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A Scalable Hierarchical Intrusion Detection System for

Internet of Vehicles
Md Ashraf Uddin, Nam H. Chu, Reza Rafeh, and Mutaz Barika

Abstract—Due to its nature of dynamic, mobility, and wireless
data transfer, the Internet of Vehicles (IoV) is prone to various
cyber threats, ranging from spoofing and Distributed Denial
of Services (DDoS) attacks to malware. To safeguard the IoV
ecosystem from intrusions, malicious activities, policy violations,
intrusion detection systems (IDS) play a critical role by contin-
uously monitoring and analyzing network traffic to identify and
mitigate potential threats in real-time. However, most existing
research has focused on developing centralized, machine learning-
based IDS systems for IoV without accounting for its inherently
distributed nature. Due to intensive computing requirements,
these centralized systems often rely on the cloud to detect cyber
threats, increasing delay of system response. On the other hand,
edge nodes typically lack the necessary resources to train and
deploy complex machine learning algorithms. To address this
issue, this paper proposes an effective hierarchical classification
framework tailored for IoV networks. Hierarchical classification
allows classifiers to be trained and tested at different levels, en-
abling edge nodes to detect specific types of attacks independently.
With this approach, edge nodes can conduct targeted attack
detection while leveraging cloud nodes for comprehensive threat
analysis and support. Given the resource constraints of edge
nodes, we have employed the Boruta feature selection method
to reduce data dimensionality, optimizing processing efficiency.
To evaluate our proposed framework, we utilize the latest IoV
security dataset CIC-IoV2024, achieving promising results that
demonstrate the feasibility and effectiveness of our models in
securing IoV networks.

Index Terms—Internet of Vehicles; Network traffic; Intrusion
Detection System; Machine Learning; Hierarchical Classifica-
tion; Flat Classification.

I. INTRODUCTION

THE Internet of Vehicles (IoV) is rapidly growing thanks
to recent breakthrough in technologies. Specifically, 5G

offers a wide range of use cases to facilitate IoV system, e.g.,
ultra-reliable low latency communications (uRLLC), enhanced
mobile broadband (eMBB), and massive machine type com-
munications (mMTC). On the other hand, recent advances in
sensors, cameras, and Electronic Control Units (ECU) enable
the new generation of smart vehicles, improving comfort and
safety for drivers and passengers. Technically, IoV is a part
of Intelligent Transportation System (ITS) and combines two
concepts: Vehicular Ad Hoc Networks (VANET) and Internet
of Things (IoT) [1]. By leveraging IoT, vehicles now can
connect to the Internet and receive real-time data about traffic,
hazardous, navigation, etc. According to [2], by 2030, the
automotive industry will use 53% of the 5G IoT endpoints.
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Fig. 1: IoV communications
Generally, IoV communications are divided into two cate-

gories: Intra-Vehicle and Inter-Vehicle, as shown in Fig. 1. In
particular, Intra-Vehicle is responsible for all communications
between components (e.g., sensors, cameras, and ECUs) inside
a vehicle. This exchanged data is usually used for autonomous
driving, entertainment, and advisory information. On the other
hand, Inter-Vehicle facilitates all communications between
cars and its surrounding entities, such as other cars, pedestri-
ans, roadside units (RSU), and grids. This exchanged data via
IoV communications is usually used for autonomous driving,
and traffic management (e.g., road safety, and navigation and
advisory information). Typically, IoV data is often processed
across three layers [3]: (i) Vehicle layer that processes local
data to identify some hazardous situations and make suitable
decisions to control the vehicle or inform the driver, (ii) Edge
layer consisting devices like RSUs that communicates with
vehicles to update and promptly response to vehicles requests
(e.g., navigation and traffic management), and (iii) Cloud layer
that has enough resource capacity to handle intensive tasks,
such as analysing, aggregating and storing traffic data.

Given the above, the involvement of numerous heteroge-
neous entities (from sensors, vehicles, RSUs/Edge, to cloud),
various wireless technologies (from short range, e.g., Blue-
tooth, to long range, e.g., 5G), and node mobility makes
IoV vulnerable to many types of attacks. For example, in-
truders can intercept and tamper with data to gain control
of vehicles, mislead the control systems, and perform other
types of malicious activities. Since any malicious activities
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in IoV can be life-threatening, ensuring its security is of
utmost importance [1]. In 2015, two cybersecurity researchers
demonstrated a vulnerability in the Jeep Cherokee using its
Uconnect infotainment system, which allowed them to take
control of the engine, brakes, acceleration, and other functions.
They exploited an open port in the Uconnect system and
used a zero-day exploit to send commands through the Jeep’s
entertainment system to its dashboard functions, effectively
gaining control of the entire car [4].

However, it is challenging or even infeasible to protect edge
nodes with traditional security measures like firewalls, encryp-
tion, and anti-malware tools, as these nodes often lack com-
puting capabilities. In addition, although conventional IDS that
can identify diverse cyberattacks are essential for IoV, their
effectiveness can vary based on data sources, operational mod-
els, and response mechanisms. For example, a network-based
IDS monitors network traffic from connected devices/vehicles,
while a host-based IDS focuses on detecting threats originating
from individual user devices [5]. Meanwhile, Signature-Based
IDS (SIDS) detect threats by matching network traffic patterns
against known attack signatures stored within the system. In
contrast to the above approach, Anomaly-Based IDS (AIDS)
leverage probabilistic models to detect previously unknown or
zero-day attacks. By training on large, relevant IDS datasets,
AIDS learn to analyse network traffic patterns and system
behaviours, enabling it to identify deviations indicative of
potential cyberattacks [5]. In the dynamic environment of IoV,
where real-time threat detection is critical, the adaptability
of Anomaly-Based IDS provide a significant advantage by
offering proactive detection capabilities against novel threats
and minimising the reliance on predefined signatures.

As such, in the IoV-IDS literature, Anomaly-Based IDS has
been adopted in various classification approaches to differen-
tiate between normal traffic and multiple types of cyberattacks
[6]–[9]. Although these approaches use different classification
algorithms, the majority rely on a single, flat multi-class
classifier to simultaneously distinguish normal traffic from
various attack types. However, this flat classification approach
is not ideal for the IoV network for the following reasons.

• IoV is a dynamic, distributed, and resource-constrained
environment where edge nodes (e.g., roadside units) lack
the computational resources necessary to train or retrain
a flat or centralized classifier using large datasets.

• IoV network data is often highly imbalanced [10], with
the majority of traffic being normal and only a small
fraction representing attack types. A flat classifier trained
on such unbalanced data tends to be biased toward the
normal class, resulting in a high false-negative rate where
attacks are misclassified as normal traffic. In network
security, this issue can have catastrophic consequences.

• Certain IoV attack types may exhibit similarities, making
them difficult to be distinguished with a single, global
classifier.

• The highly distributed and dynamic characteristics of IoV
environments make flat classification models inefficient.

• Scalability is a significant challenge in flat IDS architec-
tures. As the number of vehicles increases, a centralized
IDS must handle an overwhelming volume of requests,

which can lead to bottlenecks and introduce a single point
of failure. This dependency on a centralized system also
creates dependencies on network resources, which are not
uniformly available across different geographical areas,
further complicating communication with the centralized
IDS. These limitations make it difficult to be effectively
deployed in IoV networks over large geographic regions.

Thus, it necessitates an innovative approach that can ad-
dress the above issues effectively. In this context, hierarchical
classification models have been emerging as the potential
solutions for securing IoV networks. The main reason is that
hierarchical models allow for targeted, layered classification
of attack types. By doing so, it can reduce false positives and
negatives, thereby improving overall attack detection accuracy.
Additionally, this approach enables edge nodes to train/retrain
machine learning models in a decentralized manner, using only
the resources available locally. Specifically, individual vehicles
can detect and respond to cyberattacks using decentralized
IDS mechanisms, eliminating the need to rely solely on a
centralized IDS. This distributed architecture not only reduces
the risk of bottlenecks and failure but also ensures that
IDS functionalities can operate efficiently even in areas with
limited network connectivity. Given the above, the hierarchical
model enhances the resilience and scalability of the IoV
network, enabling it to support larger, geographically dispersed
deployments. Therefore, in this study, we propose a scalable
three-level hierarchical model for classifying various attacks
within an Internet of Vehicles (IoV) network.

The contributions of our work are summarised as follows:
• Design a scalable hierarchical IDS framework consid-

ering resource constrains of IoV. Specifically, the pro-
posed framework consists of three level classifications,
including (i) Level 1: a binary classifier differentiates
between normal and attack instances, (ii) Level 2: a multi-
class classifier categories an attack into broad categories,
and (iii) Level 3: multiple multi-class classifiers identify
specific subcategories of attacks, providing detailed clas-
sifications.

• Propose an effective feature selection method based on
Boruta to minimize training and testing complexity.

• Comprehensively evaluate the performance of the pro-
posed approach on the most recent IoV security dataset
CIC-IoV2024.

• Provide insights of the CIC-IoV2024 dataset, highlighting
the most important features in this dataset.

The structure of this paper is as follows. Section II presents
a review of the related literature. Section III details the hier-
archical classification architecture and materials used in this
study. In Section IV, we present the results of our experiments
conducted to compare them with their flat counterparts. Fi-
nally, Section VI summarizes the paper and outlines potential
future research directions.

II. RELATED WORKS

This section will analyze existing works closely related
to our research. Specifically, it first provides an overview of
recent IDS solutions based on hierarchical architecture. Then,
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it presents the state-of-the-art IDS for IoV networks. Finally,
the main contributions of this work are highlighted.

A. Hierarchical Classification in IDS

IDS plays a vital role in safeguarding network infrastruc-
tures, and hierarchical classification approaches have emerged
as promising techniques to improve detection accuracy. A
variety of hierarchical models have been proposed to tackle the
multi-classification challenges posed by diverse attack types.
Some studies focused on two-level hierarchical models to
improve attack classification [11]–[15]. Alin et al. (2020) [11]
proposed a two-level IDS where the first level employed a
binary classifier to distinguish between benign and malicious
traffic, while the second level used a multi-classifier to identify
specific attack types. In [12], Sarnovsky et al. (2020) adopted
a similar two-level hierarchical approach but using an en-
semble classifier in the second level. While the approaches
in [11], [12] train classifiers independently, Ahmim et al.
(2019) developed a two-level model that utilized outcomes
from first-level classifiers to train second-level classifiers on
datasets with original labels [13]. Different from the above
works [11]–[13], Uddin et al. focus on addressing the zero-day
attacks [14], [15]. The study [14] proposes a dual-tier adaptive
IDS, where the first tier leverages one-class classification
(OCC) to distinguish normal activities. In the second tier,
it employs multi-class classification to identify whether the
detected threats are known or unknown. In [15], the study aim
to address the challenge of detecting zero-day attacks without
requiring real attack samples by using synthetic attack data.
Notably, the common shortcoming of the above works is that
they only leverage two tiers, possibly resulting in reduced
accuracy when classifying more complex attack categories,
such as those involving three levels of attack types.

Aim to further enhance the attack detection accuracy, several
works consider three or more levels of classifiers, e.g., [16]–
[20]. In [16], Sarikaya et al. (2020) proposed a three-stage
hierarchical classification model to detect network intrusions.
The first stage involved a binary Random Forest (RF) classifier
to distinguish between benign and malicious traffic. In the
second stage, attacks were grouped into two clusters (i.e.,
Group 1: DoS and Exploit attacks, and Group 2: other attacks)
based on the confusion matrix analysis of a flat classifier. A
binary RF classifier was employed for each group. The third
stage utilised a multi-class RF classifier to identify specific
attack types within Group 2.

Unlike the proposed solution in [16], Mohd et al. (2021) in-
troduced a hierarchical classification model based on a One-vs-
Rest (OvR) strategy [17]. Their approach involved training five
classifiers—SVM, Probabilistic Neural Network (PNN), De-
cision Tree (DT), Neuro-fuzzy Classifier (NFC), and Smooth
Support Vector Machine (SSVM)—with each classifier trained
to detect four distinct attack types at four hierarchical levels,
as well as normal traffic. Then, the best-performing classifiers
were selected at each level to construct the final model.
The OvR approach is advanced by integrating optimisation
techniques by Eldahshan et al. (2022) [18]. Their methodology
involved a three-stage pipeline comprising Binary Grey Wolf

Optimizer (GWO) feature selection, an Extreme Learning Ma-
chine (ELM), and metaheuristic-based hyperparameter tuning
using the Archimedes Optimization Algorithm (AOA) and
Honey Badger Algorithm (HBA). Following this direction,
Alzaqebah et al. (2023) presenting a hierarchical IDS model
incorporating bio-inspired feature selection [19]. Their model
used an ELM to classify attacks at different levels, with
an enhanced Harris Hawks optimizer (IHHO) optimizing the
feature set, weights, and biases. Recently, Verkerken et al. [20]
proposed a hierarchical intrusion detection that includes three
stages and leverages Deep Learning together with traditional
machine learning mechanism. In the first stage, an anomaly
detector is used to identify suspicious records. They used
an autoencoder (AE) and one class support vector machine
(OC-SVM) for this purpose. In the second stage, a RF and a
neural network (NN) are used to classify suspicious records
from the first stage into multi-class known attacks. The third
stage whose purpose is to reduce the false positive rate uses
the anomaly score outputted from the first stage to identify
remaining attack records.

All of the above studies (i.e., [11]–[20]) regarding hierar-
chical classification methods for IDS only consider a typical
network and IoT attacks, leaving the real-world IoV network
attacks unexplored. Additionally, their proposed frameworks
may not work effectively in IoV system due to several
problems. For example, they may require intensive computing
resources (e.g., [18]–[20]), which are challenging or even
impossible to be provided by IoV devices. Some studies use
outdated dataset (e.g., [11], [12], [17]) or rely heavily on
manual grouping [16], limiting the generalizability of their
findings and the applicability in practice. The next subsection
will analyze the state-of-the-art studies regarding IDS in IoV
networks.

B. IDS Datasets for IoV Networks
Although numerous IoT security datasets are available,

datasets specifically focused on IoV security remain limited.
As such, many works regarding IoV security in the literature
utilize general IoT security datasets or even typical network
security datasets. For example, the studies [21]–[24] use IoT
BotNet [25] and ToNIoT [26] dataset, which are collected
from typical IoT attacks. On the other hand, other non-IoV
security datasets (e.g., NSL-KDD [27], UNSW-NB15 [28],
and AWID [29], CIC-DDoS-2019 [30]) have been utilized in
studies like in [31]–[34]. The evaluations on non IoV security
datasets make these studies (i.e., [21]–[24], [31]–[34]) less
applicable for IoV environments.

Recently, several IoV security datasets collected from
real vehicles have been introduced, including GIDS [35],
OTIDS [36], Road [37], and CIC-IoV2024 [9]. Among these
datasets, CIC-IoV2024’s support for diverse data representa-
tions and comprehensive attack coverage makes it an ideal
choice for machine learning-based IDS for IoV. Therefore,
this dataset has been leveraged in the most recent IoV security
studies [38]–[42]. Specifically, Aswal et al. propose a typical
Deep Neural Network (DNN)-based detector, which consists
of three fully connected layers, and evaluate it on the CI-
CIoV2024 dataset [38]. Similarly, Gul et al. propose a Machine
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TABLE I: Summary of literature findings

Literature Attack Type(s) Contribution Dataset Used
Zhang et al. (2018) [31] Intrusion Attacks Distributed machine learning NSL-KDD
Li et al. (2021) [32] Attacks Against 802.11 Transfer Learning AWID

Jin et al. (2021) [33]
Analysis, Backdoor, DoS, Eploits,
Fuzzers, Generic, Reconnaissance,
Shellcode, Worms

Oversampling, outlier detection and
metric learning UNSW-NB15

Korium et al. (2024) [34] Dos, DDoS, Sniffing, Botnets, In-
filtration, Web RF, XGBoost, CatBoost, LightGBM CIC-IDS-2017, CSE-CIC-IDS-

2018, and CIC-DDoS-2019
Seo et al. (2018) [35] DoS, Fuzzy, RPM, GEAR Generative Adversarial Nets Car-Hacking
Lee et al. (2017) [36] DoS and Fuzzy Remote frame handling OTIDS

Verma et al. (2020) [37] Fabrication(DoS, Fuzzy, Targeted
ID), suspension, Masquerade A new dataset for CAN IDS ROAD Dataset

Aswal et al. (2024) [38] DoS and Spoofing MLP-based deep learning CIC-IoV2024
Gül et al. (2024) [39] DoS and Spoofing RF and GA CICIoV2024

Merzouk et al. (2024) [40] DoS and Spoofing DRL NSL-KDD, UNSW-NB15, and
CIC-IoV2024

Yagiz et al. (2024) [41] DoS, Spoofing, and Fuzzing SHAP+VAE+XAI, Transfer Learning HCRL and CIC-IoV2024
Mahdi et al. (2024) [42] DDoS and Spoofing LSTM and Naive Bayes CIC-DDoS2019
Our Proposed Approach DoS and Spoofing Hierarchical classification CIC-IoV2024

Learning (ML)-based IDS for the IoV system [39]. In their
framework, the Generic Algorithm (GA) is used to tune the
parameters of ML algorithms, including Logistic Regression
(LR), RF, AdaBoost, and DNN. Differently, other works lever-
age more advanced ML techniques, e.g., Deep Reinforcement
Learning (DRL), Variational Autoencoder (VAE), and Long
Short-term Memory (LSTM) [40]–[42]. In particular, Mer-
zouk et al. [40] leverage DRL to identify the attacks. However,
it only classifies an event into the attack or benign groups,
making it less applicable for a comprehensive attack detection.
On the other hand, Yagiz et al. [41] proposed an IDS based
on the VAE architecture and Knowledge Distillation (KD)
technique. Particularly, it uses an encoder to map the input data
to a latent space and then use a decoder to reconstruct the input
data from the latent space. The reconstruction error indicates
which input data are not normal. Their proposed model also
used transfer learning through knowledge distillation where
the knowledge from a large model (teacher) is transferred to
a smaller model (student). Whereas, in [42], Mahdi et al. pro-
posed a hybrid approach combining LSTM architecture with
a traditional ML, i.e, Naive Bayes classifier. However, these
approaches [41], [42] require intensive computing resources
and a huge amount of memory, making it less applicable to
IoV systems. As such, they do not leverage the entire dataset.
To achieve a reasonable decision delay, the work [41] can
only use a small portion of the dataset while [42] only use
the spoofing attack data, possibly leading to a low data usage.
Table I summarizes the literature findings and highlights the
shortcomings of existing works in addressing IoV security
needs.

Given the above, existing studies, regarding IDS for
IoV [38]–[42], often consider a flat classifier, which is not
effective in IoV networks, as discussed in Section I. Moreover,
they either leverage traditional ML algorithm in a single
layer framework (e.g., [38], [39]) or rely on highly complex
models (e.g., [41], [42]). As a result, these approaches may not
perform effectively in highly mobile and distributed environ-
ments like IoV, which are constrained by limited computing
resources and requires a scalable IDS solution. Therefore, this
work proposed a scalable hierarchical IDS framework for IoV

network that can mitigate the above challenges.

III. THE PROPOSED HIERARCHICAL CLASSIFICATION
MODEL

As analyzed in Section II, most existing studies focus
on conventional flat and centralized multiclass classification
approaches in IoV. This raises concerns about the effectiveness
of these models in accurately detecting network intrusions
in distributed IoV network. In addition, these models tend
to produce a higher number of false negative cases (i.e.,
attacks are classified as normal), which is particularly con-
cerning in practice. To address this gap, our study aims
to investigate hierarchical classification using a recent IoV
dataset. In this section, we present the design and architecture
of our hierarchical classification approach, as depicted in
Fig. 2. Our framework begins with data preprocessing to clean
and prepare the raw dataset. Next, the Boruta algorithm, in
combination with RF, is applied to select the features, retaining
the most relevant features. The resulting reduced dataset is
then processed using a stratified cross-validation approach to
ensure balanced class distribution across folds. For each fold,
a hierarchical classifier, as depicted in Fig. 2, is employed to
perform multi-level classification. Here, we followed the three-
level classifications of the dataset. The first level identifies
benign and attack categories. The second level then has benign
and specific attack types of attacks (i.e., DoS and Spoofing).
Finally, the third level further identifies benign, DoS, and the
subtypes of Spoofing attacks, resulting in the six categories in
total. The remainder of this section will detail our proposed
framework.

A. Data Preprocessing

In our proposed framework, the data preprocessing steps are
as follows.

1) Dataset Description: The CIC-IoV2024 dataset is a
comprehensive resource for studying IoV security, generated
through experiments on a 2019 Ford car equipped with Elec-
tronic Control Units (ECUs). It provides detailed insights
into internal vehicle communication. The dataset includes
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Fig. 2: Hierarchical classification of the proposed IDS

TABLE II: Class distributions in the dataset

Class Records Percentage
Benign 1048575 85.04
DoS 74663 6.06

Sp
oo

fin
g Gas 9991 0.81

RPM 54900 4.45
Speed 24951 2.02
Steering Wheel (SW) 19977 1.62

Total 1233057 100

one primary feature corresponding to the ID and eight data
features, each representing a byte of transmitted data. For our
experiments, we utilised the binary version, where each bit is
represented as a binary feature.

Table II shows the distribution of six classes (i.e., Benign,
DoS, gas spoofing, RPM spoofing, speed spoofing, and steer-
ing wheel spoofing) in the dataset [9]. Over 85% of the records
are normal, while the remaining records represent various
types of attacks. Gas records have the smallest contribution,
accounting for less than 0.81% of the total records. To ad-
dress this unbalanced data issue, this work adopts stratified
cross-validation that can divide the dataset into folds while
maintaining the proportional distribution of each class within
each fold.

2) Data Scaling: To eliminate the impact of different
feature’s value in the datasets on the performance of machine
learning algorithms, this study applies Min-Max normalisa-
tion. This approach scales each feature’s values to a range
between 0 and 1. The min-max normalisation value is calcu-
lated by 1.

Xnorm =
X −Xmin

Xmax −Xmin
, (1)

where Xnorm is the normalised value of X , Xmin is the
minimum value of X , and Xmax is the maximum value of
X .

3) Feature Selection: Among feature selection methods in
the literature, Boruta is known as an effective strategy for
selecting robust features against noisy datasets and can deal

with missing values and outliers. Specifically, Boruta first
generates shadow features by randomly shuffling the original
features and then incorporating these features into the original
dataset. Then, by utilising RF, Boruta can reliably evaluate
each feature’s significance, even in the presence of noise or
missing data. Farhana et al. [43] demonstrated the effectiveness
of the combination of Boruta and RF in feature selection to
enhance the accuracy of detecting cyber attacks such as DDoS.
They achieved a near perfect accuracy on CICIDS2017 dataset.
Therefore, we propose to create an ensemble feature selection
approach by merging Boruta with RF. Here, Boruta facilitates
selecting the most relevant features, while Random Forest
ranks the features based on their significance. It is worth noting
that Boruta is a distribution-free feature selection approach,
unlike other traditional wrapper selection mechanisms, and
computationally efficient, non-parametric, and can establish
non-linear relationships between features and the target vari-
able. In addition, Boruta algorithm [44] is a wrapper-based
feature selection method developed around the random forest
algorithm. It identifies relevant features by comparing their
importance to randomly generated “shadow features.” The
algorithm calculates the Z-scores of each feature’s importance
and evaluates their significance. The main steps in the Boruta
Algorithm are described below.

• Generate Shadow Features: Duplicate the original fea-
ture set, X , and shuffle the values to create “shadow
features” (Xshadow) that are uncorrelated with the target
variable y. The dataset becomes: [X,Xshadow].

• Compute Feature Importance: Using the random forest
algorithm, calculate the importance of each feature Xi

and its corresponding shadow feature Xshadow,i across all
trees T in the forest by (2).

Importance(Xi) =
1

T

T∑
t=1

I{OOBt,orig−OOBt,perm}, (2)

where:
– I is the indicator function,
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– OOBt,orig is the out-of-bag error without permuta-
tion,

– OOBt,perm is the error after permutation.

• Calculate Z-Scores: For each feature Xi, compute the
Z-score by

Zi =
Importance(Xi)

STD(Importance(Xi))
, (3)

where STD is the standard deviation of the feature
importance values.

• Compare with Shadow Features: Determine the Maxi-
mum Z-score Among Shadow features (MZSA) and then
classify features as:

– Confirmed: Zi > MZSA
– Unimportant: Zi < MZSA
– Tentative: Requires further evaluation.

• Iterative Refinement: Shuffle and regenerate shadow
features iteratively. In each iteration, features are re-
evaluated in until all features are classified as Confirmed
or Unimportant, or the maximum iteration threshold
(maxRuns) is reached.

• Final Selection: Features classified as Confirmed are
selected as the most relevant predictors.
The Boruta algorithm stops when all features are either
Confirmed or Unimportant. Note that features classified
as Tentative after reaching maxRuns are finalized by
comparing their median Z-scores with the best shadow
feature’s median Z-score.

4) Dataset Partition: Stratified cross-validation is used to
divide the dataset into folds while maintaining the proportional
distribution of each class within each fold. This method
provides a more reliable estimate of model performance,
especially when dealing with imbalanced datasets where one
class has significantly more samples than others. In this study,
both flat and hierarchical models were trained and evaluated
using stratified 10-fold cross-validation. The dataset was split
into ten folds of equal size, with each fold preserving the
class proportions. This process was repeated for all ten folds,
and the average classification performance was reported. By
utilising stratified cross-validation, both models achieve more
accurate and dependable performance evaluations.

5) Multi-level Classification Framework: After raw data is
processed, a multi-level classification is employed to classify
data into hierarchical classes:

• Root Classifier (Level-1): Classify data into Benign or
Attack,

• Level-2 Classifier: Further classify attack instances to
identify the attack type, such as Spoofing or DoS (Denial
of Service),

• Level-3 Classifier: A deeper classification is performed to
categorise spoofing attacks into specific types, including
additional subtypes of spoofing, i.e., Gas, Steering Wheel
(SW), Speed, RPM (Revolutions Per Minute).

The next section will discuss the distribution of our proposed
multi-level classification framework in IoV.

Level-2 IDS

Level-2 IDS
(Edge-Roadside Unit)

Level-1 IDS (on-board)

Binary
Classifier

Level-3 IDS
(Near Edge)

Roadside Unit (RSU)

Benign

Attack

Top Level IDS
(Cloud)

Level-3 IDS
(Near Edge)

Fig. 3: Hierarchical IDS for IoV.

B. Distributing Proposed Hierarchical IDS Framework in IoV

This work considers a typical IoV network facilitating
diverse types of IoT applications, similar to those in [45],
[46], and [47]. Specifically, IoV is a layered, tier-based system
composed of IoT-enabled vehicles, Edge-based Roadside Units
(RSUs), Near Edge Nodes, and Cloud, as illustrated in Fig. 3.
Based on the layered architecture, we proposed a hierarchical
IDS framework by distributing its components (i.e., classi-
fiers) across different layers in the IoV system. A significant
advantage of hierarchical classification lies in its ability to
distribute the different classifiers across various layers of
the IoV network. This approach can take the advantage of
the network’s distributed architecture to effectively optimise
resource utilisation and scalability by distributing classification
responsibilities across the network’s layers based on their
specific capabilities. Furthermore, by using this popular archi-
tecture, our proposed solution is highly applicable to existing
IoV systems, where diverse types of IoV applications can be
deployed.

It is worth noting that the classifiers leveraged in our pro-
posed hierarchical IDS framework, including Random Forest
(RF) and Linear Regression (LR), are well-established and
can work effectively in diverse scenarios [48], ranging from
predicting fuel consumption and vehicle speed [49], [50] to
anomaly detection in vehicle sensor data [51]. Therefore, our
proposed hierarchical IDS framework is neither specifically
designed for a particular dataset, e.g., CIC-IoV2024, nor
depends on a specific type of classifier. In fact, it can operate
effectively in any related IoV security datasets and future
effective classifiers. Recently, the Large Language Models
(LLMs), often relying on transformer architectures, have been
extensively explored in various areas, from text/image gen-
eration and code assisting to address challenges in wireless
communications. However, since LLMs were initially devel-
oped for natural language processing, applying them directly to
domain-specific tasks like intrusion detection in IoV systems
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can be challenging and would require extensive fine-tuning to
achieve optimal performance [52]. Additionally, their sizes are
usually large (e.g., 28 GB for LLAMA2-7B [53]), placing an
extreme burden in storage capabilities at the edge. Moreover,
the inference process of LLM model like LLAMA2 can indeed
take seconds, even with high-end GPUs [54]. Thus, deploying
such large models in resource-constrained environments like
the IoV is currently unviable since it poses significant chal-
lenges in terms of storage capacity, computational power, and
energy consumption.

In our approach, we propose deploying a well-trained root
classifier of the hierarchical model within each IoV vehicle.
This root classifier can classify real-time IoT data as normal
or attack, enabling vehicles to respond promptly to cyber
threats without delays caused by communication overhead.
If a network traffic is regconized as attack, it will be then
forwarded to the edge-based road side unit (where the second-
level classifiers are deployed) via Vehicle-to-Infrastructure
(V2I) Communications, e.g., Dedicated Short-Range Commu-
nications (DSRC), Cellular Vehicle-to-Everything (C-V2X),
and Wireless Access in Vehicular Environments (WAVE) [55].

The second-level classifier, which identifies broad attack
categories, is suggested to be deployed in the edge-based
roadside units (RSUs). These units are capable of receiving
and processing classification requests from multiple vehicles to
perform further analysis and categorisation of potential attacks.
Near edge nodes are assigned the responsibility of detecting
specific attack subcategories and then reporting them to the
Cloud server. This decentralised approach can to leverage the
proximity of near edge nodes within specific areas, enabling
quick and specific detection to emerging attacks within lo-
calised environments. Thus, this targeted subcategory classifi-
cation at near-edge nodes improves the overall efficiency and
granularity of attack detection by the IDS in a distributed
system setting. To obtain further insights on the identified
attack traffic, the attack is then forwarded to the top-level
classifier in our proposed hierarchical ID framework, usually
via a high-bandwidth backhaul link [56].

The top level in our framework is cloud, which is tasked
with critical responsibility of the hierarchical training of
models and their components, ensuring robust and well-trained
classifiers development. After the training phase, these clas-
sifiers are strategically deployed at different layers within the
IoV network to achieve not only attack detection granularity
but also a high scalability for IDS systems. In addition, this
classifier distribution also plays a pivotal role of enhancing the
capability of hierarchical model for detecting emerging attacks
based on feedback from components in the lower layers.

In this way, our decentralised approach can take advantage
of IoV architectures by leveraging (i) the power of connected
vehicles for binary classification, (ii) the proximity of edge
nodes to data sources for quick and further analysis, (iii) the
proximity of near edge nodes within specific localised envi-
ronments for quick and specific detection to emerging attacks
within these environments, and (iv) Cloud for training the
hierarchical IDS and improved its capabilities with reporting
information from other nodes in the IoT network. In contrast,
a centralised flat classification model cannot be partitioned

into distinct components for deployment at different levels of
the IoV network. Although a hierarchical model involves more
classifiers and has a higher time complexity compared to a flat
model, it offers significant advantages. These include improved
scalability, reduced communication overhead, and support for
collaborative learning in a distributed, dynamic environment
like IoV. Thus, this architecture makes the hierarchical model
a better fit for managing the complexities of IoV networks.

IV. RESULTS AND DISCUSSION

This section present our experimental setup and perfor-
mance metrics. Then, we evaluate the effectiveness of the
hierarchical multi-classification model for IoV in terms of
accuracy, precision, recall and F1-score. Finally, we discuss
our findings on the feature importance.

A. Experimental Setup and Implementation

Our experimental study was performed on a workstation
equipped with AMD EPYC 7402P CPU (24 cores/48 threads),
256Gb DDR4 RAM, 3x Nvidia A100 GPUs (40Gb HBM2
Memory). Our framework is deployed using Python 3.9 and
rely on Pandas and NumPy libraries for data preprocessing.
Additionally, the widely recognised Scikit-learn toolkit is
also used to leverage its wide range of algorithms, including
popular machine learning algorithms (e.g., LR and RF), and
effective accuracy and precision estimation metrics [57].

The dataset CIC-IoV2024 is used for performance evalua-
tion. It consists of five attacks types, i.e., DoS, RPM, SPEED,
STEERING WHEEL, and GAS. Note that our proposed hi-
erarchical IDS framework does not depend on any specific
dataset. In fact, our propose framework can detect as many
attack types as those in the available training datasets. As such,
if a new dataset is collected, the classifier at each layer can be
retrained/fine-tuned to effectively detect any new attack types.
Thanks to the hierarchical architecture, these retraining/fine-
tuning processes are performed in parallel, significantly reduc-
ing the time required to adapt to new threats.

In our experiment, we trained four machine learning al-
gorithms: Decision Tree (DT), Random Forest (RF), Extreme
Tree (ET), and Logistic Regression (LR), along with one deep
learning algorithm, Deep Neural Network (DNN), in a feder-
ated learning setting. However, since the tree-based algorithms
(DT, RF, ET) showed nearly identical performance, we focused
on presenting the performance of RF from the tree-based
algorithms, along with LR and DNN in the federated setting.
Additionally, we demonstrated the training and testing times
of all the machine learning algorithms in both hierarchical and
flat classification settings.

B. Performance Metrics

In this study, we used accuracy, precision, recall, and F1-
score that are essential for assessing the performance of an
IDS model. Note that their significance can vary depending
on the system’s specific objectives and requirements. Accuracy
quantifies the proportion of accurate classifications made by
the IDS. However, relying solely on accuracy may not suitable
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performance metric for IDS, as this might not accurately
reflect the system’s capability to identify attacks belonging to
a minority class within the dataset. The reason is that precision
refers to the proportion of genuine positive detection out of all
positive detection. Thus, high precision is essential in IDS in
order to minimise false negatives (normal incorrectly detected
as attack), which can result in false alarms. On the other hand,
recall measures the system’s ability to reliably identify all
instances of a particular class of attack. Therefore, low recall
suggests that the system is missing many attacks, which can
pose a significant security risk. The combination of precision
and recall yields the F1-score that quantifies the proportion
of true positive identification relative to the total number of
positive instances in the dataset. F1-score is a valuable metric
for IDS because this considers both false positives and false
negatives and provides a balanced score between precision and
recall.

The accuracy, precision, recall and F1-score are calculated
by (4) (5) (6) (7), respectively.

Accuracy =
TP + TN

TP + TN + FP + FN
, (4)

Precision =
TP

TP+FP
, (5)

Recall =
TP

TP+FN
, (6)

F1-score = 2× Precision × Recall
Precision + Recall

, (7)

where TP = true positive, TN = true negative, FP = false
positive, and FN = false negative.

In our experiments, we used Stratified cross-validation
which can effectively addresses the imbalance in test datasets
by maintaining balanced class distributions across folds, en-
suring accurate evaluation metrics such as precision, recall,
and F1-score. This approach guards against biased evaluations
driven by dominant classes and enhances model robustness to
dataset variability. Overall, it provides reliable estimates of
generalization performance for models trained on imbalanced
data, crucial for real-world applications.

C. Impact of Feature Selection on Model Accuracy

Our feature selection approach is presented in Fig. 6.
In particular, we utilised two techniques to select the most
significant features for our model: Boruta with RF (namely
Boruta+RF) and SHAP (SHapley Additive exPlanations) with
RF, i.e., SHAP-RF. First, Boruta+RF was employed to rank
the features based on their importance. Subsequently, SHAP-
RF was used to analyze the impact and importance of each
feature on the classification of specific attacks. Interestingly,
our results revealed that:

• At the root level (Benign vs. Attack) and second-level
classifier (Spoofing vs. DoS), a minimum of 11 features
(equivalent to 7%) from the ranked feature list was
sufficient to achieve 100% accuracy.

(a) SHAP-XGBoost

(b) SHAP-RF

Fig. 4: Feature importance of CIC-IoV2024 datasets.

• For the third level (GAS, SW, Speed, and RPM clas-
sification), 18 features were required to achieve 100%
accuracy. Here, we need to include the 45th feature
with first seventeen top features. We can skip features
18th to 44th from the ranked feature list. Our systematic
approach involves ranking all features; however, through
trial and error combined with SHAP analysis, we ob-
served that features 18th to 44th contribute minimally
to the outcome. As a result, we prioritized feature 45th

while skipping features 18th to 44th, as their positive
impact on the outcome was determined to be negligible.
This streamlined selection process ensures that we focus
on the most impactful features, enhancing the model’s
efficiency and performance.

On the other hand, when relying solely on Boruta+RF, at
least 45 features from the ranked feature list were necessary
to attain 100% accuracy for the third-level classifier. Thus,
these findings highlight the significance of combining SHAP
and Boruta with RF, as this integrated approach not only
reduces the number of required features but also enhances
interpretability and classification efficiency. The feature im-
portance using SHAP with XGBoost and RF are presented in
Figs. 4 and 5. Specifically, Fig. 4 illustrates the importance



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2025 9

Fig. 5: Feature importance using SHAP-RF on the outcome
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Fig. 6: Flowchart of feature selection approach

of various features in determining the outcome “benign.” The
analysis reveals that the feature ID8 has a negative impact
on the outcome, indicating that it should be excluded from
the selected features. Conversely, features such as DATA 316,
ID13, ID9, and several others positively contribute to the
outcome and are valuable for inclusion in the feature set.

Next, we investigated how the weighted average F1-score
varies with the number of features for 2-class, 3-class, and
6-class classification tasks, as shown in Fig. 7(a). Note
that 2-class, 3-class, and 6-class corresponds to the benign-
attack, benign-DoS-Spoofing, and benign-DoS-Spoofing sub-
types classification tasks, respectively. For 2-class and 3-
class tasks, the F1-score reaches a perfect 100% with only
11 features, showing that fewer features are sufficient for
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Fig. 7: (a) Weighted Average F1-Score vs. Number of Features
for Different Classes and (b) Macro Average F1-Score vs.
Number of Features for Different Classes.

simpler classification tasks. In contrast, the 6-class scenario
achieves a maximum F1-score of 99.65% with 17 or 18 top-
ranked features, reflecting the greater complexity of multi-
class classification. A noticeable drop in performance across
all scenarios at 9–10 features suggests the introduction of noise
or irrelevant features. The most important insight is that while
adding features generally improves performance, the benefit
plateaus once sufficient information is available (e.g., 11
features for 2-class and 3-class problems). Thus, for complex
tasks like 6-class classification, feature relevance and careful
selection are crucial to maximising performance. Additionally,
Fig. 7(a) shows that the Weighted Average F1-Score for
Random Forest with the corrected feature set including “17
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TABLE III: Performance of Root-Level and Second-Level Classifiers

Model Category (2-class)
Root Level Classifier

10 Features 11 Features
Precision Recall F1-score Precision Recall F1-score

RF

BENIGN 98.79 100 99.39 100 100 100
ATTACK 100 91.88 95.77 100 100 100
macro avg 99.4 95.94 97.58 100 100 100
weighted avg 98.95 98.94 98.92 100 100 100

LR

BENIGN 97.99 99.44 98.71 100 99.93 99.96
ATTACK 95.89 86.48 90.94 99.53 100 99.77
macro avg 96.94 92.96 94.83 99.77 99.96 99.87
weighted avg 97.72 97.74 97.69 99.94 99.94 99.94
Category (3-class) 2nd Level Classifier

RF

BENIGN 98.79 100 99.39 100 100 100
SPOOFING 100 86.35 92.68 100 100 100
DoS 100 100 100 100 100 100
macro avg 99.6 95.45 97.36 100 100 100
weighted avg 98.95 98.94 98.9 100 100 100

LR

BENIGN 97.99 99.44 98.71 100 99.93 99.96
SPOOFING 94.89 86.35 90.42 99.22 100 99.61
DoS 97.4 86.69 91.73 100 100 100
macro avg 96.76 90.82 93.62 99.74 99.98 99.86
weighted avg 97.72 97.74 97.69 99.94 99.94 99.94

Features + 45th Feature.” This highlights how performance
improves with additional features, achieving perfect scores for
all classes when the 45th feature is combined with the top 17
features.

The graph in Fig. 7(b) shows how the Macro Average F1-
score (%) varies with the number of features for 2-class, 3-
class, and 6-class classification tasks. For 2-class and 3-class
problems, the F1-score improves steadily, reaching 100% with
12 features and remaining consistent thereafter. In contrast,
the 6-class scenario shows lower performance, starting at
72.5% with 5 features and gradually increasing to 94.64%
with 17–18 features. A noticeable dip in F1-scores is observed
at 9–10 features across all scenarios, likely due to noise or
irrelevant features. Overall, the graph highlights that more
features improve performance, but the benefit plateaus for
simpler tasks.

The graph illustrates that classifying specific attack cate-
gories (6 classes) is more challenging for machine learning
algorithms and requires more features to accurately classify
these categories. While perfect F1-scores can be achieved with
fewer features for 2-class and 3-class problems, the algorithm
struggles with the complexity of 6-class attack classification.
Using Boruta and RF feature selection techniques, it was
determined that at least 45 features are needed for third-level
classification. However, SHAP analysis reveals that adding
the 45th ranked feature from Boruta results to a subset of
17 features enables the model to achieve perfect F1-scores
and accuracy for all attack categories at the third level. This
underscores the importance of combining SHAP and Boruta
feature selection methods. It is also noted that most of the
existing works on CIC-IoV2024 datasets have not explored
third-level attack classification.

D. Hierarchical Model Performance Across Levels
The results in Table III highlight the class-wise performance

of root-level (2-class) and second-level (3-class) classifiers
using RF and LR models, demonstrating the impact of features
on precision, recall, and F1-scores.

1) Root-Level Classifier (2-Class):

• RF Model: With 11 features, the RF model achieves
perfect precision, recall, and F1-scores (100%) for
both categories (BENIGN and ATTACK), compared to
slightly lower performance with 10 features (macro F1 =
97.58%).

• LR Model: Similarly, the LR model significantly im-
proves with 11 features, achieving near-perfect macro F1-
scores (99.87%) compared to 94.83% with 10 features.
This is due to enhanced performance in distinguishing
ATTACK and BENIGN categories.

2) Second-Level Classifier (3-Class):

• RF Model: With 11 features, RF achieves perfect scores
(100%) for all three categories (BENIGN, SPOOFING,
and DoS). At 10 features, macro F1-scores are slightly
lower (97.36%), primarily due to lower recall for the
SPOOFING category (86.35%).

• LR Model: The LR model improves significantly with 11
features, achieving macro F1-scores of 99.86% compared
to 93.62% with 10 features. While precision and recall
for SPOOFING and DoS categories are slightly lower
with 10 features, they reach near-perfect levels with 11
features.

Adding one additional feature (from 10 to 11) leads to
substantial improvements in both root-level and second-level
classifications, particularly for challenging categories like
SPOOFING. The RF model achieves perfect classification
with 11 features for both root-level and second-level tasks,
outperforming LR slightly in terms of consistency. The results
underscore the importance of feature selection in improving
precision, recall, and F1-scores, especially for multi-class
problems.

Table IV demonstrates the performance of RF and LR
models as 3rd-level classifiers for a 6-class problem, com-
paring results with 17 and 18 features. For both models,
adding the 45th feature results in a significant improvement
in performance, particularly for the challenging GAS and
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TABLE IV: Performance of third level classifier

Model Categories (6-class)
3rd Level Classifier

17 Features 18 Features
Precision Recall F1-score Precision Recall F1-score

RF

BENIGN 100 100 100 100 100 100
DoS 100 100 100 100 100 100
RPM 100 99.99 99.99 100 99.99 99.99
SPEED 100 80 88.89 100 100 100
STEERING WHEEL 100 100 100 100 100 100
GAS 66.67 100 80 99.94 100 99.97
macro avg 94.44 96.67 94.81 99.99 100 99.99
weighted avg 99.76 99.65 99.66 100 100 100

LR

BENIGN 100 100 100 100 100 100
DoS 100 100 100 100 100 100
RPM 100 99.99 99.99 100 99.99 99.99
SPEED 100 80 88.89 100 100 100
STEERING WHEEL 100 99.96 99.98 100 100 100
GAS 66.67 100 80 99.94 100 99.97
macro avg 94.44 96.66 94.81 99.99 100 99.99
weighted avg 99.76 99.64 99.66 100 100 100

Fig. 8: Level wise Training time for Hierarchical and Flat
classifier

SPEED categories. For GAS, the F1-score increases from 80
to 99.97, while SPEED improves from 88.89 to 100. All other
categories, such as BENIGN, DoS, RPM, and STEERING
WHEEL (SW), already exhibit near-perfect scores with 17
features, which are maintained with 18 features.

The macro average F1-score increases from 94.81% to
99.99%, reflecting the balanced improvement across all classes
with the additional feature. The weighted average F1-score
also reaches a perfect 100% with 18 features, showing the
overall robustness of both models across imbalanced class
distributions. Both RF and LR achieve identical results across
all metrics with 18 features, highlighting their comparable effi-
cacy when sufficient features are available. The GAS category
demonstrates the most significant improvement, with its F1-
score rising from 80% to 99.97% after adding the 18th feature,
emphasizing the importance of including relevant features for
specific class challenges.

3) Training and Testing Time: Figures 8 and 9 present the
training and testing time of a single instance for the hierarchi-
cal and flat classifiers respectively. Figure 9 shows that major
contributor to testing time is the choice of machine learning
model. Random Forest (RF) and Extra Trees (ET), being

Fig. 9: Level wise Testing time for single instance in Hierar-
chical and Flat classifier

ensemble models composed of multiple decision trees, require
each input sample to traverse all trees for prediction, which
becomes computationally intensive-especially when performed
across three hierarchical levels. In contrast, Decision Tree
(DT) models use a single tree for inference, resulting in
faster predictions. Logistic Regression (LR) is even more
efficient, involving only basic mathematical operations (e.g.,
dot products), making it the fastest model during inference,
despite a slightly higher training time. However, as shown in
Fig. 9, the testing time for a single instance is negligible. In
addition, training is relatively lightweight for most models,
making the hierarchical architecture practical for real-time
applications.

E. Comparison of the Proposed Model with Existing Models

The comparison presented in Table V highlights the ef-
fectiveness of the proposed solution in achieving superior
performance for 2-class, 3-class, and 6-class classification
tasks on the CIC-IoV2024 dataset. Here, we compare our
approach with existing solutions in the literature [9], [38], [39],
[41], [42]. In addition, Federated Learning (FL) has gained
significant attention for deploying IDS in distributed envi-
ronments due to its ability to enhance security and preserve
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privacy. As such, for evaluation and comparison purposes, we
implemented FL using the Flower framework.

To evaluate the performance of federated learning (FL) on
the CIC-IoV2024 dataset, we employed the Flower framework
to simulate a federated setting. Specifically, we distributed the
dataset across 10 clients and trained a Deep Neural Network
(DNN) model over 5 communication rounds. Each client
performed local training of this DNN using its own subset of
data. Then, they sent their model parameters to a central server.
Upon receiving clients’ model parameters, the central server
aggregated these parameters using the Federated Averaging
(FedAvg) algorithm [58]. After that, the server send the
model’s parameters back to clients, and one communication
round is completed. The process is repeated until the learning
converges. We experimented with three feature configurations:
10, 11, and 18 features according to the classification task at
each tier in our proposed approach. The classification tasks
included binary, ternary, and six-class settings. The DNN
architecture used in our FL experiments consisted of three
hidden layers with ReLU activation, dropout regularization,
and a softmax output layer. For training, we used categorical
cross-entropy loss with the Adam optimizer. The number of
local epochs (50) and batch size (25) were fixed across all
clients to ensure consistency.

The proposed hierarchical model achieves 100% accuracy
for 2-class and 3-class tasks with only 11 features and for 6-
class tasks with 18 features, demonstrating its efficiency and
suitability for resource-constrained IoV networks. Similarly,
FL also achieves very high accuracy. However, conventional
FL needs to maintain a full model at each devices, making it
less effective due to the limited resources in IoV devices.

In the literature, some existing methods like Neto et al.
[9] achieve only 95% accuracy, while others, such as Yagiz
et al. [41] and Aswal et al. [38], claim high accuracy but
have limitations. They either consider few attack categories
or rely on all 152 features, which make them less practical
for IoV networks. In contrast, our proposed model’s ability to
achieve perfect accuracy with minimal features underscores its
potential for scalable and efficient IoV security solutions.

F. Scalability and Overhead Analysis

To evaluate the scalability of the proposed approach, we
analysed the overhead introduced at different layers of deploy-
ment, as illustrated in Figure 10. Training is performed in the
cloud, where resource availability makes its cost negligible.
The main overheads—evaluated using real-world parameters
from Table VI and the configuration proposed by [59]—relate
to model deployment, memory usage, message processing, and
additional network traffic for forwarding suspicious messages.
Our experimental results show minimal impact on vehicle
performance: memory usage is only 13 KB, and response time
increases by just 0.13%. With a packet delivery interval of 1
second, hourly model updates also generate negligible traffic.
These results confirm the lightweight and scalable nature of
the proposed model, which we aim to evaluate further through
network simulations in future work.

Fig. 10: Overhead of the proposed approach
G. Computational Complexity

In our proposed framework, classifiers are based on RF so
that the complexity of our approach can be derived from the
computational complexity of the training and prediction phases
of RF. Specifically, the training complexity of RF depends
on the complexity of tree construction, which is typically
O(M × N × d). Here, M is the number of features, N is
the number of training samples, and d is the depth of the tree.
When building a tree, as we recursively split the dataset at each
node based on feature values to create child nodes, the depth
of the tree grows. In a balanced binary tree, the maximum
depth is approximately logN . The process continues until a
stopping criterion is met, such as reaching a maximum depth
(e.g., logN ), a minimum number of samples per leaf, or no
further information gain. Since an RF builds multiple decision
trees (e.g., T trees), the overall training complexity becomes
O(T ×M ×N × logN).

To make a prediction, we traverse each of the T trees
in the forest. The complexity of traversing a single tree is
O(d), where d is the depth of the tree. For a balanced tree,
d ≈ logN , where N is the number of training samples.
Additionally, each node evaluation involves accessing and
comparing a feature, contributing to the complexity. Thus the
complexity for traversing a single tree is O(M×d). Recall that
in our proposed framework, the models are trained an then be
deployed at different layers. As such, the inference complexity
of RF is equivalent to the prediction complexity. Since the
proposed framework consists of three layers, each with a
RF classifier, the prediction complexity of one data point is
O
(
(T1×logN1+T2×logN2+T2×logN2+T3×logN3)×M

)
,

where Ti and Ni with i = 1, 2, 3 are respectively the number
of trees and training samples at each layer.

H. Potential Overfitting Issue

While analyzing the results from the RF and federated
learning setting (as presented in Table 2, which is the Table IV
in the revised manuscript), we observed that model accuracy
improves consistently with the increase in the number of
selected features. For example, specifically, with 10 features,
we achieve 97.01% accuracy for the 2-class task, 96.91%
for 3-class, and 95.23% for 6-class classification in federated
learning setting. When the number of features is increased
to 11, the performance further improves to 100% accuracy
for both 2-class and 3-class, and 98.28% for 6-class clas-
sification. Notably, with 18 selected features (out of 152),
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TABLE V: Performance Comparisons across 2-class, 3-class, and 6-class classification tasks in terms of accuracy.

Model 2-Class 3-Class 6-Class Remarks
Proposed Model (10 Features) 98.94 98.94 98.94 Default parameters.
Proposed Model (11 Features) 100 100 98.94 Default parameters.
Proposed Model (18 Features) 100 100 100 Default parameters.
Federated Learning (10 Features) 97.01 96.91 95.23 Flower Framework 5 rounds with 10 clients.
Federated Learning (11 Features) 100 100 98.28 Flower Framework 5 rounds with 10 clients.
Federated Learning (18 Features) 100 100 100 Flower Framework 5 rounds with 10 clients.
Neto et al. [9] 95 95 95 Random Forest and DNN.

Yagiz et al. [41] 100 100 100 Developed a KD-XVAE model. Only attack data was used,
while benign data was excluded, possibly leading to inaccurate evaluation results.

Mahdi et al. [42] N/A N/A 99.77 Focused on spoofing attacks only.
Used LSTM for classification and XGB for feature selection.

Aswal et al. [38] 99.99 99.99 99.99 Used CNN on decimal data.
Did not use the full dataset, making results unverifiable.

Gul et al. [39] N/A N/A 99.64 Used RF for the decimal dataset.

TABLE VI: Network configuration

Parameter Value
Density 180 veh/km
Minimum Distance 2 m
Packet Delivery Interval 1 s
Response Time 1.5 s
Model Size 13 KB
Model Update 3600 s
Testing Time (Instance) 0.002 s

the model achieves 100% accuracy across all class settings
(2-class, 3-class, and 6-class). While this strong performance
demonstrates the model’s effectiveness in capturing discrim-
inative patterns in the data, it also raises a legitimate con-
cern regarding possible overfitting-particularly when perfect
accuracy is observed. Overfitting might occur if the model
memorises patterns in the training data rather than generalizing
to unseen data. However, in our case, the improvements appear
consistent and gradual as the number of features increases,
which suggests that the selected features are informative and
relevant to the classification task. To ensure that this behavior
is not merely due to data leakage or poor generalization, we
performed 10-fold cross-validation across all clients in the
federated setup. Moreover, the selected features were chosen
carefully using a wrapper-based selection strategy, and the
FL training was done across distributed clients with non-
overlapping data. Nonetheless, we acknowledge that achieving
100% accuracy in a real-world federated setting is unusual and
deserves further investigation. As such, we plan to extend this
work by evaluating on more heterogeneous client datasets and
integrating techniques such as differential privacy, client-level
regularization, and dropout to enforce better generalization and
prevent potential overfitting.

V. DISCUSSION AND INSIGHTS

The proposed three-level hierarchical classification frame-
work for multilayer IoV networks addresses the critical chal-
lenges of efficiency, scalability, and privacy in IoV systems.
The hierarchical design ensures that each classification level
is strategically deployed: the first level at the vehicle for
quick identification of benign or malicious instances, the
second level at the roadside unit for categorizing attacks,
and the third level at the edge network for detailed attack-
specific classification. This division of responsibilities allows

for localized decision-making, reducing the computational
burden on individual components. A notable benefit of the
proposed framework is its lightweight nature, achieved through
the combination of Boruta feature selection and SHAP ex-
planations. By reducing the feature set to the most relevant
attributes, the model ensures efficient resource usage while
maintaining high accuracy. For instance, using only 11 features
(out of 152) achieves perfect classification for two-class and
three-class problems, while 18 features are sufficient for six-
class classification. This feature reduction is essential for IoV
networks, where resource constraints and real-time processing
requirements are critical. The use of a Deep Neural Network
(DNN) in the FL setting further enhances the framework by
enabling privacy-preserving training across distributed nodes.
This approach ensures data security and aligns with the privacy
requirements of IoV networks, while the centralized cloud
server facilitates model training and retraining when necessary.
Lightweight retraining capabilities at the roadside unit and
edge nodes provide additional flexibility for dynamic IoV
environments. The analysis demonstrates the superior of our
proposed framework compared with existing approach, thanks
to the effective feature selection component in our solution.
This result significantly outperforms the 95% accuracy re-
ported in the baseline study [9]. Furthermore, unlike existing
works [38], [39], [41], [42] that often rely on flat classification
with all features, the proposed hierarchical approach aligns
better with the decentralized nature and resource constraints
of IoV networks. Note that while some works (e.g., [41])
claim 100% accuracy, their reliance on flat classification and
requiring hundred features make them less practical for real-
world IoV applications.

VI. CONCLUSIONS AND FUTURE WORK

This work proposed a scalable, three-level hierarchical clas-
sification model for intrusion detection in Internet of Vehicles
(IoV) networks, utilizing the CIC-IoV2024 dataset. Our model
was designed to address the unique challenges of IoV, includ-
ing resource constraints and the need for fine-grained attack
classification. By employing Boruta Feature Selection, we can
significantly reduce the computational complexity of training
and testing while maintaining high classification performance.
The hierarchical structure provided multi-level granularity in
attack detection, distinguishing between benign and attack
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traffic at Level 1, categorizing coarse-grained attack types at
Level 2, and identifying specific attack subtypes at Level 3.

The model was rigorously evaluated using 10-fold stratified
cross-validation with various machine learning algorithms. Re-
sults demonstrated that the hierarchical approach significantly
outperformed traditional flat classification models, achieving
higher accuracy, precision, recall, and F1-scores. The compar-
ative analysis also underscored the scalability and adaptability
of our method across diverse attack scenarios.

Despite its effectiveness, our study highlights areas for
future improvement, including extending the model to incorpo-
rate real-time detection capabilities, testing on additional IoV
datasets, and exploring deep learning approaches for further
optimization. From our experiment, we observed that the FL-
based approach yielded good results. Therefore, our future
work is to integrate the proposed hierarchical classification
framework into a federated learning setting. This advancement
would combine the benefits of hierarchical granularity with
privacy and security inherent in federated learning. Such an
approach could enable scalable, secure, and efficient classi-
fication systems for IoV networks, further enhancing their
adaptability to evolving cyber threats.

Beyond the evaluation conducted in this study, future re-
search will focus on validating the proposed approach across
multiple datasets. While CIC-IoV2024 provides a comprehen-
sive foundation for IoV security analysis, we plan to extend
our experiments to datasets such as CIC-IDS-2018 to assess
the method’s generalizability in different network environ-
ments. Additionally, as existing IoV security datasets lack
privacy attacks, we aim to explore this domain in our future
work to fill this important gap in the literature. Moreover, we
also plan to implement it in a real-time environment to assess
its performance under live network conditions, considering
factors such as latency, adaptability, and scalability.

While this study focuses on improving intrusion detection
through hierarchical classification, future research could ex-
plore the integration of networking aspects, such as adaptive
traffic routing and network-aware anomaly detection, to en-
hance the overall security and efficiency of IoV systems. Inves-
tigating how communication delays and bandwidth constraints
impact the deployment of hierarchical IDS in real-world IoV
environments would be a valuable extension of this work.
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[16] A. Sarıkaya and B. G. Kılıç, “A class-specific intrusion detection model:
Hierarchical multi-class ids model,” SN Computer Science, vol. 1, pp.
1–11, 2020.

[17] N. Mohd, A. Singh, and H. S. Bhadauria, “Intrusion detection system
based on hybrid hierarchical classifiers,” Wireless Personal Communi-
cations, vol. 121, no. 1, pp. 659–686, 2021.

[18] K. A. ElDahshan, A. A. AlHabshy, and B. I. Hameed, “Meta-heuristic
optimization algorithm-based hierarchical intrusion detection system,”
Computers, vol. 11, no. 12, p. 170, 2022.

[19] A. Alzaqebah, I. Aljarah, and O. Al-Kadi, “A hierarchical intrusion
detection system based on extreme learning machine and nature-inspired
optimization,” Computers & Security, vol. 124, p. 102957, 2023.

[20] M. Verkerken, L. D’hooge, D. Sudyana, Y.-D. Lin, T. Wauters, B. Vol-
ckaert, and F. De Turck, “A novel multi-stage approach for hierarchical
intrusion detection,” IEEE Transactions on Network and Service Man-
agement, vol. 20, no. 3, pp. 3915–3929, 2023.

[21] R. Kumar, P. Kumar, R. Tripathi, G. P. Gupta, and N. Kumar, “P2sf-
iov: A privacy-preservation-based secured framework for internet of
vehicles,” IEEE Transactions on Intelligent Transportation Systems,
vol. 23, no. 11, pp. 22 571–22 582, 2021.

[22] A. R. Gad, A. A. Nashat, and T. M. Barkat, “Intrusion detection system
using machine learning for vehicular ad hoc networks based on ton-iot
dataset,” IEEE Access, vol. 9, pp. 142 206–142 217, 2021.

[23] R. Kumar, P. Kumar, R. Tripathi, G. P. Gupta, N. Kumar, and M. M. Has-
san, “A privacy-preserving-based secure framework using blockchain-
enabled deep-learning in cooperative intelligent transport system,” IEEE
Transactions on Intelligent Transportation Systems, vol. 23, no. 9, pp.
16 492–16 503, 2021.

[24] M. Abdel-Basset, N. Moustafa, H. Hawash, I. Razzak, K. M. Sallam, and
O. M. Elkomy, “Federated intrusion detection in blockchain-based smart
transportation systems,” IEEE Transactions on Intelligent Transportation
Systems, vol. 23, no. 3, pp. 2523–2537, 2021.

[25] I. Ullah and Q. H. Mahmoud, “A technique for generating a botnet
dataset for anomalous activity detection in iot networks,” in 2020 IEEE
International Conference on Systems, Man, and Cybernetics (SMC).
IEEE, 2020, pp. 134–140.

[26] N. Moustafa, “A new distributed architecture for evaluating ai-based
security systems at the edge: Network ton iot datasets,” Sustainable
Cities and Society, vol. 72, p. 102994, 2021.

https://doi.org/10.1038/s41598-024-80021-0
https://doi.org/10.1038/s41598-024-80021-0


JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2025 15

[27] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed
analysis of the kdd cup 99 data set,” in 2009 IEEE symposium on
computational intelligence for security and defense applications. Ieee,
2009, pp. 1–6.

[28] N. Moustafa and J. Slay, “Unsw-nb15: a comprehensive data set for
network intrusion detection systems (unsw-nb15 network data set),”
in 2015 military communications and information systems conference
(MilCIS). IEEE, 2015, pp. 1–6.

[29] E. Chatzoglou, G. Kambourakis, and C. Kolias, “Empirical evaluation
of attacks against ieee 802.11 enterprise networks: The awid3 dataset,”
IEEE Access, vol. 9, pp. 34 188–34 205, 2021.

[30] I. Sharafaldin, A. H. Lashkari, S. Hakak, and A. A. Ghorbani, “De-
veloping realistic distributed denial of service (ddos) attack dataset
and taxonomy,” in 2019 international carnahan conference on security
technology (ICCST). IEEE, 2019, pp. 1–8.

[31] T. Zhang and Q. Zhu, “Distributed privacy-preserving collaborative
intrusion detection systems for vanets,” IEEE Transactions on Signal
and Information Processing over Networks, vol. 4, no. 1, pp. 148–161,
2018.

[32] X. Li, Z. Hu, M. Xu, Y. Wang, and J. Ma, “Transfer learning based in-
trusion detection scheme for internet of vehicles,” Information Sciences,
vol. 547, pp. 119–135, 2021.

[33] F. Jin, M. Chen, W. Zhang, Y. Yuan, and S. Wang, “Intrusion detection
on internet of vehicles via combining log-ratio oversampling, outlier
detection and metric learning,” Information Sciences, vol. 579, pp. 814–
831, 2021.

[34] M. S. Korium, M. Saber, A. Beattie, A. Narayanan, S. Sahoo, and P. H.
Nardelli, “Intrusion detection system for cyberattacks in the internet of
vehicles environment,” Ad Hoc Networks, vol. 153, p. 103330, 2024.

[35] E. Seo, H. M. Song, and H. K. Kim, “Gids: Gan based intrusion detec-
tion system for in-vehicle network,” in 2018 16th annual conference on
privacy, security and trust (PST). IEEE, 2018, pp. 1–6.

[36] H. Lee, S. H. Jeong, and H. K. Kim, “Otids: A novel intrusion detection
system for in-vehicle network by using remote frame,” in 2017 15th
Annual Conference on Privacy, Security and Trust (PST). IEEE, 2017,
pp. 57–5709.

[37] M. E. Verma, M. D. Iannacone, R. A. Bridges, S. C. Hollifield, B. Kay,
and F. L. Combs, “Road: The real ornl automotive dynamometer con-
troller area network intrusion detection dataset (with a comprehensive
can ids dataset survey & guide),” arXiv preprint arXiv:2012.14600,
2020.

[38] K. Aswal and H. Pathak, “Advancing vehicle security: Deep learning
based solution for defending can networks in the internet of vehicles,”
EAI Endorsed Transactions on Internet of Things, vol. 10, 2024.

[39] M. F. Gül and H. Bakir, “Improving attack detection in iov systems
using ga-based hyperparameter optimization,” in 2024 8th International
Artificial Intelligence and Data Processing Symposium (IDAP), 2024,
pp. 1–5.

[40] M. A. Merzouk, C. Neal, J. Delas, R. Yaich, N. Boulahia-Cuppens,
and F. Cuppens, “Adversarial robustness of deep reinforcement learning-
based intrusion detection,” International Journal of Information Security,
pp. 1–27, 2024.

[41] M. A. Yagiz, P. MohajerAnsari, M. D. Pese, and P. Goktas, “Trans-
forming in-vehicle network intrusion detection: Vae-based knowledge
distillation meets explainable ai,” arXiv preprint arXiv:2410.09043,
2024.

[42] Z. S. Mahdi, R. M. Zaki, and L. Alzubaidi, “Advanced hybrid techniques
for cyberattack detection and defense in iot networks,” Security and
Privacy, p. e471, 2024.

[43] N. Farhana, A. Firdaus, M. F. Darmawan, and M. F. Ab Razak,
“Evaluation of boruta algorithm in ddos detection,” Egyptian Informatics
Journal, vol. 24, no. 1, pp. 27–42, 2023.

[44] A. M. Ahmed, R. C. Deo, Q. Feng, A. Ghahramani, N. Raj, Z. Yin, and
L. Yang, “Deep learning hybrid model with boruta-random forest opti-
miser algorithm for streamflow forecasting with climate mode indices,
rainfall, and periodicity,” Journal of Hydrology, vol. 599, p. 126350,
2021.

[45] L.-M. Ang, K. P. Seng, G. K. Ijemaru, and A. M. Zungeru, “Deployment
of iov for smart cities: Applications, architecture, and challenges,” IEEE
Access, vol. 7, pp. 6473–6492, 2019.

[46] O. Kaiwartya, A. H. Abdullah, Y. Cao, A. Altameem, M. Prasad, C.-T.
Lin, and X. Liu, “Internet of vehicles: Motivation, layered architecture,
network model, challenges, and future aspects,” IEEE Access, vol. 4,
pp. 5356–5373, 2016.

[47] W. Duan, J. Gu, M. Wen, G. Zhang, Y. Ji, and S. Mumtaz, “Emerging
technologies for 5g-iov networks: Applications, trends and opportuni-
ties,” IEEE Network, vol. 34, no. 5, pp. 283–289, 2020.

[48] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[49] J. Pavlovic, G. Fontaras, M. Ktistakis, K. Anagnostopoulos, D. Komnos,
B. Ciuffo, M. Clairotte, and V. Valverde, “Understanding the origins and
variability of the fuel consumption gap: Lessons learned from laboratory
tests and a real-driving campaign,” Environmental Sciences Europe,
vol. 32, pp. 1–16, 2020.

[50] Y. Yao, X. Zhao, C. Liu, J. Rong, Y. Zhang, Z. Dong, and Y. Su,
“Vehicle fuel consumption prediction method based on driving behavior
data collected from smartphones,” Journal of Advanced Transportation,
vol. 2020, no. 1, p. 9263605, 2020.

[51] J. Zuniga-Mejia, R. Villalpando-Hernandez, C. Vargas-Rosales, and
A. Spanias, “A linear systems perspective on intrusion detection for
routing in reconfigurable wireless networks,” IEEE Access, vol. 7, pp.
60 486–60 500, 2019.

[52] F. Adjewa, M. Esseghir, and L. Merghem-Boulahia, “Llm-based continu-
ous intrusion detection framework for next-gen networks,” arXiv preprint
arXiv:2411.03354, 2024.

[53] Meta AI, “Llama 2,” 2023, accessed: 02 April 2025. [Online].
Available: https://www.llama.com/llama2/

[54] Aman. (2023, jul) Inference characteristics of llama. Cursor. Accessed:
27 March 2025. [Online]. Available: https://www.cursor.com/en/blog/
llama-inference

[55] B. Ji, X. Zhang, S. Mumtaz, C. Han, C. Li, H. Wen, and D. Wang, “Sur-
vey on the internet of vehicles: Network architectures and applications,”
IEEE Communications Standards Magazine, vol. 4, no. 1, pp. 34–41,
2020.

[56] C. Liu, L. Zhang, M. Zhu, J. Wang, L. Cheng, and G.-K. Chang, “A
novel multi-service small-cell cloud radio access network for mobile
backhaul and computing based on radio-over-fiber technologies,” Jour-
nal of Lightwave Technology, vol. 31, no. 17, pp. 2869–2875, 2013.

[57] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” the Journal of machine
Learning research, vol. 12, pp. 2825–2830, 2011.

[58] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics. PMLR, 2017, pp. 1273–
1282.

[59] H. Li, Q. Zhang, L. Wu, and Z. Zhang, “Impact of communication
performance measures for the internet of vehicles in an intersection
scenario,” Simulation Modelling Practice and Theory, p. 103086, 2025.

http://www.deeplearningbook.org
https://www.llama.com/llama2/
https://www.cursor.com/en/blog/llama-inference
https://www.cursor.com/en/blog/llama-inference

	Introduction
	Related works
	Hierarchical Classification in IDS
	IDS Datasets for IoV Networks

	The Proposed Hierarchical Classification Model
	Data Preprocessing
	Dataset Description
	Data Scaling
	Feature Selection
	Dataset Partition
	Multi-level Classification Framework

	Distributing Proposed Hierarchical IDS Framework in IoV

	Results and Discussion
	Experimental Setup and Implementation
	Performance Metrics
	Impact of Feature Selection on Model Accuracy
	Hierarchical Model Performance Across Levels
	Root-Level Classifier (2-Class)
	Second-Level Classifier (3-Class)
	Training and Testing Time

	Comparison of the Proposed Model with Existing Models
	Scalability and Overhead Analysis
	Computational Complexity
	Potential Overfitting Issue

	Discussion and Insights
	Conclusions and Future Work
	References

