
ar
X

iv
:2

50
5.

16
26

3v
1 

 [
cs

.C
R

] 
 2

2 
M

ay
 2

02
5

All You Need is "Leet": Evading Hate-speech Detection AI
Sampanna Yashwant Kahu∗

sampanna@vt.edu
Virginia Tech

Blacksburg, Virginia

Naman Ahuja∗
namanahuja@vt.edu

Virginia Tech
Blacksburg, Virginia

ABSTRACT
Social media and online forums are increasingly becoming popular.
Unfortunately, these platforms are being used for spreading hate
speech. In this paper, we design black-box techniques to protect
users from hate-speech on online platforms by generating perturba-
tions that can fool state of the art deep learning based hate speech
detection models thereby decreasing their efficiency. We also en-
sure a minimal change in the original meaning of hate-speech. Our
best perturbation attack is successfully able to evade hate-speech
detection for 86.8 % of hateful text.

The source code and data used in this work is available at:
https://github.com/SampannaKahu/all_you_need_is_leet.

CCS CONCEPTS
• Security and privacy → Malware and its mitigation; Soft-
ware and application security; • Computing methodologies
→ Machine learning.

KEYWORDS
adversarial input generation, black-box attack, machine learning

1 INTRODUCTION
Hate speech has been rampant on the internet recently. Such harm-
ful texts expose children and even adults to unwanted and unsafe
content, and may also lead to polarization of opinions to cause
conflicts. Considering the scale of the internet and social media
platforms today, it is very difficult to enforce legislation in the vir-
tual world. Thus, the need of the hour is to come up with ways
to suppress this plague. With the advancements in computational
power, many companies are actively working to create state of the
art deep learning models to detect hate speech. Microsoft offers
Content Moderator[13], a machine-assisted content moderation
API for images, text, and videos. Facebook[19] in 2019 at its an-
nual tech conference F8 claimed that they have made detection
of hate content faster by using self-supervised learning. Also, it
has recently banned various individuals cited for hate speech at its
platform. The Perspective API[12] from Jigsaw (a part of Google’s
parent company Alphabet) gives online comment moderators an
evolving set of tools to combat abuse and harassment. Some of these
models are provided as Machine Learning-as-a-Service (MLaaS).
Generally, the model is deployed on the cloud servers, and users
can only access the model via an API. Note that the free usage
of the API might be limited among these platforms. Though deep
neural network models have exhibited state-of-the-art performance
in a lot of applications, recently they have been found to be vul-
nerable against adversarial examples which are carefully generated
∗Both authors contributed equally to this research.

by adding small perturbations to the legitimate inputs to fool the
targeted models[3][5]. The power of deep learning methods can-
not be denied, but applications of such adversaries raise serious
concerns. Earlier works[17] have shown that even if the attacker
has only a black box access to the model via an API, that is, the at-
tacker is not aware of themodel architecture, parameters or training
data, and is only capable of querying the target model with output
as the prediction or confidence scores, it is possible to affect the
model outputs through adversarial inputs. The aim of this research
project is to design black-box techniques to protect users from
hate-speech on online platforms by generating perturbations that
can fool state of the art deep learning based hate speech detection
models, hence decreasing their efficiency. We also want to ensure
minimum change in the original meaning of hate-speech. Thus, we
measure the change this perturbation brings to the original text.
After explaining and evaluating the performance of perturbation
attacks, we propose some methods to defend against such attacks.

1.1 Motivation
The increasing popularity of social media platforms like Youtube,
Facebook and Twitter have revolutionized communication, content
sharing and advertisement. But, the anonymity offered by these
platforms has led to an exponential increase in hate speech propa-
gation on these platforms. American Bar Association defines hate
speech as a speech that offends or insults groups based on race,
colour, religion, national origin, sexual orientation, disability, or
other traits. They are words that are hurtful, emotionally harmful,
and psychologically stunning. Statistics show that in the US, hate
speech and hate crime is on the rise especially since the Trump
election[1]. As a matter of fact, the German government had threat-
ened to fine social networks up to 50 million euros per year if
they continue to fail to act on hateful postings[6]. Recent surveys
have shown that hate speech has become an almost unavoidable
fact of life on the internet. More than half of Americans (53 per-
cent) say they were subjected to hateful speech and harassment
in 2018[10]. Threats online can spill over into real-world violence
and turn deadly. Robert Bowers, who allegedly killed 11 people
at a Pittsburgh synagogue in 2018, regularly posted anti-Semitic
and neo-Nazi propaganda on Gab, a social network frequented
by right-wing extremists. Cesar Sayoc, who’s accused of mailing
homemade explosive devices last year to critics of President Donald
Trump, made repeated threats against public figures on Twitter[10].
The millions of hateful posts and videos polluting their platforms
represent one of the most pressing challenges for Facebook, Twit-
ter, YouTube and other technology companies. Measures such as
hiring thousands of moderators and training artificial intelligence
software to root out online hate and abuse have not yet solved the
problem. All these instances tell us how important it is to eradicate
the problem of hate on online platforms. The gravity of the matter

https://arxiv.org/abs/2505.16263v1


can be judged by the plethora of international initiatives that have
been launched towards the qualification of the problem and the
development of counter-measures[9].

1.2 Literature Survey
Existing works on adversarial examples mainly focus on the im-
age domain, generation of text-based adversarial samples being
a relatively newer domain. Perturbation in the images can often
be made virtually imperceptible to humans, causing both humans
and state-of-the-art models to disagree. However, in the text do-
main, small perturbations might be clearly perceptible, with the
replacement of a single word drastically altering the semantics
of the sentence. Thus, in general, existing attack algorithms de-
signed for images cannot be directly applied to text. Gröndahl et
al. studied[7] five model architectures presented in four papers
to set up an experimental comparative analysis of state-of-the-art
hate speech detection models and datasets (Wikipedia and Twitter).
They also presented several attacks: word changes, word-boundary
changes, and appending unrelated innocuous words which proved
to be effective against all models. Hosseini et al.[8] demonstrated
the vulnerability of Google’s Perspective system against the adver-
sarial examples. Through different experiments, they show that
an adversary can deceive the system by misspelling the abusive
words or by adding punctuation between the letters. They also
proposed some countermeasures to the proposed attack. But, when
we checked the toxicity of their perturbed text via Perspective API,
it now returns a high toxicity score, making their attacks futile.
Li et al.[11] proposed a framework that can effectively generate
utility-preserving (i.e., keep its original meaning for human readers)
adversarial texts against state-of-the-art text classification systems
under both white-box and black-box settings. In the white-box sce-
nario, they first find important words by computing the Jacobian
matrix of the classifier and then choose an optimal perturbation
from the generated five kinds of perturbations. In the black-box
scenario, they first find the important sentences and then use a
scoring function to find important words to manipulate. Through
their experiments under both settings, they show that an adversary
can deceive multiple real-world online systems with the generated
adversarial texts.

2 METHODOLOGY
2.1 Threat Model
Hate speech detection is being used in the security landscape in an
increasingly wider range of applications. Consequently, understand-
ing the security properties of the mechanisms that are deployed
for hate speech detection has become crucial. The extent to which
we can craft adversarial samples influences the applications of hate
speech defence models. We assume in this paper that the adversary
has black-box access to the hate speech detection model. The ad-
versary is assumed to be operating under the following constraints:

• The adversary has only query access to the model. Specifi-
cally, the adversary can only query the hate speech detection
model API with a sample and will get a score in response (3
scores in case of Hate Sonar). This score is on a scale of 0 to
1 where 0 denotes not hateful and 1 denotes most hateful.
Perspective API [12] can be accessed over HTTPS protocol

while the HateSonar [16] API is exposed as a python library
distributed through PyPI [18]. More details about the API
contracts in the Experimental Setup section.

• The adversary has no knowledge of the architecture of the
hate speech detection model.

• The adversary has no knowledge of the dataset used to train
the model.

• The adversary has rate-limited access to the Perspective
API endpoint. We were able to access 50 Query Per Second
rate-limit for the Perspective API endpoint without many
efforts.

In essence, the adversary can only query the model with a sample
and get back the hateful/ toxicity score. It has no other knowledge
of the model. Needless to say, the adversary has no access to any
gradients of the hate speech detection models. Our attack surface
would be online social media platforms since these are the primary
targets for attackers and often employ hate speech detection models
for curbing hate speech.

2.2 Dataset description and analysis
We used the hate speech dataset by Mondal et al [15]. This dataset
contains total 20,705 posts from Twitter collected in 2014-2015. The
original dataset contains three columns:

• Tweet Id: The unique id of the tweet assigned by Twitter.
• Hate targets extracted from the tweet text: Contains the
groups of people who are the target of that particular tweet.

• Hate categories: Manually labelled hate categories. Table 1.
However, upon request to the authors of [15], we obtained the tweet
texts corresponding to the Tweet Ids in the dataset. Throughout our
work, we mostly work on these tweet texts and ignore the other
information in the dataset.

2.2.1 Dataset analysis on Perspective API. We obtained the toxicity
for each tweet in the dataset by querying Perspective API. Further,
we thresholded the toxicity values using the thresholds mentioned
in Section 2.3.1. Figure 1 shows the category distribution. Further
2 shows how the toxicity of the dataset varies with the toxicity
threshold for Perspective API. From these two figures, we can ob-
serve that most of the tweets in the dataset are toxic according to
Perspective API.

2.2.2 Dataset analysis on HateSonar. Similar to Section 2.2.1, the
category for each example in the dataset was found by querying
the HateSonar model and by using the categorization methodology
mentioned in Section 2.3.1. Figure 3 shows the result.

2.3 Experimental setup
2.3.1 Details about Perspective API and HateSonar. Perspective
API [12] is an online service owned by Google Inc. Behind this
service is a deep learning model based n the CNN architecture. It
uses Gloveword vector embedding and is trained onWikipedia’2014
and Gigaword 5 datasets. These datasets contains 6 billion tokens
and 300K vocab. The data set includes over 100k labeled discussion
comments from English Wikipedia. Each comment was labeled by
multiple annotators via Crowdflower on whether it is a toxic or
healthy contribution [2]. We requested developer access to this
service to be able to use it’s HTTP API. Initially, we were granted

2



Figure 1: Category distribution of dataset according to Per-
spective API

Figure 2: How the toxicity of the dataset varies with toxicity
threshold for Perspective API.

Figure 3: Category distribution of dataset according to HateS-
onar

Table 1: Hate categories with example of hate targets. [15]

Categories Examples of hate targets
Race nigga, nigger, black people, white people

Behavior insecure people, slow people, sensitive people
Physical obese people , short people, beautiful people

Sexual orientation gay people, straight people
Class ghetto people, rich people
Gender pregnant people, cunt, sexist people
Ethnicity chinese people, indian people, paki
Disability retard, bipolar people
Religion religious people, jewish people
Other drunk people, shallow people

developer API access with a rate-limit of 10 queries per second
(QPS). However, upon request to the Perspective API team, this was
later increased to 50 QPS. As per the API contract of Perspective
API, we can pass in a text string within 3000 bytes to the API using
an HTTP POST request and the response will contain the overall
toxicity score of the text string that was passed in the input request.
Further, the HTTP API also supports a span annotation feature.
This feature returns a sentence level toxicity of the input text. For
example, if the input sentence is:

’The quick brown fox jumped over the fence. There are many sheep
in the farm’

then, in the response, the API, along with an overall toxicity
score, will return two sentence-level toxicity scores for each of the
two sentences in the above example. During our experiments, we
also observed that the API did not return any toxicity score for
certain inputs. More details regarding this in the Error handling
section.

For our analysis, we thresholded the toxicity score returned by
Perspective API into three buckets.

• Non-toxic: 0.00 to 0.33
• Maybe-toxic: 0.33 to 0.66
• Toxic: 0.66 to 1.00

HateSonar [16] is an open-source Python library. This model
was trained on the dataset mentioned in [4]. This library hosts
a model in itself, i.e. it does not make any HTTP call over the
network for making deductions. Hence, there are no rate-limits for
querying this model. The authors note that although it might be
possible to get the gradients or have white-box access to this model
through the library, this information was not used for crafting
adversarial samples in this work. The implementation of this model
uses Logistic regressionwith l2 regularization. The overall precision,
recall and F1 score for thismodel are 0.91, 0.90 and 0.90 asmentioned
in [4].

Similar to Perspective API, HateSonar returns scores for a given
input. However, the response of HateSonar differs from Perspective
API in the sense that it returns the confidence scores for three
classes, i.e. hate_speech, offensive_language and neither. For the
purpose of our evaluation, we assume the text to be hateful if the
confidence of neither is not the highest among the three classes.
Although this assumption makes it harder for our perturbation to
perform better, it makes the evaluation fairer. One of the intentions

3



behind doing this was to align the output of HateSonar with that
of Perspective API.

To explain better, for Hate Sonar responses, we thresholded the
response as follows:

• Non-toxic, if the class neither has the highest confidence
score out of the three classes.

• Toxic, if the class neither does not have the highest confi-
dence score out of the three classes.

2.3.2 Finding the most toxic word in the example. We tried two
approaches for determining the most toxic word in the tweet. In
the first approach, we leveraged the span annotation feature of
Perspective API. To achieve this, we added a period before every
space character in the tweet and capitalized every alphabetical
character immediately after space. The intention behind doing this
was to make Perspective API believe that every word in the tweet
is a separate sentence thereby fooling it into returning the toxicity
score of every word. For example, a sentence like:

The quick brown fox jumped over the fence.
was changed to:
The. Quick. Brown. Fox. Jumped. Over. The. Fence.
However, upon manually inspecting the results we observed that

what appeared to be the most toxic word often did not have the
highest toxicity scores. One possible explanation for this behaviour
is that the Perspective API might be using the context of the sen-
tence for determining toxicity scores. In other words, since the span
annotation feature looks at each sentence (’word’ in our case) in
isolation, it was not able to correctly ascribe a toxicity score.

Hence, we changed our approach to the following as also de-
scribed by Figure 4:

(1) Get the toxicity score of the original tweet by querying Per-
spective API.

(2) Tokenize the tweet into words.
(3) For each word:
(a) Remove it from the original tweet.
(b) Get the toxicity score of this ’word-removed-tweet’ by

querying Perspective API.
(c) Assign the toxicity of the removed word as the differ-

ence in the toxicities of the original tweet and the ’word-
removed-tweet’.

Figure 4: Edit distance evaluations for perturbations on Per-
spective API and Hate Sonar

Upon manual inspection of the results of this approach, we ob-
served that the word-level toxicities were in alignment with our
perception of the toxicity of words.

Figure 5: Process diagram for our approach.

The authors note that the second approach mentioned above
did not work with HateSonar since the word-level toxicities com-
puted using the HateSonar API did not align with our perception
of the toxicity of words. Therefore, to select a candidate word for
perturbation for HateSonar evaluations, the word-level toxicities
computes using Perspective API were used.

2.3.3 Description of perturbations. The toxicities for all the tweets
in the dataset were computed by querying each of them with Per-
spective API (or Hate Sonar). Further, after perturbing each tweet
using one of the perturbations approaches described below, the
toxicity for each perturbed tweet was computed again by querying
with Perspective API (or HateSonar). See Figure 5.

• Leet speak: Leet speak is a system of modified spellings
used primarily on the internet [20]. For example, the word
noob would be represented in leet speak as n00b. On similar
lines, we apply leet speak to the most toxic word(s) in the
sentence. To apply leet speak to a word, we have defined a
mapping from normal English alphabetical characters (i.e.
a-z and A-Z) to a list of unicode characters. For example
the alphabet a will be replaced by the Cyrillic small letter A,
and so on. The entire mapping is described in Table 2. For
example, see Figure 6.

Figure 6: Example of a sentence perturbed by leet speak.
Highlighted words have been perturbed.

• Insertion of typos: In this perturbation, we introduce typos
(i.e. spelling mistakes) in the original text. The twomost hate-
ful word(s) are targeted for introducing typos. Specifically,
there are three possible scenarios that need to be handled
for introducing a typo in the word:
– Length of the word is less than 4 characters: Do not
perturb the word.

– Length of the word is an even number: Interchange
the middle two characters in the word. For example hate
would become htae.

– Length of the word is an odd number: Interchange
the two characters surrounding the middle character. For
example walks would become wklas.

4



• Insertion of underscores: In this perturbation, every white
space character in the sentence would get replaced by an
underscore character.
For example:
The quick brown fox jumped over the fence.
would get changed to:
The_quick_brown_fox_jumped_over_the_fence.

• Removal of whitespace: In this perturbation, every white
space character in the sentence would be removed.
For example:
The quick brown fox jumped over the fence.
would get changed to:
Thequickbrownfoxjumpedoverthefence.

• Insertion of zero width whitespace: In this perturbation,
we add the zero width white space Unicode character. The
Unicode value of this character is U+200B. This zero width
white space character was inserted 5 times between each
character of the most toxic word in the sentence. Visually,
the original and perturbed text look identical leading to no
change in readability for this perturbation.

• Composite attack 1 (Insertion of underscores + Leets-
peak) : In this attack, we apply two types of perturbations
simultaneously to a single input text, i.e. insertion of under-
scores and Leetspeak.

• Composite attack 2 (Zero width white space + Leets-
peak) : Similar to Composite attack 1, we apply two types
of perturbations simultaneously to a single input text, i.e.
insertion of zero width white space and Leetspeak.

2.3.4 Error handling. For some perturbed texts, Perspective API
was unable to return any toxicity score. Specifically, the response
from Perspective API said: ’ Sorry! Perspective needs more training
data to work in this language’. The authors observed that this hap-
pened for sentences which had a higher amount of perturbation.
For instance, Perspective API exhibited this behaviour for sentences
perturbed heavily using Leet Speak. This might be happening be-
cause our implementation of Leet Speak uses quite a few of Unicode
characters which look similar to English alphabets.

2.4 Evaluation Metrics
2.4.1 Metrics to measure the effectiveness of perturbations.

• Mean change in toxicity: This metric measures how much
the mean toxicity of the dataset was changed because of a
perturbation and is only applicable to Perspective API. In
other words, the toxicity of the entire dataset is initially cal-
culated using Perspective API. A mean of all these toxicities
is then calculated. A similar process is done for the perturbed
dataset to get a mean toxicity value for the perturbed dataset.
The difference in these two computed mean values is termed
as the mean change in toxicity.

• Category shift score: As mentioned in section 2.3.1, the
category of hatefulness is computed for a given sample by
querying Perspective API (or HateSonar), i.e. Toxic, Maybe
Toxic or Non Toxic. The category shift score is defined as the
the percentage of the total examples in the dataset that went
from the Toxic category to any other category. A similar
definition would hold true for HateSonar.

• Modified category shift score: This metric is only applica-
ble for Perspective API since it is possible that Perspective
API sometimes would not return the toxicity value (See sec-
tion 2.3.4) for a given input text. Thus, modified shift score is
defined as the percent of total examples in the dataset that
went from the Toxic category to any other category or for
whom Perspective API did not return a toxicity score. In
other words, this metric is the sum of the category shift score
and the percent of samples not recognized by Perspective
API.

2.4.2 Metrics to measure the amount of perturbations.

• Edit Distance: Edit distance is a way of quantifying how
dissimilar two strings (e.g., sentences) are by counting the
minimum number of operations required to transform one
string to the other. Specifically, different definitions of the
edit distance use different sets of string operations. In our
experiment, we use the most common metrics, i.e., the Lev-
enshtein distance[14], whose operations include removal,
insertion, and substitution of characters in the string.

• Human Evaluation:While an extensive user study to mea-
sure the semantic similarity between the original and per-
turbed texts is not conducted in this work, we rely on peer
evaluation while presenting the findings in the class.

3 RESULTS
Figure 7 illustrates the performance of various perturbations on
our evaluation metrics as described before. Among homogeneous
attacks, while the insertion of typos achieves theworst performance,
insertion of underscores and removal of white spaces achieves the
best results. The better performance for white space manipulation
attacks might give us some insight about the tokenization process
of the models being attacked. One of the reasons that the models
failed can be because they considered the whole string as a single
word. Among the composite attacks, Insertion of Underscores +
Leetspeak resulted in the best performance. The resulting shifts
and change were higher than both the insertion of underscores
and Leetspeak attacks considered separately. The figures for the
individual perturbation results are in the appendix. See section 7.

Figure 8 illustrates the edit distance evaluations for all the per-
turbations. Since the insertion of typos perturbation involves just
swaps of some characters, it results in the minimum edit distance
between the original and perturbed sentences. In our experiments,
we concluded that inserting a single zero width white space does
not suffice the aim to reduce the hate content. So, we added multiple
zero width white spaces before the target word. This has led to
extremely high edit distance values.

Further, we displayed different sentences perturbedwith all kinds
of attacks to our peers in the class during the final project presenta-
tion. It was the unanimous opinion of the class that even after the
perturbations, all the displayed sentences had retained their hateful
meaning completely.

5



Figure 7: Evaluations for perturbations on Perspective API
and Hate Sonar

Figure 8: Edit distance evaluations for perturbations on Per-
spective API and Hate Sonar

4 PROPOSED DEFENSES
4.1 Leet speak
We use a mapping from English characters to Unicode character (e.g.
Cyrillic alphabet, Greek alphabet, Latin alphabet, etc). Thus, if there
exists an inverse dictionary to map from these Unicode characters
to the regular English alphabet, then the during prediction time,
the input string can be sanitized to replace all Unicode alphabets
available in the inverse dictionary with the regular English alphabet.
Constructing such an inverse dictionary should be trivial since we
already have the original dictionary.

4.2 Insertion of typos
An auto-correct software can be used to sanitize the input string
before making the prediction. Although this might miss some cases,
most of the hateful content should be detected using this method.

4.3 Insertion of underscores
Inserting underscores significantly degrades the performance of
both Perspective API and HateSonar. Intuitively, this might be
because both these models must be using white space-based tok-
enization for tokenizing sentences into words. Therefore, updating
this tokenization logic to tokenize on both white space and under-
scores should help significantly reduce the impact of this attack.
The authors note that in case there are any intentional underscores

in the original text, this updated tokenization logic would wrongly
tokenize on it.

4.4 Zero width white space
Removing all zero width white space characters using regex match-
ing is proposed to be a good defence against this attack.

4.5 Removal of white space
The famous word-break algorithm can be used to defend against
this attack. In short, the word break algorithm can be described as:
Given a String and a dictionary of words, write a program that returns
true if the given string can be formed by concatenating one or more of
the words in the dictionary. The time complexity of this algorithm is
O(m x s) wherem is the number of characters in the perturbed string
which needs to be word-broken. And s in the number of characters
in the longest word in the provided dictionary. The authors note
that by using this algorithm, multiple possible reconstructions of
original sentences can be formed given a perturbed sentence.

4.6 Composite attacks
Respective combination of defences can be employed against the
two composite attacks mentioned in Section 2.3.3.

5 LIMITATIONS AND FUTUREWORK
• White Box attacks:
During this work, we have only focused on black box based
attacks. White-box attacks find or approximate the worst-
case attack for a particular model and input based on the
Kerckhoff’s principle[11]. Therefore, white-box attacks can
expose a model’s worst case vulnerabilities. Thus, in the
uture we would like to extend the work to white box setting.

• Use of other data sets:
We have based all our evaluations on the [15]. To establish
the generalisability of our perturbation based attacks, we
would like to extend the work to encompass more data sets.

• API Rate Limits
As we discussed in the introduction, most of the deep learn-
ing models accessible through APIs have a rate limit asso-
ciated with them. This limitation causes an issue for large
datasets and large texts.

• Dependence of Hate Sonar on Perspective API
The Hate Sonar API returns a classification between Hate,
Offence and Neither. Since our approach is based on finding
the most toxic words(s), we use the dictionary created using
the Perspective API to find the candidate words. But, we
still feel that even with this limitation, the design gives us a
fair idea of the performance of various perturbations across
models.

6 CONCLUSION
We came up with 3 classes of perturbations totalling 7 attacks.
For homogeneous attacks, insertion of underscores and removal
of white spaces performed the best while the combination of in-
sertion of underscore and leet speak performed the best across all
categories.

6



REFERENCES
[1] A. Okeowo. 2017. Hate on the rise after Trump’s election. https://www.

newyorker.com/, Last accessed on 2019-05-01.
[2] Unknown Author. 2019. Contribute to conversationai/unintended-ml-bias-

analysis development by creating an account on GitHub. https://
github.com/conversationai/unintended-ml-bias-analysis original-date: 2017-
05-05T21:36:46Z.

[3] Minhao Cheng, Jinfeng Yi, Huan Zhang, Pin-Yu Chen, and Cho-Jui Hsieh. 2018.
Seq2Sick: Evaluating the Robustness of Sequence-to-Sequence Models with Ad-
versarial Examples. CoRR abs/1803.01128 (2018).

[4] Thomas Davidson, Dana Warmsley, Michael W. Macy, and Ingmar Weber. 2017.
Automated Hate Speech Detection and the Problem of Offensive Language. CoRR
abs/1703.04009 (2017). arXiv:1703.04009 http://arxiv.org/abs/1703.04009

[5] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei
Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Xiaodong Song. 2017. Robust
Physical-World Attacks on Deep Learning Models.. In Robust Physical-World
Attacks on Deep Learning Models.

[6] Björn Gambäck and Utpal Kumar Sikdar. 2017. Using Convolutional Neural
Networks to Classify Hate-Speech. In Proceedings of the First Workshop on Abusive
Language Online. Association for Computational Linguistics, Vancouver, BC,
Canada, 85–90. https://doi.org/10.18653/v1/W17-3013

[7] Tommi Gröndahl, Luca Pajola, Mika Juuti, Mauro Conti, and N Asokan. 2018. All
You Need is "Love": Evading Hate-speech Detection. (08 2018).

[8] Hossein Hosseini, Sreeram Kannan, Baosen Zhang, and Radha Poovendran. 2017.
Deceiving Google’s Perspective API Built for Detecting Toxic Comments. CoRR
abs/1702.08138 (2017).

[9] Igini Galiardone, Danit Gal, Thiago Alves, and Gabriela Martinez. 2015. Counter-
ing online hate speech. UNESCO Series on Internet Freedom.

[10] Jessica Guynn. 2019. If you’ve been harassed online, you’re not
alone. More than half of Americans say they’ve experienced hate.
https://www.usatoday.com/story/news/2019/02/13/study-most-americans-
have-been-targeted-hateful-speech-online/2846987002/.

[11] Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting Wang. 2018. TextBugger:
Generating Adversarial Text Against Real-world Applications. (12 2018). https:
//doi.org/10.14722/ndss.2019.23138

[12] Google LLC. 2019. Perspective. https://www.perspectiveapi.com/#/
[13] Microsoft LLC. 2019. Content Moderator. https://azure.microsoft.com/en-us/

services/cognitive-services/content-moderator/
[14] Michael Gilleland. 2016. Levenshtein Distance, in Three Flavors.

https://people.cs.pitt.edu/~kirk/cs1501/Pruhs/Spring2006/assignments/
editdistance/LevenshteinDistance.htm

[15] Mainack Mondal, Leandro A. A. Silva, and Fabricio Benevenuto. 2017. A Mea-
surement Study of Hate Speech in Social Media. In Proceedings of the 28th ACM
Conference on Hypertext and Social Media (HT ’17). ACM.

[16] Hiroki Nakayama. 2019. Hate Speech Detection Library for Python. Contribute
to Hironsan/HateSonar development by creating an account on GitHub. https:
//github.com/Hironsan/HateSonar original-date: 2018-01-26T12:03:06Z.

[17] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z. Berkay Celik,
and Ananthram Swami. 2016. Practical Black-Box Attacks against Deep Learning
Systems using Adversarial Examples. (02 2016).

[18] PyPI. 2015. PyPI – the Python Package Index. https://pypi.org/
[19] Stephen Shankland. 2019. Facebook says its new AI

can detect hate faster. https://www.cnet.com/news/
facebook-says-its-new-ai-tech-spots-hate-speech-faster/

[20] Wikipedia. 2019. Leet. https://en.wikipedia.org/w/index.php?title=Leet&oldid=
891628952 Page Version ID: 891628952.

7 APPENDIX

Figure 9: Original and resulting toxicities for Leet speak per-
turbation for Perspective API

Figure 10: Original and resulting toxicities for Leet speak
perturbation for HateSonar

7

https://www.newyorker.com/
https://www.newyorker.com/
https://github.com/conversationai/unintended-ml-bias-analysis
https://github.com/conversationai/unintended-ml-bias-analysis
http://arxiv.org/abs/1703.04009
http://arxiv.org/abs/1703.04009
https://doi.org/10.18653/v1/W17-3013
https://doi.org/10.14722/ndss.2019.23138
https://doi.org/10.14722/ndss.2019.23138
https://www.perspectiveapi.com/#/
https://azure.microsoft.com/en-us/services/cognitive-services/content-moderator/
https://azure.microsoft.com/en-us/services/cognitive-services/content-moderator/
https://people.cs.pitt.edu/~kirk/cs1501/Pruhs/Spring2006/assignments/editdistance/Levenshtein Distance.htm
https://people.cs.pitt.edu/~kirk/cs1501/Pruhs/Spring2006/assignments/editdistance/Levenshtein Distance.htm
https://github.com/Hironsan/HateSonar
https://github.com/Hironsan/HateSonar
https://pypi.org/
https://www.cnet.com/news/facebook-says-its-new-ai-tech-spots-hate-speech-faster/
https://www.cnet.com/news/facebook-says-its-new-ai-tech-spots-hate-speech-faster/
https://en.wikipedia.org/w/index.php?title=Leet&oldid=891628952
https://en.wikipedia.org/w/index.php?title=Leet&oldid=891628952


Figure 11: Original and resulting toxicities for Typo pertur-
bation for Perspective API

Figure 12: Original and resulting toxicities for Typo pertur-
bation for HateSonar

Figure 13: Original and resulting toxicities for underscore
perturbation for Perspective API

Figure 14: Original and resulting toxicities for underscore
perturbation for HateSonar

8



Figure 15: Original and resulting toxicities for removal of
white space perturbation for Perspective API

Figure 16: Original and resulting toxicities for removal of
white space perturbation for HateSonar

Figure 17: Original and resulting toxicities for zero width
white space perturbation for Perspective API

Figure 18: Original and resulting toxicities for zero width
white space perturbation for HateSonar

Figure 19: Original and resulting toxicities for composite
(zero width white space + leet speak) perturbation for Per-
spective API

9



Table 2: Character mapping for leet speak.

Target Replacement character name
’a’ ’CYRILLIC SMALL LETTER A’
’A’ ’CYRILLIC CAPITAL LETTER A’
’b’ ’CYRILLIC CAPITAL LETTER SOFT SIGN’
’B’ ’CYRILLIC CAPITAL LETTER VE’
’c’ ’CYRILLIC SMALL LETTER ES’
’C’ ’CYRILLIC CAPITAL LETTER ES’
’d’ ’CYRILLIC SMALL LETTER KOMI DE’
’D’ ’CHEROKEE LETTER A’
’e’ ’CYRILLIC SMALL LETTER IE’
’E’ ’CYRILLIC CAPITAL LETTER IE’
’f’ ’LATIN SMALL LETTER LONG S WITH HIGH

STROKE’
’F’ ’LISU LETTER TSA’
’g’ ’ARMENIAN SMALL LETTER CO’
’G’ ’CYRILLIC CAPITAL LETTER KOMI SJE’
’h’ ’CYRILLIC SMALL LETTER SHHA’
’H’ ’CYRILLIC CAPITAL LETTER EN’
’i’ ’CYRILLIC SMALL LETTER BYELORUSSIAN-

UKRAINIAN I’
’I’ ’CYRILLIC SMALL LETTER BYELORUSSIAN-

UKRAINIAN I’
’j’ ’CYRILLIC SMALL LETTER JE’
’J’ ’CYRILLIC CAPITAL LETTER JE’
’k’ ’CYRILLIC CAPITAL LETTER KA’
’K’ ’CYRILLIC CAPITAL LETTER KA’
’l’ ’CHEROKEE LETTER TLE’
’L’ ’CHEROKEE LETTER TLE’
’m’ ’CYRILLIC CAPITAL LETTER EM’
’M’ ’CYRILLIC CAPITAL LETTER EM’
’n’ ’ARMENIAN SMALL LETTER VO’
’N’ ’GREEK CAPITAL LETTER NU’
’o’ ’CYRILLIC SMALL LETTER O’
’O’ ’CYRILLIC CAPITAL LETTER O’
’p’ ’CYRILLIC SMALL LETTER ER’
’P’ ’CYRILLIC CAPITAL LETTER ER’
’q’ ’CYRILLIC SMALL LETTER QA’
’Q’ ’TIFINAGH LETTER YARR’
’r’ ’CYRILLIC SMALL LETTER GHE’
’R’ ’LISU LETTER ZHA’
’s’ ’CYRILLIC SMALL LETTER DZE’
’S’ ’CYRILLIC CAPITAL LETTER DZE’
’t’ ’CYRILLIC CAPITAL LETTER TE’
’T’ ’CYRILLIC CAPITAL LETTER TE’
’u’ ’LATIN LETTER SMALL CAPITAL U’
’U’ ’ARMENIAN CAPITAL LETTER SEH’
’v’ ’CYRILLIC SMALL LETTER IZHITSA’
’V’ ’TIFINAGH LETTER YADH’
’w’ ’CYRILLIC SMALL LETTER WE’
’W’ ’CYRILLIC CAPITAL LETTER WE’
’x’ ’CYRILLIC SMALL LETTER HA’
’X’ ’CYRILLIC CAPITAL LETTER HA’
’y’ ’CYRILLIC SMALL LETTER U’
’Y’ ’CYRILLIC CAPITAL LETTER STRAIGHT U’
’z’ ’LATIN LETTER SMALL CAPITAL Z’
’Z’ ’CHEROKEE LETTER NO’

Figure 20: Original and resulting toxicities for composite
(zero width white space + leet speak) perturbation for HateS-
onar

Figure 21: Original and resulting toxicities for composite
(underscore + leet speak) perturbation for Perspective API

10



Figure 22: Original and resulting toxicities for composite
(underscore + leet speak) perturbation for HateSonar

11


	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Literature Survey

	2 Methodology
	2.1 Threat Model
	2.2 Dataset description and analysis
	2.3 Experimental setup
	2.4 Evaluation Metrics

	3 Results
	4 Proposed defenses
	4.1 Leet speak
	4.2 Insertion of typos
	4.3 Insertion of underscores
	4.4 Zero width white space
	4.5 Removal of white space
	4.6 Composite attacks

	5 Limitations and Future Work
	6 Conclusion
	References
	7 appendix

