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Abstract—Face recognition is an effective technology for iden-
tifying a target person by facial images. However, sensitive facial
images raises privacy concerns. Although privacy-preserving face
recognition is one of potential solutions, this solution neither
fully addresses the privacy concerns nor is efficient enough. To
this end, we propose an efficient privacy-preserving solution
for face recognition, named Pura, which sufficiently protects
facial privacy and supports face recognition over encrypted
data efficiently. Specifically, we propose a privacy-preserving
and non-interactive architecture for face recognition through
the threshold Paillier cryptosystem. Additionally, we carefully
design a suite of underlying secure computing protocols to
enable efficient operations of face recognition over encrypted
data directly. Furthermore, we introduce a parallel computing
mechanism to enhance the performance of the proposed secure
computing protocols. Privacy analysis demonstrates that Pura
fully safeguards personal facial privacy. Experimental evaluations
demonstrate that Pura achieves recognition speeds up to 16 times
faster than the state-of-the-art.

Index Terms—Face recognition, secure computing, homomor-
phic encryption, threshold Paillier cryptosystem, privacy protec-
tion.

I. INTRODUCTION

FACE recognition is a practical biometric technology with
widespread applications across various fields, including

attendance access control [1], security [2], and finance [3].
Technically, face recognition identifies and verifies individuals
based on their unique facial features [4]. These features are
captured by cameras and transformed into feature vectors
through a face recognition model [5]. The recognition result is
then determined by measuring the similarity (e.g., Euclidean
distance, cosine similarity) between a feature vector and stored
database entries [6].

Outsourcing face recognition tasks is a common way to
enhance flexibility [7], however, it raises significant privacy
concerns. To outsource a face recognition task, the client
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device (e.g., smartphone, camera) captures personal facial im-
ages and sends the images or feature vectors to a cloud server,
where the cloud server executes face recognition computations
and returns the recognition result [8], [9]. Outsourcing face
recognition tasks reduces the computational burden on the
client device by utilizing the high-performance computing
capabilities of the cloud server. Nevertheless, this practice
introduces considerable privacy risks. The transmission and
storage of sensitive data (i.e., facial images, feature vectors)
by the cloud server may lead to data leakage [10]. A notable
example is the iCloud celebrity photo leak incident, which
results in the unauthorized release of personal images [11].
In various privacy-sensitive scenarios, leaky images or feature
vectors threaten personal information security [12].

Privacy-preserving face recognition (PPFR) is a potential so-
lution that balances the strengths and concerns of outsourcing
recognition tasks. A PPFR scheme enables the cloud server to
perform face recognition without leaking facial data including
facial images and feature vectors. To safeguard privacy, PPFR
usually protects facial data through homomorphic encryption
[13], secret sharing [14], or differential privacy [15]. In this
case, the cloud server is enforced to perform face recognition
operations on encrypted or confused data [16], [17]. However,
current PPFR methods still face several limitations.

Existing PPFR solutions cannot always fully safeguard
personal facial data and require interactions between the
client and the cloud server. Current work, such as [18]–
[20] requires client-server interactions during the recognition
computation process, introducing computational and commu-
nication burdens on the client side. Furthermore, current PPFR
solutions leak facial data like feature vectors to the cloud
server. Most PPFR solutions adopt homomorphic encryption
(HE) to support direct computations over encrypted data.
Unfortunately, some HE-based PPFR solutions [21]–[23] can
not fully safeguard facial data because the cloud server obtains
the plaintext results of the intermediate calculations, which
means the cloud server can infer more information, such as
feature vectors.

Moreover, existing PPFR approaches struggle to support
effective recognition computations while maintaining recog-
nition accuracy. On the one hand, PPFR solutions [20], [23]
introduce new approaches for computing the similarity, such
as the square of Euclidean distance and cosine similarity.
However, they fall short in effectively performing the com-
parison operation, as they rely on plaintext for comparison.
On the other hand, maintaining the same accuracy as schemes
without privacy protection remains a difficulty. For instance,
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the solution [24] employs approximation during computation,
which results in a loss of accuracy. Additionally, some exist-
ing PPFR solutions [25], [26] based on differential privacy
enhance privacy protection by introducing noise, but this
also compromises the usability of facial data and reduces
recognition accuracy.

In general, existing PPFR solutions are limited by low
efficiency due to complex computations and the inefficient use
of computing resources. Although homomorphic encryption
allows for computations over ciphertexts, recognition typically
involves processing large amounts of data, which increases
the computational overhead. To alleviate this dilemma, solu-
tions [21], [23] propose batch computations over ciphertexts.
However, they still suffer from high computation costs, as
operations like multiplication and minimum are still expensive
and time-consuming. Furthermore, the distribution of server
computing power is often suboptimal. In some multi-server
PPFR solutions [27], [28], one server always needs to wait
for the calculation results from another one, which results in
a waste of computational resources.

To avoid the above limitations, in this work, we innova-
tively propose an efficient privacy-preserving solution for face
recognition, named Pura1. Roughly speaking, we propose a
privacy-preserving face recognition framework that is non-
interactive and ensures no privacy leakage. To enable effective
computations over ciphertexts without degrading accuracy, we
design a suite of secure computing protocols. Additionally,
by introducing a parallel computing mechanism, we improve
the efficiency of the proposed Pura. The contributions of this
paper are summarized in three folds:

• We propose a novel framework for non-interactive and
privacy-preserving face recognition falling in a twin-
server architecture. The proposed framework enables
cloud servers to perform privacy-preserving face recogni-
tion operations without frequent client-server interactions.

• We carefully design a suite of secure computing proto-
cols that support effective recognition operations without
sacrificing accuracy. The proposed protocols, including
a batch secure square protocol (BatchSquare) and
secure minimum protocols (2-SMIN and n-SMIN), enable
valuable operations over ciphertexts, and support Pura to
effectively perform the privacy-preserving face recogni-
tion task.

• We introduce an efficient parallel computing mechanism
to enhance the computational efficiency of the servers.
Specifically, both data storage and encrypted data com-
putation are assigned to two servers simultaneously. Ex-
perimental evaluations demonstrate the efficiency of the
proposed secure computing protocols and Pura.

The rest of this work is organized as follows. Section II
briefly reviews the related work on privacy-preserving face
recognition, and Section III then introduces preliminaries.
After that, we define the system model and threat model in
Section IV. We carefully design a suite of secure computing
protocols in Section V. In Section VI, we elaborate on the de-
sign of Pura, including problem formulation and the workflow

1Pura: an efficient privacy-preserving solution for face recognition

of Pura. Rigorous privacy analysis is given in Section VII.
In Section VIII, the experimental results and a comprehensive
analysis are shown. Finally, we summarize this work in Section
IX.

II. RELATED WORK

In this section, we briefly review the related work on
privacy-preserving face recognition.

Privacy-preserving face recognition has been extensively
researched and has shown rapid development in recent years.
Partially homomorphic encryption (PHE) allows specific com-
putations over ciphertexts. Erkin et al. [18] first integrated
PHE into face recognition and proposed a privacy-preserving
face recognition system. Subsequently, Sadeghi et al. [19]
combined PHE with garbled circuit (GC) to enhance the
performance of the work [18]. Huang et al. [21] further
optimized previous work of PPFR based on PHE and GC.
However, the above solutions require client-server interactions
during the recognition phase. Chun et al. [27] introduced a
more secure and outsourceable privacy-preserving biometric
authentication protocol. Nevertheless, this approach raises pri-
vacy concerns as the server gains knowledge of the recognition
result, potentially revealing whether the input face matches any
person in the database.

Since fully homomorphic encryption (FHE) supports more
mathematical operations over encrypted data than PHE, several
solutions based on FHE have been proposed lately. Xiang et al.
[22] firstly outsourced computation and presented a privacy-
preserving face recognition protocol based on FHE. Although
[22] encrypts the input facial data during face recognition, it
stores the face database in plaintext on the server. Drozdowski
et al. [23] presented a PPFR protocol for a three-party PPFR
architecture using FHE. However, the private key is held by
one of the servers, thus the server is able to decrypt the
ciphertexts during computation. Huang et al. [28] proposed
the state-of-the-art PPFR protocol based on FHE and GC.
Unfortunately, the work [28] utilizes the column-wise strategy
when storing the face database, resulting in a time-consuming
process for dynamic updates of the database.

To the best of our knowledge, there are privacy-preserving
biometric recognition solutions also using secret sharing [24]
and differential privacy [25] to protect privacy. However, in the
work [24], the server obtains the input access pattern, which
can retrieve a record from the database a record that matches
the input face data. In the solution [25], recognition accuracy
is degraded due to the noise introduced.

To summarize, existing PPFR solutions still suffer from
privacy leakage and poor efficiency. Our work, Pura, ad-
dresses the aforementioned issues. Pura is non-interactive and
efficient. Besides, Pura leaks nothing about facial data and
maintains the same precision as schemes without privacy
protection. Additionally, Pura supports the update of the face
database dynamically and allows for batch computations in
parallel.

III. PRELIMINARIES

In this section, we introduce the threshold Paillier cryp-
tosystem [29] and the traditional face recognition approach
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[30]. To improve clarity, we denote JmK as the ciphertext of
a plaintext m. In addition, ”→” means an output operation.
And $← represents a random selection operation.

A. Threshold Paillier Cryptosystem

In this work, we consider the (2,2)-threshold Paillier cryp-
tosystem [31], which consists of the following polynomial time
algorithms:

N Generation (NGen): NGen takes a security parameter
κ as input and outputs (N,P,Q, p, q). Formally, NGen is
comprised of the following steps:

1) Randomly generate l(κ)
2 -bit odd primes p and q, where

l(κ) represents the bit length of the private key of the
Paillier cryptosystem and l(κ) = 4κ;

2) Randomly generate (n(κ)−l(κ)
2 − 1)-bit odd integers p′

and q′, where n(κ) refers to the bit length of the modulus
N for Paillier;

3) Calculate P = 2pp′ + 1 and Q = 2qq′ + 1;
4) If p, q, p′, q′ are not co-prime, or P or Q is not a prime,

then re-generate (p, q, P,Q) from step 1);
5) Calculate N = PQ, then output (N,P,Q, p, q).
Key Generation (KeyGen): KeyGen takes a security pa-

rameter κ as input and generates a public key pk and a private
key sk. KeyGen calls NGen to get (N,P,Q, p, q) first. Then,
KeyGen sequentially calculates α = pq, β = (P−1)(Q−1)

4pq , and

h = −y2β mod N , where y
$← Z∗

N . The public key is denoted
by pk = (h,N) and the private key is denoted by sk = α.
Particularly, the private key sk is split into two threshold keys,
denoted by sk1 and sk2, such that sk1+sk2 = 0 mod 2α and
sk1 + sk2 = 1 mod N . sk1 is set as a random number with
σ bits and sk2 = ((2α)−1 mod N) · (2α)− sk1 + η · 2α ·N ,
where η ∈ Z.

Encryption (Enc): Enc inputs a plaintext m ∈ ZN and
pk, and outputs a ciphertext JmK ∈ Z∗

N2 , denoted as

JmK← Enc(pk,m)

= (1 +N)m · (hr mod N)N mod N2,
(1)

where r
$← {0, 1}l(κ).

Decryption (Dec): Dec inputs a ciphertext JmK ∈ Z∗
N2 and

sk, and outputs a plaintext m ∈ ZN , formulated as

m← Dec(sk, JmK)

= (
(JmK2α mod N2)− 1

N
mod N) · (2α)−1 mod N.

(2)
Partial Decryption (PDec): PDec inputs a ciphertext

JmK ∈ Z∗
N2 and a partially private key ski (i ∈ {1, 2}), and

outputs a partially decrypted ciphertext JMiK ∈ Z∗
N2 , defined

as
JMiK← PDec(ski, JmK) = JmKski mod N2. (3)

Threshold Decryption (TDec): TDec inputs a pair of par-
tially decrypted ciphertexts JM1K, JM2K ∈ Z∗

N2 , and outputs a
plaintext m ∈ ZN , described as

m← TDec(JM1K, JM2K)

=
(JM1K · JM2K mod N2)− 1

N
mod N.

(4)

The (2,2)-threshold Paillier cryptosystem supports additive
homomorphism and scalar-multiplication homomorphism.

• Additive homomorphism:
Dec(sk, Jm1K · Jm2K) = Dec(sk, Jm1 +m2 mod NK).

• Scalar-multiplication homomorphism:
Dec(sk, JmKu) = Dec(sk, Ju ·m mod NK), u ∈ ZN .

B. Face Recognition

Face recognition checks whether a probe face matches any
person in a face database of multiple persons or not [32].
In practice, the facial image is usually transformed into an
n-dimensional feature vector extracted by a deep learning
model, e.g., Facenet [33]. Face recognition usually includes
the registration phase and the recognition phase [34], [35].

The registration phase involves storing multiple feature
vectors, also known as face templates, on the server. Formally,
an n-dimensional feature vector database of Υ persons is
formulated as a matrix with Υ rows and n+ 1 columns:

DΥ×(n+1) =


ID1 v1,1 v1,2 · · · v1,n
ID2 v2,1 v2,2 · · · v2,n

...
...

...
. . .

...
IDΥ vΥ,1 vΥ,2 · · · vΥ,n

 ,

where ID means the identification of a person.
The recognition phase consists of calculating the dis-

tances between the probe feature vector and the feature
vector database, and comparing the minimum distance to
a threshold value. A probe feature vector is denoted as
p = (p1, p2, · · · , pn). In this work, we utilize the square of
Euclidean distance [36] as the distance metric. The square of
Euclidean distances between the probe feature vector p and
all feature vectors in database D are defined as:

d2i =

n∑
j=1

(pj − vi,j)
2, 1 ≤ i ≤ Υ. (5)

After that, the validity of the recognition result is deter-
mined by searching for the minimum distance dmin among
{d21, d22, · · · , d2Υ} and then comparing dmin with a threshold.
If dmin is not greater than the threshold, the recognition is
successful, otherwise, the recognition is regarded as failed.

IV. SYSTEM MODEL AND THREAT MODEL

In this section, we illustrate our system model and threat
model of Pura.

A. System Model

As depicted in Fig. 1, our proposed Pura consists of an
organization, multiple users, and two servers S1 and S2.

• Organization. The organization owns a database of fea-
ture vectors. The organization calls KeyGen to generate
a public key pk, a private key sk, and threshold keys
(sk1, sk2). The organization encrypts the whole feature
vector database under pk and horizontally splits the
encrypted database into two parts, denoted as JDK1 and
JDK2. The organization distributes pk, (pk, sk1, JDK1),
and (pk, sk2, JDK2) to the users, S1, and S2, respectively.
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Fig. 1: System model.

• User. The user is capable of capturing personal facial
images. The user extracts a facial image into a feature
vector p. To preserve privacy, p is encrypted under pk
and is sent to both S1 and S2. Finally, the user obtains
information from S2 and recovers the recognition result.

• Twin servers. S1 and S2 both store a portion of the
encrypted feature vector database. They are responsible
for a part of the recognition computations, respectively.
Meanwhile, they also provide online computation ser-
vices for each other. When a user requests a recognition
service, S1 and S2 jointly and parallelly perform face
recognition operations over ciphertexts directly.

B. Threat Model

In this work, there is one type of adversary including the
twin servers S1 and S2. Following previous work [31], [37]–
[40], we suppose that S1 and S2 are semi-honest (or say
honest-but-curious) and non-colluding. This means S1 and S2

follow the protocols strictly but they attempt to infer a user’s
private information, such as the face image and the recognition
result. Besides, we consider the organization to be fully trusted
and does not collude with other entities. We assume that the
user is honest.

We consider the twin servers S1 and S2 to be provided
by different or even competitive cloud service providers. Due
to the commercial competition between service providers, S1

and S2 have no incentive to collude, as doing so would risk
their own interests. The collusion between S1 and S2 implies
that one server can access the private data of the other server,
such as the partially private key, which will leave evidence
for the competitor and even cause business losses. Therefore,
collusion between the twin servers provided by different cloud
service providers is unrealistic.

V. SECURE COMPUTING PROTOCOLS

To support face recognition operations that do not disclose
privacy, we carefully design a suite of secure computing pro-
tocols including batch secure multiplication (BatchSMUL),
batch secure square (BatchSquare), secure 2-minimum (2-
SMIN), and secure n-minimum (n-SMIN).

A. BatchSquare

FREED [41] has constructed a BatchSMUL protocol based
on the threshold Paillier cryptosystem. However, the work [41]
only supports batch secure multiplication over non-negative
numbers. To extend batch secure multiplication to support
negative numbers, we proposed a novel batch secure batch
multiplication (BatchSMUL) protocol.

We introduce a shared constant δ to convert the negative
numbers into non-negative numbers. Note that, δ is set as 0
if all the plaintext values are non-negative, or else δ is set as
the absolute value of the smallest number. BatchSMUL can
perform secure multiplication for up to ⌊|N |/2|L|⌋ pairs
of ciphertexts at the same time [41], where L is also a
shared constant and L ≥ 2σ+2, and σ is a secure parameter
and 2σ ≫ 2ℓ, where ℓ is a constant that controls the
domain size of plaintext. BatchSMUL takes two groups of
ciphertexts Jx1K, · · · , JxsK and Jy1K, · · · , JysK as inputs, where
s ≤ ⌊|N |/2|L|⌋, xi, yi ∈ (−2ℓ, 2ℓ), and i ∈ [1, s], and outputs
a result group by multiplying the input ciphertext groups
in pairs, i.e., Jx1y1K, · · · , JxsysK. As shown in Algorithm 1,
BatchSMUL consists of the following three steps:

1) S1 chooses two groups of random numbers ri,1, ri,2
$←

{0, 1}σ . Next, S1 converts xi and yi into non-negative
numbers and blinds them via the additive homomor-
phism as JXiK← JxiK ·JδK ·Jri,1K and JYiK← JyiK ·JδK ·
Jri,2K. Then S1 packs JXiK and JYiK into one ciphertext
by calculating

JciK = JXiKL
2i−1

· JYiKL
2i−2

, (6)

and packs a group of ciphertexts JciK into one ciphertext
by computing JCK ←

∏i=s
i=1JciK. Finally, S1 partially

decrypts JCK to get JC1K and sends ⟨JCK, JC1K⟩ to S2.
2) S2 first partially decrypts JCK to get JC2K and then

obtains

C = L2s−1(xs + rs,1 + δ) + L2s−2(ys + rs,2 + δ)

+ · · ·+ L(x1 + r1,1 + δ) + (y1 + r1,2 + δ)
(7)

via the threshold decryption. Next, S2 unpacks C to
obtain xi + ri,1 and yi + ri,2 by computing

ci = ⌊C mod L2i/L2(i−1)⌋,
xi + ri,1 = ⌊ci/L⌋ − δ,

yi + ri,2 = ci mod L− δ,

(8)

Finally, S2 encrypts (xi + ri,1) · (yi + ri,2) and returns
a group of ciphertexts {J(xi + ri,1) · (yi + ri,2)K}i=s

i=1 to
S1.

3) Since S1 holds ri,1, ri,2, JxiK, and JyiK, it can locally
compute J−ri,2(xi + δ)K, J−ri,1(yi + δ)K, J−ri,1 · ri,2K,
Jδ(ri,1 + ri,2)K, where i ∈ [1, s]. Then, according to the
additive homomorphism, S1 computes J(xi+ri,1) ·(yi+
ri,2)K · J−ri,2(xi + δ)K · J−ri,1(yi + δ)K · J−ri,1 · ri,2K ·
Jδ(ri,1 + ri,2)K to obtain JxiyiK for i ∈ {1, 2, . . . , s}.

Since it is more necessary to calculate the square of a
ciphertext in our proposed design, we extend BatchSMUL to
BatchSquare. Compared to BatchSMUL, BatchSquare
is able to perform up to ⌊|N |/|L|⌋ secure square calculations
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Algorithm 1:
BatchSMUL(⟨Jx1K, · · · , JxsK⟩, ⟨Jy1K, · · · , JysK⟩)

→ ⟨Jx1y1K, · · · , JxsysK⟩

Input: S1 holds ⟨Jx1K, · · · , JxsK⟩ and ⟨Jy1K, · · · , JysK⟩.
Output: S1 obtains ⟨Jx1y1K, · · · , JxsysK⟩.

▷ Step 1: S1 computes

• JXiK← JxiK · JδK · Jri,1K and JYiK← JyiK · JδK · Jri,2K,
where i ∈ [1, s];

• JciK = JXiKL
2i−1 · JYiKL

2i−2

;
• JCK←

∏i=s
i=1JciK and JC1K← PDec(JCK);

• and sends ⟨JCK, JC1K⟩ to S2.

▷ Step 2: S2 computes

• JC2K← PDec(JCK) and C ← TDec(JC1K, JC2K);
• ci = ⌊C mod L2i/L2(i−1)⌋, where i ∈ [1, s];
• xi + ri,1 = ⌊ci/L⌋ − δ and yi + ri,2 = ci mod L− δ,

for i ∈ [1, s];
• J(xi+ri,1) · (yi+ri,2)K← Enc((xi+ri,1) · (yi+ri,2)),

for i ∈ [1, s];
• and sends {J(xi + ri,1) · (yi + ri,2)K}i=s

i=1 to S1.

▷ Step 3: For i ∈ [1, s], S1 computes

• J−ri,2(xi + δ)K← Jxi + δK−ri,2 ,
J−ri,1(yi + δ)K← Jyi + δK−ri,1 ,
J−ri,1 · ri,2K← Enc(−ri,1 · ri,2),
Jδ(ri,1 + ri,2)K← Enc(δ(ri,1 + ri,2));
• JxiyiK← J(xi + ri,1) · (yi + ri,2)K · J−ri,2(xi + δ)K·

J−ri,1(yi + δ)K · J−ri,1 · ri,2K · Jδ(ri,1 + ri,2)K.

at the same time. BatchSquare takes a group of cipher-
texts Jx1K, Jx2K, · · · , JxsK as inputs, where i ∈ [1, s], s ≤
⌊|N |/|L|⌋, and −2ℓ < xi < 2ℓ, and outputs the ciphertexts
of the square of each input ciphertext, i.e., Jx2

1K, · · · , Jx2
sK.

BatchSquare is proposed in Algorithm 2. The main dif-
ference between BatchSMUL and BatchSquare lies in the
objects and the method of packing. At the step 1, S1 packs
JXiK by computing

JCK←
i=s∏
i=1

JXiKL
i−1

. (9)

At the step 2, S2 unpacks C through ⌊C mod Li/Li−1⌋, and
then obtains xi + ri by subtracting δ, where i ∈ [1, s]. At the
step 3, S1 obtains Jx2

i K by computing Jx2
i K ← J(xi + ri)

2K ·
J−2ri(xi + δ)K · J−r2i K · J2δriK for i ∈ {1, 2, . . . , s}.

B. SMIN

Zhao et al. [31] have proposed a secure comparison protocol
(SCMP). However, it is computationally expensive to extend
SCMP to support the secure minimum protocol. Therefore, in
this work, we propose a novel secure 2-minimum protocol and

Algorithm 2: BatchSquare(⟨Jx1K, · · · , JxsK⟩)
→ ⟨Jx2

1K, · · · , Jx2
sK⟩

Input: S1 holds ⟨Jx1K, · · · , JxsK⟩.
Output: S1 obtains ⟨Jx2

1K, · · · , Jx2
sK⟩.

▷ Step 1: S1 computes

• JXiK← JxiK · JδK · JriK, where i ∈ [1, s];
• JCK←

∏i=s
i=1JXiKL

i−1

and JC1K← PDec(JCK);
• and sends ⟨JCK, JC1K⟩ to S2.

▷ Step 2: S2 computes

• JC2K← PDec(JCK) and C ← TDec(JC1K, JC2K);
• xi + ri = ⌊C mod Li/Li−1⌋ − δ, where i ∈ [1, s];
• J(xi + ri)

2K← Enc((xi + ri)
2), where i ∈ [1, s];

• and sends {J(xi + ri)
2K}i=s

i=1 to S1.

▷ Step 3: For i ∈ [1, s], S1 computes

• J−2ri(xi + δ)K← Jxi + δK−2ri ,
J−r2i K← Enc(−r2i ),
J2δriK← Enc(2δri);
• Jx2

i K← J(xi + ri)
2K · J−2ri(xi + δ)K · J−r2i K · J2δriK.

extend it to a secure n-minimum protocol. We first propose
2-SMIN that outputs the ciphertext of the minimum value
of two given ciphertexts. Based on 2-SMIN, we develop n-
SMIN that outputs the ciphertext of the minimum value of n
given ciphertexts.

Given two ciphertexts JxK and JyK, where x, y ∈ [−2ℓ, 2ℓ],
2-SMIN outputs the ciphertext of the minimum value between
x and y, i.e., 2-SMIN(JxK, JyK) → Jmin(x, y)K. 2-SMIN is
shown in Algorithm 3, which consists of three steps as follows:

1) S1 selects a random number π ∈ {0, 1} and computes

JDK =

{
(JxK · JyKN−1)r1 · Jr1 + r2K, π = 0

(JyK · JxKN−1)r1 · Jr2K, π = 1
, (10)

where random numbers r1
$← {0, 1}σ\{0} and r2, s.t.,

r2 ≤ N
2 and r1+ r2 > N

2 . σ is a secure parameter, e.g.,
σ = 128. Next, S1 partially decrypts JDK to get JD1K
and then sends ⟨JDK, JD1K, JxK, JyK⟩ to S2.

2) S2 obtains D through partially decryption and threshold
decryption with JDK and JD1K. Based on the value of
D, S2 assigns Jd0K with a refreshed JxK or JyK. That is,

Jd0K =

{
JyK · J0Kr, D > N

2

JxK · J0Kr, D ≤ N
2

, (11)

where r is a random number used to refresh ciphertext,
e.g., r $← {0, 1}ℓ. S2 returns Jd0K to S1.

3) S1 obtains the ciphertext of the minimum one between
two ciphertexts according to the value of π generated in
Step 1. If π = 0, S1 sets Jmin(x, y)K = Jd0K, otherwise
(π = 1), S1 computes Jmin(x, y)K = JxK ·JyK ·Jd0KN−1.
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Algorithm 3: 2-SMIN(JxK, JyK)→ Jmin(x, y)K

Input: S1 holds JxK and JyK.
Output: S1 obtains Jmin(x, y)K.

▷ Step 1: S1 computes

• JDK← (JxK · JyKN−1)r1 · Jr1 + r2K if π = 0,
or JDK← (JyK · JxKN−1)r1 · Jr2K if π = 1,
where r1

$← {0, 1}σ\{0}, r2 ≤ N
2 and r1 + r2 > N

2 ;
• JD1K← PDec(JDK);
• and sends ⟨JDK, JD1K, JxK, JyK⟩ to S2.

▷ Step 2: S2 computes

• JD2K← PDec(JDK) and D ← TDec(JD1K, JD2K);
• Jd0K← JyK · J0Kr if D > N

2 ,
or Jd0K← JxK · J0Kr if D ≤ N

2 ,

where r
$← {0, 1}ℓ;

• and sends Jd0K to S1.

▷ Step 3: S1 computes

• Jmin(x, y)K = Jd0K if π = 0,
otherwise Jmin(x, y)K = JxK · JyK · Jd0KN−1 if π = 1.

As described in Algorithm 4, it is easy to construct n-
SMIN based on the proposed 2-SMIN. Formally, n-SMIN takes
n ciphertexts Jx1K, Jx2K, · · · , JxnK as inputs, and outputs
Jmin(x1, x2, · · · , xn)K.

Algorithm 4: n-SMIN(Jx1K, Jx2K, · · · , JxnK)
→ Jmin(x1, x2, · · · , xn)K

Input: S1 holds Jx1K, Jx2K, · · · , JxnK.
Output: S1 obtains Jmin(x1, x2, · · · , xn)K.

Jmin(x1, x2, · · · , xn)K← Jx1K;
t = 2;
while t ≤ n do

Jmin(x1, x2, · · · , xn)K←
2-SMIN(Jmin(x1, x2, · · · , xn)K, JxtK);

t = t+ 1;
return Jmin(x1, x2, · · · , xn)K.

VI. PURA DESIGN

In this section, we first formulate privacy-preserving face
recognition. Next, we provide a brief overview of the proposed
Pura. Following that, we elaborate on Pura.

A. Problem Formulation
Roughly speaking, privacy-preserving face recognition

(PPFR) enables face recognition without leaking facial infor-
mation. In this work, our proposed Pura fulfills PPFR through
encrypting facial information, e.g., feature vectors.

Privacy-preserving face recognition can be formulated as:

Γ(JpK, JDK) =

{
JIDK, Ω⋄(JpK, JDK) ≤ JϵK
⊥, otherwise

, (12)

where JpK represents an encrypted feature vector to be rec-
ognized, JDK refers to an encrypted feature vector database,
and JϵK denotes an encrypted threshold. PPFR takes input JpK
and JDK and securely calculates Ω⋄(JpK, JDK) to obtain the
minimal distance between JpK and all encrypted feature vectors
in JDK. In this work, the distance metric is calculated by the
square of Euclidean distance.

Note that a comparison operation over the ciphertexts is
performed between a threshold JϵK and the minimum distance
between JpK and JDK. If Ω(p,D) ≤ ϵ, where Ω(p,D) means
the minimum square of Euclidean distance between p and D,
PPFR returns an encrypted identity, otherwise, returns ⊥.

B. Overview

Our solution consists of two phases: the registration phase
and the recognition phase. The workflow of our proposed
Pura is sketched in Fig. 2.

During the registration phase, the organization encrypts a
feature vector database and horizontally splits it into two parts,
which are sent to S1 and S2, respectively. Additionally, each
server performs offline operations in advance following the
work [31].

During the recognition phase, the user sends an encrypted
feature vector to S1 and S2, along with an encrypted random
number specifically to S1. Then, based on the proposed
protocols and the parallel mechanism, S1 and S2 parallelly
and jointly accomplish the square of Euclidean distance and
minimum process. After that, S1 masks the result, S2 decrypts
and returns the masked result to the user. Finally, the user
recovers and obtains the recognition result.

C. Registration Phase

1) Data Transmission: During the registration phase, the
organization needs to encrypt the feature vector database
and store the encrypted feature vector database on the twin
servers. As shown in Fig. 2, we divide the encrypted feature
vector database into two parts and send them to two servers
separately, instead of storing the encrypted feature vector
database on a single server. Formally, the organization encrypts
each value in the feature vector database D, denoted as
JDK←Enc(DΥ×(n+1)) =

JID1K Jv1,1K Jv1,2K · · · Jv1,nK
JID2K Jv2,1K Jv2,2K · · · Jv2,nK

...
...

...
. . .

...
JIDΥK JvΥ,1K JvΥ,2K · · · JvΥ,nK

 .

In this work, the first ⌊Υ2 ⌋ rows of JDK are sent and stored on
S2, while the rest of JDK are sent and stored on S1. In this
case, each server that holds half of the encrypted feature vector
database can perform the protocols simultaneously, which fully
takes advantage of the computation capability of each server.
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Fig. 2: System overview of Pura.

2) Offline Mechanism: Inspired by the offline mechanism
in the study [31], during the registration phase, we also utilize
the offline mechanism. Specifically, S1 and S2 respectively
generate Jr1K, Jr2K, J−r1r2K, Jδ(r1+r2)K, −r1, −r2, L, Jr1+
r2K, r, r1, R, and JRK, which can be directly used in the
recognition phase. Note that the quantity of random numbers
generated is determined by the demands of the recognition
phase.

D. Recognition Phase
1) Square of Euclidean Distance: During the recognition

phase, the user encrypts a probe feature vector (JpK←Enc(p)
= (Ju1K, Ju2K, · · · , JunK)) and then sends JpK to S1 and
S2 at the same time. After obtaining the encrypted probe
feature vector JpK, S1 and S2 simultaneously compute the
square of Euclidean distance between JpK and the item in JDK.
Specifically, S1 and S2 first calculate the difference among
feature vectors separately, which is formulated as

JQK =

Ju1K · Jv1,1KN−1 · · · JunK · Jv1,nKN−1

...
. . .

...
Ju1K · Jvϕ,1KN−1 · · · JunK · Jvϕ,nKN−1

 ,

(13)
where ϕ is the rows of JDK that each server holds. After
obtaining JQK, S1 and S2 parallelly and jointly perform
BatchSquare to compute the square of every ciphertext in
JQK. The result is denoted as a matrix JEK with ϕ rows and
n columns of items JeK. Once they finish BatchSquare,
they can locally compute the square of Euclidean distances.
According to the additive homomorphism, they compute the
sum of each row in JEK, which is defined as

JDkK = (Jd1K, · · · , JdϕK) = (

j=n∏
j=1

Je1,jK, · · · ,
j=n∏
j=1

Jeϕ,jK),

(14)
where S1 and S2 obtain JD1K and JD2K, respectively.

2) Minimum Distance: (i) S1 and S2 jointly call n-
SMIN and take input JD1K and JD2K, respectively. Note that
n of n-SMIN is the size of JDiK for Sk, where k ∈ {1, 2}.
After that, S1 obtains the minimum result JdS1

K among JD1K,
and S2 gets JdS2K in the same way. (ii) S2 sends JdS2K to
S1. Then S1 inputs two minimum results JdS1K and JdS2K,
as well as an encrypted threshold JϵK, and calls an extra n-
SMIN protocol with S2 to obtain the encrypted recognition
result JγK. Specifically, n of the extra n-SMIN protocol is 3.

3) Mask and Recover: Upon obtaining JγK, S1 masks JγK
with JRK via the additive homomorphism, i.e., Jγ+RK = JγK ·
JRK, where R

$← {0, 1}σ . Note that the random number R is
generated and encrypted as JRK by the user. JRK is sent to S1

along with the encrypted feature vector. Next, S1 calls PDec
to partially decrypt Jγ+RK and sends the ciphertexts to S2. S2

obtains γ+R by calling PDec and TDec. Eventually, the user
receives γ + R from S2, and easily recovers the recognition
result γ.

VII. PRIVACY ANALYSIS

In this section, we demonstrate that the proposed secure
computing protocols used to construct Pura prevent users’
facial information from being leaked.

Due to the semantically secure property of threshold Paillier
cryptosystems [29], [42], it has been widely adopted to protect
users’ images by performing operations in the encrypted
domain. Zhao et al. [40] proved that x + r is a chosen-
plaintext attack (CPA) secure one-time key encryption scheme.
According to the computational indistinguishability experi-
ment between an adversary and a challenger presented in the
work [43], we denote the computational indistinguishability
experiment as PriRcpa

A,x+r and present a detailed description in
the following.

1) An adversary A randomly chooses two random numbers
x0, x1 such that x0, x1 ∈ [−2ℓ, 2ℓ];
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2) A challenger randomly selects r
$← {0, 1}σ and b

$←
{0, 1}, where σ is a secure parameter. The challenger
then calculates xb + r and returns to A.

3) A yields a bit b′.
4) The experiment outputs 1 if b′ = b; otherwise, it outputs

0. In the case when the output is 1, PriRcpa
A,x+r equals to

1, which means A succeeds.
Theorem 1: For two random numbers x0, x1 ∈ [−2ℓ, 2ℓ],

x0 + r0 and x1 + r1 are considered computationally indistin-
guishable, where r0, r1

$← {0, 1}σ . More precisely, given two
random numbers xb ∈ [−2ℓ, 2ℓ] and r

$← {0, 1}σ , the formula
Pr[b′ = b|xb + r] ≤ 1

2 + negl(σ) always holds, where negl(σ)

is a negligible function of σ and b, b′
$← {0, 1}. The study

[40] offers the proof details.
Corollary 1: Assuming a pair of ciphertexts of length s:

Jx1K, Jx2K, · · · , JxsK and Jy1K, Jy2K, · · · , JysK, where xi, yi ∈
[−2ℓ, 2ℓ], the proposed BatchSMUL protocol securely com-
putes Jx1y1K, Jx2y2K, · · · , JxsysK under non-colluding attack-
ers A = (AS1,AS2), where AS1 and AS2 denote S1 and
S2 as polynomial-time adversaries, respectively. That means
BatchSMUL does not leak xi and yi to AS1 and AS2.

Proof 1: We now construct the independent simulators
(SS1,SS2), which simulates S1 and S2, respectively.
SS1 simulates the view of AS1 in the real in the following:
1) SS1 takes ⟨JxiK, JyiK, J(xi+ ri,1) · (yi+ ri,2)K⟩ as inputs

and then randomly chooses x̂i, ŷi ∈ [−2ℓ, 2ℓ] and
r̂i,1, r̂i,2, λ̂1

$← {0, 1}σ .
2) SS1 calls Enc to encrypt x̂i, ŷi, x̂i+ r̂i,1+ δ, ŷi+ r̂i,2+

δ,−r̂i,2 ·(x̂i+δ),−r̂i,1 ·(ŷi+δ),−r̂i,1 ·r̂i,2, δ ·(r̂i,1+r̂i,2)
into Jx̂iK, JŷiK, JX̂iK, JŶiK, J−r̂i,2·(x̂i+δ), K, J−r̂i,1·(ŷi+
δ)K, J−r̂i,1 · r̂i,2K, Jδ · (r̂i,1 + r̂i,2)K, respectively. Then,
SS1 calculates JĈK =

∏i=s
i=1JX̂iKL

2i−1 · JŶiKL
2i−2

, and
JĈ1K = JĈKλ̂1 by calling PDec, and Jx̂i · ŷiK = J(xi +
ri,1) · (yi + ri,2)K · J−r̂i,2 · (x̂i + δ)K · J−r̂i,1 · (ŷi + δ)K ·
J−r̂i,1 · r̂i,2K · Jδ · (r̂i,1 + r̂i,2)K.

3) SS1 yields ⟨Jx̂iK, JŷiK, JX̂iK, JŶiK, JĈK, JĈ1K, J−r̂i,2 ·
(x̂i+δ), K, J−r̂i,1 ·(ŷi+δ)K, J−r̂i,1 · r̂i,2K, and Jδ ·(r̂i,1+
r̂i,2)K⟩ as the simulation of AS1’s entire view.

AS1 only learns JĈK and JĈ1K. Since the (2,2)-threshold
Paillier cryptosystem is semantically secure, AS1

cannot infer
Jx̂iK, JŷiK, Jx̂i · ŷiK from JĈK and JĈ1K. Thus, Jx̂iK and JxiK,
JŷiK and JyiK, JĈK and JCK, JĈ1K and JC1K are computation-
ally indistinguishable.
SS2 simulates the view of AS2 in the real in the following:
1) SS2 takes ⟨J

∑i=1
i=s L

2i−1 · (xi + ri,1 + δ)+L2i−2 · (yi +
ri,2+δ)K, J

∑i=1
i=s L

2i−1·(xi+ri,1+δ)+L2i−2·(yi+ri,2+
δ)Kλ1⟩ as inputs and then randomly chooses x̄i, ȳi ∈
[−2ℓ, 2ℓ] and r̄i,1, r̄i,2, λ̄1, λ̄2

$← {0, 1}σ .
2) SS2 calls Enc to encrypt x̄i+ r̄i,1, ȳi+ r̄i,2, (x̄i+ r̄i,1) ·

(ȳi + r̄i,2) into JX̄iK, JȲiK, J(x̄i + r̄i,1) · (ȳi + r̄i,2)K,
respectively, and calculates JX̄i,1K = JX̄iKλ̄1 , JX̄i,2K =
JX̄iKλ̄2 , JȲi,1K = JȲiKλ̄1 , JȲi,2K = JȲiKλ̄2 by calling
PDec.

3) SS2 yields ⟨JX̄iK, JX̄i,1K, JX̄i,2K, JȲiK, JȲi,1K, JȲi,2K, x̄i+
r̄i,1, ȳi + r̄i,2, (x̄i + r̄i,1) · (ȳi + r̄i,2), J(x̄i + r̄i,1) · (ȳi +
r̄i,2)K⟩ as the simulation of AS2’s entire view.

In the view of AS2, AS2 only learns (x̄i+r̄i,1)·(ȳi+r̄i,2), so
it fails to get x̄i·ȳi. As the (2,2)-threshold Paillier cryptosystem
is semantically secure, Jx̄iK and JxiK, JȳiK and JyiK are com-
putationally indistinguishable, demonstrating that SS2 in an
ideal execution and AS2 in the real world are computationally
indistinguishable.

Generally speaking, BatchSMUL is secure to calculate Jxi ·
yiK and does not leak xi and yi to AS1 and AS2.

Corollary 2: Taking s ciphertexts Jx1K, Jx2K, · · · , JxsK,
where −2ℓ ≤ xi ≤ 2ℓ, the proposed BatchSquare protocol
securely calculates Jx2

1K, Jx2
2K, · · · , Jx2

sK under non-colluding
attackers A = (AS1,AS2).

Proof 2: Corollary 2 can easily be proved following the
proof method of Corollary 1.

Theorem 2: For two random numbers x0, x1 such that
x0, x1 ∈ [−2ℓ, 2ℓ], given d = r1 · (x − y + 1) + r2 or
d = r1 · (y − x) + r2, where r1, r2 are two positive random
numbers such that r1

$← {0, 1}σ\{0}, r1 + r2 > N
2 and

r2 ≤ N
2 , if Pr[d = r1 ·(x−y+1)+r2] = Pr[d = r1 ·(y−x)+r2]

= 1
2 , the probability of successfully comparing the relative

size of x and y is 1
2 . More formally, for random number

x, y ∈ [−2ℓ, 2ℓ], Pr[d > N
2 ] = Pr[d ≤ N

2 ] = 1
2 . Detailed proof

can be found in the study [40].
Corollary 3: Given two ciphertexts JxK and JyK such that

x, y ∈ [−2ℓ, 2ℓ], the proposed 2-SMIN protocol securely
computes Jmin(x, y)K under non-colluding attackers A =
(AS1,AS2).

Proof 3: Following the proof method of Corollary 1, Corol-
lary 3 is proved in the following.

1) In the view of AS1, AS1 only learns the ciphertexts
JxK, JyK, and Jr1(x−y)+(r1+r2)K or Jr1(y−x)+r2K,
so it fails to obtain x, y, and min(x, y).

2) In the view of AS2, AS2 can learn r1(x−y)+(r1+r2)
or r1(y − x) + r2. However, according to Theorem 1
and Theorem 2, AS2 fails to obtain x, y and min(x, y)
from r1(x− y) + (r1 + r2) or r1(y − x) + r2.

In conclusion, 2-SMIN securely computes Jmin(x, y)K and
does not leak x and y to AS1 and AS2.

Corollary 4: Given n ciphertexts Jx1K, Jx2K, · · · , JxnK,
where −2ℓ ≤ xi ≤ 2ℓ, the proposed n-SMIN protocol
securely calculates Jmin(x1, x2, · · · , xn)K in a semi-honest
(non-colluding) model.

Proof 4: Based on Corollary 3, it is easy to derive Corollary
4, since n-SMIN is simply calling 2-SMIN repeatedly.

Theorem 3: Given an encrypted feature vector JpK and
an encrypted feature vector database JDK, S1 and S2 cannot
obtain the raw data p and D.

Proof 5: The proposed Pura consists of the following
operations: compute the difference between an encrypted
input feature vector and an encrypted feature vector database
via homomorphic subtraction; calculate the square of every
difference by calling BatchSquare; compute the square of
Euclidean distance through homomorphic addition; search for
the minimum distance and compare it with a threshold by
calling n-SMIN.

According to the threshold Paillier cryptosystem [29], the
addition and subtraction operations over ciphertexts do not
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leak plaintext data. According to Corollary 2, S1 and S2

can safely cooperate to compute the square of a pair of
ciphertexts by calling BatchSquare. Based on Corollary 4,
n-SMIN can perform the minimum operation among a group
of ciphertexts without leaking privacy. Lastly, the encrypted
recognition result is masked by S1 and the user recovers the
real result. Based on the assumption that S1 and S2 do not
collude with each other, neither S1 nor S2 is able to learn the
plaintext of the recognition result, which can only be obtained
by the user.

In conclusion, our proposed Pura solution can securely
perform the PPFR task without revealing the original data
to AS2 and AS2. In other words, Pura protects users’ facial
information and avoids private data leakage.

Finally, it can be easily demonstrated that Pura satisfies
the three security requirements of ISO/IEC 24745 [44]: irre-
versibility, unlinkability, and confidentiality. First, the Paillier
homomorphic cryptosystem ensures irreversibility, as attackers
cannot retrieve the original plaintext data from leaked en-
crypted data. Second, the unlinkability is guaranteed by using
different public/private key pairs for distinct face recognition
systems, preventing the association of samples from the same
user across different systems. Third, according to Theorem 3,
our scheme meets the confidentiality requirement of ISO/IEC
24745, ensuring that neither external adversaries nor the
internal servers can obtain users’ facial data.

VIII. EXPERIMENTS

In this section, we evaluate the effectiveness and efficiency
of our proposed Pura.

A. Experimental setting

We adopt the popular Labeled Faces in the Wild (LFW) [45]
with 13,233 images of 5,749 persons and CASIA-WebFace
(WebFace) [46] with 459,737 images of 10,575 persons as
our experimental datasets. We transform each image into a
512-dimensional feature vector in advance using a pre-trained
deep-learning model Facenet [33]. Each value of the feature
vector is mapped into the range of [0, 1]. Since the values of the
feature vectors are real numbers, we transform the real num-
bers into integers by multiplying a constant number 10,000.
Our scheme is implemented in C++, and the experiments are
conducted on two servers, each of which is equipped with an
AMD EPYC 7402 CPU and 128 GB of RAM.

Our proposed secure computing protocols are based on
SOCI+ [31]. We also implement the protocols using SOCI
[40], called Naive. We conduct the experiments setting N
as 1024. We compare Pura with two related solutions [23]
and [28] based on BFV [47]. Note that the work [23] adopts
a row-wise strategy and the scheme [28] utilizes a column-
wise strategy. We conduct the experiments at an 80-bit se-
curity level. We set prime modulus = 265, 774, 897 and
hensel lifting = 1. The parameter slots is to control the
number of plaintext encrypted in a single ciphertext. We select
slots = 520 for the work [23], and slots = 1, 040 for the
scheme [28]. Other parameters are shown in Table I.

TABLE I: Parameter settings of different slots.

slots cyclotomic polynomial modulus chain bits

520 4,847 119
1040 11,135 230

B. Effectiveness

To evaluate the effectiveness of our solution, we compare it
with a baseline face recognition algorithm, which is formulated
in Section III-B. We randomly choose 200 images of 10
people in LFW and 300 images of 10 people in WebFace. All
images are transformed into 512-dimensional feature vectors
in advance. For each vector, we exclude it from the feature
vector database and select it as the probe feature vector to
be identified. We compare the precision and recall between
baseline and Pura, where the precision and recall are formu-
lated by Precision = TP

TP+FP and Recall = TP
TP+FN , where

TP , FP and FN represent true positive, false positive
and false negative, respectively. As the comparison result
shown in Fig. 3, it is obvious that Pura has the same precision
and recall with baseline, which demonstrates the effectiveness
of our proposed Pura.

1 2 3 4 5 6 7 8 9 1 00 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

Sco
re

P e r s o n s

 R e c a l l  i n  b a s e l i n e
 P r e c i s i o n  i n  b a s e l i n e
 R e c a l l  i n  P u r a
 P r e c i s i o n  i n  P u r a

(a) LFW

1 2 3 4 5 6 7 8 9 1 00 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

Sco
re

P e r s o n s

 R e c a l l  i n  b a s e l i n e
 P r e c i s i o n  i n  b a s e l i n e
 R e c a l l  i n  P u r a
 P r e c i s i o n  i n  P u r a

(b) WebFace

Fig. 3: Feasibility evaluation on LFW and WebFace.

We conduct a statistical analysis employing the Wilcoxon
rank-sum test at a significance level of 0.05. When the p-value
of the Wilcoxon rank-sum test is less than 0.05, it indicates
that there are significant differences between the two solutions.
Conversely, if the p-value exceeds 0.05, the test indicates no
significant difference between the two solutions. As seen from
Table II, the statistical p-value between Pura and baseline is
greater than 0.05 in terms of the sum, mean, and variance.
Therefore, we conclude that there is no significant difference
between Pura and baseline when performing face recognition.
Hence, we conclude that Pura is a feasible privacy-preserving
face recognition solution.

TABLE II: Statistical analysis between Pura and baseline.

Dataset Sum Mean Variance

LFW 1 1 1
WebFace 1 1 1

We further compare the Detection Error Tradeoff (DET)
curves of Pura and baseline. The Equal Error Rate (EER) is
the point where the False Acceptance Rate (FAR) equals the
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Fig. 4: DET curve comparison of Pura with baseline.

False Rejection Rate (FRR), presenting the performance of the
face recognition system. As shown in Fig. 4, the EER for Pura
is 0.44454, which matches the EER for baseline. This result
indicates that the proposed encryption scheme has no affect
on the performance of the face recognition system, further
demonstrating the effectiveness of Pura.

C. Efficiency

We first compare the encrypted feature vector database
storage. We compare Pura with the work [23] and the scheme
[28]. The result is depicted in Fig. 5. It can be observed
that BFV-based schemes suffer from high storage overhead. In
terms of the storage overhead of a single server, the solution
[28] consumes more than 6 GB, while the solution [23] costs
over 3 GB when the dataset size is 10,000. In contrast to the
solutions [23] and [28], our proposed Pura consumes around
1 GB of storage overhead on a single server. Consequently,
we can say that the proposed Pura enjoys less storage cost.
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Fig. 5: Comparison of storage costs of a single server among
three solutions.

Both solutions [23] and [28] adopt BFV to perform the
square operation. In order to demonstrate the efficiency of the
proposed BatchSquare protocol, we compare the runtime
of BatchSquare and the BFV-based scheme, as well as
BatchSMUL, in terms of square operations. We use the
HElib library [48] to implement the BFV square operation,
named BFV-Square. We range the data size from 1,000
to 10,000 to compare the runtime. As shown in Table III,
BatchSquare takes less time than BFV-Square generally.
Note that in the square operation, BatchSquare can reduce

the redundancies in BatchSMUL, thereby decreasing the
number of computed expressions and increasing the number
of batch computations. Consequently, BatchSquare out-
performs BatchSMUL in the square operation. Addition-
ally, the growth rates of the runtime for BFV-Square,
BatchSMUL, and BatchSquare are 55.47, 41.15, and
25.98, respectively. Therefore, as the size of the dataset
grows, BatchSquare shows significant advantage in terms
of runtime.

Since the garbled circuit is one of the most popular ap-
proaches to finding the minimum value securely, we exten-
sively compare our proposed n-SMIN scheme with the garbled
circuit. We set the same security level (i.e., 80-bit security)
in this experiment. Following the approach of constructing a
garbled circuit to obtain the minimum value in the work [28],
we separate each value x into two shares x1 and x2, such that
x = x1+x2, and store x1 and x2 on different servers. In the n-
SMIN scheme, each value is encrypted into ciphertext, and all
ciphertexts are stored separately on different servers. As shown
in Fig. 6, n-SMIN requires less runtime and communication
cost to find the minimum value than the garbled circuit. All in
all, n-SMIN significantly outperforms the traditional garbled
circuit.
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Fig. 6: Comparison between n-SMIN and garbled circuit.
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Fig. 7: Runtime comparison among four solutions.

We evaluate the efficiency of computation for Pura through
runtime. Fig. 7 shows the runtime comparison between Pura,
Naive, solutions [23] and [28]. Fig. 7(a) shows the runtime of
encrypting a feature vector with varying dimensions. It can
be observed that our proposed Pura outperforms the other
schemes. Among the four schemes, Pura shows the slowest
increase in runtime as the dimension of the feature vector
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TABLE III: Runtime of the square operation.

Dataset Size (k) 1 2 3 4 5 6 7 8 9 10

BFV-Square 57 ms 112 ms 170 ms 226 ms 279 ms 333 ms 391 ms 446 ms 501 ms 557 ms
BatchSMUL 104 ms 156 ms 191 ms 238 ms 274 ms 321 ms 354 ms 395 ms 439 ms 481 ms
BatchSquare 60 ms 90 ms 125 ms 153 ms 173 ms 202 ms 224 ms 240 ms 272 ms 304 ms

TABLE IV: Comparison of communication cost (GB) among three solutions.

Dataset Size (k) 1 2 3 4 5 6 7 8 9 10

Pura 0.2061 0.4121 0.6172 0.8229 1.0295 1.2344 1.4404 1.6463 1.8516 2.0572
[23] 0.0012 0.0021 0.0030 0.0038 0.0047 0.0056 0.0064 0.0073 0.0084 0.0090
[28] 1.6777 1.6872 1.6966 1.7062 1.7158 1.7251 1.7347 1.7442 1.7538 1.7631

changes. From Fig. 7(b), we see that Pura is significantly
faster than the other algorithms. In contrast to the work [28],
Pura is 16 times faster than the work [28] when the dataset
size is 1,000. And the runtime of Pura is twice that of the
work [28] when the dataset size is 10,000. Since the work
[23] utilizes a high-complexity strategy and excessive use
of expensive homomorphic operations such as circular shifts,
the recognition runtime is unacceptable. Thanks to the offline
mechanism and the optimization of SOCI [40], Pura can save
about 75% of runtime compared to Naive.

Table IV shows the comparison results in terms of com-
munication cost among the three solutions. As indicated in
Table IV, the communication cost of Pura is less than that of
the work [28] in general. It can be observed that when the
dataset size exceeds 9,000, the communication cost of Pura
surpasses that of the work [28]. We consider that this trade-
off between communication cost and runtime in our scheme
is acceptable, according to Fig. 7(b). More crucially, the user
experience is of greater importance for a face recognition sys-
tem. Additionally, combining Table IV and Fig. 7(b), although
the communication cost of scheme [23] is the lowest, the sac-
rificed computational efficiency is unacceptable. The scheme
requires a single server to perform all the complex and costly
computations. While this reduces the communication volume,
it results in an intolerable recognition latency. Additionally,
as the scheme allows the server to decrypt and access the
plaintext, its security level is significantly lower than that of
our proposed Pura.

To summarize, our proposed Pura excels in runtime effi-
ciency, significantly outperforming the other schemes. Also,
Pura achieves a good balance between communication cost
and runtime.

IX. CONCLUSION

In this paper, we propose Pura, an efficient privacy-
preserving face recognition solution, which enables the twin
servers to efficiently identify a user without leaking privacy.
To achieve non-interactive and privacy-preserving face recog-
nition, we propose a novel PPFR framework based on the
threshold Paillier cryptosystem. We carefully design several
secure underlying computing protocols to support secure and
efficient operations over ciphertexts, including multiplication,
square, and minimum. Moreover, we utilize a parallel comput-
ing mechanism to improve the efficiency of privacy-preserving

face recognition. Our proposed Pura avoids degrading recog-
nition accuracy while achieving remarkable performance. The
privacy analysis details the security of our design through
the proposed underlying protocols. The experimental results
demonstrate that our solution outperforms the state-of-the-art
in terms of communication cost and runtime. For future work,
we intend to deploy our proposed Pura into a real product.
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