
ial signals.

At each iteration, SuperPure first downsamples the input
image. This step acts as a low-pass filter, attenuating high-
frequency adversarial perturbations while retaining essential
image content [17], [18], [19]. The primary structure and
semantics of the image remain largely unaffected due to
inherent redundancy and spatial correlation typically observed
in natural images [20]. The iterative non-linear GAN-based
upsampling further disrupts adversarial features, progressively
restoring clean image regions.

An important insight was that simple upsampling with a
GAN would not be sufficient. Instead, we propose a novel
method called GAN-guided pixel masking. Specifically, we
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Fig. 1. SuperPure pipeline: at each iteration, we downsample, GAN-upsample, and mask high-error pixels. If newly masked pixels exceed the threshold, we
repeat. At the end, a final upsample–downsample “enhancement” removes subtle perturbations.

first upsample the image using the GAN to introduce non-
linearity to the processing pipeline, and then compare this
newly generated image with the original image. The key
insight is that, since the super-resolution model (GAN) is
trained on natural (clean) images, it affects the pixels related
to the patches more than the clean pixels when creating a new
image. We then implement an additional non-linear step called
pixel masking, in which the pixels of the newly generated
image are compared with those of the original image on
a pairwise basis. Any pixels that differ significantly from
the original, based on a predefined threshold, are masked.
This approach allows our method to eliminate pixels that are
more influenced by the down-sampling and super-resolution
processes. The important takeaway is that pixels associated
with the patch are much more likely to be among those that
differ.

The second purpose of GAN-guided pixel masking is to im-
prove clean accuracy. Simple downsampling and upsampling
alone can lead to significant information loss, which in turn
reduces clean accuracy; hence, a more sophisticated scheme
is used for upsampling.

This down-up sampling plus masking process continues
until the percentage of newly masked pixels drops below a
small threshold. We find that this method is more effective
when changes are gradual. Additionally, to guard against
less noticeable, distributed patches, we include an enhance-
ment step that involves upsampling the image using super-
resolution, followed by downsampling it back to its original
size. Figure 1 illustrates our scheme.

To minimize computation overhead, SuperPure utilizes sev-
eral techniques. Primarily, it employs a lightweight GAN-
based super-resolution model for the upsampling step. It also
utilizes an adaptive stopping condition. In Section IV, we
outline the details.

Through extensive experiments on the ImageNet dataset
[21] using state-of-the-art classifiers, Resnet and EfficientNet,
we demonstrate that our method significantly enhances robust-

ness against adversarial patch attacks of both singular and
distributed varieties. We compare our method to the widely
popular method, PatchCleanser [14], and the most recent
defense mechanism in this domain, PAD [11]. Compared to
state-of-the-art, SuperPure improves the robustness against
conventional localized patches by more than 20%, on average,
while also improving top-1 clean accuracy by almost 10%. Su-
perPure also achieves 58% robustness against distributed patch
attacks while PatchCleanser [14] is completely vulnerable to
this attack (0% robustness). Lastly, SuperPure also decreases
the end-to-end latency by over 98%.

In summary, our work presents the following contributions:

1) We present SuperPure, a novel defense mechanism
against white-box patch attacks of both singular and
distributed varieties that is compatible with various image
classifiers.

2) We introduce multiple techniques to reduce the compu-
tation complexity of our approach without significantly
impacting the accuracy and/or robustness of the defense.

3) We evaluate SuperPure on standard datasets and clas-
sifiers and compare our method against state-of-the-art
methods.

4) We provide ablation and sensitivity studies to provide
more insights about our method and highlight its effec-
tiveness.

5) We open-source our source code.

II. BACKGROUND

A. Adversarial Patch Attacks

Given a model M that produces an output M(x) given
a sample x, adversarial attacks involve finding a modified
sample x̃ such that M(x̃) ̸= M(x) [5], [22], [23], [24],
[25]. A common type of attack involves adding imperceptible
perturbations throughout the whole image, designed to subtly
distort the image without drawing human attention [26], [6],
[27].
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In contrast, adversarial patch attacks add conspicuous
perturbations to a restricted area of the image called a patch
[28], [8]. These patches are especially relevant in physical
settings where they can be applied as stickers or printed
patches [7], [29], [9]. Early papers assumed a white-box threat
model, where adversaries have access to the internal details of
the target classifier. In contrast, PatchAttack introduced a re-
inforcement learning-based method for generating adversarial
patches in a black-box setting [30].

Unlike singular patches that are localized to one specific
region, RP2 [9] uses a distributed adversarial patch, which
is harder to locate and cover. More recently, researchers
proposed Distributed and Occlusion-Robust Adversarial Patch
(DorPatch), which uses group lasso on patch masks, image
dropout, density regularization, and structural loss to produce
a distributed and occlusion-robust patch for real-world deploy-
ment [1].

There have been adversarial patch attacks proposed in other
domains such as object detection [10], [31], but in this paper,
we focus on image classifiers as our target model.

B. Defense Mechanisms

Initial defenses against adversarial patches include Digital
Watermarking [28], which involves masking unnaturally dense
regions in the saliency map, and Local Gradient Smoothing
[32], which regularizes gradients in the estimated noisy re-
gions. However, Chiang et al. showed that these defenses can
be bypassed using adaptive white-box attacks, and proposes
the first certifiable defense against patch attacks by extending
interval bound propagation (IBP) defenses [12]. Clipped Bag-
Net (CBN) [33] uses clipped BagNet, a classification model
with small receptive fields, for certified robustness. Levine and
Feizi extends randomized smoothing robustness schemes by
leveraging the constrained nature of patch attacks to derive
larger, deterministic robustness certificates. However, these
works are overshadowed by PatchGuard [13] in terms of
performance.

PatchGuard utilizes small receptive fields in CNNs to
prevent adversarial patches from influencing classification.
However, this approach is less effective for larger models with
wider receptive fields and requires significant architectural
modifications, limiting its broader applicability. PatchCleanser
[14] employs two rounds of pixel masking on the input image
to neutralize the effect of adversarial patches. PatchCure is
based on the same principles as PatchCleanser but is optimized
for efficiency [15]. However, unlike PatchCleanser, PatchCure
requires retraining the underlying classifiers to integrate its
defense mechanisms, introducing additional computational
overhead and limiting its practical deployment flexibility. Both
PatchCleanser and PatchCure are vulnerable to disturbed patch
attacks [1].

Many patch localization-based defenses have also been pro-
posed. SentiNet utilizes techniques from model interpretability
and object detection to detect potential attacks [34]. Jedi
utilizes input entropy analysis to detect and remove adversarial
patches [35]. PatchZero [36] detects adversarial pixels using

a patch detector and repaints them with the mean color of
the surrounding pixels. Similarly, PAD [11] leverages mutual
information and recompression to locate and remove adversar-
ial patches, effectively addressing challenges related to patch
appearance, shape, size, location, and quantity without needing
prior attack knowledge.

There have also been research done utilizing adversarial
training [6], which is widely used to mitigate attacks based on
adversarial samples, to mitigate patch attacks. These works
[37], [38], [39] propose novel training schemes to boost
robustness, but they require retraining and/or incur high com-
putational overhead. In this work, we focus on preprocessing
defenses that do not require retraining of the target model.

C. Image Super Resolution

Image Super-Resolution (SR) is a long-standing problem
in computer vision, aiming to recover a high-resolution (HR)
image from its low-resolution (LR) counterpart. Traditional
interpolation methods, such as bicubic and bilinear interpola-
tion, often fail to reconstruct fine details and high-frequency
textures, resulting in blurred images.

With the rise of deep learning, Convolutional Neural Net-
works (CNNs) have become predominant in SR tasks. Dong et
al. [40] introduced the Super-Resolution Convolutional Neural
Network (SRCNN), pioneering the use of deep learning for
SR. Following this, Kim et al. [41] proposed the Very Deep
Super-Resolution (VDSR) network, utilizing a much deeper
architecture and residual learning to enhance performance.

In addition to this, Generative adversarial networks (GANs)
[14] have become a popular approach, often used as a loss
function to push the results closer to the natural image mani-
fold, improving perceptual quality. Ledig et al. [42] proposed
the Super-Resolution Generative Adversarial Network (SR-
GAN), which introduced an adversarial loss and a perceptual
loss based on high-level feature mappings from a pre-trained
VGG network. This approach enabled the generation of more
photo-realistic images with sharper details. However initial
methods often struggle to perform well on real-world images.
This was due to the fact that standard blurs or filters often
did not capture the complex intricacies of image degradation.
Building upon SRGAN, Wang et al. [43] developed the En-
hanced SRGAN (ESRGAN), which introduced the Residual-
in-Residual Dense Block (RRDB) to facilitate training of
deeper networks without degradation. ESRGAN also replaced
the standard discriminator with a relativistic average discrimi-
nator to provide stronger supervision and better gradient flow,
resulting in superior perceptual quality.

D. Super-Resolution Defenses

Recent works have utilized super-resolution (SR) to elim-
inate adversarial noise by projecting low-quality inputs back
onto a manifold of natural images. Mustafa et al. [44] in-
troduced an SR-based approach to remove subtle ℓp-bounded
perturbations, restoring clean performance at modest overhead.
Meanwhile, DiffPure [45] applies diffusion-based sampling to
expunge mild adversarial artifacts, also yielding high-quality
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outputs under small or dispersed corruptions. However, both
SR- and diffusion-based defenses commonly assume lower-
amplitude distortions; large, localized patch signals often
remain partially intact—sometimes even sharpened—after SR.
Consequently, these methods fail to robustly handle overt patch
attacks without dedicated detection and masking strategies.

III. PROBLEM FORMULATION

In this section, we clearly define the objectives of the
attacker and defender considered in this paper, focusing ex-
plicitly on two primary adversarial scenarios: localized and
distributed patches.

A. Attack Objective

1) Attacker Goal: The adversary seeks to mislead a clas-
sifier by embedding adversarial patches into input images.
Formally, consider an original clean image x ∈ RH×W×C ,
where H , W , and C represent its height, width, and number
of channels, respectively. An adversarial patch introduces an
additive perturbation δ ∈ RH×W×C , resulting in an adversar-
ial image:

xadv = x+ δ. (1)

We specifically consider two distinct types of adversarial
patches:

• Localized patches: Perturbations are concentrated within
a single, contiguous region PL ⊆ {1, . . . ,H} ×
{1, . . . ,W}.

• Distributed patches: Perturbations are divided across
multiple small regions PD = {pi}ni=1 spread through-
out the image, specifically crafted to evade detection
by distributing the adversarial signal, as introduced by
DorPatch [1].

Given a classifier F , original image x, and true label y, the
attacker’s objective is to construct xadv such that:

F(xadv) ̸= y. (2)

2) Attacker Capabilities: We assume that the attacker gen-
erally has full access to the classifier’s gradients and param-
eters, enabling effective optimization of both localized and
distributed patches. Additionally, in stronger adaptive (white-
box) settings explicitly evaluated in Section V, the attacker
gains knowledge of SuperPure’s super-resolution model pa-
rameters, increasing their capacity to craft robust patches. For
PatchCleanser [14], direct gradient-based (white-box) attacks
are infeasible due to its non-differentiable masking process;
thus, we specifically evaluate PatchCleanser against distributed
adversarial patches crafted using DorPatch. All patch attacks
adhere to realistic size constraints (patch budgets) appropriate
for physical deployment scenarios, such as printed adversarial
stickers.

B. Defense Objective

The defender aims to neutralize adversarial patches—both
localized and distributed—while preserving accurate classifi-
cation on unaltered images. To achieve broad applicability, our
proposed defense method, SuperPure, meets the following key
criteria:
Clean Robustness. Given a clean image-label pair (x, y) and

a classifier F , the defended input maintains accurate
classification:

F(SuperPure(x)) = y.

Adversarial Robustness. Given an adversarial input xadv
such that F(xadv) ̸= y, the defended method restores
the correct classification:

F(SuperPure(xadv)) = y.

Model Independence. SuperPure operates independently of
the underlying classifier, requiring no modifications to
classifier architecture or retraining.

Scalability and Efficiency. SuperPure executes efficiently,
suitable for real-world deployment scenarios involving
high-resolution images and strict resource constraints.

IV. METHOD

In this section, we propose SuperPure, a novel defense
strategy against adversarial patch attacks that combines a
downsampling and upsampling process with a pixel-by-pixel
comparison to remove both singular and distributed adversarial
patches. The details of our method are presented in Algorithm
1.

Briefly, our algorithm first downsamples an image, xadv ,
by a factor of s (=4 in our setup). The downsampled image,
xdown is then fed into an upsampling method to generate a
new image, xup. The upsampled image has the same size
as the original (i.e., |xup| = |xadv|). While various upsam-
pling/image generation mechanisms exist, our experiments
reveal that a GAN-based super-resolution balances accuracy,
robustness, and latency. It further introduces non-linearity that
helps remove the patches while retaining the information
about the original image. The new image, xup, is compared,
pixel-wise, with xadv using a threshold, λ (see lines 17-
22). In Section VI, we show how this threshold should be
set. This process (downsampling, upsampling, and masking)
repeats multiple times until the number of masked pixels
becomes smaller than a threshold, ϵ. We also report how to
find this threshold in Section VI. The final step involves first
upsampling and then downsampling the image. No masking
is applied during this step (lines 11-14). The purpose of this
final step is to (a) enhance the image quality for improved
accuracy and (b) eliminate low-noise distributed patches.

We explain the theory and details of the downsampling
process in Section IV-A and then discuss the details of the
super-resolution and masking algorithm in Section IV-B. In
Section IV-C, we outline how the method is iterated and
specify the stopping condition for these iterations, and in
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Algorithm 1: Forward Method for SuperPure
Input: Input image xadv, max iteration count K,

masking threshold λ, stopping criterion ϵ,
enhance flag E , downsampling function DOWN,
pretrained superresolution model G

Output: Processed image x
1 Procedure SuperPure (xadv,K, λ, ϵ, E):
2 for k ← 0 to K do
3 xdown ← DOWN(xadv, 4);
4 xup ← G(xdown, 4);
5 xadv, c← GetDiff(xadv,xup, λ);
6 if c < ϵ then
7 break;
8 end
9 end

10 x← xadv;
11 if E then
12 x← G(x, 2);
13 x← DOWN(x, 2);
14 end
15 return x;
16

17 Procedure GetDiff(xadv,xup, λ):
18 d← L2(xadv,xup);
19 m← d > λ;
20 xadv ← xadv ⊙m;
21 c ←

∑
i,j m(i, j);

22 return xadv, c;

Section IV-D, we describe the enhancement step. Lastly, we
explain the optimizations proposed in our design to reduce the
computation complexity in Section IV-E.

A. Downsampling Step

Downsampling an image reduces its spatial resolution,
leading to the loss of high-frequency information; this dis-
proportionately affects adversarial patches in comparison to
the essential image content [17], [18]. This is due to adver-
sarial patches being heavily reliant on precise, high-frequency
perturbations [7]. For downsampling, we utilize bilinear inter-
polation, which replaces every n × n window by its average
pixel value when downsampling by a factor of n [46]. This
averaging process smooths out the detailed perturbations in the
patch, causing the high-frequency information needed for the
patch’s effectiveness to be lost. In contrast, natural images typ-
ically display redundancy and correlation among neighboring
pixels [47], [20]. Important features and structures are often
replicated across the image, making essential information less
susceptible to significant degradation.

Formally, for an image of size H ×W , downsampling can
be modeled as a function Ds : RH×W×C → Rh×w×C , where
s is the scaling factor (s > 1), h = H/s, and w = W/s.
Applying downsampling to the adversarial image yields:

x′
adv = Ds(xadv) = Ds(x+ δ) = Ds(x) +Ds(δ). (3)

Then, the energy of the adversarial patch after downsam-
pling can be approximated as:

∥Ds(δ)∥22 ≈
1

s2
∥δ∥22, (4)

indicating a substantial decrease in the perturbation’s magni-
tude due to spatial averaging.

This theoretical insight aligns with empirical evidence. Pix-
els within adversarial patches consistently exhibit significantly
higher reconstruction errors compared to non-patch pixels;
in our experiments, patch regions showed approximately 8×
higher errors (mean squared error of 0.6054 vs. 0.0829, as
shown in Figure 11 in Appendix). Additionally, prior work
by Guo et al. [48] similarly demonstrated that downsampling
(e.g., via JPEG compression) effectively reduces adversarial
perturbation effectiveness while preserving high accuracy on
clean images. Nonetheless, simple downsampling alone re-
mains vulnerable to adaptive attacks, underscoring the ne-
cessity of our proposed iterative and non-linear GAN-based
upsampling process.

B. Upsampling and Masking

While downsampling degrades adversarial patch regions
more significantly than natural non-patch areas, our initial
analysis showed that applying naive down and upsampling is
not sufficient to fully remove distributed patches and stronger
adaptive attacks. Instead, a more powerful transformation is
needed. The key idea is to apply a transformation that dispro-
portionally affects adversarial regions over benign regions.

Based on this insight, we propose utilizing a super-
resolution model for upsampling. While there are various
super-resolution models available, we have chosen Real-
ESRGAN [49] as our primary model. Real-ESRGAN is a
GAN-based model designed and trained to reconstruct high-
quality images from low-resolution inputs; we use a pre-
trained model provided by the authors, with no further fine-
tuning on our datasets.

There are two reasons why the GAN struggles to reconstruct
patch regions in comparison to benign non-patch regions.

First, for a pixel pi,j within the adversarial patch, the
surrounding pixels p ∈ B((i, j), τ) are typically uncorrelated
with pi,j and are also heavily degraded, leaving the GAN G
with insufficient information for precise reconstruction. On the
other hand, natural non-patch regions have more structural
coherence and redundancy, leaving enough information for
reconstruction even after downsampling.

Second, since the GAN is trained on a dataset of natural
images, it is optimized to generate outputs that align with
the natural image distribution. However, adversarial patches
deviate from this distribution, resulting in a greater pixel
variation in these regions in comparison to the rest of the
image. Let pi,ja denote an adversarial pixel and pi,jc a clean
pixel inside an image π. This relationship can be expressed
through the following inequality:

E(|pi,ja −G(Ds(π))i,j |)≫ E(|pi,jc −G(Ds(π))i,j |). (5)
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Fig. 2. Shows the masking process of SuperPure across multiple time steps.

This disparity results in greater pixel-wise differences be-
tween the original image and the reconstructed output in patch
regions compared to non-patch regions. Therefore, by com-
paring the original adversarial image xadv to the upsampled
image xup on a pixel-by-pixel basis, we can mask adversarial
regions by identifying where the reconstruction error exceeds a
pre-defined threshold λ. Specifically, a pixel-wise comparison
computes the L2-distance between corresponding pixels in
xadv and xup. A binary mask m is then generated, where:

m(i, j) =

{
1, if ∥xadv(i, j)− xup(i, j)∥2 > λ,

0, otherwise.

The binary mask m is then overlaid on the adversarial
image xadv, effectively masking the regions that exhibit high
reconstruction error and are likely to be adversarial patches.

C. Iteration and Stopping Condition

The inequality from Equation (5) suggests that with an
appropriate choice of λ we can effectively mask adversarial
pixels while preserving clean ones. However, a single iteration
may not suffice to identify most adversarial pixels beyond the
threshold, as a GAN can utilize local context. As a result,
we use multiple iterations and observe that as the number of
iterations increases, our model converges and progressively
masks out adversarial pixels. This is demonstrated empirically
in Figure 3 as we can see the total masked pixels and total
new pixels converge and steady as the number of iterations
increases. The progressive masking can also be seen in Figure
2.

Based on the insight above, the processes presented in the
previous two sections are repeated to ensure that the patch
is as completely masked as possible. At each iteration, the
adversarial image xadv is updated by overlaying the binary
mask m, and the new masked image becomes the input for
the next iteration. This allows the adversarial regions to be
gradually refined and more effectively suppressed with each
cycle. As presented in Figure 2, with each iteration, a greater
percentage of the patch regions in the image is masked. The
majority of the masking is done in earlier iterations; the
number of newly masked pixels steadily decreases until the
stopping condition is met.
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Fig. 3. Total and new adversarial pixels masked (ImageNet, Patch Size 64,
Threshold=0.7)

The stopping condition is based on the fraction of pixels that
have been newly masked at a given iteration. Specifically, the
iteration continues until the percentage of the newly masked
pixels at iteration t is below a threshold ϵ:∑W,H

i,j mt(i, j)

W ×H
< ϵ,

where W and H are the width and height of the image. Once
the stopping condition is met, perceptible adversarial patches
are mostly eliminated.

D. Removing Small Distributed Perturbations

While the aforementioned iterative masking process is ef-
fective at removing perceptible adversarial patches, it struggles
with smaller, distributed perturbations, such as those presented
in Dorpatch [1]. These perturbations are subtler and often
resemble natural variations within the image. Because our
process relies on the assumption that the reconstruction of
adversarial patches will differ significantly from that of non-
patch natural image regions, this limitation of the masking
process is expected.

A simple solution to mitigating these attacks involves up-
sampling the image via a GAN-based super-resolution model
and then downsampling to the original size.

This upsampling step via super-resolution generates addi-
tional high-frequency details, while the subsequent downsam-
pling removes that added information. The approach can be
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compared to DiffPure [50], where random noise is added to
an image before denoising it to remove any adversarial noise
process. In our case, upsampling acts as the diffusion step, and
downsampling serves as the denoising step, eliminating the
small adversarial perturbations that are embedded within the
image. Using Equation 5 and its assumptions, we observe that
the generated pixel is more likely to resemble the natural dis-
tribution, excluding adversarial noise. The averaging process
during downsampling further reduces this noise by smoothing
out pixel-level variations, while the new clean pixel generated
by the GAN helps to replace adversarial components. Together,
these steps effectively reduce the overall noise, acting as a
surrogate for the denoising step in diffusion models.

This process is performed after the initial iterative masking
step, ensuring that any remaining subtle adversarial perturba-
tions are addressed. We chose to upsample the image before
downsampling (instead of vice versa) because starting with
downsampling discards significant information in the image,
leading to a loss of essential details and poor classifier
performance. The final processed image can then be used for
downstream tasks, ensuring that the adversarial manipulations
no longer have a significant effect on model performance.
We use SuperPure+ as a shorthand for our method with this
enhancement in subsequent sections.

E. Computation Overhead Optimizations

While our main goal is to improve the system’s robust-
ness against singular (localized) and distributed patch attacks,
we’ve made a series of design decisions in order to reduce
SuperPure’s computation overhead. In this part, we briefly
discuss them and explain other alternatives.
Down vs. Upsampling. While SuperPure utilizes a down-
sampling step for patch removal, our initial analysis showed
that a similar upsampling (using super-resolution) and then
down-sampling could result in similar robustness. The main
reason is that although the steps are swapped, the joint
processing pipeline remains (relatively) the same hence similar
theoretical analysis could be applied (i.e., super-resolution is
harder for patch areas and down-sampling helps with filtering).
Furthermore, as shown in Section IV-D, the up-down sampling
option has an advantage over down-up since it can remove the
distributed noises more effectively.

The key difference between the two options, however, relies
on computation efficiency. In more detail, the up-down se-
quence increases the computation overhead because the more
costly operation (super-resolution) needs to be performed on
the larger image sizes (i.e., super-resolution on the original
input size vs. super-resolution on the downsampled image).
As a result, for the iterative masking part, we chose the down-
up method instead of the up-down method to favor efficiency.
However, to achieve enhancement, we add one final layer of
up-down sampling. This way, accuracy-robustness-latency can
be jointly optimized.
Super-Resolution Model. An important component in our
design is the super-resolution model. Among various options,
we opt for a GAN-based model since we found that it can

achieve the right balance between robustness and complexity.
The alternative option is using a more sophisticated model,
e.g., a diffusion-based system [50]. While we expect that
such a model would perform better (in terms of robustness
and accuracy), it incurs orders of magnitude higher overhead
(latency, memory, etc.).

Alternatively, the other extreme is using a much simpler
upsampling strategy to further reduce the complexity. While
we considered this, our initial analysis showed that simpler
models are significantly more vulnerable to low-noise dis-
tributed attacks. Even worse, they are far more vulnerable to
adaptive white-box attacks where an adversary creates patches
that are resistant to up/downsampling. In Section VI, we study
our model’s robustness against white-box attacks and show
that SuperPure retains decent robustness even in the presence
of an adaptive attack.
Stop Condition. Another important factor in optimizing end-
to-end latency is the stop condition. There is a tradeoff
between the number of iterations and end-to-end latency. On
one hand, more iterations are necessary to enhance robustness
(see Figure 2). On the other hand, fewer iterations result in
lower latency. We address this balance by implementing a
dynamic stop condition method (see lines 6-7 in Algorithm
1) based on a user-defined parameter (ϵ). In Section VI, we
examine the impact of different thresholds on robustness.
Overall, our results demonstrate that SuperPure can achieve
high robustness without requiring an excessively large number
of iterations (fewer than ten on average), enabling it to attain
both efficiency and robustness simultaneously.

V. RESULTS

In this section, we provide a comprehensive evaluation
of SuperPure. We describe the experimental setup in Sec-
tion V-A, followed by a presentation of the robustness analysis
against various patch attacks in Section V-B. We also report
the computation overhead results (latency and memory usage)
in Section V-C.

Specifically, the goal of our analysis is to answer the
following research questions:

• Q1: Compared to state-of-the-art, how robust SuperPure
is against singular (localized) patch attacks?

• Q2: Is SuperPure robust against distributed patch attacks
(as opposed to state-of-the-art)?

• Q3: Is SuperPure robust against white-box attacks?
• Q4: Compared to prior methods, what is the computation

complexity of SuperPure?
In addition to answering these questions, we provide an

extensive ablation study in Section VI to further analyze the
important factors in jointly optimizing robustness-accuracy-
latency.

A. Experimental Setup

In this section, we detail the experimental setup used to
evaluate the effectiveness of our proposed method against
adversarial patch attacks. We describe the datasets, classifiers,
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Fig. 4. Quality results for SuperPure before (top) and after purification (down).

super-resolution setup, attack configurations, and evaluation
metrics.

1) Datasets: Similar to prior work [14], we conduct our
experiments using the ImageNet dataset [21], specifically uti-
lizing a subset of the validation set to assess the performance
of our method. From the validation set, we select five images
per class, resulting in a total of 5,000 images across the
1,000 classes. This subset provides a diverse and representative
sample for evaluating the robustness of our approach.

2) Classifiers: To demonstrate that our method is truly
classifier-agnostic, we evaluate it on three architecturally
distinct network families: EfficientNet-B0 [51], ResNet-152
v2 [52], and ViT-B/16 [4].

EfficientNet-B0 is part of the EfficientNet family, which
utilizes compound scaling to balance network depth, width,
and resolution. We use a PyTorch-provided checkpoint trained
on ImageNet [53].

ResNet-152 v2 is a deep residual network with 152 layers,
incorporating identity mappings to facilitate the training of
very deep architectures. We use a PyTorch-provided check-
point trained on ImageNet [53].

ViT-B/16 is a Vision Transformer model that tokenizes an
input image into 16 × 16 patches and processes them via a
Transformer-based architecture to capture global context. We
use a PyTorch-provided checkpoint trained on ImageNet [53].

These three models are notably diverse in design: Effi-
cientNet focuses on compound scaling, ResNet employs deep
residual blocks, and ViT adopts a patch-based Transformer
architecture. By testing on these fundamentally different
paradigms, we thoroughly assess the robustness and generality
of our proposed defense across a wide spectrum of network
architectures.

3) SuperPure and Super-Resolution Model Setup: Our
method leverages super-resolution techniques to mitigate the
impact of adversarial patches. Specifically, we use the Real-
ESRGAN models [49] for image upsampling, which serve
to diminish the adversarial perturbations introduced by the
attacks. We choose Real-ESRGAN due to (a) its minimal

domain overlap with ImageNet (it is not trained on Ima-
geNet), (b) the availability of publicly released checkpoints
for reproducibility, and (c) its GAN-based speed advantage
over diffusion-based methods—crucial when it must be called
multiple times in our pipeline.

We employ two versions of Real-ESRGAN; one that up-
samples images by a factor of four, and another by a factor of
two. The choice of these numbers is based on our preliminary
analysis. We also considered other factors, but ultimately
observed that four and two achieve the best balance between
robustness and latency.

For both models, we use the checkpoints provided by the
original authors, which were trained on the DIV2K [54],
Flickr2K [55], and OutdoorSceneTraining (OST) dataset [56].
Note that ImageNet, our evaluation dataset, was not included
in the Real-ESRGAN training set. We believe that fine-tuning
on ImageNet could further improve our results. However, our
following results show that SuperPure can achieve excellent
performance even without fine-tuning.

Unless stated otherwise, for all our experiments, we set λ =
.7 and ϵ = 4 (pixels).

4) Adversarial Attacks: To evaluate the robustness of our
method, we generate adversarial patches using the Masked
Projected Gradient Descent (Masked PGD) method. Following
the approach used in PatchGuard [13] and PatchCleanser [14],
we use the following attack configuration:

• Maximum Perturbation (ϵ): Set to 1 (with pixel values
normalized to the [0, 1] range).

• Number of Iterations: 100 iterations.
• Step Size: 0.05 per iteration.
• Random Start: Each attack began from a random point

within the allowed perturbation range.
• Optimization Strategy: Loss function evaluated every 10

iterations to select the sample that maximized the loss.
• Patch Location: Randomized for each image to simulate

unpredictable attack scenarios.
• Patch Sizes: Patches of sizes 16 × 16, 32 × 32,
48 × 48, 64 × 64, and 96 × 96 pixels (approximately
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TABLE I
ROBUSTNESS OF DIFFERENT DEFENSE METHODS AGAINST SINGLE (LOCALIZED) ADVERSARIAL PATCH ATTACKS ON VIT, EFFICIENTNET, AND RESNET

CLASSIFIERS.

Model Defense Method Patch Size

0 (no attack) 16×16 32×32 48×48 64×64 96×96

ViT

No Defense 74.84 38.02 4.32 00.50 0.16 0.00
PatchCleanser [14] 72.10 54.33 44.21 35.3 30.74 20.72
PAD [11] 44.76 46.58 47.04 46.36 45.62 41.64
SuperPure 74.96 74.30 73.66 72.86 70.36 62.76
SuperPure+ 82.98 80.70 77.82 77.52 74.66 65.9

EfficientNet

No Defense 60.76 30.82 5.12 0.82 0.20 0.02
PatchCleanser [14] 57.98 43.60 38.46 27.46 22.66 10.92
PAD [11] 34.70 35.30 34.70 33.94 32.72 26.02
SuperPure 61.10 59.76 58.34 55.98 52.42 41.86
SuperPure+ 69.08 63.54 60.48 54.12 46.72 28.22

ResNet

No Defense 71.70 45.10 24.52 14.28 4.38 0.10
PatchCleanser [14] 68.98 56.72 51.64 41.28 33.82 19.66
PAD [11] 48.19 50.10 50.28 49.38 45.04 43.30
SuperPure 71.20 70.48 70.10 68.52 66.20 58.18
SuperPure+ 79.86 76.74 76.30 74.20 70.64 57.84

0.5%, 2%, 4.6%, 8.2%, and 18.4% of the average size of
ImageNet [21] images respectively).

In addition to singular localized patches, we also consider
distributed patches. Specifically, we create new patches using
the method proposed by DorPatch [1]. This attack uses a patch
budget of 12%, a density of 0.1%, and a maximum of 5, 000
iterations. It evaluates the ability of our method to handle
sparse yet effective perturbations designed to evade detection.

5) Evaluation Metrics: We use clean accuracy (top-1) and
robust accuracy as our primary evaluation metrics. Clean
accuracy refers to the proportion of clean test images that
our defended model correctly classifies. Robust accuracy is
similarly defined as the proportion of adversarial test images
accurately classified by our model. Additionally, we measure
per-example inference time (s/img) to assess computational
overhead.

We also report the defense performance of two state-of-
the-art methods: PAD [11] and PatchCleanser [14], for com-
parison. We use the optimal defense settings stated in their
respective papers; note that since PatchCleanser is dependent
on patch size, we tested multiple configurations (window sizes)
and chose the best results to report. Figure 4 presents the
quality results.

6) Hardware Setup for Latency Measurement: All latency
measurements are conducted using an NVIDIA RTX 4090
GPU with 24 GB of memory to ensure precise and consistent
evaluation of computational performance. We use PyTorch
version 1.12. Our code and results will be open-source.

B. Robustness Results

In this subsection, we present robustness results for our
defense against singular black-box and white-box patches
of varying sizes. We also present results against distributed
patches.

1) Single Patch Attacks: Table I compares the robustness of
our defense method against PatchCleanser [14] and PAD [11]

for clean (patch size 0) and singular adversarial patch samples
on EfficientNet and ResNet models.

We denote our approach without the last enhancement step
as SuperPure and with enhancement as SuperPure+. As shown
in Table I, both SuperPure and SuperPure+ demonstrate sig-
nificant robustness improvements over other defense methods
under varying patch attack sizes.

On the smallest patches of size 16 × 16, SuperPure+
achieves 63.54% and 76.74% Top-1 accuracy on EfficientNet
and ResNet, respectively, compared to 30.82% and 45.10%
for the baseline with no defense. For a patch size of 48× 48,
SuperPure+ achieves 54.12% accuracy on EfficientNet and
74.20% on ResNet, while the highest-performing baseline
defense (PAD) only reaches 33.94% and 49.38% on the
respective models. Even with the largest patch size tested
(96 × 96), SuperPure+ achieves 28.22% Top-1 accuracy on
EfficientNet and 57.84% on ResNet. This result is significantly
higher than the no-defense baseline (close to 0% for both clas-
sifiers) and surpasses PatchCleanser and PAD, confirming our
method’s robustness against severe adversarial perturbations.
Similar results can be observed for ViT, where SuperPure
and SuperPure+ consistently perform better compared to prior
works.

An additional noteworthy aspect of our results is the clean
accuracy achieved by both SuperPure and SuperPure+. On
clean, unaltered images (patch size 0), SuperPure maintains
strong Top-1 accuracy, while SuperPure+ exhibits even better
performance, achieving 82.98% on ViT, 69.08% on Efficient-
Net, and 79.86% on ResNet. These results underscore that our
defense methods not only provide mitigations for attacks but
also retain high accuracy for benign situations.

For SuperPure+, the clean accuracy is higher than the
baseline configuration with no defense and no attack by around
8% for all models (74.84% for ViT, 60.76% for EfficientNet,
and 71.7% for ResNet). Specifically for the ResNet classifier,
SuperPure+ achieves higher accuracy on adversarial samples
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than the baseline no defense on clean images up to a patch size
of 48×48, and shows comparable performance at 64×64. This
indicates that our enhancement step contributes a dual benefit:
superior robustness to adversarial patches and improved
accuracy on clean inputs. The key reason for this is due to
the super-resolution-based enhancement strategy described in
Section IV-D. We further study the impact of enhancement in
our ablation study (Section VI-B).

2) Distributed Patch Attacks: Unlike localized adversarial
patches that occupy a single, contiguous region, distributed
patches fragment perturbations into multiple sub-regions, mak-
ing it harder for a single masking window to neutralize the
entire patch. DorPatch [1] follows this principle by scattering
its patch budget across many smaller pieces. Consequently,
each piece can use a lower noise amplitude, which both
reduces visibility and maintains high adversarial effectiveness.

Table II compares our defense with PatchCleanser and PAD
against DorPatch. Even though DorPatch and standard patches
share the same overall budget, distributing that budget means
partial masking has less impact on the attack. This makes
certifiable defenses like PatchCleanser—which relies on cov-
ering a single contiguous area—ineffective (robustness stays
at 0% under DorPatch), whereas SuperPure+ still defends
successfully with 59% accuracy.

While SuperPure cannot purify distributed patches, the
enhancement step in SuperPure+ (see Section IV-D) remains
effective at removing these scattered perturbations, allowing
our defense to handle sophisticated multi-patch threats that
circumvent single-window defenses like PatchCleanser.

Notably, DorPatch leverages low noise amplitude patches
that subtly alter the image, rendering a purely threshold-based
masking (i.e., SuperPure– without enhancement) ineffective:
the per-pixel differences often lie below the threshold and thus
remain unmasked. In contrast, SuperPure+ adds an enhance-
ment step to purify small, distributed perturbations, allowing
our defense to handle DorPatch’s scattered, low-amplitude
noise when other single-window or simple threshold-based
defenses fail.

3) Adaptive White-Box Attacks: We also evaluate our de-
fense under an adaptive white-box threat model, where the
adversary has complete access to both our purification network
(including the super-resolution module and our method) and
the target classifier. This means the attacker can compute
gradients through every component of our defense to craft
adversarial patches tailored explicitly to our defense mecha-

TABLE II
EFFECTIVENESS AGAINST DISTRIBUTED DORPATCH [1] ATTACK. THE

ENHANCEMENT STEP IN SuperPure+ MAKES OUR SYSTEM ROBUST.

Method Clean Accuracy DorPatch Robustness

No Defense 72% 0%
PatchCleanser [14] 69% 0%
PAD [11] 48% 39%
SuperPure 71% 0%
SuperPure+ 80% 59%

TABLE III
ROBUST ACCURACY (%) UNDER WHITE-BOX ATTACKS ON RESNET.

Defense Patch Size

48×48 64×64

Naı̈ve Down&Up (white-box) 9.12 4.89
PatchCleanser [14] (non–white-box) 41.28 31.28
SuperPure/SuperPure+ (ours, white-box) 60.38 51.52

nism.
As shown in Table III, which compares the robust accuracy

of three different defenses—Naı̈ve Down&Up, PatchCleanser,
and our method SuperPure+—against adversarial patches of
size 48 × 48 and 64 × 64 on ResNet1, a simple “Naı̈ve
Down&Up” defense completely fails when facing an adaptive
attacker. This naive approach applies a fixed downsampling
followed by upsampling in hopes of smoothing out adversarial
noise. However, under a white-box setting where the attacker
has the knowledge of this defense, it becomes trivial for the
attacker to generate perturbations that survive such transfor-
mations. As a result, the robust accuracy drops sharply to only
9% and 5% for patch sizes of 48×48 and 64×64, respectively.

PatchCleanser, which is not differentiable and thus not
directly applicable in a white-box setting, is evaluated here
under its own original (black-box) setup. While it performs
better than the naive method in that setting (41.28% and
31.28%), it still falls short compared to our method. In
contrast, our proposed SuperPure+ is evaluated in a fully
adaptive white-box setting, where the attacker has complete
access to the super-resolution model and can backpropagate
through the entire pipeline. Despite this, our method maintains
robust accuracy of 60.38% and 51.52%, significantly out-
performing both the naive baseline and PatchCleanser—even
though the latter operates under a more favorable (black-box)
scenario. This strong robustness, even under white-box con-
ditions, stems from the inherent nonlinearity and complexity
of our defense pipeline. Unlike simple smoothing operations,
our method first projects inputs into a more natural image
manifold using a deep super-resolution network, then applies
a masking and enhancement mechanism that further disrupts
adversarial structures. Because the entire purification process
is nonlinear and includes operations that do not preserve
gradients in a predictable way, it becomes significantly harder
for the attacker to generate perturbations that survive all these
transformations. As a result, even with full access to our model
and the ability to compute gradients through it, the adversary
struggles to construct successful attacks. The resulting drop in
robust accuracy compared to the black-box setting is relatively
small, demonstrating that our method retains strong practical
resilience—even in challenging adaptive white-box scenarios.

1We report results for two patch sizes on a single model due to the
high computational cost of white-box experiments. However, based on prior
findings, we believe these results are representative and likely transferable to
other models and patch sizes.
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TABLE IV
END-TO-END LATENCY.

Method Time (s)

SuperPure/SuperPure+ 0.53 / 0.58
PatchCleanser-Efficient/ PatchCleanser [14] 3.89 / 36.63
PAD 8.80

C. Computation Overhead

1) Latency: Another major benefit of Super-
Pure/SuperPure+ is its superior end-to-end latency
compared to prior work. To highlight this, we compare
SuperPure/SuperPure+ to PatchCleanser and PAD.
Specifically, we employ two different setups for Patch
Cleanser. One setup used a larger masking window, resulting
in fewer masks (16), which we refer to as PatchCleanser-
Efficient. The other setup used a smaller masking window,
increasing the number of masks (49) for greater robustness.
These setups are evaluated on ResNet.

As shown in Table IV, our method SuperPure+ takes 0.58
seconds per image, and SuperPure takes 0.53 seconds per im-
age, both significantly faster than even Patch Cleanser Efficient
(3.89 seconds). Additionally, our approach is substantially
faster than regular Patch Cleanser (36.63 seconds) and PAD
(8.8 seconds). This significant reduction in latency makes
our approach more practical for real-world scenarios while
still remaining effective against both localized and distributed
physical patch attacks.

The key reason for this improvement over state-of-the-art
methods lies in the design decisions detailed in Section IV-E.
Specifically, compared to PatchCleanser, SuperPure+ requires
significantly fewer steps. Likewise, compared to PAD, our
per-iteration analysis is much simpler, involving only a GAN-
based super-resolution and straightforward downsampling.

2) GPU Memory Overhead: Table V provides the GPU
memory overhead comparison for each method, excluding the
classifier. Since PatchCleanser does not rely on any external
model, its overhead is effectively zero. In contrast, both our
method and PAD require external models, resulting in higher
GPU overhead. This trade-off, however, is justified by the
improved robustness and speed offered by our approach.

TABLE V
GPU MEMORY OVERHEAD

Method GPU Memory Usage

PatchCleanser [14] 0
PAD [11] 5290M
SuperPure 1895M
SuperPure+ 2087M

D. Comparison with PatchCURE

We also compare SuperPure against PatchCURE [15], a
recent state-of-the-art extension of PatchCleanser that modifies
model architectures (e.g., ViT-SRF) to improve performance
and efficiency while preserving roughly the same robustness as

PatchCleanser. Its pipeline first uses an SRF (small receptive
field) sub-model to extract an intermediate feature map so
that only part of the features is corrupted; it then applies a
secure operation that typically requires multiple calls to a large
receptive field (LRF) sub-model. Because these architectural
changes require partial retraining, PatchCURE is not a simple
plug-and-play solution and is thus omitted from our main
comparisons (Section V-B). Instead, we conduct a targeted
evaluation on ImageNet classification with a 32 × 32 patch,
using the pretrained ViT-SRF model from PatchCURE. For
our own defense, we rely on the same pretrained ViT model
that underpins our broader evaluations, ensuring consistency
across all tested approaches.

TABLE VI
COMPARISON WITH PATCHCURE [15] ON VIT (IMAGENET, 32× 32
PATCH). “RETRAIN” INDICATES WHETHER THE METHOD REQUIRES

CLASSIFIER RETRAINING.

Method Clean (%) Robust (%) Retrain?

PatchCURE [15] 72 41 Yes
SuperPure 80 75 No
SuperPure+ 83 79 No

As shown in Table VI, our approaches SuperPure and Su-
perPure+ substantially outperform PatchCURE in both clean
accuracy and robustness. In particular, SuperPure+ achieves an
absolute gain of 38% in robustness and 11% in clean accuracy
compared to PatchCURE. More importantly, PatchCURE still
mandates partial retraining when modifying the classifier,
increasing deployment complexity and overhead. By contrast,
our approach is entirely plug-and-play, requiring no classifier
modifications—thus highlighting the practicality, efficiency,
and scalability of our proposed method for real-world appli-
cations.

TABLE VII
LATENCY COMPARISON ON A JETSON DEVICE FOR VIT-BASED SETUPS.

Method Latency (s) Repeated Classifier?

PatchCleanser [14] >50 Yes
PatchCURE [15] 12 Partial
SuperPure 0.67 No (single pass)
SuperPure+ 0.72 No (single pass)

Finally, Table VII compares the end-to-end latency on a
Jetson device using ViT-based setups. PatchCleanser requires
over 50 s, whereas PatchCURE reduces the total inference
time to about 12 s. By contrast, our method needs only
0.67 s—thanks to a single-pass purification strategy that elim-
inates repeated classifier calls. These results confirm that
SuperPure exceeds PatchCURE not only in accuracy and
robustness but also in latency-critical scenarios, all while
maintaining a plug-and-play design with no modifications to
existing classifiers.
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VI. ABLATION STUDIES

A. Iterations to Convergence

Figure 5 demonstrates the relationship between patch size,
Top-1 accuracy, and the average number of iterations to
convergence for ResNet model in the contexts of SuperPure
and SuperPure+.
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Fig. 5. Relationship between patch size, accuracy, and average number of
iterations until convergence.

As seen in the figure, the average number of iterations
needed for convergence increases as the patch size grows,
suggesting that our method is able to adapt to different patch
sizes for computational efficiency. In scenarios where there is
no patch present, SuperPure+ only requires around 3 iterations
on average before stopping. As the patch size increases, the
number of iterations rises accordingly, reflecting the greater
complexity of defending against larger adversarial patches.
Note that the number of iterations for EfficientNet and ResNet
are slightly different because patches are generated specifically
for each classifier.

B. Effect of Enhancement

An integral component of our algorithm includes the option
to enable or disable a feature we refer to as “enhancement,”
i.e., the difference between SuperPure and SuperPure+. As
described in Section IV-D, this feature involves a two-step
process where the input image is first up-sampled to a higher
resolution and then down-sampled back to its original dimen-
sions. In Table I, we observe that enhancement is not only
essential for defending against smaller, distributed patches but
also beneficial for robustness for clean images and singular
adversarial patches.

To better understand the role of enhancement, we conduct
experiments where we apply this process, without iterative
masking, to clean images. In addition to the ResNet and
EfficientNet architectures, we evaluate three other classifiers:
VGG-16 with batch normalization [57], WideResNet-50-2:
[58], and ViT-B/16 [4]. The results reported in Table VIII
reveal that top-1 accuracy increases by an average of ap-
proximately 10 percentage points. We can see in Figure 6
that enhancement improves the visual quality of images, with

Fig. 6. Clean images before (top) and after (bottom) enhancement.

clearer boundaries and more defined textures, which may aid
the model in focusing on key features for classification.

TABLE VIII
THE IMPACT OF ENHANCEMENT ON TOP-1 CLEAN ACCURACY.

Model Standard Enhanced Change

EfficientNet-B0[51] 60.76% 70.60% +9.84%
WideResNet-50-2[58] 61.00% 74.46% +13.46%
VGG-16 with BN[57] 47.12% 58.28% +11.16%
ViT-B/16[4] 74.84% 84.82% +9.98%
ResNet-152 V2[52] 71.70% 81.52% +9.82%

C. Effect of Masking Threshold
Figure 7 illustrate the impact of the masking threshold, λ,

on classifier accuracy and the average number of iterations
until convergence. We observe that a low masking threshold
leads to suboptimal accuracy, with the most effective range
being around 0.75, although performance begins to plateau at
approximately 0.6. The average number of iterations is notably
higher at lower thresholds, as a lower threshold increases the
likelihood of masking more pixels at each iteration. The lowest
number of iterations occurs near a threshold of 0.55, but as the
threshold increases beyond this point, the number of iterations
rises, possibly because fewer pixels are masked per iteration.
If the threshold is too high, the number of iterations drops,
but accuracy also shows a slight decline.

D. Effect of Super Resolution
The primary reason for using a super-resolution model

like Real-ESRGAN instead of a simple downsampling and
upsampling operation is that GAN-based models aim to map
the image distribution closer to that of natural images. In
contrast, naive upsampling and downsampling merely perform
basic averaging, which can be exploited by attackers. Specif-
ically, an attacker can craft sufficiently smooth noise, so it
remains unchanged after downsampling and upsampling. We
demonstrate this in Figure 8. In this comparison, the threshold
and setup remain consistent, with the only difference being that
the naive method replaces the GAN-based model with simple
upsampling. The results show that, unlike our approach, the
naive method fails to mask the adversarial patch effectively.
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Fig. 7. Effect of changing threshold (λ) on top-1 accuracy and average
iterations for ResNet and Patch Size= 64.

Fig. 8. (a) White-box attack with the smoothed adversarial patch. (b) Result
after applying the naive defense, which fails because the adversarial patch
is smoothed. (c) Output of our proposed model, successfully masking the
adversarial patch.

E. Additional Results

We provide additional results for different experiments,
including results on the COCO (object detection) dataset,
distributed white-box patches, and alternative solutions in
Appendix A (A1-A6).

VII. CONCLUSIONS

In this paper, we proposed a new model-agnostic defense
method against both singular and distributed patch attacks.
SuperPure utilizes discrepancies between the outputs of a
reconstructed image using a super-resolution GAN and the
original input to mask adversarial regions; for smaller, less
perceptible patches, SuperPure includes an enhancement step
(SuperPure+) to filter adversarial perturbations missed by the
masking process. Through extensive experiments, we demon-
strated the superior robustness of our method compared to
prior work, showcasing its ability to defend effectively against
a variety of patch-based adversarial attacks.
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[48] C. Guo, M. Rana, M. Cissé, and L. van der Maaten, “Countering adver-
sarial images using input transformations,” in International Conference
on Learning Representations, 2018.

[49] X. Wang, L. Xie, C. Dong, and Y. Shan, “Real-esrgan: Training real-
world blind super-resolution with pure synthetic data,” in Proceedings of
the IEEE/CVF international conference on computer vision, pp. 1905–
1914, 2021.

[50] W. Nie, B. Chen, A. Anandkumar, and J. Huang, “Diffusion models for
adversarial purification,” in Advances in Neural Information Processing
Systems, 2022.

[51] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for con-
volutional neural networks,” in International conference on machine
learning, pp. 6105–6114, PMLR, 2019.

[52] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual
networks,” in Computer Vision–ECCV 2016: 14th European Conference,
Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part
IV 14, pp. 630–645, Springer, 2016.

[53] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances in
neural information processing systems, vol. 32, 2019.

[54] E. Agustsson and R. Timofte, “Ntire 2017 challenge on single image
super-resolution: Dataset and study,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition workshops, pp. 126–
135, 2017.

[55] R. Timofte, E. Agustsson, L. Van Gool, M.-H. Yang, and L. Zhang,
“Ntire 2017 challenge on single image super-resolution: Methods and
results,” in Proceedings of the IEEE conference on computer vision and
pattern recognition workshops, pp. 114–125, 2017.

[56] X. Wang, K. Yu, C. Dong, and C. C. Loy, “Recovering realistic
texture in image super-resolution by deep spatial feature transform,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 606–615, 2018.

[57] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in International Conference on Learning
Representations, 2015.

[58] S. Zagoruyko and N. Komodakis, “Wide residual networks,” in British
Machine Vision Conference 2016, British Machine Vision Association,
2016.

[59] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in European Conference on Computer Vision (ECCV), pp. 740–
755, 2014.

[60] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Neural Information
Processing Systems (NeurIPS), pp. 91–99, 2015.

[61] Y. Chen, J. Zhao, and ..., “Dpatch: An adversarial patch attack on object
detectors,” in CVPR, 2022.

[62] “Adversarial robustness toolbox (art),” 2023. Available at:
https://adversarial-robustness-toolbox.readthedocs.io/.

[63] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” tech. rep., University of Toronto, 2009.

[64] J. Ho, C. Saharia, and T. Salimans, “Image super-resolution via iterative
refinement (sr3),” arXiv preprint arXiv:2104.07636, 2021.

APPENDIX

A. COCO & DPatch Attack

We evaluate SuperPure on the COCO dataset [59] using
Faster R-CNN [60] for object detection, under a DPatch
threat [61]. DPatch stands for “An Adversarial Patch Attack on
Object Detectors” and we generated the patch using the frame-
work provided by the Adversarial Robustness Toolbox [62].
Specifically, the attack inserts a 96 × 96 adversarial region
designed to disrupt detection performance.
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1) Experimental Setup: We do not retrain or modify the
detector; instead, we apply SuperPure to each adversarial
image, then feed the purified output into the original Faster R-
CNN. This underscores SuperPure’s plug-and-play capability,
as no task-specific retraining is required.

2) Results and Observations: Table IX summarizes the
micro-precision on randomly selected COCO pictures. Clean
detection accuracy of 60% plunges to 35% under DPatch, but
SuperPure restores it to 58%, indicating robust generalization
beyond classification tasks.

TABLE IX
FASTER R-CNN [60] ON COCO [59] WITH DPATCH [61] (96× 96).

Model Clean Attack After SuperPure

Faster R-CNN 60% 35% 58%

Figure 9 shows an example COCO image before and after
purification. On the left (a), the original image with a 96×96
DPatch is shown. On the right (b), SuperPure effectively
neutralizes the patch while minimally affecting the rest of
the scene. These results confirm that SuperPure successfully
purifies adversarial patches on COCO and remains applicable
to diverse vision tasks.

Fig. 9. Visual results on COCO: (a) original adversarial image (DPatch), (b)
purified by SuperPure. The 96× 96 patch is successfully mitigated.

B. Distributed White-Box Patches vs. PatchCleanser

In this section, we explore distributed adversarial patches
where multiple 32 × 32 regions are placed throughout the
image. Crucially, the attacker has white-box knowledge of
our SuperPure method, specifically crafting these patches
to exploit SuperPure’s iterative masking. We also evaluate
PatchCleanser [14] under the same multi-patch distribution for
comparison, even though PatchCleanser itself does not operate
in a white-box mode.

1) Experimental Setup: For each experiment, we increment
the number of 32×32 patches scattered across the image. The
total adversarial area thus becomes increasingly fragmented,
posing a stronger challenge. While SuperPure faces a white-
box attacker, PatchCleanser is tested as-is. This setup high-
lights the difference in how each defense copes with multiple
small patches.

2) Results and Observations: Figure 10 plots the robust
accuracy as the number of distributed patches increases. De-
spite the attacker’s full knowledge of SuperPure, our method
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Fig. 10. Comparison of the impact of increasing the number of patches
in a white-box attack between our method and Patch Cleanser. Each patch
measures 32×32, with a (low) noise level of 8/255.

preserves high robustness. In contrast, PatchCleanser [14]
degrades rapidly as more patches are introduced.

a) Discussion.: These experiments confirm:
• Iterative Masking Under White-Box Attacks. Even

when the attacker tailors multiple patches with inside
knowledge of SuperPure, its repeated non-linear recon-
structions still hinder patch survival.

• PatchCleanser Limitations. Although PatchCleanser
performs well against fewer/larger patches, it fails to
maintain robustness when faced with many distributed
patches.

Hence, SuperPure outperforms PatchCleanser in complex,
high-fragmentation adversarial scenarios.

C. Evaluation on CIFAR-10 & CIFAR-100

We additionally tested SuperPure on the CIFAR-10 and
CIFAR-100 datasets [63] to assess its generalization to
smaller-resolution images. We employed a ResNet-18 [3]
model initially pretrained on ImageNet [21] and then fine-
tuned for each CIFAR dataset. Since we use a 32 × 32
adversarial patch, we upscaled each 32 × 32 CIFAR image
to 256 × 256 so that the patch would not occupy the entire
image, thus creating a realistic test scenario for our iterative
defense.

1) Experimental Setup and Preliminary Results: Table X
shows the accuracy on clean CIFAR images, the accuracy
under the 32×32 patch attack, and the recovered accuracy after
applying SuperPure. Despite the aggressive upscaling, Super-
Pure substantially mitigates adversarial damage, suggesting
that its iterative down-up masking pipeline is dataset-agnostic
and does not rely on large native resolutions.

TABLE X
CIFAR-10 AND CIFAR-100 RESULTS USING A FINE-TUNED RESNET-18

(IMAGES UPSCALED TO 256× 256).

Dataset Clean Attack After SuperPure

CIFAR-10 94.60% 2.38% 85.78%
CIFAR-100 80.09% 2.06% 62.26%
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Fig. 11. Reconstruction error across adversarial patch regions versus non-
patch regions, illustrating that patched pixels exhibit significantly higher mean
squared error (MSE) post-GAN upsampling.

These preliminary findings highlight SuperPure’s resilience
against patch-based adversarial threats, even for comparatively
small datasets.

D. Alternative SR: Diffusion-Based Models

In the main paper, we selected Real-ESRGAN for super-
resolution due to its relatively fast inference, which is critical
for our iterative down-up cycles. However, recent diffusion-
based SR approaches, such as SR3 [64], can sometimes yield
higher-quality reconstructions. We briefly experimented with
SR3 to explore this trade-off.

1) Latency vs. Robustness Trade-off: Our tests show that
while SR3 can improve image fidelity slightly, it is signifi-
cantly slower. On a single image, SR3 may take several sec-
onds, making multiple passes impractical. By contrast, Real-
ESRGAN performs sufficiently fast to allow repeated down-up
cycles. Moreover, we observed only minor differences in over-
all adversarial robustness between SR3 and Real-ESRGAN,
reaffirming that any sufficiently non-linear SR method can
disrupt patch artifacts effectively, as long as it shifts images
closer to the natural manifold.

a) Conclusion.: If speed is not a concern, a diffusion-
based SR might enhance the final visual quality slightly more.
However, for our repeated masking design, a lightweight and
relatively fast SR generator remains more suitable for real-time
or large-scale deployment.

E. Effect of Rescaling Order

Table XI presents the effect of reversing the rescaling order
(i.e., down-up vs. up-down) during the masking phase on
accuracy, evaluated at various patch sizes. Specifically, the
table compares the accuracy (SuperPure Acc.) of SuperPure,
which downsamples the image before super-resolution in the
masking phase, against a reversed approach that upsamples
first (Reverse Acc.). The results show that the performance

TABLE XI
ACCURACY VS. PATCH SIZE FOR REVERSING ORDER OF RESCALING IN

THE MASKING PHASE

Patch Size SuperPure Acc. Reverse Acc.

0×0 71.20% 69.66%
16×16 70.48% 69.90%
32×32 70.10% 69.52%
48×48 68.52% 68.30%
64×64 66.20% 65.90%
96×96 58.18% 58.66%

differences are modest for all patch sizes, confirming that
the similar mechanisms of the two pipelines (as outlined in
Section IV-E) translate to similar performance in terms of
robustness.

F. Reconstruction Error Visualization

In Figure 11, we illustrate an example image where the
adversarial patch region shows distinctly higher reconstruction
error than non-patch areas after GAN upsampling.
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