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Abstract
Fine-grained edited image detection of localized edits in im-
ages is crucial for assessing content authenticity, especially
given that modern diffusion models and image editing meth-
ods can produce highly realistic manipulations. However,
this domain faces three challenges: (1) Binary classifiers
yield only a global real-or-fake label without providing lo-
calization; (2) Traditional computer vision methods often
rely on costly pixel-level annotations; and (3) No large-scale,
high-quality dataset exists for modern image-editing detection
techniques. To address these gaps, we develop an automated
data-generation pipeline to create FragFake, the first dedi-
cated benchmark dataset for edited image detection, which
includes high-quality images from diverse editing models and
a wide variety of edited objects. Based on FragFake, we
utilize Vision Language Models (VLMs) for the first time
in the task of edited image classification and edited region
localization. Experimental results show that fine-tuned VLMs
achieve higher average Object Precision across all datasets,
significantly outperforming pretrained models. We further
conduct ablation and transferability analyses to evaluate the
detectors across various configurations and editing scenarios.
To the best of our knowledge, this work is the first to refor-
mulate localized image edit detection as a vision-language
understanding task, establishing a new paradigm for the field.
We anticipate that this work will establish a solid foundation
to facilitate and inspire subsequent research endeavors in the
domain of multimodal content authenticity. The code1 and
dataset2 are open-source.

1 Introduction
Owing to the swift progress of diffusion models, the images
they generate, commonly referred to as AI-Generated Content
(AIGC), have become remarkably lifelike [1, 2, 3]. At the
same time, image editing techniques have also made signif-
icant progress [4, 5, 6]. Unlike traditional approaches that
*Corresponding author(xinleihe@hkust-gz.edu.cn).
1The code’s link: https://github.com/Vincent-HKUSTGZ/FragFake.
2The dataset’s link: https://huggingface.co/datasets/Vincent-
HKUSTGZ/FragFake.

generate fully synthetic images, modern editing techniques
enable localized modifications guided by natural language,
while preserving the rest of the image [4].

These partially edited versions based on real images often
appear highly authentic, as most of their visual content re-
mains unaltered. However, such realism can also post severe
safety threats. Such images can be exploited to craft highly
convincing fake news or manipulate public opinion [7]. For in-
stance, in July 2024, a genuine Associated Press photograph
showed Secret Service agents solemnly protecting Donald
Trump following an assassination attempt. A manipulated
version of this image circulated on social media, in which the
agents were deceptively edited to appear smiling. As a result
of this modification, some users misconstrued the event as
a “political performance”, which in turn fueled widespread
misinformation and public confusion [8]. Accordingly, de-
veloping the capacity to accurately detect and distinguish
partially edited images from genuine ones has become both a
pressing and indispensable challenge.

Most traditional image forgery detectors are trained on
datasets consisting entirely of either real or fully generated
images. As a result, their performance degrades significantly
when faced with images that contain only localized edits.
For example, with open-source AIGC detector Hive Moder-
ation [9], only 55 out of 100 partially edited images are cor-
rectly identified as AI-generated (as described in Appendix B).
This limitation stems from the presence of a large amount of
authentic content in the image, which easily misleads the
classifier into predicting it as real. Moreover, most exist-
ing detection methods rely on binary classification strategies
that provide only a decision of “real” or “fake” for the entire
image. These methods lack the ability to indicate which spe-
cific regions have been edited, making them unsuitable for
real-world forensic and provenance applications. While some
computer vision approaches explore edited region localiza-
tion, they typically rely on costly pixel-level annotations [10].
Moreover, the datasets used often involve outdated editing
models, which fail to reflect the realism of modern generation
techniques.
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Figure 1: Examples of edited images generated by four different models, showcasing two types of operations: Object Addition and
Object Replacement.

1.1 Our Contribution
To address these problems, we propose leveraging Vision
Language Models (VLMs) [11] for edited images detection,
including both classification and localization. Pretrained on
large-scale image–text pairs, VLMs possess strong visual
understanding and can be efficiently fine-tuned for diverse
downstream tasks.

Since using VLMs for edited image detection is a novel
task and no high-quality public dataset currently exists, we
construct a dedicated image dataset, referred to as FragFake,
which consists of edited images generated by several advanced
image editing models, including three open-source models
(MagicBrush [6], GoT [12], and UltraEdit [12]) and one com-
mercially deployed model (Gemini, hereafter referred to as
Gemini-IG [13] for “Image Generation”). The dataset covers
two major types of editing operations: object addition and
object replacement.

To ensure diversity among source images, we sample 20 im-
ages from each of the 80 categories in the COCO dataset [14],
yielding 1,600 originals. Since most modern image editing
methods support natural language-driven editing, we use GPT-
4o [15] to generate a total of 3,200 editing instructions based
on these original images. During this process, we observe
that many of the target objects specified in the instructions
are repeated. We therefore refer to this version as the Easy
version. Building upon it, we further refine the dataset by
filtering and replacing overlapping target objects to produce
the Hard version, which contains 1,930 unique instructions
where all target objects are non-redundant. Combined with
four editing models, these instructions produce 20,222 edited
images. This image generation, together with instruction cre-
ation, is fully automated, forming a scalable and extensible
pipeline. It is important to note that the current dataset is
primarily designed to validate and demonstrate the feasibility
of our pipeline; thus, only around 20,000 images are gener-
ated. Nevertheless, the pipeline is highly scalable and can
be extended to produce hundreds of thousands of samples to
support larger-scale research. The resulting edited images
and their corresponding instructions are then converted into
image–text pairs for training VLMs. We fine-tune four widely
used models for this task: Llava-1.5 [16], Qwen2-VL [17],
Qwen2.5-VL [18] and Gemma3 [19].

Our evaluation is conducted at two levels: edited image

classification performance (using Accuracy and F1-score)
and edited region localization performance, using Region
Precision (RP) and Object Precision (OP). Among all pre-
trained VLMs, GPT-4o performs best, with 0.810 Accuracy
and 45.0% Object Precision (OP) on the Hard version, and
0.825 Accuracy with 46.0% OP on the Easy version of the
Gemini-IG dataset. In contrast, the Qwen2.5-VL (7B) de-
tector, fine-tuned with LoRA, achieves significantly the best
performance, with Accuracy scores of 0.990 and 0.965 and
OP values of 69.0% and 74.0% on the Hard and Easy ver-
sions, respectively. Compared to the initial performance of
pretrained models, which achieved only around 5.0% OP, the
fine-tuned Qwen2.5-VL shows a substantial improvement.
This highlights the effectiveness of our constructed dataset.

In addition, we conduct ablation studies to examine how
data balancing strategies, training size, and LoRA rank af-
fect model performance. Results show that larger models
perform better with lower LoRA ranks, suggesting fewer
trainable parameters suffice for effective adaptation. We also
conduct transfer experiments, showing that detectors trained
on Gemini-IG and GoT generalize well across domains, while
those from MagicBrush and UltraEdit perform worse. Detec-
tors trained on one editing type also generalize well to the
other, indicating strong cross-task transferability.

In conclusion, our main contributions are as follows:

• We are the first to propose reframing edited image detection
(classification and edited region localization) as a vision-
language understanding task to reduce reliance on costly
annotations. To support this, we construct FragFake, a
large-scale dataset of over 20,000 edited image–text pairs
generated via a fully automated pipeline with diverse edit-
ing models and target objects.

• To address the poor performance of pretrained VLMs, we
finetune and benchmark several widely used VLMs (Llava-
1.5, Qwen2-VL/2.5-VL, Gemma3), achieving substantial
improvements in detection performance that far exceed
GPT-4o’s performance.

• We conduct ablation and transferability studies: ablation
experiments reveal that an optimal LoRA rank, balanced
data strategies, and sufficient training scale significantly
enhance detection performance; transferability tests demon-
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Figure 2: Dataset construction pipeline and statistics (OA: Object Addition OR: Object Replacement).

strate robust cross-domain and cross-task generalization,
shedding light on future research on this domain.

2 Related Work

2.1 Image Editing
Recently, image editing techniques have significantly evolved,
enabling users to intuitively modify images by selectively
editing specific regions [5, 6, 12]. This differs from traditional
image generation, as it demands understanding user intent
and preserving original image semantics. However, the ease
of creating realistic edited images has also increased misuse,
including misinformation, fraud, and defamation, highlighting
the urgent need for effective detection methods [7]. This work
focuses on two main editing techniques: diffusion model-
based editing and closed-source model editing.

• Diffusion Model-Based Editing. Diffusion models have
greatly advanced image editing. MagicBrush fine-tunes
InstructPix2Pix on a large-scale annotated dataset, signif-
icantly improving image quality [6, 5]. UltraEdit auto-
matically generates extensive editing instructions using
large language models (LLMs) and real images, enhancing
dataset diversity [12]. GoT integrates reasoning-guided
language analysis with diffusion models to enhance seman-
tic and spatial coherence in edited outputs, demonstrating
superior performance [20].

• Closed-Source Model Editing. Closed-source models,
such as Google’s Gemini-IG [13] and Flux AI’s Magic
Edit [21], provide advanced multimodal image generation
and editing capabilities. Gemini-IG notably supports mul-
timodal input and sophisticated editing tasks, while Magic
Edit excels at interactive, chat-based editing. However,
limited API access restricts their broader usage.

2.2 Fake Image Detection and Edited Region
Localization

The proliferation of AI-generated content, particularly re-
alistic manipulated images, has intensified misinformation
risks [22, 23]. DE-FAKE integrates detection and attribution
models to differentiate between real and fake images [24].
Systematic evaluations highlight that both humans and auto-
mated tools can effectively identify AI-generated images [25],

but traditional binary classifiers struggle with subtle edits. To
address this, zero-shot approaches like ZeroFake leverage
stability differences during image inversion [26]. Although
binary classification methods perform well, fine-grained de-
tection is more important for edited images. Prior work, such
as [10], trains segmentation models using pixel-level annota-
tions, often automated with SAM [27], but still incurs high
resource costs. To reduce this burden, we replace pixel-level
masks with VLM-based inference of edited regions and ob-
jects, significantly lowering annotation overhead.

3 Dataset Construction
In this section, we describe the construction of the edited
image detection dataset FragFake.

3.1 Construction Goals
As stated in Section 1.1, we first need to construct the dataset
that can be used to train and evaluate the performance of
edited image detection. The built dataset should have the
following properties:

• Diversity of Editing Models: We include 4 image edit-
ing models: 1 closed-source commercial model (Gemini-
IG [13]) and 3 open-source models (MagicBrush [6],
GoT [12], and UltraEdit [12]).

• Quality: All four models produce highly realistic images,
as illustrated in Figure 1. To ensure test set quality, we
manually annotate 100 representative samples per subset,
covering all 8 subsets (2 versions × 4 models), for a total
of 800 images.

• Diversity of Edited Objects: As described in Section 3.2,
we use GPT-4o to generate a wide range of editing instruc-
tions. To eliminate repetition of target objects, we apply
filtering and re-query steps to create the Hard version, in
which every target object is unique.

3.2 Construction Pipeline
To build a comprehensive dataset, we use the widely used
COCO dataset [14], randomly sampling 20 images from each
category (20×80 = 1600 images in total) to serve as our base.
Then we apply four image editing models to edit images,
Figure 2 presents the pipline and dataset statistics.
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Editing Instruction Creation. These image editing models
operate via natural language instructions. Manually writing
these instructions is both time-consuming and labor-intensive,
so we use the pretrained VLM GPT4o-2024-11-20 (tempera-
ture set to 1) to generate them automatically. First, we apply
a unified task template (refer to Appendix A.1) to produce
initial editing prompts for 1 600 original images. Analysis
shows that many target objects to be added or used to replace
existing ones are repeated, for example “potted plant” appears
58 times (We refer to this subset as the Easy version). To
reduce redundancy, we implement a target-object cache: if a
newly generated instruction’s target object is already in the
cache, we append the prompt “Important: Please do NOT
use the following object: [object]” and prompt GPT4o to re-
generate the instruction. If the same object still recurs after
three attempts, we discard this instruction. The remaining
instructions and images form the Hard version, in which every
target object is unique.
FragFake. After generating the editing instructions, we pro-
cess the images with each of the four editing models, i.e.,
MagicBrush, UltraEdit, GoT, and Gemini-IG. The former
three are open-source models that we run locally on our envi-
ronment, while Gemini-IG (also known as Gemini-2.0-flash-
exp) is a closed-source commercial model whose inputs and
outputs undergo content filtering. This filtering prevents some
images from being edited, so the number of edited outputs
from Gemini-IG is slightly lower than that of the other mod-
els, as shown in Figure 2. Once all edited images are obtained,
we convert them into the image–text pair format required for
VLM training. Each pair consists of the edited image and a
corresponding model response that explicitly identifies the
edited object; these pairs constitute the complete FragFake.
We then manually review the edited images and their associ-
ated responses for each editing method to ensure correctness.
For each subset, we randomly select 100 reviewed, edited
images and their original counterparts (200 images in total)
to form the test set. All remaining images are included in the
training set without further filtering.

4 Experimental Settings
Evaluation Metrics. We evaluate image editing detection us-
ing two levels of metrics. The first level involves binary classi-
fication to determine whether an image has been edited, where
we use Accuracy and F1-score as the metrics. These metrics
are computed based on keyword matching. The second level
includes fine-grained evaluation metrics: Region Precision
and Object Precision. Region Precision measures whether
the VLM correctly identifies the edited location, while Object
Precision assesses whether the model correctly identifies the
edited object. Since these metrics are difficult to evaluate
using pretrained VLMs alone, we employ human annotation
for accurate assessment. Specifically, Region Precision is a
broader evaluation criterion than Object Precision. For ex-
ample, during prediction, VLMs may generate an output that
differs from the ground truth (GT) in wording, but human
annotators can determine that the predicted object is located
in the same region as the GT. Figure 9 provides an example
of such human evaluation. Object Precision focuses on se-

mantic alignment between the model’s output and the ground
truth. In human evaluation, we consider expressions with
equivalent or highly similar meanings as correct matches. For
instance, “vase of flowers” and “bouquet of flowers”, or “fruit
basket” and “bowl of fresh fruit”, are judged as semantically
consistent and therefore counted as true positives. The human
evaluation results are based on cross-validation by two au-
thors. On average, evaluating 5 samples takes approximately
1 minute. We utilize the Label Studio platform for manual
annotation, as illustrated in Figure 12.
VLMs for Training. We select four VLMs for fine-tuning.
For Llava-1.5, we use the llava-1.5-7b-hf version [28]. For
Qwen2-VL [29] and Qwen2.5-VL [30], we use their respec-
tive 7B versions. For Gemma3, we use the gemma-3-4b-it
model [31] for fine-tuning.
VLMs for Testing. In addition to the four open-source models
mentioned above, we also select four powerful commercial
closed-source models for evaluation: GPT-4o-mini (2024-
07-18) [32], GPT-4o (2024-11-20) [15], GLM-4V (glm-4v-
plus-0111) [33], and Gemini-2.5 (gemini-2.5-flash-preview-
04-17) [34]. All models are accessed via their APIs with
temperature set to 0.1.
Training Hyperparameters. We adopt LoRA [35] for model
fine-tuning, which is a widely used and efficient parameter-
efficient tuning method. The implementation is based on the
Llama-Factory framework [36]. We utilize a single NVIDIA
L20 GPU for training. The hyperparameter settings are as
follows: the rank is set to 64, the learning rate is 5e-4, the
number of training epochs is 5, and the batch size is 16. We
use the final checkpoint obtained after training for evaluation.
Since the Hard and Easy versions of FragFake contain differ-
ent numbers of samples, we randomly sample 3,000 image
pairs (edited image and corresponding original image in a
1:1 ratio) from each version for training. When the number
of original images in a version is less than edited images,
we supplement with non-redundant images from the COCO
dataset to maintain sample balance.

5 Evaluation

5.1 Comparison of Different VLMs
Performance of Pretrained VLMs. VLMs with strong im-
age understanding capabilities often perform well on down-
stream visual question answering tasks even without fine-
tuning. To investigate their ability to directly identify whether
an object in an image has been edited, we evaluate them
on the Gemini-IG subset of the FragFake test set. We test
two categories of models: (1) popular proprietary produc-
tion VLMs, including GPT4o-mini, GPT4o, GLM-4V, and
Gemini-2.5; and (2) widely used open-source VLMs, includ-
ing Llava-1.5, Qwen2-VL, Qwen2.5-VL, and Gemma3. For
this detection task, we design a unified prompt as demon-
strated in Appendix A.2.

As shown in Table 1, GPT4o achieves the best performance
among all detectors, reaching an Accuracy of 0.825 and an
Object Precision of 46.0% on the Easy version of Gemini-IG,
and an Accuracy of 0.810 with an Object Precision of 45.0%
on the Hard version. GPT4o-mini also performs relatively
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Table 1: Performance of pre-trained VLMs on Gemini-IG subset.

Hard Easy

Model Acc. F1 RP OP Acc. F1 RP OP

GPT4o-mini 0.620 0.703 42.0% 42.0% 0.620 0.686 30.0% 30.0%
GPT4o 0.810 0.798 45.0% 45.0% 0.825 0.813 46.0% 46.0%
GLM-4V 0.535 0.614 35.0% 34.0% 0.470 0.558 26.0% 26.0%
Gemini-2.5 0.605 0.368 20.0% 20.0% 0.575 0.286 11.0% 11.0%
Llava-1.5 0.500 0.565 8.0% 8.0% 0.505 0.571 9.0% 9.0%
Qwen2-VL 0.805 0.804 25.0% 25.0% 0.810 0.808 22.0% 22.0%
Qwen2.5-VL 0.535 0.256 5.0% 5.0% 0.515 0.157 4.0% 4.0%
Gemma3 0.500 0.667 28.0% 27.0% 0.500 0.667 30.0% 30.0%

Note: Acc.: Accuracy, F1: F1-score, RP: Region Precision, OP: Object Precision.

Figure 3: Performance comparison of different detectors on Hard and Easy versions.

well with an Object Precision of 42.0% on the Hard version
but exhibits weaker binary classification performance (0.620
Accuracy). Qwen2-VL also demonstrates fair detection ca-
pability, achieving an Accuracy of 0.805 on the Hard version
but only 25.0% Object Precision, indicating its limitations in
fine-grained classification.

The remaining detectors perform rather poorly under both
settings. For example, GLM-4V records an Accuracy of
0.535 and an Object Precision of 34.0% on the Hard ver-
sion. Gemini-2.5 and Llava-1.5 achieve Object Precision
values of only 20.0% and 8.0%, respectively, on the Hard
version, showing almost no capacity for fine-grained object
recognition. Qwen2.5-VL performs close to random guess-
ing, with Object Precision close to 5.0% for both Hard and
Easy versions, and is entirely unable to handle this task. Al-
though Qwen2.5-VL outperforms Qwen2-VL on standard Vi-
sual Question Answering (VQA) benchmarks [18], it achieves
lower scores in our fine-grained object detection task, demon-
strating that our dataset differs fundamentally from traditional
VQA benchmarks. Interestingly, although Gemma3 achieves
only 0.500 in Accuracy, it still attains 27.0–30.0% in Object
Precision, which is comparable to models like GPT4o-mini.
This indicates that while Gemma3 struggles with classifica-
tion tasks, it may still retain a certain degree of edited region
localization ability. Overall, apart from the GPT4o series,
existing pretrained VLMs still exhibit clear deficiencies in
fine-grained classification and localization when faced with
complex scenarios generated by Gemini-IG.

Performance of Fine-Tuned VLMs. We then fine-tune

four open-source VLMs as detectors, Llava-1.5, Qwen2-VL,
Qwen2.5-VL, and Gemma3, to verify whether fine-tuning
enhances their ability to detect edited images. As shown
in Figure 3, all detectors achieve excellent binary classifica-
tion performance in terms of Accuracy and F1-score, demon-
strating strong overall edit-detection capabilities. Qwen2.5-
VL stands out most prominently. On the Hard version, it
attains an average Accuracy/F1 of 0.994/0.994 and an aver-
age Region/Object Precision of 72.0%/68.5%; on the Easy
version, the corresponding averages rise to 0.983/0.983 and
81.0%/77.3%, substantially outperforming the other detectors
in fine-grained localization and object recognition. Moreover,
on the Gemini-IG subset, Qwen2.5-VL attains Object Preci-
sion values of 69.0% for the Hard version and 74.0% for the
Easy version, corresponding to improvements of 64.0% and
70.0% over the baseline in Table 1.

Gemma3 and Qwen2-VL follow closely behind, both main-
taining strong performance on the Easy version, with average
Object Precision exceeding 70.0%. However, Gemma3 shows
a notable decline on the Hard version, where its average Ob-
ject Precision drops to approximately 56.0%. In the Hard
version of the GoT editing method, their Region Precision
scores drop to 42.0% and 58.0% and their Object Precision
scores to 36.0% and 56.0%, indicating that subtle modifica-
tions in this subset present greater challenges. In comparison,
Llava-1.5 exhibits the weakest performance. Its Accuracy
inches up from 0.955 on the Hard version to 0.963 on the
Easy version, and its Object Precision stays low in both cases,
with only 52.3% on the Hard and 70.5% on the Easy versions.
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Table 2: Performance comparison of fine-tuned Llava-1.5 model trained on a 4,000-sample Gemini-IG
subset using different data preparation strategies.

Sample Strategy
Hard Easy

Acc. F1 RP OP Acc. F1 RP OP

No Processing 0.885 0.878 54.0% 51.0% 0.670 0.731 73.0% 72.0%
Image Augmentation Only 0.970 0.970 59.0% 54.0% 0.950 0.950 67.0% 65.0%
Sampling from COCO Extras 0.965 0.965 64.0% 59.0% 0.975 0.975 74.0% 71.0%
Bootstrap Resampling 0.955 0.955 62.0% 57.0% 0.955 0.956 72.0% 70.0%

Note: Acc.: Accuracy, F1: F1-score, RP: Region Precision, OP: Object Precision.

Table 3: Performance comparison of popular vision backbones on the Gemini-IG (Easy version).

Metric ResNet-
50 [37]

DenseNet-
121 [38]

MobileNet-
V2 [39]

ViT-
B/16 [40]

Inception-
V3 [41]

ConvNeXt-
Base [42]

Swin-
B/4W7 [43]

Accuracy 0.890 0.905 0.855 0.940 0.905 0.995 1.000
F1-score 0.890 0.907 0.857 0.940 0.903 0.995 1.000

Note: ViT-B/16 = vit_base_patch16_224; Swin-B/4W7 = swin_base_patch4_window7_224.

Overall, the choice of editing method significantly influ-
ences detection difficulty. Compared to their pretrained coun-
terparts, the fine-tuned VLMs not only achieve substantial
gains in binary edit detection but also reach impressive lev-
els in fine-grained localization and object identification. Al-
though the Hard version’s training and test sets contain dis-
joint editing targets, leading to relatively lower performance,
each model still maintains an average binary classification
Accuracy above 0.950 and satisfies practical requirements for
fine-grained detection.

5.2 Ablation Study
Effect of LoRA Rank on Detection Performance. We use
LoRA for fine-tuning, where different LoRA ranks correspond
to varying numbers of additional trainable parameters. We
therefore investigate how the LoRA rank affects detection
performance.

Figure 4: Gemma3 detector: performance across different rank
settings on the Gemini-IG (Easy version) dataset.

Figures 4 and 14 show the trends in classification Accuracy,
Region Precision and Object Precision on the Gemini-IG Easy
version dataset as the LoRA rank increases. For Gemma3 (4
B parameters), performance improves with increasing rank
and peaks at rank 32 with an Accuracy of 1.000, a Region Pre-
cision of 78.0% and an Object Precision of approximately
76.0%. Beyond this rank, all three metrics decline. For

Qwen2.5-VL (7 B parameters), the best performance occurs
at rank 8, with a Region Precision of 81.0% and an Object
Precision of 78.0%. These results indicate that detectors of
different scales and architectures require different amounts
of trainable parameters, since larger models already possess
greater expressive capacity and can adapt effectively with a
smaller LoRA rank, whereas setting the rank too high can
disrupt the pretrained capabilities of the base model.
Comparison of Different Data Balancing Strategies. Refer-
ring to Figure 2, our original dataset contains 1,600 images,
with 100 held out as a test set. We now explore a scenario
where the number of edited images in the training set (set to
2,000) exceeds the number of original images. In this case,
we aim to determine which data balancing strategies yield
the best performance. For the No Processing baseline, we
train on all available data (1,500 original + 2,000 edited =
3,500 images), which yields 0.885 Accuracy with 51.0% Ob-
ject Precision on the Hard version and 67.0% Accuracy with
72.0% Object Precision on the Easy version. To utilize the
full 4,000-image budget and keep original and edited images
balanced at 2,000 each, we expand the original set from 1,500
to 2,000 via one of three strategies: (1) Image Augmentation
Only generates 400 new samples by applying random rota-
tions, horizontal flips, and center crops to the 1,500 originals;
(2) Sampling from COCO Extras draws 400 images from the
remainder of the COCO dataset not used in the original split;
(3) Bootstrap Resampling samples with replacement from the
1,500 originals until the set reaches 2,000 images.

As shown in Table 2, Image Augmentation Only raises
Hard Accuracy to 0.970 (54.0% OP) and Easy Accuracy to
0.950 (65.0% OP). Sampling from COCO Extras achieves
0.965 Accuracy (59.0% OP) on Hard and 0.975 Accuracy
(71.0% OP) on Easy, and delivers the highest Hard version
Region Precision of 64.0%. Bootstrap Resampling yields
0.955 Accuracy (57.0% OP) on Hard and 0.956 Accuracy
(70.0% OP) on Easy, demonstrating that even simple resam-
pling of the limited original set can substantially improve
performance.
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Figure 5: Cross-evaluation results of four datasets (Gemini, MagicBrush, GoT, UltraEdit) under the Easy setting, showing Accuracy,
F1-score, Region Precision, and Object Precision. (Note: Fine-tuned model is Qwen2.5-VL)

Effect of Data Scale on Detection. We evaluate how model
performance scales as the number of training images increases
from 1,000 to 4,000 in the Gemini-IG subset, while maintain-
ing a 1:1 ratio between original and edited images. We use
the Gemma3 model fine-tuned with LoRA at rank 64.

Figure 6: Scaling behavior of training dataset on Gemma3.

As shown in Figure 6, overall classification Accuracy re-
mains nearly 1.000 across all sample sizes, with only a minor
fluctuation at 2,000 images. In contrast, both Region Pre-
cision and Object Precision improve steadily as the dataset
grows. Region Precision increases from 66.0% at 1,000 im-
ages to 76.0% at 4,000 images, while Object Precision rises
from 66.0% to 75.0%. These findings indicate that although
classification Accuracy saturates at an early stage, the more
detailed metrics continue to benefit from larger training sets.
Comparison of Different Vision Backbones. We evalu-
ate the performance of traditional vision backbones on the
edited image detection task using the Gemini-IG Easy ver-
sion dataset. The results are shown in Table 3. We com-
pare seven visual backbones in two groups: traditional con-
volutional networks and transformer-based networks. The
Accuracy of traditional convolutional networks (ResNet-50,
DenseNet-121, MobileNet-V2 and Inception-V3) ranges from
0.855 to 0.905. MobileNet-V2 achieves the lowest Accuracy
at 0.855, while DenseNet-121 and Inception-V3 both reach
0.905. Transformer-based backbones (ViT-B/16, ConvNeXt-
Base and Swin-B/4W7) exhibit greater variation: ViT-B/16
attains 0.940, ConvNeXt-Base achieves 0.995, and Swin-
B/4W7 achieves a score of 1.000. In VLMs, the current
top performer Gemma3 also reaches 1.000 Accuracy on this
task (see Figure 4 for the rank 32 results). However, as noted
above, only detectors with more precise object descriptions

can deliver greater value in practical applications.

5.3 Zero-Shot Transferability
In this section, we investigate the detectors’ ability to general-
ize image edit detection to unseen editing scenarios without
any additional fine-tuning.
Transferability on Different Datasets. We evaluate the zero-
shot transferability of Qwen2.5-VL, as it consistently outper-
forms other fine-tuned models. As shown in Figures 5 and 13,
detectors trained on Gemini-IG or GoT generalize best. Un-
der the Easy setting, Gemini-IG achieves 0.965 Accuracy
and 47.0% Object Precision when transferred to GoT, and re-
tains 69.0% on UltraEdit but drops to 51.0% on MagicBrush.
GoT-trained detectors reach 65.0%, 62.0%, and 46.0% Ob-
ject Precision when transferred to Gemini-IG, MagicBrush,
and UltraEdit, respectively. In contrast, MagicBrush-trained
detectors show poor generalization, with Object Precision
dropping to 13.0% on Gemini-IG and 0.0% on GoT, though
retaining 82.0% on UltraEdit, suggesting similarity between
those two. The same pattern holds for the Hard version, albeit
with generally lower scores.

In summary, single-dataset detectors perform well in-
domain but degrade across domains, highlighting the need
for joint fine-tuning on diverse datasets for robust open-world
detection.

Figure 7: Transferability of Qwen2.5-VL detector on OA and
OR tasks in the Gemini-IG dataset (Easy version).

Transferability on Different Editing Tasks. We train and
evaluate the two task types, Object Addition (OA) and Object
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Replacement (OR), separately using distinct training and test
sets.

We select the Gemini-IG and UltraEdit datasets (Easy ver-
sion) for this experiment. Each task-specific training set con-
tains 2,000 images, and the corresponding test set contains
200 images, with a 1:1 ratio of original to edited images. The
Qwen2.5-VL is also fine-tuned using LoRA for all settings.

As shown in Figure 7, on the Gemini-IG dataset, the de-
tector trained on OA achieves an Accuracy of 0.990 and an
Object Precision of 82.0%. When transferred to the OR task,
it still maintains an Accuracy of 0.950 and an Object Precision
of 69.0%. Similarly, the detector trained on OR also preserves
high accuracy and transferability. These results indicate that
the two task types share certain features and exhibit poten-
tial for cross-task generalization. Comparable findings are
observed on the UltraEdit dataset, as shown in Figure 11.

6 Limitations
We construct the first systematic dataset, FragFake, specif-
ically designed for detecting AI-edited images. However,
several limitations remain:

• Limited Types of Editing Targets. In this paper, we only
consider two types of editing operations: Object Addition
and Object Replacement. However, image editing encom-
passes a broader range of modifications [4], such as back-
ground changes and modification of emotional expressions,
which can be explored in future work.

• Limited Diversity of Editing Methods. Our dataset in-
cludes four representative image editing methods. While
these cover a range of practical cases, many other editing
techniques exist in the field and could be incorporated in
subsequent studies to improve coverage and robustness.

• Lack of Automated Filtering for Training Samples. We
do not apply filtering to the training data, as manual ver-
ification is highly labor-intensive. However, we observe
that some editing outputs deviate from the original instruc-
tions, occasionally modifying unintended objects. These
instances introduce noise into the training set. We believe
that applying an efficient data filtering or quality assurance
mechanism could further enhance the performance of the
fine-tuned models.

7 Conclusion
Our work is the first to achieve edited region localization us-
ing VLMs without manual annotations. We design a fully
automated and scalable dataset construction pipeline and re-
lease FragFake, the first VLM-oriented dataset for edited
image detection with high diversity. We fine-tune VLMs us-
ing LoRA and conduct extensive evaluations, demonstrating
that VLMs can effectively perform high-precision image edit
detection and localization. Our results show strong trans-
ferability across domains and editing tasks, laying a solid
foundation for future research in automated image forensics
and tampering detection. We also discuss limitations and
future directions in the Section 6.
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A Task Template

A.1 Editing Instruction Creation Template

Editing Instruction Creation Template

Æ VLM:

You are an expert visual instruction generator specialized in
image editing tasks.
Task: Advanced Image Modification Instruction Generation
Description: Given a COCO dataset object label corre-
sponding to an object in the image, along with the image
and a modification goal (e.g., object addition), generate the
following four outputs:
1. Object Caption: Produce a natural language caption
describing the object (e.g., "A woman in the forest wearing
a shirt with a drawing.").
2. Brief Modification Instruction: Provide a concise,
imperative modification instruction (e.g., "Add a fighter jet
flying nearby.").
3. Symbolic Modification: Output a succinct represen-
tation indicating only the addition or removal of objects.
Use ‘+‘ for additions and ‘-‘ for removals. - For additions:
"+fighter jet" - For removals: "-fighter jet" - For replace-
ments: "-woman +man"
—
Input: - COCO Object Label: {coco_label} - Image:
[Provided image] - Modification Goal: {object addition/ob-
ject replacement}
—
Output (in valid JSON format): { "object_caption":
"", "brief_modification_instruction": "", "sym-
bolic_modification": "" }

A.2 Edited Image Detection Template

Edited Image Detection Template

Æ VLM:

Task Description:
You are a visual analysis assistant. Your task is to examine
a given image and determine whether any object in the im-
age has been digitally modified or manipulated. Pay close
attention to subtle inconsistencies in lighting, shadows, tex-
tures, edges, perspective, or logical composition. Carefully
analyze these visual cues before making a judgment.
Instructions:
1. Provide a detailed explanation of your reasoning.
2. Then, based on your analysis, provide a final result in
one of the following two formats: - If something has been
edited: "The thing in the image has been modified." (Re-
place ‘thing’ with a brief, clear description of the modified
object, e.g., "the cat," "the sky," "the left-side tree," etc.) -
If nothing has been edited: "Nothing has been modified
in this image."
Important Constraints:
- Your explanation must come before the result statement.
- Do not output both statements; only one final result should
appear based on your judgment.
- Be cautious: minor edits may be hard to detect but should
still be flagged if visible.

Figure 8: Box plot of repeated experiment results for RP and
OP groups.

B Result of Classification in Hive Moderation
Hive Moderation is a commercial fake image detector. We
conduct a manual test using 100 edited images from the
Gemini-IG Easy test set. We observe that for some edited im-
ages, the AI likelihood reported by Hive Moderation is close
to zero, as illustrated in Figure 10. Overall, only 55 out of 100
edited images are successfully detected. This result indicates
that detectors trained primarily on fully generated images lack
robustness when applied to partially edited content.

B.1 Interpretability Analysis
We perform interpretability analysis on edited images using
LVLM-Interpret [44]. As shown in Figure 15, the model con-
centrates its attention on the cabin while generating the detec-
tion result. This alignment between the predicted modification
(“cabin”) and the corresponding visual region demonstrates
the reliability and interpretability of the model’s output.

C Repeated Experiment Validation
Since our evaluation dataset requires manual annotation, re-
peated testing is labor-intensive. Therefore, we do not perform
multiple evaluation runs for each experiment. However, we
conduct repeated trials using the Llava-1.5 detector trained on
the Gemini-IG Easy version dataset, and observe that both RP
and OP exhibit only minor fluctuations, as shown in Figure 8.

D Broader Impacts
Our work aims to improve the detection of partially edited
images, which can help combat misinformation and support
media integrity in an era of increasingly realistic AI-generated
content. By enabling fine-grained localization of edits without
human annotation, our method provides scalable tools for
content verification and digital forensics.

However, such tools could also be misused—for instance,
to improve the subtlety of manipulations by adversaries aware
of detection mechanisms. Additionally, care must be taken
to ensure fair and unbiased model behavior, as the dataset
generation process may reflect biases in underlying models or
prompts.
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Original Image Edited Image

Prompt: Replace the cake 
with a television.

Ground Truth: The television in 
the image has been modified. 

Model Output: The vintage radio 
in the image has been modified.  

Original Image Edited Image

Prompt: Replace the television 
with a modern flat-screen TV.

Ground Truth : The flat-screen 
tv in the image has been modified.
Model Output: The video game 
in the image has been modified.

Modified Region: 1 (True)
Modified Object:  0 (False)

Modified Region: 1 (True)
Modified Object:  0 (False)

Figure 9: An example of human annotation about the Region Precision.

Figure 10: Detection of an edited image using Hive Moderation
(ground truth: The coffee cup in the image has been modified.)

Figure 11: Cross-task performance of Qwen2.5-VL detector com-
parison between Object Addition (OA) and Object Replacement
(OR) tasks on on UltraEdit.

Figure 12: The annotation platform we built using Label Studio.
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Figure 13: Cross-evaluation results of four datasets (Gemini, MagicBrush, GoT, UltraEdit) under the Hard setting, showing Accuracy,
F1-score, Region Precision, and Object Precision. (Note: Finetuned model is Qwen2.5-VL)

Figure 14: Qwen2.5-VL detector: performance across different
rank settings on the Gemini-IG (Easy version) dataset.

Figure 15: LVLM-Interpret is used to show the model’s output
for the edited image.
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