
ar
X

iv
:2

50
5.

16
11

2v
1 

 [
cs

.C
R

] 
 2

2 
M

ay
 2

02
5

Extensible Post Quantum Cryptography Based Authentication

Homer A. Riva-Cambrin, Rahul Singh, Sanju Lama, and Garnette R. Sutherland

Project neuroArm, Dept. Of Clinical Sciences,

Cumming School of Medicine, University of Calgary

(Dated: June 10, 2025)

1

https://arxiv.org/abs/2505.16112v1


Abstract
Cryptography underpins the security of modern digital infrastructure, from cloud services to health

data. However, many widely deployed systems will become vulnerable after the advent of scalable

quantum computing. Although quantum-safe cryptographic primitives have been developed, such as

lattice-based digital signature algorithms (DSAs) and key encapsulation mechanisms (KEMs), their

unique structural and performance characteristics make them unsuitable for existing protocols. In

this work, we introduce a quantum-safe single-shot protocol for machine-to-machine authentication

and authorization that is specifically designed to leverage the strengths of lattice-based DSAs

and KEMs. Operating entirely over insecure channels, this protocol enables the forward-secure

establishment of tokens in constrained environments. By demonstrating how new quantum-safe

cryptographic primitives can be incorporated into secure systems, this study lays the groundwork

for scalable, resilient, and future-proof identity infrastructures in a quantum-enabled world.

I. INTRODUCTION

When clients access services that contain restricted information, authorization is essential

to limit access to intended users. The security of these measures is of special importance

for privacy-focused disciplines such as medicine, where patient or health information must

be closely guarded [1]. Traditionally, this was achieved by sending client credentials (i.e.,

a username and password) with each request. However, this required the service to store

passwords and inherited the well-known weaknesses of password-based authorization like

frequent user error [2].

A more modern approach is token-based authorization such as OAuth 2.0 [2, 3]. In OAuth

2.0, a client authenticates with an authorization server to receive an access token, which is

used to authorize subsequent requests. Since OAuth 2.0 is not suited for authentication [2],

protocols like OpenID Connect (OIDC) [4] extend OAuth 2.0 to provide authentication. The

OIDC protocol uses a specific type of token called a JSON Web Token (JWT) [5], which

rely on digital signatures [6]. In a digital signature scheme, a signer holds a private key and

makes their public key available to all. Messages signed by the private key can be verified

by the corresponding public key, confirming that the private key holder did indeed sign the

message. In addition, these signatures also enable integrity verification: if the message is

modified, the signature is no longer valid. However, since these tokens carry the signature

2



with each request, they tend to be large, increasing network bandwidth usage.

The emergence of quantum computing presents a new challenge to current cryptographic

protocols [7]. Although it opens the door to new paradigms of quantum-based authentication

[8, 9], it also threatens conventional asymmetric cryptography methods [7, 10] such as elliptic

curve cryptography [11] and RSA, which can be broken with Shor’s algorithm [12]. These

algorithms underpin much of modern secure communication, such as web traffic and financial

systems.

To prepare for this shift, the National Institute of Standards and Technology (NIST)

initiated a standardization effort for quantum-safe digital signatures [13]. On August 13,

2024, NIST standardized two digital signature algorithms, ML-DSA [14] and SLH-DSA [15]

that are believed to be secure against large-scale quantum computers.

One of the main challenges in adopting these new signatures is their considerable size

[16]. ML-DSA produces 2,420-byte signatures and SLH-DSA has 7,860-byte signatures,

which are orders of magnitude larger than 64-byte Elliptic Curve Digital Signing Algorithm

(ECDSA) signatures used today. Embedding such large signatures in tokens would increase

transmission costs and latency, and could also make systems susceptible to denial-of-service

attacks [10, 16].

Clearly, new authentication and authorization protocols must be designed with these

constraints in mind. One such example is KEMTLS [17] which replaces the TLS handshake

with quantum-safe primitives. Inspired by these developments, and the need for health

data security in the operating room (IoT-based surgical systems), we here propose a novel

protocol that solves a specific goal: efficient and secure machine-to-machine authorization and

authentication in the presence of quantum-capable adversaries. Our protocol uses quantum-

safe key encapsulation mechanisms (KEMs) and digital signature algorithms (DSAs) to

establish tokens over insecure channels, eliminating the need to include large digital signatures

in the tokens themselves. It also supports key rotation. To verify its security properties,

we formally analyze the protocol using TAMARIN [18], a symbolic verification tool for

cryptographic protocols.

3



II. CRYPTOGRAPHY FOR HEALTH DATA

Suppose there is a medical device that transmits data to a cloud server. We want only

that authorized machine communicating with the cloud. A stronger guarantee is the certainty

that the messages sent over the network really do originate from the machine, and have not

been modified or forged by an attacker.

A. Integrity

Suppose the machine has a message m to send to the server which comprises of medical

data. This medical data is essential to the treatment of the patient, and thus we must

validate that m is received by the server exactly as it was sent by the machine, and not

modified maliciously by an attacker.

One cryptographic primitive that could be applied here is a hash function. A hash

function h maps strings of arbitrary length x to strings of fixed length h(x). A desirable

property of hash functions is pre-image resistance. That is, if we have a hash value h(x), it

is computationally infeasible to find x. We also want collision resistance, that is, if we have

two unique messages x1, x2 such that x1 ̸= x2 then h(x1) ̸= h(x2). [7]

To detect modifications to the message m, the machine sends a hash along with the

message, making the final message (m,h(m)). When the server receives the message, the

server computes h(m)′ and checks h(m)′ = h(m). Since the hash function has collision

resistance, if even a single bit was changed, the hash is different and it becomes evident that

the message has been modified. However, the obvious attack here is that the message can

be modified, the hash recomputed, and in doing so the server is tricked into believing no

modification took place.

A digital signature algorithm provides better guarantees. The machine generates a key

pair consisting of a private key kpriv and a public key kpub. The public key is transmitted

publicly so that the attacker and the server can see it. Now, the machine sends the message

(m, {m}kpriv), which is the message m followed by the signature of m under kpriv.

The server uses the public key to trivially verify that m was indeed signed by the machine.

If m had been modified by an attacker, the signature would no longer be valid, and if the

attacker were to modify the signature, then it would no longer be verifiable using the public

4



FIG. 1. A key encapsulation mechanism (KEM). The client starts with the decapsulation key

DK and the encapsulation key EK, sends the EK to the server, which the server uses to encapsulate

the shared secret SEC which can be decpasulated by the client.

key. Thus, we have shown that the message was sent by the machine and that it has not

been modified.

B. Shared Secrets

Suppose the machine needs to establish a secret string in order to encrypt messages.

Considering the initial channel is insecure, a shared secret will need to be established without

the attacker learning said secret. For this, a key encapsulation mechanism (KEM) is employed.

(Fig. 1)

The machine begins by generating a KEM private key, called the decapsulation key dk,

and then a public key, called the encapsulation key pk which is shared with the server. The

server then encapsulates the shared secret S using the encapsulation key to produce the

cipher text. The machine receives the cipher text, and uses the decapsulation key to retrieve

the secret S. All of this occurs without the attacker obtaining knowledge of S, and thus a

shared secret is successfully established between the two parties.

III. PROTOCOL

A. Overview and Preconditions

Here we present a brief overview of the protocol (Fig. 2) using the same medical device

and server from the previous section. Our goal is to use quantum-safe digital signatures and

KEMs to establish a token to authorize future requests. Before authentication can proceed,

the medical device must be registered with the server by an administrator.

The administrator generates an ID for the medical device, along with a private and public

5



FIG. 2. A simplified overview of the protocol. The protocol begins with the administrator

(1) generating client credentials (3) and sending them to the server for approval (3). The server

approves the credentials (4), and the administrator installs them securely on the client machine (5).

To initiate a key cycle, the client generates a new key pair (6) signed with both old and new keys,

and sends it to the server (7). The server verifies and approves the key cycle (8). For token stamping,

the client generates a preview token (9), attaches a KEM public key and encapsulation key, and

transmits this to the server (10). The server uses a private value (11) to generate a ciphertext which

is sent to the server (12). Both parties derive the shared secret and compute the final token (13).

Cycles and token stamping may take place an arbitrary number of times and in any order.

6



key. The administrator forms a message containing the ID and the public key and signs it

with both the client key and the administrator key to show that the private key does exist,

and that the administrator did authorize this request.

The server will examine and validate this request, then form an approval message and

sign it with the server private key. This is received and validated by the administrator. The

administrator securely installs the client UUID and private key on the medical device, who

will direct all interaction with the server from there on. As the private key serves as the

proof-of-identity for the medical device, it is paramount that it is transported securely [19].

The medical device may choose to change the key arbitrarily, or when required by the

server. This process is called key cycling. The medical device generates a new key pair, and

forms a message comprising of the device ID and new public key. This message is signed

twice. The first signature is by the new private key, to prove that this key is owned and

exists, and the second signature is by the old private key, to authorize this request. This

message, along with the signatures, is sent to the server, who trivially validates it, installs

the new key, and sends an approval message signed with the server private key.

We will now obtain a token. A preview token is proposed by the medical device which

states certain properties that the device would like the token to have. This could be permission

scopes or a certain version of the protocol. The token also contains a timestamp and a

payload which is a random string of 32 bytes. We also compute a KEM encapsulation &

decapsulation key. The token and encapsulation key are signed and then sent to the server.

The server validates the signature and the token details, that the timestamp is valid, and

that the permission scopes requested are reasonable. The server then uses the encapsulation

key to generate a shared secret S. The token payload is replaced by S, and then the token

is hashed and stored in the server database. The server sends the KEM ciphertext back

along with the hash of the final token, signed by the server private key.

The client uses the KEM ciphertext & decapsulation key to derive S, derives the same

token, and verifies it by checking the hash. Thus, a secret token is successfully established

over an insecure channel.

7



B. Protocol Time

To prevent replay attacks, the protocol uses a special counter-based timestamp known as

the protocol time. This time stamp system is simple and avoids the need for synchronized

clocks or external time sources. The principal goal is to ensure that no two tokens signed

under the same key can ever be identical.

Each client maintains its own protocol time with the server, which begins at zero upon

successful registration. Every token request, regardless of error or success, increments this

value by one. If the client initiates a key cycle, the protocol time is reset to zero. If the client

sends an incorrect time, then the server should report back the correct protocol time.

To prevent timestamp reuse via counter wrapping, the protocol enforces cycling once the

maximum value of an unsigned 64- bit integer is reached. This forces the counter back to

zero, which is sound since the key has changed and thus old tokens may not be replayed.

This design ensures strict monotonicity and protects against replay-based token reuse.

C. Tokens

Protocol
1 byte

Device
1 byte

UUID
16 bytes

Perms
16 bytes

Time
8 bytes

Payload
32 bytes

FIG. 3. The layout of the token byte structure in big endian. Each rectangle specifies

the contents of the field as well as the amount of bytes the field takes up. Bytes are ordered from

top-down, i.e., protocol comes before device type.

Tokens have a defined and well-known structure and thus are called transparent (Fig 3).

The protocol and device field allow specifying the signing algorithms to use. The UUID

field contains the client ID who signed this message. The 16-byte permission field is for

extensibility and is not specified. It could be used for permission scopes similar to claims on

a JWT[5]. The timestamp is the protocol time encoded as a 64-bit unsigned integer. The

payload is a 32-byte string. In a preview token, this will be random. In a finalized token,

this is the shared secret established by the KEM.

8



D. Procedure

The following sections will describe the protocol (Fig. 2) in detail. The network is assumed

to be insecure, so an attacker can read and modify any message. However, the protocol

could be layered over a secure channel such as TLS. Each section will also briefly discuss the

security goals of the various parts of the protocol [20].

1. Special Notation

For the purposes of simplicity and concise presentation, some special notation is used for

signatures and key pairs. For signatures we write {m}k which is the signature of m under k.

For private key k, the public key is written k. In a tuple, we may write (m, {←}k) which

is the message m and then the signature of m under k. If we write (m, {←}k, {←}k2) then

that is m, the signature of m under k, and the signature of the previous signature under k2.

2. Registration

The goal of registration is that only authorized administrators may register new clients

to the server, and that clients who are being registered actually possess the key pair they

claim to possess. The exact semantics of administrators is out of scope for this protocol.

Registration is initiated by an administrator who possesses the administrator private key kα

and administrator ID Iα. The administrator proposes a new client with ID Ic and public key

kc. The administrator produces the message M1 = ⟨REGISTER, I, kc, Iα⟩. The administrator

uses the client private key and the administrator private key to produce the final message

(M1, {←}kc , {←}kα), which is sent to the server.

Let the server key pair be (kS, kS). Upon receiving this message, the server verifies the

validity of both signatures and that the public key and identifier are unique. The server

responds (⟨REGSUCCESS, h(I)⟩, {←}kS) to the administrator. The administrator verifies

the message was signed by the server, and verifies the identifier hash. This prevents the

impersonation of the server, and ensures the registration response may never be replayed

since identifiers must be unique.

Through secure means, the administrator installs the client identifier I and private key kc

on the client. All subsequent communications take place between the client and the server.

9



Admin Server Client

(⟨REGISTER, I, kc, Iα⟩, {←}kc , {←}kα)

(⟨REGSUCCESS, h(I)⟩, {←}kS)

SECURE(⟨I, kc⟩)

Registration

(⟨CYCLE, I, k′
c⟩, {←}k′c , {←}kc)

(⟨CYCLEOK, h(⟨I, k′
c⟩)⟩, {←}kS)

Cycle

(⟨STAMP,T, ek)⟩, {←}kS)

(⟨STAMPED, h(T,T), ct)⟩, {←}kc)

Token Establishment

msc Protocol

FIG. 4. Protocol. The exact protocol specification showing the messages exchanged between the

administrator and server and then subsequently between the client and server.

3. Key Cycling

Key cycling is only necessary when the key expires, as determined by server policy. If a

client attempts to get a token with an expired key, the server will direct the client to initiate

a cycle. Alternatively, a client may choose to initiate a cycle arbitrarily often.

The goal of key cycling is that only the owner of the private key can update the public

key on the server, and that the public key proposed was created by the client and forms part

of a legitimate key pair.

To begin the cycling process, the client generates a new key pair (k′
c, k

′
c). The client then

sends (⟨CYCLE, I, k′
c⟩, {←}k′c , {←}kc) to the server. Here we note that the cycling process

is practically identical to the registration process, with the difference being that the client

10



self-authorizes, removing the need to include the administrator ID.

The server verifies the signatures, verifies the public key is unique, and computes the

verification hash v = h(⟨I, k′
c⟩). The server then responds with (⟨CYCLEOK, v⟩, {←}kS). The

client verifies the authenticity of the response with the server public key, and verifies the

verification hash.

4. Token Stamping

The final operation supported is token establishment, or stamping, the central operation

of the protocol. Tokens are stamped in such a way to prevent replay attacks. Additionally,

since a token verifies against a client, a token is valid if and only if the client itself is valid.

Each token stamped corresponds uniquely to a single non-repeating instance of the protocol,

fulfilling the property of injective agreement. Tokens are forward-secure due to their reliance

on quantum-safe KEMs which are independent from the signing keys. Furthermore, the

server stores only hashes of tokens, meaning that an attacker cannot extract valid tokens

even in a database breach.

Token establishment process begins with the client generating a preview token. The token

has the following structure:

T = ⟨pα, pβ, I, pψ, p∆, pζ⟩ (1)

where pα is the protocol, pβ the device, I the client UUID, pψ the permission field, p∆ the

timestamp, and pζ the payload field. The payload field may be initialized to a random string

of bytes.

The client then generates a KEM encapsulation key pk and decapsulation key sk. The

client sends (⟨STAMP,T, pk⟩, {←}kc) to the server.

The server receives this, verifies the signature, and verifies that the token’s timestamp

aligns with the server protocol time for that client. Additionally, the server checks and sees

that this token is not yet in the database.

The server may also verify the permission scopes, however this is out of scope for the

protocol and is left up to the implementer.

The server computes the KEM shared secret S and produces the ciphertext ct. The server

computes the final token TS as,

TS = ⟨pα, pβ, I, pψ, p∆,S⟩ (2)

11



The server then computes the approval hash ah = h(⟨TS,T⟩) and sends (⟨STAMPED, ah, ct⟩, {←

}kS) to the client.

The client will verify the signature using the server public key. The client then uses

the ciphertext ct and the decapsulation key dk to derive the shared secret S. The client

computes the client token:

TC = ⟨pα, pβ, I, pψ, p∆,S⟩ (3)

The client now verifies that h(⟨TC ,T⟩) = ah = h(⟨TS,T⟩), asserting that the token was

correctly established and that TS = TC .

IV. ANALYSIS

We formally analyzed the protocol using the Tamarin prover [18], a state-of-the-art tool

for symbolic verification of cryptographic protocols. Tamarin supports rigorous security

proofs under the Dolev-Yao adversary model [21] in which the adversary has complete control

over the network. The adversary can delete messages, modify them, and has full knowledge

of everything sent across the network.

Tamarin includes built-in support for standard cryptographic primitives, such as hashing

functions and digital signatures. For instance, hashing is modeled as h/1, which is a unary

function with no equations. That is h(x1)=h(x2) if and only if x1=x2. Digital signatures

are modeled by the following equations:

verify(sign(m, sk),m, pk(sk)) = true (4)

which states that a valid signature under a private key sk is only verifiable using its

corresponding public key.

Since key encapsulation mechanisms are not natively supported, we incorporate a custom

KEM model based on the Tamarin analysis of KEMTLS [17]. We introduce three new

functions: kempk/2, kemencaps/3, and kemdecaps/3 governed by the following equation:

kemdecaps(g, kemencaps(g, ss, kempk(g, sk)), sk) = ss (5)

where g represents shared parameters. This captures the core property of KEMs: only the

two parties can derive the shared secret. To support protocol-level guarantees such as identity

uniqueness and signature verification, we specified formal restrictions, which prune invalid

12



FIG. 5. Server state machine in the quath implementation. The recv function processes

an input and advances the internal state. The poll_transmit emits a message if external work is

required (i.e., I/O or database interaction), and poll_result returns either a result or an error.

execution traces from the search space. In our case, these are traces where the signature

does not verify, or non-unique identifiers are being used.

For the server keys, a minimal public key infrastructure (PKI) was define, allowing us

to model the distribution and compromise of the long-term server key pair. Adversarial

capabilities were explicitly modeled via rules such as Reveal_ltk, Reveal_client, and

Reveal_token, which simulate the leakage of private keys and tokens. Additionally, token

expiration was modeled through dedicated rules, enabling the verification of time-bounded

access control policies.

Security properties are formalized as lemmas and verified through automated interactive

proofs. To demonstrate the protocol’s executability in the absence of an attacker, we included

several exists-trace lemmas confirming that honest protocol executions are possible.

A current limitation of the model is that each client is restricted to a single key cycle, and

tokens can only be verified once per run. While sufficient to validate core security properties,

future work should model an unbounded amount of cycles and multiple rounds of token

verification to provide full analysis.

The complete Tamarin model and proof scripts are available at:

https://github.com/OrbSurgicalAI/quath.

13

https://github.com/OrbSurgicalAI/quath


V. IMPLEMENTATION

A core design goal of the protocol was to ensure ease of implementation across a variety of

environments, including both synchronous and asynchronous runtimes. To achieve this, we

adopted a SANS I/O design pattern [22] where the protocol logic operates purely on bytes

and never performs I/O directly. This decouples the protocol from the execution context,

allowing it to be embedded in diverse systems ranging from web servers to embedded devices.

Each component of the protocol (registration, key cycling, and token stamping) is modeled

as an explicit state machine (Fig. 5). The server state machines are advanced with the

recv function, which consumes an input and updates internal state. When external work

is required such as I/O or database interaction, the state machine emits a request via

poll_transmit. The driver then invokes poll_result which can either be Pending if the

state machine is awaiting further work, or Ready if the state machine has terminated with a

result. Example driver code is included in Fig. 6.

To ensure high performance and type-safety, two qualities which we believe to be critical

in safe protocol design, the implementation was written in the Rust programming language.

Rust offers strong compile-time guarantees that eliminate entire classes of runtime errors

and provides robust memory safety without requiring a garbage collector. These properties

make it well-suited for implementing cryptographic protocols where correctness and safety

are paramount.

To support flexibility across cryptographic primitives, the implementation leverages Rust’s

generic trait system to abstract over DSAs, KEMs, and hash functions. This design allows

the protocol logic to remain agnostic to specific cryptographic choices, enabling support for

a variety of post-quantum algorithms, including ML-DSA [14], SLH-DSA [15] and ML-KEM

[23].

This modular and generic architecture makes the protocol highly portable and easy to

deploy. For instance, an organization such as a bank can readily adopt the system by

integrating the state machines into their existing infrastructure. They would simply need

to connect the storage and networking handlers, and the protocol will operate seamlessly

within the environment.

14



1 let mut machine = StateMachine::new(); // Instantiate a State Machine.

2 let mut input_queue = VecDeque::new(); // Service queue.

3 loop {

4 if let Some(item) = input_queue.pop_back() {

5 machine.recv(item); // If we have a new input.

6 }

7 if let Some(to_handle) = machine.poll_transmit() {

8 input_queue.push_front(handle_fn(to_handle)); // Service the request.

9 }

10 if let Poll::Ready(result) = machine.poll_result() {

11 return result; // The result is ready.

12 }

13 }

FIG. 6. An example of driving the state machine forward in Rust. In this example the

state machine is driven forward by some rust code.

VI. PARAMETERS

TABLE I. Recommended protocol parameters based on NIST security levels. Selections follow NIST

guidelines.

Level DSA KEM Hash Function

1 ML-DSA-44 ML-KEM-512 SHA3-256

3 ML-DSA-65 ML-KEM-768 SHA3-384

5 ML-DSA-87 ML-KEM-1024 SHA3-512

The parameters recommended based on the desired security category are shown in Table I.

The level is the security category based on the weakest link in the parameter set. Digital

signature algorithms specified in the table are described in FIPS204 [14], the key encapsulation

mechanisms are described in FIPS203 [23], and the hash functions are described in FIPS202

[24].

15



VII. DISCUSSION

This work presents a practical and formally verified approach for integrating state-of-the-

art post-quantum cryptographic primitives into a robust authentication and authorization

protocol. The relevance of such systems is increasingly urgent as large-scale quantum

computers threaten the long-term security of currently deployed cryptosystems. Critical

data, including financial records, medical information, and state secrets, may be vulnerable

to attack if post-quantum security is not adopted.

A key feature of our protocol is the compact and extensible token format. Each token

occupies only 74 bytes, a stark contrast to the often kilobyte-scale tokens used in comparable

systems. This efficiency yields substantial bandwidth savings in high-throughput environments

and is particularly advantageous for resource-constrained deployments such as embedded

systems.

Beyond efficiency, the protocol offers strong flexibility and extensibility. Tokens can

be customized to include permission scopes and application-specific metadata, making the

protocol well-suited for secure machine-to-machine interactions in any environment. The

protocol need not be limited to machines alone; as enterprise security evolves, this protocol

could readily extend to secure user authentication scenarios as well.

A central motivation behind this work is trust, which is a foundational requirement in

cryptographic systems [25]. Trust is especially important when we are dealing with sensitive

data such as healthcare data or financial records [1]. However, proving the security of protocols

remains a profound challenge, which in the past was conjectured to be an insurmountable

task [26, 27] due to the inherent complexities in modeling real-world adversarial behaviors.

Nonetheless, formal verification remains one of the most effective tools for providing

provable security guarantees for protocols [20, 26].

The need for formal analysis is underscored by the nature of the data guarded by the

protocols we use daily. For instance, TLS secures daily web traffic. The triple handshake

vulnerability in TLS was uncovered and healed through formal analysis [27, 28]. Historically,

protocols like Otway-Rees [29], which appear to be secure on first glance, have been shown

to have major flaws with trivial formal analysis. These finings highlight the inadequacy

of intuition-driven protocol design and verification, and the necessity of machine-checked

verification.

16



To that end, we employed the Tamarin Prover [18] to formally verify our protocol’s key

phases: registration, key cycling, and token issuance. Tamarin’s symbolic model, employing

the Dolev-Yao adversary [21], allows reasoning over all possible executions under a network

controlled by a powerful adversary. Indeed, Tamarin has been used for proofs of prolific

protocols such as TLS1.3 [27] and Apple iMessage [30].

We prove properties such as injective agreement, session key ownership, and resilience

to token expiration attacks under a limited version of the model. Importantly, the model

also models scenarios such as database leakage and full-server compromise. These formally

proven properties provide robust assurance of the protocol’s correctness and resilience, even

under a powerful adversary.

A. Limitations

One limitation of the protocol is that the client must have prior knowledge of the server’s

public key. This requirement can be mitigated by executing the protocol over an authenticated

secure channel, such as one established through KEMTLS, thus eliminating the necessity to

pre-distribute the server’s public key. Additionally, features such as token revocation could

be explicitly modeled in future versions of the protocol.

Another limitation is the scope of the security analysis presented. While important

properties such as key cycling and token verification have been demonstrated for a single

protocol cycle, a more comprehensive analysis over an arbitrary number of key cycles and

multiple rounds of token verification would provide significantly stronger assurances.

Future work should focus on formulating rigorous inductive proofs to thoroughly verify

these properties over repeated interactions.

B. Additional Information

Contact Information: Homer A. Riva-Cambrin, homer.rivacambrin@ucalgary.ca; Sanju

Lama, slama@ucalgary.ca; Garnette R. Sutherland, garnette@ucalgary.ca; Rahul Singh,

rahul.singh3@ucalgary.ca;

Competing Interests: The security protocol as presented in the work, and its widespread

application, stems from the need for health data protection relative to our innovations in

17



the Operating Room technologies. All authors have affiliation to a University of Calgary

(Project neuroArm Medical Robotics research facility) spin-off called OrbSurgical Ltd.

Funding: Canadian Institutes for Health Research Commercialization Grant Application

#390405 .

Data Sharing: All code and data can be located at the following link:

https://github.com/OrbSurgicalAI/quath

[1] A. S. Nadhan and I. Jeena Jacob, Enhancing healthcare security in the digital era: Safeguard-

ing medical images with lightweight cryptographic techniques in iot healthcare applications,

Biomedical Signal Processing and Control 88, 105511 (2024).

[2] D. Hardt, The OAuth 2.0 Authorization Framework, RFC 6749 (2012).

[3] D. Hardt, A. Parecki, and T. Lodderstedt, The OAuth 2.1 Authorization Framework , Internet-

Draft draft-ietf-oauth-v2-1-11 (Internet Engineering Task Force, 2024) work in Progress.

[4] N. Sakimura, J. Bradley, M. B. Jones, B. de Medeiros, and C. Mortimore, OpenID Connect

Core 1.0 (2014).

[5] M. B. Jones, J. Bradley, and N. Sakimura, JSON Web Token (JWT), RFC 7519 (2015).

[6] P. Saha, A comprehensive study on digital signature for internet security, Accent. Trans. Inf.

Secur 1, 1 (2016).

[7] D. J. Bernstein and T. Lange, Post-quantum cryptography, Nature 549, 188 (2017).

[8] N.-H. Lim, J.-W. Choi, M.-S. Kang, H.-J. Yang, and S.-W. Han, Quantum authentication

method based on key-controlled maximally mixed quantum state encryption, EPJ Quantum

Technology 10, 35 (2023).

[9] G. Chen, Y. Wang, L. Jian, Y. Zhou, and S. Liu, Quantum identity authentication based on

the extension of quantum rotation, EPJ Quantum Technology 10, 11 (2023).

[10] Y. Baseri, V. Chouhan, and A. Hafid, Navigating quantum security risks in networked environ-

ments: A comprehensive study of quantum-safe network protocols, Computers and Security

142, 103883 (2024).

[11] J. R. Wohlwend, Elliptic curve cryptography: Pre and post quantum (2016), undergraduate

Research Paper, Massachusetts Institute of Technology.

[12] P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a

18

https://github.com/OrbSurgicalAI/quath
https://doi.org/https://doi.org/10.1016/j.bspc.2023.105511
https://doi.org/10.17487/RFC6749
https://datatracker.ietf.org/doc/draft-ietf-oauth-v2-1/11/
https://openid.net/specs/openid-connect-core-1_0-final.html
https://openid.net/specs/openid-connect-core-1_0-final.html
https://doi.org/10.17487/RFC7519
https://doi.org/10.1038/nature23461
https://doi.org/10.1140/epjqt/s40507-023-00193-y
https://doi.org/10.1140/epjqt/s40507-023-00193-y
https://doi.org/10.1140/epjqt/s40507-023-00170-5
https://doi.org/10.1016/j.cose.2024.103883
https://doi.org/10.1016/j.cose.2024.103883
https://math.mit.edu/~apost/courses/18.204-2016/18.204_Jeremy_Wohlwend_final_paper.pdf


quantum computer, SIAM Journal on Computing 26, 1484–1509 (1997).

[13] N. I. of Standards and Technology, Post-quantum cryptography (2025), accessed: 2025-05-18.

[14] National Institute of Standards and Technology, Module-lattice-based digital signature standard,

Federal Information Processing Standards Publication (FIPS) NIST FIPS 204 (2024).

[15] National Institute of Standards and Technology, Stateless Hash-Based Digital Signature Stan-

dard , Federal Information Processing Standards Publication FIPS 205 (National Institute of

Standards and Technology, Washington, D.C., 2024).

[16] D. Adrian, Post-quantum cryptography is too damn big (2024), accessed: 2025-05-18.

[17] P. Schwabe, D. Stebila, and T. Wiggers, Post-quantum TLS without handshake signatures,

Cryptology ePrint Archive, Paper 2020/534 (2020).

[18] D. Basin, C. Cremers, J. Dreier, and R. Sasse, Tamarin: Verification of large-scale, real-world,

cryptographic protocols, IEEE Security & Privacy 20, 24 (2022).

[19] T. Lodderstedt, J. Bradley, A. Labunets, and D. Fett, OAuth 2.0 Security Best Current Practice,

Internet-Draft draft-ietf-oauth-security-topics-29 (Internet Engineering Task Force, 2024) work

in Progress.

[20] L. Paulson, Proving security protocols correct, in Proceedings - Symposium on Logic in Computer

Science (1999) pp. 370 – 381.

[21] D. Dolev and A. Yao, On the security of public key protocols, IEEE Transactions on Information

Theory 29, 198 (1983).

[22] C. Benfield, Building protocol libraries the right way, https://www.youtube.com/watch?v=

Evchk7aNKdQ (2016), presentation at PyCon UK 2016.

[23] National Institute of Standards and Technology, Module-Lattice-Based Key-Encapsulation

Mechanism Standard , Tech. Rep. FIPS 203 (U.S. Department of Commerce, 2024).

[24] M. J. Dworkin, SHA-3 Standard , Tech. Rep. FIPS PUB 202 (National Institute of Standards

and Technology, 2015).

[25] E. Balsa, H. Nissenbaum, and S. Park, Cryptography, trust and privacy: It’s complicated, in

Proceedings of the 2022 Symposium on Computer Science and Law , CSLAW ’22 (Association

for Computing Machinery, New York, NY, USA, 2022) p. 167–179.

[26] H. Comon and V. Shmatikov, Is it possible to decide whether a cryptographic protocol is secure

or not?, Journal of Telecommunications and Information Technology 4 (2009).

[27] C. Cremers, M. Horvat, J. Hoyland, S. Scott, and T. van der Merwe, A comprehensive symbolic

19

https://doi.org/10.1137/s0097539795293172
https://www.nist.gov/pqcrypto
https://doi.org/10.6028/NIST.FIPS.204
https://doi.org/10.6028/NIST.FIPS.205
https://doi.org/10.6028/NIST.FIPS.205
https://dadrian.io/blog/posts/pqc-signatures-2024/
https://doi.org/10.1145/3372297.3423350
https://doi.org/10.1109/MSEC.2022.3154689
https://datatracker.ietf.org/doc/draft-ietf-oauth-security-topics/29/
https://doi.org/10.1109/LICS.1999.782632
https://doi.org/10.1109/LICS.1999.782632
https://doi.org/10.1109/TIT.1983.1056650
https://doi.org/10.1109/TIT.1983.1056650
https://www.youtube.com/watch?v=Evchk7aNKdQ
https://www.youtube.com/watch?v=Evchk7aNKdQ
https://doi.org/10.6028/NIST.FIPS.203
https://doi.org/10.6028/NIST.FIPS.203
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.1145/3511265.3550443
https://doi.org/10.26636/jtit.2002.4.149


analysis of tls 1.3, in Proceedings of the 2017 ACM SIGSAC Conference on Computer and

Communications Security , CCS ’17 (Association for Computing Machinery, New York, NY,

USA, 2017) p. 1773–1788.

[28] K. Bhargavan, A. D. Lavaud, C. Fournet, A. Pironti, and P. Y. Strub, Triple handshakes

and cookie cutters: Breaking and fixing authentication over tls, in 2014 IEEE Symposium on

Security and Privacy (2014) pp. 98–113.

[29] D. Otway and O. Rees, Efficient and timely mutual authentication, SIGOPS Oper. Syst. Rev.

21, 8–10 (1987).

[30] F. Linker, R. Sasse, and D. Basin, A formal analysis of apple’s iMessage PQ3 protocol,

Cryptology ePrint Archive, Paper 2024/1395 (2024).

20

https://doi.org/10.1145/3133956.3134063
https://doi.org/10.1145/3133956.3134063
https://doi.org/10.1109/SP.2014.14
https://doi.org/10.1109/SP.2014.14
https://doi.org/10.1145/24592.24594
https://doi.org/10.1145/24592.24594
https://eprint.iacr.org/2024/1395

	Extensible Post Quantum Cryptography Based Authentication
	Abstract
	INTRODUCTION
	Cryptography for Health Data
	Integrity
	Shared Secrets

	PROTOCOL
	Overview and Preconditions
	Protocol Time
	Tokens
	Procedure
	Special Notation
	Registration
	Key Cycling
	Token Stamping


	Analysis
	Implementation
	PARAMETERS
	Discussion
	Limitations
	Additional Information

	References


