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Abstract

Adversarial attacks aim to generate malicious inputs that mislead deep models, but
beyond causing model failure, they cannot provide certain interpretable information
such as “What content in inputs make models more likely to fail?” However, this
information is crucial for researchers to specifically improve model robustness.
Recent research suggests that models may be particularly sensitive to certain seman-
tics in visual inputs (such as “wet,” “foggy”), making them prone to errors. Inspired
by this, in this paper we conducted the first exploration on large vision-language
models (LVLMs) and found that LVLMs indeed are susceptible to hallucinations
and various errors when facing specific semantic concepts in images. To efficiently
search for these sensitive concepts, we integrated large language models (LLMs)
and text-to-image (T2I) models to propose a novel semantic evolution framework.
Randomly initialized semantic concepts undergo LLM-based crossover and mu-
tation operations to form image descriptions, which are then converted by T2I
models into visual inputs for LVLMs. The task-specific performance of LVLMs on
each input is quantified as fitness scores for the involved semantics and serves as
reward signals to further guide LLMs in exploring concepts that induce LVLMs.
Extensive experiments on seven mainstream LVLMs and two multimodal tasks
demonstrate the effectiveness of our method. Additionally, we provide interesting
findings about the sensitive semantics of LVLMs, aiming to inspire further in-depth
research.

1 Introduction

Large Vision-Language Models (LVLMs) have achieved remarkable success in various multimodal
downstream tasks, demonstrating great potential in understanding the real world—for example, in
image captioning [7, 3, 33], visual question answering [2, 15, 36], and text-to-image generation
[23, 28, 30]. Given the increasing demand for LVLM applications, the security and robustness of the
model is increasingly important [27, 12].

Recent research has shown that powerful LVLMs still have security risks and potential vulnerabilities,
especially when facing various adversarial attack methods [44, 21, 43, 20, 45, 42]. Adversarial attacks
typically apply imperceptible perturbations to benign inputs, causing models to fail on various tasks
and exposing the fragility of neural network-based models [13]. Existing attack methods targeting
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What is the content of 
this image?

The image features three 
robots, each with a different 
colored hair. The robots are 

positioned in a way that they 
appear to be looking out a 

window, possibly observing 
the city outside.

Describe this image.

 A digital painting of nine 
silver robots standing in a 

row on a wetcity street. The 
robots are positioned in a 
straight line, with some of 

them appearing to be 
looking at the viewer. The 

street is wet, possiblydue to 
rain, and the robots are 

standing in front of a 
building. 

What are they sitting on?

 They are sitting on red chairs. 

Describe this image.

 A painting of a polar bear in 
the water on a cloudy day, 
with a lightning bolt in the 

sky. The bear is standing on 
an iceberg and appears to be 

looking at the camera. The 
scene is set in the Arctic, 

with the bear being the main 
focus of the image.

Describe this image.

 A photo of a volcano in the 
style of a black and white 

image. The volcano is 
erupting, with lava flowing 
down its side, and a bolt of 
lightning strikes the top of 

the volcano. The scene is set 
in a dark sky, with the 

volcano as the main focus. 

What is in the sky?

 There is a bolt of lightning 
and many birds in the sky. 

robot

chip

Figure 1: An overview of the core idea of our work. LVLMs may be particularly sensitive to certain
semantic concepts, which can be viewed as blind spots in their knowledge space.

LVLMs usually mislead models by applying carefully designed noise perturb ations to image inputs.
However, when we want to understand what content in an input image makes LVLMs more prone to
hallucinations or various errors, the above methods prove ineffective. This is because the artificially
added perturbations in adversarial attacks do not contain semantic information, which leaves people at
the point of causing model failure without understanding its failure patterns [46, 17]. Recent studies
[46, 25] have found that classification models may be more sensitive to visual inputs containing
specific semantic content. For example, when images contain semantic information such as “wet,”
“foggy,” or “stretched,” the probability of model failure increases. Uncovering these sensitive semantic
concepts is valuable because they represent the model’s “knowledge blind spots,” and understanding
them helps researchers improve models in a targeted manner [17]. So we cannot help but ask: Are
LVLMs also sensitive to certain specific semantic concepts? How can we efficiently search for these
semantic concepts?

To address the above questions, we innovatively combined large language models (LLMs) and text-to-
image (T2I) models to propose a semantic evolution algorithm framework to search for blind spots in
LVLMs’ vast knowledge space. Existing limited researches [46, 25] attempt to artificially construct a
word space to simulate the potential semantic space of image classification models, and subsequently
optimize extraction and combination strategies for the word space using the classification model’s
loss, to find a set of semantic concepts for synthesizing images that are most likely to mislead
the model. However, their limited search space seems impractical compared to powerful LVLMs,
resulting in poor effectiveness. Therefore, we choose to leverage the powerful prior knowledge of
LLMs by carefully designing a series of prompts to drive the LLM to execute evolutionary algorithms
for efficient searching. Specifically, the LLM first randomly initializes a large number of semantic
concepts as the initial population, organized in the form of textual descriptions of image content.
Subsequently, multiple sets of descriptions are repeatedly drawn from the initial population and input
to the LLM to perform crossover and mutation operations, simulating searches in the semantic space.
Finally, the LLM outputs the merged and modified image descriptions, which are then converted
by the T2I model into corresponding images as visual inputs for LVLMs. We evaluate LVLMs’
sensitivity to the semantics involved in these images on multimodal tasks and quantify it as fitness
scores for the corresponding image descriptions. These scores serve as reward signals to guide the
LLM in exploring semantic concepts that better induce LVLM failures in the next round of evolution.
After multiple iterations, we believe that the final batch of image descriptions represents the sensitive
semantic concepts of LVLMs.

To verify the effectiveness of our method, we conducted extensive experiments on seven mainstream
open-source and commercial LVLMs (LLaVA [19], LLaVA-NeXT [18], InternVL2 [8], Molmo [9],
Qwen2-VL [38], Llama-3.2 [1], GPT-4o [24]), covering two multimodal tasks: image captioning (IC)
and visual question answering (VQA). As shown in Table 1 and 2, the semantics we searched can
effectively reduce the performance of LVLMs, particularly outperforming SOTA baselines by a large
margin of 54% on average. By analyzing the image descriptions obtained from our multiple rounds
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of searching, we found that LVLMs are indeed particularly sensitive to certain special semantic
concepts in images. This is manifested in frequently occurring similar concepts such as "robots,"
"cyberpunk," etc., and the significant decrease in LVLMs’ capabilities when facing them, as shown
in Figure 1. Additionally, although the most sensitive concepts for each LVLM differ, the concepts
found by searching for a particular LVLM can mislead all other LVLMs to varying degrees, similar to
the transferability of adversarial examples. These findings can help us better understand the potential
defects of LVLMs and inspire the design of targeted improvement strategies.

Our contribution can be summarized as follows:

• Our method fills the gap where existing adversarial attacks fail to explore sensitive semantic
concepts in LVLMs, not only generating effective examples that mislead LVLMs, but also
revealing which semantic concepts in visual inputs are more likely to induce model failures.

• We propose a novel evolutionary algorithm framework based on LLM and T2I Model.
Through LLM-based crossover, mutation, and selection operations, randomly initialized
semantic concepts gradually converge toward certain similar concepts after multiple rounds
of evolutionary iterations.

• Extensive experiments demonstrate that our method significantly outperforms existing
methods directly transferred from classification models. Our method also provides valuable
findings about LVLM-sensitive semantics, aiming to promote in-depth research on LVLM
robustness.

2 Related Work

2.1 Large Vision-Language Models

Benefiting from the success of LLMs, recent large vision-language models (LVLMs) have achieved
significant advancements across various multimodal downstream tasks, such as Image Captioning
and Visual Question Answering. These LVLMs built upon the achievement of LLMs train a modality
connecter to align the vision space and text space. Popular LVLMs include open-source models
like LLaVA-v1.5 [19], LLaVA-NeXT [18], InternVL2 [8], Qwen2-VL [38], Molmo [9], Llama-3.2
[1], and commercial models like GPT-4o [24]. Despite their remarkable capabilities, the increased
complexity and deployment of LVLMs have also exposed them to various security threats and
vulnerabilities, making the study of attacks on these models a critical area of research. In this paper,
we further explore what semantic content in the inputs is more likely to cause Large Vision-Language
Models (LVLMs) to fail.

2.2 LLMs for Evolution Method

LLMs are now instrumental in the innovation of several algorithmic frameworks. They have been
effectively integrated as black-box components in the development of evolutionary algorithms [40].
Wang et al. [39] used an LLM-based evolutionary approach for automatic data augmentation to
address the long-tail problem. Guo et al. [14] developed a framework for automatically designing
adversarial attack algorithms. Inspired by the above, in order to conduct effective searches in the vast
semantic space of LVLMs, we designed an LLM-based evolutionary algorithm framework.

2.3 Adversarial Attacks for LVLMs

Several recent researches have explored the robustness of MLLMs [45, 42, 41, 31, 26]. These
researches are mostly under untargeted settings, or try to mislead the content of the input image.
Zhao et al. [44] explore the robustness of VLMs by using transfer-based and query-based methods to
craft adversarial examples. Dong et al. [11] use an ensemble-based method to mislead Google Bard.
Although they can evaluate the robustness of LVLMs by observing their ability to resist adversarial
examples, they cannot answer: what semantic content in inputs more easily leads to LVLM failures?
This paper aims to fill this gap by identifying their sensitive semantic concepts while also generating
adversarial examples that can mislead LVLMs.
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Fitness Evaluation

Initialize:
You are requested to generate lots of image 
descriptions according to the format I give 
below, 
<caption format>+<Other requirements>

Initialize Prompt

LVLMs

Question:
You are requested to design a imagenative 
image caption. Given a set of image 
captions and a format,
<image captions>+<caption format>
Please help me create a new caption that 
has totally different content from the 
given ones +<Other requirements>
 

Crossover Prompt

Question:
Please assit me in creating a new caption 
that has different content but can be a 
modified version of the caption provided.
<image captions>+<caption format>

Mutation Prompt

Image Generation

Input

 Semantic Space
Caption1: a photo of a silver robot dancing in 
the style of cyberpunk. ... ...
Caption2: a sketch of a yellow sunflower 
swaying in the style of art nouveau. ... ...
Caption3: a picture of a purple octopus 
juggling in the style of surrealism. ... ...

  2.Select

  3.Sampling

5.Update
1.Initialize

4.Generate
A painting of four brass 
clockwork robots ... .....

Caption: A painting of four 
brass clockwork robots in the 
style of steampunk fantasy. 
They dance gracefully ... ...

Image Captioning Q1 Q2 Q3
VQA

- User:please describe this image 
according to the format I give below, 
<format> (Image Captioning)
- LVLMs: A painting of five 
robots ... ...
- User: where are these robots? 
(VQA)
- LVLM: a ship. ... ...

Query

Figure 2: Overview of our semantic evolution framework.

3 Method

3.1 Framework

The overall framework is illustrated in Figure 2. The framework consists of two interactive modules:
the LLM-based semantic evolution module(left) and the LVLM sensitivity evaluation module(right).

Large Vision-Language Models. Let M represent an LVLM model, which takes an image x and
a text prompt tin as inputs and outputs a textual output M(x, tin) = tout. Since LVLM drivers
multiple tasks, in image captioning tasks, for instance, tin is a placeholder ∅ and tout is the caption;
in visual question answering tasks, tin is the question and tout is the answer [17].

Problem Formulation. We aim to identify blind spots in the vast knowledge space of LVLMs,
specifically searching for semantic concepts in input images that are more likely to cause model
failure. To simulate the visual input semantic space received by LVLMs, we used an LLM to randomly
generate a large number of image descriptions, aiming to cover as many common semantic concepts
as possible. Subsequently, we used these generated captions as the initial semantic population for our
evolutionary algorithm framework. Our goal is to drive the LLM to iteratively generate new image
descriptions based on the initial population and adjust the LLM’s generation objectives according
to feedback from the LVLM on multimodal tasks, simulating a search of the LVLM’s semantic
space. Since LLMs can only process and generate text, we need to use T2I models to transform
the semantic concepts generated by the LLM in text form into corresponding content in images,
and use the generated images as visual input for the LVLM on a multimodal task such as Image
Captioning. The evolutionary algorithm will execute multiple rounds iteratively to expand the LLM’s
search range as much as possible, encouraging the generated image descriptions to gradually include
semantic concepts that are sensitive to LVLMs, until the LVLM exhibits obvious failure on a task or
the content generated by the LLM becomes very similar. Overall, our proposed LLM-based semantic
evolutionary framework can be described as:

s∗ = argmax
s

Eval(M(G(s), tin), T ), (1)

where Eval represents the evaluation of LVLM’s sensitivity to a particular image input on a specific
task, T represents the description of the multimodal task, G represents the T2I model, which receives a
text input and transforms it into a corresponding image, s represents all image descriptions generated
by the LLM, i.e., the individuals in the evolutionary algorithm, and s∗ represents the sensitive
semantic concepts finally discovered through the search.

3.2 LLM-based Semantic Evolution

Our method leverages the powerful prior knowledge of LLMs to construct a sensitive semantic
concept search space that matches with LVLM. In order to guide the LLM as a black-box component
to effectively execute evolutionary algorithm, we employ prompt engineering techniques and carefully
design a series of prompts. By integrating task descriptions, image description formats, novelty
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requirements, and other prior knowledge into the prompts, we can constrain the LLM’s generation
process within the desired search space. We design the following three types of search operators,
corresponding to different prompt templates:

• Initialization operator I: Based on the task description prompt Ptask and the predefined
caption format Pformat, generate a set of randomly initialized image caption populations
C

(0)
i , where i = 1, 2, ..., N .

• Crossover operator E: Based on Ptask, select Np parent captions C(t)
i from the current

population, and combine them with Pformat, asking the LLM to generate Ne new captions
that are content-wise different from all existing captions, thus expanding the search space.

• Mutation operator M : Based on Ptask, select Nm individuals C
(t)
i from the current

population and provide local improvement directions. The task of the LLM is to generate a
mutated individual Ĉ(t)

i for each C
(t)
i , further exploring its neighbourhood.

Taking the crossover operator E as an example, its prompt PE can be represented as follows:

PE(Ptask, {C(t)
i }Np

i=1, Pformat) = Ptask + Pref ({C(t)
i }Np

i=1) + Pformat + Pdiff , (2)
where Ptask is the task description, Ci represents the Np parent image captions, and Pformat is
the predefined caption format. Pref refers to the reference for all parent image captions, and Pdiff

requires generating new descriptions that are completely different from the existing image captions.

Once the prompt PE is obtained, it is input into the pre-trained LLM L, which generates Ne new
crossover individuals:

{C(t)
j }Ne

j=1 = L(PE(Ptask, {C(t)
i }Np

i=1, Pformat)). (3)

Each C
(t)
j is an image caption, which will subsequently be input into a T2I model to be transformed

into a corresponding image, and the LVLM sensitivity evaluation module will calculate the LVLM’s
vulnerability to this image and obtain the fitness score of C(t)

j . Similarly, the prompts PI and PM for
the initialization operator I and mutation operator M can be constructed in a similar way, with the
main difference being the different prior information introduced.

In the initial stage, the initialization operator is used to generate a random population. In each
generation, a portion of individuals are selected from the previous generation as parents, and the
crossover operator and mutation operator are used to generate new image captions, which are then
merged into the population. For each candidate caption, the LVLM sensitivity evaluation module is
called to calculate its fitness score. We provide detailed prompts for each stage of the evolutionary
algorithm in the Section 4.4 and Appendix A.

3.3 LVLM Sensitivity Evaluation

To evaluate the sensitivity of LVLMs to semantic concepts contained in candidate image captions
generated by LLMs, we transform text-form semantics into corresponding visual content through a
T2I model as visual input for the LVLM, and provide a text query to obtain the LVLM’s output. Given
a multimodal task, we evaluate the LVLM’s performance when accepting each candidate semantic
concept and quantify it as a fitness score for the corresponding image caption. Assuming the caption
generated by the LLM is represented as C, and the function that evaluates the LVLM’s output based
on the input image for a specific task is represented as T , the evaluation process can be represented
as follows:

Fitness(C) = −T (C,M(G(C), ttask), task) (4)
where ttask is the text prompt that drives the LVLM to perform a specific multimodal task based
on the input image G(C). The score calculated by T serves as the fitness of C in the evolutionary
algorithm, guiding the LLM to further generate based on C. It should be noted that the higher the
score output by T , the better the performance of the LVLM, but this means that the fitness of the
candidate image caption in the evolutionary algorithm is lower. Consistent with the optimization goal
of adversarial attacks, we want to obtain semantic concepts that most easily lead to LVLM failures,
that is, sensitive semantic concepts.
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Table 1: CAPTURE Score on seven mainstream LVLMs and two multimodal tasks with baselines.

Task Method LLaVA LLaVA-NeXT InternVL2 Qwen2-VL Molmo Llama-3.2 GPT-4o

IC

Random 0.4911 0.4882 0.5036 0.5113 0.4879 0.4779 0.5115
LANCE 0.2879 0.2873 0.2608 0.3190 0.2821 0.2339 0.3316
NL-adv 0.3720 0.3352 0.3509 0.3783 0.3500 0.3634 0.3840
Ours 0.1109 0.1206 0.1885 0.1041 0.0915 0.0910 0.2233

VQA

Random 0.4933 0.4906 0.4926 0.4983 0.4807 0.4718 0.4946
LANCE 0.3018 0.2900 0.2540 0.3254 0.2706 0.3059 0.3032
NL-adv 0.3626 0.3356 0.3337 0.3640 0.3210 0.3009 0.3225
Ours 0.1037 0.1284 0.1416 0.1079 0.0992 0.0952 0.2474

In order to evaluate in real-time the sensitivity of LVLM to candidate image semantics provided by
LLM in multimodal tasks, we choose to compare the degree of correspondence between LVLM’s
output and the actual image content in the caption as a measure of LVLM’s understanding capability
of relevant semantics. Inspired by CAPTURE [10], we introduce a multi-stage, multi-scale caption
evaluation method. It can effectively evaluate the content consistency and descriptive quality of
other descriptive texts of an image compared to the reference caption. Specifically, we extracts core
visual elements rather than n-gram pieces to reduce the influence of varying writing styles. The
method consists of three key components: (1) Visual elements extraction module that uses Factual
parser [16] to extract objects, attributes, and relations from texts; (2) Stop words filtering module that
removes abstract nouns to focus on concrete visual elements; (3) Visual elements matching module
that combines exact matching, synonym matching using WordNet [22], and soft matching using
Sentence BERT [29]. Matched candidate elements are formulated as candmatch

type = candextype
⋃

candsyn
type ,

where type ∈ {obj, attr, rel}. The similarity matrix for soft matching is calculated as Srm
type =

ϕ(candrm
type) × ϕ(gtrmtype)

T , where ϕ(·) denotes the Sentence BERT model. Precision and recall are
computed for each element type, and the final score is calculated as αF1obj+βF1attr+γF1rel

α+β+γ , where

F1type =
precisiontype·recalltype

precisiontype+recalltype
and α, β, γ are scale factors. More details can be found in the Appendix

B. For IC tasks, we directly use the above method to evaluate the content consistency between
candidate image captions and descriptions output by LVLM; for VQA tasks, we manually set up some
questions querying the content of images, such as subject and environment descriptions, and also
called LLM to automatically generate some Q&A pairs based on candidate captions, and similarly
verify the correctness of LVLM’s answers according to the captions or answers.

4 Experiments

4.1 Experiment Setup

Baselines. Given that there is no similar work to ours on LVLMs, we selected two works [46, 25]
that explore sensitive semantic concepts on classification models, and tested whether they could
be effective for LVLMs. They both attempt to simulate the model’s potential semantic space by
artificially constructing a word space, and subsequently executing searches within this space to find
certain semantic concepts that more easily mislead the model. NL-adv [46] utilizes the classification
model’s loss to optimize extraction and combination strategies for the word space, outputting an
optimal word combination, i.e., an image description. Subsequently, a T2I model converts this
description into adversarial examples that induce the classification model. LANCE [25] directly
generates text descriptions of existing images as a semantic space, randomly replacing descriptive
words and performing image editing to identify which concepts the classification model is more
sensitive to. For a fair comparison, we set LANCE’s initial image description collection to be the
same as the initial caption population of the evolutionary algorithm, and align the number of iterative
optimization rounds. For NL-adv, we maintain its original word space and replace its optimization
objective based on classification model loss with the LVLM performance evaluation score in our
Section 3.3.

LVLMs Involved. We conducted experiments on seven models, including open-source ones like
LLaVA-v1.5-13B [19], LLaVA-v1.6-mistral-7B [18], InternVL2-8B [8], Qwen2-VL-7B-Instruct
[38], Molmo-7B-D-0924 [9], Llama-3.2-11B-Vision-Instruct [1], and the commercial model GPT-4o
[24]. For open-source models, we conducted testing by deploying them locally; while for commercial
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Table 2: Cross-model transferability of sensitive semantic concepts searched on each LVLM

Surrogate
LVLM LLaVA LLaVA-NeXT InternVL2 Qwen2-VL Molmo Llama-3.2 GPT-4o

LLaVA 0.1108 0.1204 0.1324 0.1301 0.1247 0.1066 0.1757
LLaVA-NeXT 0.1143 0.1201 0.1436 0.1434 0.1346 0.1193 0.1938

InternVL2 0.2055 0.2143 0.1723 0.1743 0.1753 0.2010 0.1806
Qwen2-VL 0.1039 0.0860 0.1308 0.0920 0.1097 0.1091 0.1633

Molmo 0.1417 0.1087 0.1259 0.1508 0.1110 0.1294 0.1667
Llama-3.2 0.1047 0.1066 0.1346 0.1334 0.1355 0.0904 0.1899

GPT-4o 0.2004 0.2239 0.2145 0.2349 0.1893 0.1868 0.2192

(a) Image Captioning task

Surrogate
LVLM LLaVA LLaVA-NeXT InternVL2 Qwen2-VL Molmo Llama-3.2 GPT-4o

LLaVA 0.1042 0.1153 0.1564 0.1467 0.1256 0.1033 0.2131
LLaVA-NeXT 0.1092 0.1254 0.1487 0.1557 0.1377 0.1072 0.2000

InternVL2 0.1215 0.1348 0.1511 0.1577 0.1482 0.1342 0.1476
Qwen2-VL 0.1823 0.1641 0.1345 0.1195 0.1300 0.1518 0.1739

Molmo 0.1049 0.1054 0.1014 0.1127 0.1109 0.0903 0.1066
Llama-3.2 0.1089 0.1131 0.1357 0.1423 0.1311 0.0924 0.1945

GPT-4o 0.2318 0.2399 0.2372 0.2603 0.2548 0.2317 0.2457

(b) VQA task

models, we used the officially provided APIs [24]. For each LVLM, we conducted comprehensive
experiments on both IC and VQA tasks to validate our method.

Metric. To evaluate the effectiveness of our method in discovering sensitive semantic concepts of
LVLMs, we need to test whether LVLMs show significant performance degradation on multimodal
tasks when faced with image inputs containing these concepts. As described in Section 3.3, our
introduced multi-stage, multi-scale approach can effectively evaluate LVLM performance on multi-
modal tasks, outperforming previous rule-based methods such as SPICE, BLEU-1, etc. Therefore,
we choose to use CAPTURE Score [10] as the sensitivity assessment for LVLMs, where a lower
CAPTURE Score indicates more fragile performance of the LVLM on the corresponding task and
semantic concept, meaning our method is more effective.

Table 3: Parameters of Evolutionary Framework

Parameters Epoch
1 2 3 4 5 6

pop_size 20 15 10 10 5 5
pop_save_number 20 15 10 10 5 5

n_pop 5 5 5 5 5 5
m 2 2 2 2 2 2

Implementation Details. We used
FLUX1.1pro(ultra) [6] to convert each
image caption into highly aligned images
for LVLMs’ visual input, with 50 steps, a
guidance scale of 3.5, and each image sized
at 1024 × 1024. GPT-4o [24] was used to
execute the evolutionary method. For the
randomly initialized image caption set, we
use GPT-4o and Claude-3.5-Sonnet [4] to
generate an average of 1,150 diverse texts. The
key parameters of our proposed evolutionary
algorithm framework are shown in Table 3. We set the evolution generations of the population to
6, meaning six selection operations are executed to sample elite individuals. In each generation,
“pop_size” represents the size of each population, “pop_save_number” represents the number of elite
individuals retained for the next generation after multiple crossover and mutation operations, “n_pop”
represents the number of populations, and m represents the number of parent samples selected each
time when performing crossover and mutation operations. The final 5 populations containing 5
individuals each serve as the output results of the algorithm. A single evolutionary run requires 1,650
model queries. Experiments were conducted on 8 NVIDIA A800 80GB GPUs, with each operation
taking an average of 30 seconds, totalling 15 hours per experiment. More details can be found in the
Appendix A.
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4.2 Evaluation on IC and VQA

In this subsection, we compare the performance of our method against baselines on the IC task
and VQA task. “Random” represents the initial population randomly initialized at the beginning of
the evolutionary algorithm, which is a set of image descriptions randomly generated by the LLM.
Detailed statistics can be found in Appendix A. Evaluating LVLMs’ performance on this set aims to
simulate general scenarios in the real world, serving as a reference for sensitive semantic concept
search effectiveness. As shown in Table 1, the average performance of seven LVLMs on our searched
semantic concepts decreased by 73.35% and 73.08% respectively on the two tasks compared to the
reference. Additionally, our method significantly outperforms the two baselines, LANCE and NL-adv,
demonstrating the effectiveness of our approach when facing the vast semantic space of LVLMs.
Methods based on limited word spaces or simple optimization strategies might be effective for simple
classification models but cannot transfer to powerful LVLMs due to their narrow search space.

4.3 Evaluation on Transferability

Table 2 shows that the sensitive semantic concepts we discovered have characteristics similar to
adversarial examples, namely that sensitive semantic concepts searched on one LVLM can transfer
across models to induce multiple models. We speculate that the reason is similar to insights on
the transferability of adversarial examples, that is, different models capture some of the same deep
features during training, including non-robust parts [13]. LVLM’s deep features involve some high-
level semantic concepts, and these representations inside different LVLMs may be similar [32],
therefore the sensitivity to certain specific concepts is also similar.

4.4 Prompts

The prompts corresponding to each crossover and mutation operation are displayed in Figure 3,
which can manipulate large language models. It should be noted that our prompt design draws on
some previous research on LLM-based evolutionary algorithms [14]. According to the principles of
prompt engineering, providing detailed and logical instructions and templates to LLMs can better
control their actions. Without carefully designed prompts, the performance of our method would be
weakened.

EXPLORE Prompt: 

I have str(len(indivs)) existing image captions as follows: 
prompt_indiv
The sentence format of these captions is a <picture/photo/watercolor/sketch> 
of <number> <color> <object> <appearance> in the style of <style>. 
<They/It/He/She> <gesture/is/are> on the <background describe> in the 
<location> on a <weather> day, <action/detailed description>, <environment 
description>. <object> can be filled with people, buildings, things, objects, 
creatures, scenes, environments and everything. <appearance> can be filled in 
with appearance descriptions such as wearing glasses. 
Example: a picture of a blue dog wearing sunglasses in the style of realistic. It 
is sitting on the beach in the moon on a snowy day, it is drinking a bottle of 
cola. There are many medieval castles around and many spaceships in the sky. 
Please help me create only a new image description sentence according to the 
sentence format I give above and it is completely different from the given 
captions. You need to revise them significantly based on the sentences I give 
you to enhance their imagination, creativity and diversity as much as possible. 
But you can be inspired and motivated from them.

(a) EXPLORE Prompt

MUTATION Prompt: 

I have one image caption as follows. 
Caption: indiv1['code'] 
Please help me write only a image caption that is a variation of the original 
caption. You can modify or add some decorative or descriptive sentences/words. 
You can also be inspired by it to add some other creative elements. You can 
also change the apperance, style, weather, light and environment. Try to 
combine the sentence I gave you to increase diversity and creativity. 
The sentence structure of caption is a <picture/photo/watercolor/sketch> of 
<number> <color> <object> <appearance> in the style of <style>. 
<They/It/He/She> <gesture/is/are> on the <background describe> in the 
<location> on a <weather> day, <action/detailed description>, <environment 
description>. Do not give any additional explanations or irrelavent texts.

(b) MUTATION Prompt

Figure 3: The corresponding prompts that drive LLM to perform crossover and mutation operations
on image captions.

4.5 More Observations on Sensitive Semantic Concepts

Table 4 shows the top three most sensitive semantic concepts searched for all LVLMs on the IC
task. We obtained these concentrated concept words by calculating the word frequency statistics of
all image captions in the final population generated by the evolutionary algorithm multiple times.
Since they appear frequently in image descriptions that cause significant performance degradation
in LVLMs and are semantically similar, we consider them to be the sensitive semantic concepts for
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Table 4: The top 3 most sensitive concepts for different LVLMs on the IC task.

LLaVA LLaVA-NeXT InternVL2 Qwen2-VL Molmo Llama-3.2 GPT-4o
palace robot forest underwater lightning wizard monk

skyscraper cyberpunk tree jellyfish sky castle Zen Master
cyberpunk chip mountain mermaid cloud fantasy cripture

Seed
GPT-4o
Qwen2-VL-7B
Molmo-7B
InternVL2-8B
LLaVA-v1.5
LLaVA-Next
Llama-3.2

Figure 4: The semantic distribu-
tion of sensitive semantic con-
cepts.

(a) Epoch 1 (b) Epoch 3 (c) Epoch 5

Figure 5: The semantic distribution of populations.

LVLMs, further validating our hypothesis. We provide specific caption examples and corresponding
images in Appendix F. Figure 4 shows the distribution of sensitive semantic concepts we obtained
for various LVLMs in the semantic space. We used OpenAI’s text-embedding-3-large to convert the
image captions from the final population and initial population for each LVLM into embeddings, and
visualized them using t-SNE [37]. It can be observed that compared to the uniformly distributed
initial semantics, the most sensitive semantic concepts for each LVLM differ from one another and
are concentrated in specific regions, corresponding to the results in Table 4. Similarly, we further
visualized the semantic distribution of populations during several epochs of the evolutionary algorithm
process, as shown in Figure 5. As the algorithm iterates, the semantics of captions generated by the
LLM gradually converge, tending toward certain special concepts. We believe this demonstrates the
LLM’s search process in the semantic space based on feedback provided by the LVLM within the
evolutionary framework, further proving the effectiveness of our method. More observations can be
found in Appendix G.

4.6 Human Study

As shown in Table 5, we introduced human evaluation to verify the alignment of text and image
semantics and the quality of the images. We conducted human evaluations across three dimensions:
i) Image Realism (1-5, 5=Best), ii) Image Quality (1-5, 5=Best), iii) Image-Text Consistency (1-5,
5=Best).

Table 5: Human Study.

Metric Epoch 1 Epoch 3 Epoch 5 Overall
Image Realism 3.6 3.5 3.5 3.5
Image Quality 4.1 4.2 4.2 4.2
Consistency 4.0 4.0 4.0 4.0

We randomly selected 50 image captions and
corresponding images from different stages of
our algorithm. A total of 180 people partici-
pated in the survey, and 77 valid responses were
collected. The survey results indicate that the
images generated maintain a high level of image
quality (4.2/5) and good text-image consistency
(4.0/5). Since LLMs can only process and gen-
erate text, the T2I Model serves as an important interface for inputting the text-form semantics
generated by LLM into LVLMs. The above results demonstrate the robustness of our method, which
benefits from advanced T2I models, ensuring that the LLM can receive accurate feedback signals
from the LVLM. More details can be found in the Appendix D.

4.7 Ablation Study

Table 6 shows the average performance of our method using different T2I models on different tasks
over all LVLMs. Since Stable Diffusion 1.5 [30] and Llama2-7b [34] are much inferior to FLUX and
GPT-4o, respectively, the results confirm that using better T2I models and LLMs can improve the
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performance. In addition to the ablation study on T2I model selection, we provide more experiments
on model parameters in the Appendix C.

Table 6: Average performance of our method using different T2I models on different tasks over all
LVLMs.

T2I Model LLaVA LLaVA-NeXT InternVL2 Qwen2-VL Molmo Llama-3.2 GPT-4o
DALL·E 3 0.1079 0.1224 0.1610 0.1066 0.1145 0.1001 0.2321

Stable Diffusion 3.5 0.1077 0.1232 0.1625 0.1057 0.1129 0.0909 0.2333
FLUX 0.1075 0.1228 0.1617 0.1058 0.1110 0.0914 0.2325

5 Conclusion

Existing adversarial attacks stop at making models fail but are unable to probe the semantic blind spots
of models. Attempting to discover a model’s sensitive semantic concepts is valuable for understanding
the model’s potential deficiencies and performing targeted optimization. Some existing work on
classification models provides some insights, but they cannot be directly applied to LVLMs (Large
Vision-Language Models). To address their limitations, we propose an LLM-based evolutionary
algorithm framework for the vast semantic space of LVLMs, which utilizes LLMs to automatically
search for semantic concepts that LVLMs are sensitive to. Experiments on multiple mainstream
LVLMs and two multimodal tasks demonstrate that our method can effectively uncover knowledge
blind spots of models and provide some interesting observations.
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Appendix

A Implementation Details

Here we provide more implementation details on our proposed method.

Image Captioning Visual Question Answering

CAPTURE Score CAPTURE Score

D
en

si
ty

Figure 6: Distribution of Initialized Set CAPTURE Scores

Category Number Percentage(%)
Human 290 25.22
Animal 279 24.26
Object 298 25.91

Environment 283 24.60

Table 7: Initialized Set Category Distribution

To expand the search range, we have maximized
the semantic content covered in the initialized
image caption set, which can generally be di-
vided into four categories: Human, Animal, Ob-
ject, and Environment. We use a large language
model to automatically complete this initializa-
tion and have designed four prompts for the
four categories, as shown in Figure 7. We con-
ducted approximately 50 queries using these
four prompts, each generating over 20 image
captions. Each query is responded to by a random LLM, as this allows us to fully leverage the
knowledge of different LLMs. The initialization operation described above is required at the start
of each evolutionary algorithm execution, and Table 7 and Figure 6 display the statistics from one
of our initialization operations. This demonstrates that we have achieved a uniform distribution of
initialized semantics through this method.

B LVLM Performance Evaluation

We introduce a multi-stage, multi-scale caption evaluation method [10] called CAPTURE to evaluate
the quality of LVLM responses.

CAPTURE metric evaluates captions by extracting and aligning core visual elements rather than
relying on n-gram matching, thereby reducing the impact of diverse writing styles. The following
sections describe the design of the CAPTURE metric, including visual element extraction, stop word
filtering, and visual element matching.

Visual elements extraction. The purpose of the visual elements extraction module is to identify
objects, attributes, and relationships present in a caption for subsequent matching. We use a state-of-
the-art text-to-scene graph parser, Factual parser [16], as the core model. This parser, based on the
T5-base architecture, is trained on a dataset containing human-annotated scene graphs. It processes
short caption paragraphs and outputs the associated objects, attributes, and relations. Since the parser
is optimized for short captions, its performance significantly degrades when applied to detailed
image descriptions. To address this, we first segment detailed captions into shorter paragraphs using
the NLTK toolkit [5], then apply the Factual parser to each segment to extract individual scene
graphs. These graphs are subsequently merged into a comprehensive scene graph according to the
following rules: (1) all nouns and adjectives are lemmatized using WordNet [22]; (2) duplicate objects
and their associated attributes are consolidated; (3) attributes linked to multiple merged objects are
deduplicated; and (4) duplicate relations are unified. This process results in a refined, large-scale
scene graph for each caption, free of redundancies, which is then used to calculate the final matching
score.
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Requirements: 
Generate 100 diverse image description sentences about human according 
to the sentence format I give below, separeted by '\n'. Do not add any 
numbering, bullets or irrelevant texts, strictly follow the instructions. You 
can not repeat. 
Format: a <picture/photo/watercolor/sketch> of <number> <color> 
<people> <appearance> in the style of <style>. <He/She/They> <gesture> 
on the <background> in the <location> on a <weather> day, <action 
description>, <environment description>. 
Note: <picture/photo/watercolor/sketch> indicates that these are four 
options. When you generate a sentence, you can choose one of these four. 
The rest of the content in <...> specifies what kind of content you should 
fill in this position. <people> can be only filled with any human of any 
race, age, gender, appearance, identity, and shape. <appearance> can be 
filled in with appearance descriptions such as wearing glasses. 
Example: a picture of a white man wearing sunglasses in the style of 
realistic. He is sitting on the beach in the house on a snowy day, he is 
drinking a bottle of cola. There are many ships around.

Requirements: 
Generate 100 diverse image description sentences about objects and things 
according to the sentence format I give below, separeted by '\n'. Do not 
add any numbering, bullets or irrelevant texts, strictly follow the 
instructions. You can not repeat. 
Format: a <picture/photo/watercolor/sketch> of <number> <color> 
<thing> <appearance> in the style of <style>. <It/They> <is/are> 
<on/at/in> the <background> in the <location> on a <weather> day, 
<Detailed description>, <environment description>. 
Note: <picture/photo/watercolor/sketch> indicates that these are four 
options. When you generate a sentence, you can choose one of these four. 
The rest of the content in <...> specifies what kind of content you should 
fill in this position. <thing> can be only filled with any objects, buildings, 
things, transportations, food, treasure, but not living creatures. 
<appearance> can be filled in with appearance descriptions. 
Example: a picture of a football in the style of realistic. It is at the morden 
city in the grass on a sunny day, it has beautiful patterns. There are many 
buildings around.

Requirements: 
Generate 100 diverse image description sentences about animals according 
to the sentence format I give below, separeted by '\n'. Do not add any 
numbering, bullets or irrelevant texts, strictly follow the instructions. You 
can not repeat.
Format: a <picture/photo/watercolor/sketch> of <number> <color> 
<animal> <appearance> in the style of <style>. <It/They> <gesture> on the 
<background> in the <location> on a <weather> day, <action description>, 
<environment description>. 
Note: <picture/photo/watercolor/sketch> indicates that these are four 
options. When you generate a sentence, you can choose one of these four. 
The rest of the content in <...> specifies what kind of content you should 
fill in this position. <animal> can be only filled with animals. 
<appearance> can be filled in with appearance descriptions.

Requirements: 
Generate 100 diverse picture description sentences about environments, 
scenes and scenery according to the sentence format I give below, 
separeted by '\n'. Do not add any numbering, bullets or irrelevant texts, 
strictly follow the instructions. You can not repeat. 
Format: a <picture/photo/watercolor/sketch> of <color> 
<environments/scenes/scenery> <appearance> in the style of <style>. 
<It/They> <is/are> <on/at/in> the <background> in the <location> on a 
<weather> day, <Detailed description>, <environment description>. 
Note: <picture/photo/watercolor/sketch> indicates that these are four 
options. When you generate a sentence, you can choose one of these four. 
The rest of the content in <...> specifies what kind of content you should 
fill in this position. <environments/scenes/scenery> can be only filled with 
any environments, scenes and scenery. <appearance> can be filled in with 
appearance descriptions.

Figure 7: Initialize Prompts for Generating Initialized Set in Four Categories

Stop words filtering. Despite producing reasonably accurate results, the Factual parser often fails to
distinguish between concrete and abstract nouns, the latter of which should be excluded from the
matching process. For instance, in the caption “Two white sheep are enjoying the moment,” the word
“sheep” corresponds to a visible element in the image, while “moment” does not. To address this, we
apply a stop word list to eliminate abstract nouns: if an object identified in the parsing output appears
in this list, it is excluded from the object matching process.

To build the stop word list, we extract nouns from the ShareGPT4V-102k dataset using both LLaMA2-
13b-chat [35] and the Factual parser. We observe that while LLaMA may miss some objects present
in captions, its extracted nouns are highly precise in representing concrete items. Based on this
observation, we collect nouns identified by the Factual parser but omitted by LLaMA, calculate
their frequencies, and have human experts evaluate whether the most frequent terms are concrete or
abstract. The final stop word list consists of the 500 most frequently occurring abstract nouns.

Additionally, the Factual parser exhibits difficulty in resolving cross-sentence pronoun references. It
may incorrectly generate objects not explicitly mentioned in the caption when faced with ambiguous
references. To mitigate this, we verify whether each parsed object appears verbatim in the caption
and discard any unmatched objects along with their associated attributes and relations.

Visual elements matching. Once the core elements are extracted and filtered from both the ground
truth detailed caption and the candidate caption, these elements are compared to derive the final
evaluation outcome. Ideally, identical objects, attributes, or relations are directly matched. However,
due to the varied expression styles used by LVLMs, the same element may appear in different forms,
making exact matching insufficient. To address this, we introduce a synonym matching module that
follows exact matching and identifies semantically similar elements. Using WordNet, we retrieve
synonym sets for both candidate and ground truth elements and match them if their synonym sets
intersect. The matched candidate objects, attributes, and relations are defined as:
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cand type match = cand type ex
⋃

cand type syn, (5)

where type ∈ obj, attr, rel . Here, cand type ex and cand type syn represent the candidate phrases
matched by exact and synonym matching, respectively. The ground truth matched elements are
similarly represented as gtobjmatch, gtmatch

attr , and gtmatch
rel .

While exact and synonym matching strategies capture most of the relevant matches, they may still
miss core elements expressed in more diverse linguistic forms. To complement this, we propose a soft
matching strategy that utilizes the Sentence BERT model [29] to encode the remaining unmatched
object, attribute, and relation phrases, and to compute similarity scores within the range [0, 1).
Let candrmtype denote the remaining unmatched candidate phrases and gtrmtype the remaining
unmatched ground truth phrases. Their similarity matrix Srm

type ∈ R|candtype|×|gtrmtype| is computed as
follows:

Srm
type = ϕ ( cand type rm)× ϕ (gttype rm)

T
, (6)

where ϕ(·) denotes the Sentence BERT encoding function. We then determine the matching scores of
candrmtype and gtrmtype as:

cand_matchrmtype [i] = maxj=1,2,...,|gtrmtype| S
rm
type[i, j],

gt_match rm
type [j] = maxi=1,2,...,|candrm

type| S
rm
type[i, j].

(7)

The values of cand_matchrmtype and gt_match rm
type serve as supplements to the exact and synonym

matching results.

After completing the matching process, we calculate precision and recall for each category of core
information. These metrics are defined as:

precision type =
| cand match

type |
| cand type | ,

recall type =
|gmatch

type |
| gt type | .

(8)

For attributes, both precision and recall are computed similarly. However, for relation elements, the
matching scores for candidate and ground truth elements are treated separately due to the involvement
of soft matching:

precision type =
| cand match

type |+
∑

cand_matchrmtype
| cand_match rm

type|

| cand type | ,

recall type =
|gtmatch

type |+
∑

gt_match
|gt_match rm

type|

|gttype| .

(9)

Finally, the CAPTURE metric combines the F1 scores of all three categories of core information,
weighted by respective scale factors, to yield the overall evaluation result:

CAPTURE =
αF1obj + βF1attr + γF1rel

α+ β + γ
(10)

where α, β, and γ are weighting coefficients, and F1type = precision type · recall type
precision type + recall type represents the F1

score for each type of core information.

C Ablation Studies

Since the initial population of the evolutionary algorithm is randomly sampled from the seeds,
the number of initialized caption set and their semantic distribution may have an impact on the
algorithm. Therefore, we set the target LVLM to LLaVA-v1.5-13B and observed the impact of
different initialized caption numbers on the final results of the algorithm. We conducted experiments
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Figure 8: The average CAPTURE score of image captions generated by our evolutionary algorithm
for each epoch.

on Image Captioning and Visual Question Answering tasks, with the results shown in Figure 9. We
found that too few initialized captions can affect the search results for sensitive semantic concepts,
and once the number of Initialized Set reaches 500, it has little impact on the final results. Thus, the
initial semantic space should not be set too small, as it would limit the subsequent search area; an
excessively large number of initialized captions would be constrained by the population size and the
number of samples, resulting in minimal improvement to the outcome.
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Figure 9: The Impact of Seed Number on the Final Results of the Algorithm

Figure 8 shows the trend of the average CAPTURE score of the population individuals over time in
our method, demonstrating that the evolutionary algorithm achieves iterative search and updating of
adversarial semantics. When the evolutionary algorithm runs to Epoch 3 and Epoch 4, the CAPTURE
score gradually converges. This shows that the performance of the evolutionary algorithm tends to be
stable after the number of Epochs increases to a certain number.

D Human Study

As shown in Figure 10, we provide detailed full text of instructions given to participants and
screenshot.

E Limitations and Future Work

Our method requires multiple calls to LLM and T2I models to search for sensitive semantic concepts
in LVLMs, which may incur some time and computational resource overhead. Additionally, we have
not yet explored the potential social impacts and risks of our method. In future work, we will explore
more efficient approaches to gain insights into the potential knowledge blind spots of LVLMs. Since
our method can generate images that confuse LVLMs, we will further explore methods to defend
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The goal of this study is to verify the consistency of the images and texts generated in our method and to evaluate the quality of the 
images. (50 images were randomly selected from each of the three stages of the algorithm)
i) Image Realism (1-5, 5=Best): Assessing whether the image appears AI-generated. 
ii) Image Quality (1-5, 5=Best): Evaluating the clarity, human perception, and reasonableness of the image. 
iii) Image-Text Consistency (1-5, 5=Best): Assessing the semantic alignment between the LLM-generated image captions and the 
images input into the LVLM. 
iv) Ethical Concerns (Yes/No): Whether the generated image is objectionable or raises ethical concerns around consent, privacy, 
stereotypes, demographics, etc.

Image Caption Image Realism Image Quality Consistency Ethical Concerns

A picture of otherworldly Yellowstone hot 
springs steaming in the style of psychedelic 

nature photography. They are in the 
foreground in a geothermal area on a chilly 
morning, with multicolored bacterial mats, 
rising steam, and calcified terraces creating 

an alien-like environment.

5 5 4 No

A photo of a freckled redheaded boy with 
glasses in the style of nostalgic. He builds 
a sandcastle on the beach in Ireland on a 

cloudy day, seagulls circling overhead and 
a lighthouse visible in the distance.

4 5 5 No

Figure 10: Human study. A screenshot of the interface we deploy to evaluate the quality and
consistency of generated images.

against these and enhance model robustness. Building upon Section 4.5, we will investigate how to
utilize these insights for targeted efficient adjustment and optimization of models, to inspire more
in-depth research.

F More Examples of Sensitive Semantic concepts

Figure 11 , Figure 12 ,Figure 13 and Figure 14 show the final image captions and corresponding
generated images obtained by our algorithm on different LVLMs. It can be found that they are indeed
related to some concepts, further proving our point in the text.

Figure 15 presents more examples of LVLM failures, demonstrating that our method can induce a
variety of errors in LVLM.

G More Observations

Figures 16 and 17 display the semantic distribution of sensitive semantics on each LVLM. It can be
found that in addition to the semantic distribution of sensitive semantic concepts, each LVLMs and
all tasks show the same characteristics as Section 4.5. In addition, the sensitive semantic concepts
of the same LVLM on different tasks also show certain similarities. We believe that the source of
sensitive semantic concepts may be related to the model architecture and training data.
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A photo of three neon-blue 
skyscrapers gleaming in the style of 
retrofuturism. They are towering 

over the holographic cityscape in the 
megapolis on a stormy day, their 
surfaces reflecting fractured 

lightning, while flying vehicles weave 
between their impossible geometries.

A watercolor of 3 silver skyscrapers 
gleaming brilliantly in the style of 
futurism. They tower over a busy 
harbor in downtown New York on a 
cloudy day, glass facades reflecting 

the changing clouds, city traffic 
flowing steadily below.

The palace glows with neon lights, 
blending intricate futuristic 

architecture with traditional palace 
elements. The metallic surfaces of 
the palace reflect the bright neon 
lights, enhancing the cyberpunk 

aesthetic. 

(a) LLaVA

a photo of two silver robots 
dancing gracefully in the style of 
cyberpunk. They are on the neon-
lit street in the downtown district 
on a rainy day, exchanging binary 

data through their glowing 
interfaces, surrounded by 

holographic advertisements and 
steam rising from vents.

The robot has a sleek metallic 
body with advanced joints, glowing 

LED indicators, and intricate 
mechanical components. It stands 
in a high-tech environment filled 
with computer monitors, robotic 

arms, and engineering tools, 
resembling a cutting-edge robotics 

research facility.

The image depicts a futuristic 
humanoid robot with a sleek 
metallic design, glowing blue 

accents, and a black visor-like 
face. The robot is holding a small, 

illuminated chip in a high-tech 
corridor.

(b) LLaVA-NeXT

Figure 11
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A sketch of one ancient redwood 
tree towering majestically in the 

style of realism. It is on the mossy 
forest floor in the Pacific Northwest 

on a foggy morning, harboring 
diverse wildlife within its massive 
trunk, dappled sunlight barely 
penetrating through the dense 

canopy.

A picture of three azure lakes 
reflecting jagged mountains in the 
style of romanticism. They are on 

the valley floor in the Rockies on a 
stormy day, rippling with raindrops, 
bordered by dense evergreen forests 

that climb the steep slopes.

A picture of twelve scarlet cardinals 
perched delicately in the style of 

Japanese woodblock prints. They are 
on the bare branches in the mountain 
forest on a frosty morning, singing 
their winter songs, their bright 

plumage stark against the snow-laden 
pines.

(a) InternVL2

a photo of 1 turquoise mermaid 
statuesque in the style of greco-
roman sculpture. She is posing on 

the coral reef in the 
mediterranean sea on a sunny day, 
combing her long flowing hair, fish 
swimming curiously around her tail.

a watercolor of 7 golden jellyfish 
luminous in the style of 

impressionism. They are pulsing on 
the sapphire waters in the sunlit 
shallows on a hazy day, creating 
patterns of light and shadow, 

schools of tiny silver fish darting 
between their tentacles.

a picture of 3 blue-haired 
mermaids harmonious in the style 
of art deco. They are singing on 
the sunken ruins in the ancient 

city of atlantis on a magical day, 
their voices attracting curious sea 

turtles, columns and statues 
covered in colorful anemones.

(b) Qwen2-VL

Figure 12
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A photo of two purple lightning 
bolts striking dramatically in the 

style of high contrast photography. 
They are arcing across the dark 
cloudy background in the coastal 

plains on a stormy day, illuminating 
the surrounding clouds with an 

eerie glow, waves crashing against 
rocky shores below.

A picture of three silver storm 
clouds gathering menacingly in the 

style of digital art. They are 
swirling on the darkening 

background in the desert on a 
humid day, preparing to unleash 

their fury upon the parched 
landscape, dust devils forming in 

the distance.

a picture of 3 silver lightning bolts 
streaking in the style of 

photorealism. They are branching 
on the dark purple sky in the 

mountain valley on a stormy day, 
illuminating the landscape below, 
casting dramatic shadows across 

the rugged terrain.

(a) Molmo

a photo of 1 silver-haired wizard 
towering in the style of Renaissance 

portraiture. He is casting spells on the 
mountain precipice in the forgotten 
kingdom on a stormy day, summoning 
ancient runes from his weathered 
grimoire, illuminated by flickering 

lightning that reveals mysterious runes 
carved into nearby standing stones.

a photo of 1 ancient castle 
massive and imposing in the style 
of gothic realism. It is standing on 
the rocky cliff in the forgotten 

kingdom on a stormy day, lightning 
striking its highest tower, 
gargoyles coming to life as 

darkness falls.

a watercolor of 3 azure wizards 
tall and mysterious in the style of 
impressionism. They are casting on 
the misty hills in the enchanted 
forest on a foggy day, creating 
magical portals between realms, 

surrounded by floating spell books 
and glowing runes.

(b) Llama-3.2

Figure 13
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A photo of three gray-robed monks 
chanting sutras with bowed heads, 

their faces solemn, holding 
scripture books. They are standing 
on stone steps of an ancient temple 
in the mountains on a clear morning, 

sunlight filtering through clouds, 
distant peaks barely visible.

A sketch of a young Zen master 
with palms pressed together, 
dressed in a black robe, his 

expression focused. He is standing 
at the edge of a cliff beneath pine 
trees in a distant mountain range, 
mist swirling around, pine needles 

covering the ground, distant temple 
bells faintly audible.

A sketch of an aged Zen master 
holding a scripture scroll, his face 
etched with wisdom wrinkles, his 

figure slender. He stands beneath a 
pine tree at the edge of a cliff in 
deep mountains far from worldly 

affairs at dusk, pine trees rustling, 
distant village lights twinkling.

(a) GPT-4o

Figure 14
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“A painting of a golden cauldron with a sparkling substance inside it, 

surrounded by a forest. The cauldron is placed on a rock, and a tree is 

nearby. The scene is set at night, with a sky full of stars and a few fireflies 

flying around. The painting is done in a watercolor style, giving it a dreamy 

and magical appearance.”

resulting adv. image

Conversation with adv. image

"Please describe the image in the 

following format: a <picture/photo/

watercolor/sketch> of <number> <color> 

<object> <appearance> in the style of 

<style>. <They/It/He/She> <gesture/is/

are> on the <background describe> in the 

<location> on a <weather> day, <action/

detail description>, <environment 

description>. Do not add extraneous 

statements and strictly follow the 

instructions."

(a)

“A watercolor painting of a purple top hat with a purple feather on it. The 

hat is adorned with purple feathers and purple birds flying around it. The 

painting is done in a whimsical style, with the purple top hat as the main 

subject. The background is white, and the painting is displayed on a sunny 

day. The purple top hat is the center of attention, and the purple feathers and 

birds add a touch of whimsy to the scene.”

resulting adv. image

Conversation with adv. image

"Please describe the image in the 

following format: a <picture/photo/

watercolor/sketch> of <number> <color> 

<object> <appearance> in the style of 

<style>. <They/It/He/She> <gesture/is/

are> on the <background describe> in the 

<location> on a <weather> day, <action/

detail description>, <environment 

description>. Do not add extraneous 

statements and strictly follow the 

instructions."

(b)

“A picture of fourteen television sets in a row, each with different 

landscapes on the screens. The televisions are arranged in a neat row, with 

each set having a unique landscape displayed on the screen. The televisions 

are of various sizes and shapes, showcasing a diverse collection of images. 

The arrangement of the televisions creates an interesting visual display, 

capturing the attention of viewers.”

resulting adv. image

Conversation with adv. image

"Please describe the image in the 

following format: a <picture/photo/

watercolor/sketch> of <number> <color> 

<object> <appearance> in the style of 

<style>. <They/It/He/She> <gesture/is/

are> on the <background describe> in the 

<location> on a <weather> day, <action/

detail description>, <environment 

description>. Do not add extraneous 

statements and strictly follow the 

instructions."

(c)

resulting adv. image

 “The group of penguins is 

sitting on the snow, holding 

glasses of pink drinks, and 

posing for a picture”

Conversation with adv. image

What are they doing?

(d)

resulting adv. image

 “There are  five robots in the 

style of a tea party”

Conversation with adv. image

How many robots are 

there in the picture?

(e)

Figure 15: More Examples of LVLM Failures
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Seed
LLaVA-v1.5-13B

(a) LLaVA-v1.5-13B, Image Captioning

Seed
LLaVA-v1.5-13B

(b) LLaVA-v1.5-13B, Visual Question Answering

Seed
LLaVA-NeXT

(c) LLaVA-NeXT, Image Captioning

Seed
LLaVA-NeXT

(d) LLaVA-NeXT, Visual Question Answering

Seed
InternVL2-8B

(e) InternVL2-8B, Image Captioning

Seed
InternVL2-8B

(f) InternVL2-8B, Visual Question Answering

Figure 16: Semantic distribution of sensitive semantics (1).
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Seed
Qwen2-VL-7B-Instruct

(a) Qwen2-VL-7B, Image Captioning

Seed
Qwen2-VL-7B-Instruct

(b) Qwen2-VL-7B, Visual Question Answering

Seed
Molmo-7B

(c) Molmo-7B, Image Captioning

Seed
Molmo-7B

(d) Molmo-7B, Visual Question Answering

Seed
GPT-4o

(e) GPT-4o, Image Captioning

Seed
GPT-4o

(f) GPT-4o, Visual Question Answering

Figure 17: Semantic distribution of sensitive semantics (2).
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