
An Efficient Private GPT Never Autoregressively Decodes

Zhengyi Li 1 2 Yue Guan 1 Kang Yang 3 Yu Feng 1 Ning Liu 1 Yu Yu 1 2 Jingwen Leng 1 2 Minyi Guo 1 2

Abstract
The wide deployment of the generative pre-
trained transformer (GPT) has raised privacy con-
cerns for both clients and servers. While crypto-
graphic primitives can be employed for secure
GPT inference to protect the privacy of both
parties, they introduce considerable performance
overhead. To accelerate secure inference, this
study proposes a public decoding and secure veri-
fication approach that utilizes public GPT models,
motivated by the observation that securely decod-
ing one and multiple tokens takes a similar latency.
The client uses the public model to generate a set
of tokens, which are then securely verified by the
private model for acceptance. The efficiency of
our approach depends on the acceptance ratio of
tokens proposed by the public model, which we
improve from two aspects: (1) a private sampling
protocol optimized for cryptographic primitives
and (2) model alignment using knowledge dis-
tillation. Our approach improves the efficiency
of secure decoding while maintaining the same
level of privacy and generation quality as stan-
dard secure decoding. Experiments demonstrate a
2.1× ∼ 6.0× speedup compared to standard de-
coding across three pairs of public-private models
and different network conditions.

1. Introduction
The generative pre-trained transformer (GPT) (Vaswani
et al., 2017) has brought significant advancements in various
machine learning tasks, such as coding (GitHub, 2025) and
chatbots (Leiter et al., 2023). To deploy a GPT application,
either the client needs to upload private data or the model
owner needs to send its private model to the client. As GPT
increasingly handles sensitive data and tasks, privacy be-

1Shanghai Jiao Tong University 2Shanghai Qizhi Institute 3State
Key Laboratory of Cryptology. Correspondence to: Jingwen Leng
<leng-jw@sjtu.edu.cn>, Kang Yang <yangk@sklc.org>, Yu Yu
<yyuu@sjtu.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

comes a major concern. Recent works (Hao et al., 2022;
Lu et al., 2025; Hou et al., 2023; Pang et al., 2024)lever-
age secure two-party computation (2PC) to enable privacy-
preserving GPT inference. These studies allow the client
and server to jointly execute inference on encrypted inputs
and models utilizing cryptographic techniques such as ho-
momorphic encryption (HE) (Gentry, 2009) and multi-party
computation (MPC) (Yao, 1986). Consequently, the client
only learns the inference results without access to model
weights, and the server knows nothing.

However, privacy protection incurs significant computa-
tional and communication costs for both the linear and
nonlinear layers. Linear layers involving matrix multipli-
cation are usually computed through HE, which requires
substantial computation. Complex nonlinear layers, such
as GELU and softmax, require numerous rounds of commu-
nication and data transmission. To accelerate secure GPT
inference, prior works focus on optimizing cryptographic
protocols (Hao et al., 2022; Lu et al., 2025; Pang et al., 2024;
Kim et al., 2024) or modifying GPT architectures to tailor
the cryptographic primitives (Li et al., 2022; Zeng et al.,
2023; Zimerman et al., 2024; Ran et al., 2023; Li et al.,
2024a). Despite these efforts, achieving efficient secure
inference remains a major challenge.

This study explores an orthogonal approach by utilizing pub-
lic GPTs to accelerate secure GPT inference, mainly during
the decoding phase. We notice the availability of power-
ful public GPT models within the GPT community (Wolf
et al., 2019). These models share some linguistic and logical
knowledge with private models (Chen & Gao, 2022; Zhao
et al., 2023). Since this shared knowledge is inherently non-
sensitive and publicly disclosed, a more efficient approach
is to only securely compute the exclusive parts of the private
model instead of all. However, few works have explored
this direction due to the lack of interpretability of the GPT
models (Friedman et al., 2024; Wen et al., 2024), making it
challenging to separate shared knowledge.

This work introduces an observation of the performance
characteristics of secure decoding to utilize public models
for acceleration without comprising privacy. Standard se-
cure decoding forwards only one token per decoding step.
We observe that securely forwarding single and multiple
tokens takes similar latency. This motivates us to treat the

1

ar
X

iv
:2

50
5.

15
25

2v
1

 [
cs

.C
R

]
 2

1
M

ay
 2

02
5

An Efficient Private GPT Never Autoregressively Decodes

model as a whole to avoid the difficulties arising from dis-
tinguishing shared knowledge. Inspired by the speculative
decoding (Leviathan et al., 2023; Miao et al., 2024b), we
propose a Public decOding and Secure verificaTion (POST)
approach. Specifically, the client employs the public model
to generate a set of draft tokens, which are then fed into the
private model to verify their acceptance in a single decoding
step. Given the shared knowledge between public and pri-
vate models, it is likely that both models produce identical
results when generating simple tokens or common phrases.
This allows multiple tokens to be accepted in a decoding
step, reducing the required steps and the amortized cost per
token.

In POST, the reduction in decoding steps depends on the
acceptance ratio of tokens proposed by the public models,
which we further improve through two aspects. (1) Secure
speculative sampling for soft matching: strict matching be-
tween tokens generated by the public and private models
causes unnecessary rejections, such as semantically equiv-
alent tokens that are expressed differently. Therefore, we
adopt the speculative sampling algorithm (Leviathan et al.,
2023; Cai et al., 2023), which applies “soft” matching to
increase the acceptance ratio while ensuring the generated
tokens follow the private model’s output distribution. Since
the computation in the speculative sampling algorithm is
unfriendly to the cryptograph, we propose a protocol to op-
timize the cryptographic-unfriendly operations to achieve
negligible overhead. (2) Knowledge distillation for model
alignment: discrepancies between the public and private
models reduce the acceptance ratio of draft tokens. To
mitigate this, we align the two models through knowledge
distillation, further increasing the acceptance ratio.

In summary, this paper makes the following contributions:

• We present a novel observation: the latency of secure
GPT decoding is insensitive to input length. Based on
this, we propose the POST approach to integrate public
GPT models into secure inference for acceleration while
maintaining privacy and accuracy. This approach broadly
applies across different cryptographic protocols and GPT
models, where we observe similar insensitivity.

• We further enhance the efficiency of POST through two
aspects: an optimized protocol that securely samples to-
kens from two models and the alignment of models using
knowledge distillation.

• We evaluate the performance under two network condi-
tions and three pairs of private and public models, in-
cluding Vicuna-7B and LLaMA-68M&160M, FLAN-T5-
XL and T5-efficient-small&base, and FLAN-T5-XL and
FLAN-T5-small&base. Our approach shows 2.1× ∼
6.0× speedup than the standard secure decoding.

2. Background
This work aims to accelerate the secure decoding of gener-
ative pre-trained transformers (GPT). We present the nec-
essary background on secure GPT inference and standard
GPT decoding. Additional background and related works
are in the Appendix 6.

2.1. Secure Two-Party Inference

Under the semi-honest threat model, where the corrupted
party adheres to the protocol but may attempt to extract
more information than permitted, secure two-party GPT
inference guarantees the client receives inference results
without accessing the model weights and the server remains
oblivious to the client’s private input (Juvekar et al., 2018;
Hao et al., 2022; Lu et al., 2025; Pang et al., 2024; Li
et al., 2024b). Existing approaches typically employ hy-
brid protocols, combining homomorphic encryption (HE)
and multi-party computation (MPC) based on the nature of
each operation. HE is commonly used for linear operations,
such as multiplication, which incurs intensive computation
but requires minimal communication. MPC is generally em-
ployed for nonlinear operations, such as comparison. MPC
involves multiple rounds of communication and extensive
transmitted data. Below, we provide a brief background on
cryptographic primitives relevant to this work.

Additive Secret Sharing. Parties usually hold activations
and model weights through secret sharing. In a two-party
setting, additive secret sharing over the ring Z2ℓ is defined
as follows: for a given value x ∈ Z2ℓ , two random shares,
⟨x⟩c ∈ Z2ℓ and ⟨x⟩s ∈ Z2ℓ , are uniformly sampled such
that x = ⟨x⟩c + ⟨x⟩s mod 2ℓ holds. Here, ⟨x⟩c and ⟨x⟩s
are held by the client and the server, respectively.

Homomorphic Encryption. The lattice-based additive HE
scheme (Rathee et al., 2019) is proven secure under the ring
learning with errors (RLWE) assumption (Lyubashevsky
et al., 2010). HE enables one party to perform computa-
tions on another party’s encrypted data without necessitat-
ing access to the decryption key. HE typically employs
Single Instruction Multiple Data (SIMD) techniques to re-
duce amortized overhead (Brakerski et al., 2014; Juvekar
et al., 2018). Multiple plaintext values are encoded into one
polynomial ring, enabling homomorphic operations to be
applied to all encoded values in parallel.

Oblivious Transfer. Oblivious Transfer (OT) is the build-
ing block for various nonlinear operations, such as compari-
son and truncation (Rathee et al., 2020; Ma et al., 2023). Let(
k
1

)
−OTℓ denote the 1-out-of-k OT functionality, which

is a generalization of the 1-out-of-2 OT. The sender’s in-
puts consist of k strings, m0, . . . ,mk−1, each of length ℓ
bits, while the receiver’s input is an index i ∈ [k]. The
receiver obtains mi from the functionality, and the sender

2

An Efficient Private GPT Never Autoregressively Decodes

receives nothing. The
(
k
1

)
− OTℓ protocol requires two

rounds of interaction and involves a total communication
costs of kℓ+ log2 k bits (Yang et al., 2020).

2.2. Prefill and Decoding of the GPT

The standard GPT generation process consists of two main
phases: the prefill phase and the decoding phase. The prefill
phase processes all tokens from the client’s input prompt in
a single forward pass, producing the output distribution for
the first generated token. The decoding phase generates one
token per decoding step in an auto-regressive manner. For a
prefix x<t with t− 1 tokens, which include both the input
prompt and previously generated tokens, the forwarding of
x<t generates the output distribution p (x | x<t) of the tth
token and samples from it. When t is clear or unimportant,
p(x) is used simply for representation. To avoid repeatedly
forwarding all previous tokens when generating a new token,
the KV cache (Dettmers et al., 2022) stores the keys and
values associated with past tokens, such that each decoding
step only forwards one token.

Since secure decoding accounts for the majority of com-
putation time (Liang et al., 2024), this work focuses on
improving its efficiency. A detailed explanation of the pre-
fill and decoding phases is provided in Appendix A.

3. Motivation
The public model shares partial knowledge with the private
model. To utilize such knowledge for acceleration without
comprising privacy, we introduce an observation on the per-
formance characteristics of securely computed GPT layers.

3.1. Shared Knowledge of Public and Private GPTs

Publicly Available GPTs. The availability of numerous
public pre-trained models (Wolf et al., 2019; Touvron et al.,
2023; Chung et al., 2024) introduces a distinctive charac-
teristic compared to other privacy-related scenarios: the
knowledge embedded in the private GPTs is not entirely
private. The linguistic knowledge (grammar, syntax, and
common facts) and logical abilities (understanding and rea-
soning) can also be captured by the public model and are
partly shared between public and private models (Chen &
Gao, 2022; Zhao et al., 2023). As supporting evidence, the
public models also present satisfying performance on var-
ious tasks (Analysis, 2025), although less powerful than
private models. Since public GPTs have revealed shared
knowledge, it is essential to protect exclusive knowledge for
private models: the more advanced model abilities that are
built on extensive computational resources and the sensitive
information embedded within proprietary training datasets.

Therefore, an ideal secure inference for the private GPT

Linearqkv Linearo Linearh1 Linearh2 Softmax GELU QKT PV LN Total0

1

2

3

4

Ti
m

e
(s

)

0

5

10
Length=1
Length=2
Length=4

Length=8
Length=16

Figure 1. Latencies against different input lengths. The bandwidth
and one-way delay are 1000 Mbps and 10 ms.

Linearh1
1000/10

Linearh1
400/40

Linearh2
1000/10

Linearh2
400/40

Softmax
1000/10

Softmax
400/40

QKT

1000/10
QKT

400/40
LN

1000/10
LN

400/40
0

5

10

Ti
m

e
(s

)

One-way Delay
Transmisson
Computation

Figure 2. The latency breakdown of some layers. The second row
of the x-axis ticks represents bandwidth and one-way latency. The
bars corresponding to the same x-axis ticks illustrate input lengths
1, 2, 4, 8, and 16.

should allocate costly cryptographic computation only to
the exclusive knowledge while employing cheap plaintext
computations for the shared knowledge. However, current
secure inference methods necessitate all computations to be
private. Due to the lack of interpretability in model weights
and activations (Friedman et al., 2024; Wen et al., 2024),
clearly separating shared knowledge between public and
private models is difficult, and any leakage may introduce
unforeseen risks.

3.2. Insensitivity of Latency to the Input Length

We circumvent the challenge of separating the knowledge
by using the public and private models, each as a whole.
This is motivated by a unique performance characteristic
observed in two-party secure decoding. Figure 1 illustrates
the decoding latencies for different input lengths using the
open-source model FLAN-T5-XL (Chung et al., 2024). The
latencies are profiled on the well-established framework
SecretFlow-SPU (Ma et al., 2023). In standard decoding,
GPT generates only one token per step. For such minimal
input length one, we find that gradually increasing the input
length has almost no impact on latencies. The latencies
remain similar when the input length increases from 1 to 4.
As the input length continues to increase to 8 or 16, latency
only experiences a sub-linear increase. Consequently, the
total latencies of a decoder on input lengths 8 and 16 are
only 1.2× and 1.5× greater than that of input length of 1.
In Appendix E.1, we observe similar insensitivity to input
length across various network conditions, GPT sizes, and
underlying cryptographic protocols.

To understand why such insensitivity generally holds, we
decompose the latency of each layer into the one-way delay,
computation time, and transmission time, as illustrated in

3

An Efficient Private GPT Never Autoregressively Decodes

Figure 2. We analyze how each component contributes to
the insensitivity of the overall latency.

One-way Delay. The one-way delay is a fixed latency per
communication round due to propagation time and hard-
ware processing. Time spent on the one-way delay remains
constant, as the number of communication rounds is inde-
pendent of the input length. Secure evaluation generally
necessitates multiple rounds of communication, especially
nonlinear protocols that require more than a hundred rounds.
The time spent on one-way delays constitutes a substantial
portion of the overall latency, directly contributing to the
overall insensitivity to variations in input length.

Computation Time. The computation time demonstrates
a small variation in input length. The computation time is
mainly spent on homomorphic operations, including matrix
multiplication in the linear layer and Hadamard multiplica-
tion of the approximated polynomials in the nonlinear layer.
The insensitivity of computation time can be attributed to
two aspects. First, larger input lengths typically enable bet-
ter parallelization and more efficient hardware utilization.
Second, increasing the input length improves the efficiency
of SIMD operation in HE (Hao et al., 2022; Lu et al., 2025).
To ensure security, SIMD operation typically encodes 8192
activation values into the ciphertext polynomial. However,
with an input length of 1, the number of activation values is
often smaller than 8192. For instance, the hidden dimension
of FLAN-T5-XL is 2048, and smaller models like GPT-2
have dimensions as low as 768. Larger input lengths can
better saturate all slots in the polynomial ring to enhance
computational efficiency. As Figure 2 shows, homomorphic
operations constitute a significant portion of overall latency
and contribute to the overall insensitive.

Transmission Time. Transmission time depends notice-
ably on input length, with variations between HE and MPC.
For HE, the transmission size increases sub-linearly due to
the efficiency of SIMD. As input length increases, multi-
ple embedding vectors are packed into a single ciphertext,
which does not change the overall transmission size. In con-
trast, the transmission size associated with MPC generally
increases linearly with input length. Overall, compared to
one-way delay and computation time, transmission time is
more sensitive to input length variations. However, trans-
mission time is not the primary bottleneck for extremely
small input lengths, and its impact on the overall latency
increase remains limited.

4. Public Decoding and Secure Verification
Based on the observation in Section 3, we first propose a
new approach for secure GPT decoding. Then, we further
improve its efficiency from two aspects.

Client
Secure

Verification

Plaintext

Decoding

Prefix

𝑥<𝑡

Draft tokens

𝑥𝑡 , … , 𝑥𝑡+𝛾

Accepted & bonus tokens 𝑥1, … , 𝑥𝑘−1, 𝑥𝑘

Private

model

ℳ𝑝𝑟𝑖

Plaintext

Decoding

Non-sensitive

dataset 𝒮

Model

Alignment

Aligned

public model

ℳ′𝑝𝑢𝑏

Alignment dataset 𝒬

Public model

ℳ𝑝𝑢𝑏

Offline

Stage

Online

 Stage

Server

Private to all

Private to the

client

PublicSecure

Forward

Public model’s distributions

𝑞 𝑥|𝑥<𝑡 , … , 𝑞 𝑥|𝑥<𝑡+𝛾

𝑝 𝑥|𝑥<𝑡 , … ,

𝑝 𝑥|𝑥<𝑡+𝛾+1

Private model’s

distributions

Secure

computation

Private to the

server

Figure 3. The overview of the public decoding and secure ver-
ification approach. ⟨·⟩ indicates the data are encrypted during
computing, such as using the secret sharing, and is only visible to
the data owner.

4.1. Overview

We propose an approach to leverage knowledge from the
public model to enhance efficiency: Public decOding and
Secure verificaTion (POST), as illustrated in Figure 3. POST

includes online and an one-time offline stages.

In the online stage, the client holds a public model M′
pub,

while the server holds a private model Mpri. The client also
holds the prefix x<t, consisting of t− 1 tokens, which in-
clude the input prompt and previously generated tokens.
In prior secure inference works, only the next token is
generated in a single decoding step. This results in only
one vector being forwarded in the secure forward, lead-
ing to inefficiencies demonstrated in Section 3.2. In con-
trast, POST first lets the client autoregressively sample γ
draft tokens from the public model’s output distributions
x1 ∼ q(x | x<t), · · · , xγ ∼ q(x | x<t+γ−1). Subse-
quently, both parties securely forward all draft tokens in a de-
coding step to generate private model’s output distributions
⟨p(x | x<t)⟩, · · · , ⟨p(x | x<t+γ)⟩, which are secret shares
on the ring Z2ℓ . Then the secure verification (Section 4.2)
adopts the speculative sampling algorithm (Leviathan et al.,
2023) to determine which tokens can be accepted based on
both the public and private models’ output distributions. We
give specialized optimizations to securely execute specula-
tive sampling, minimizing its overhead. Tokens before the
first rejection are kept, while those after are discarded. Since
the private model accepts all tokens up to the first rejection,
the first rejected token can be re-sampled from the private
model’s adjusted output distribution to obtain an additional
“bonus” token.

In the offline stage, we also perform model alignment (Sec-
tion 4.3) to align the public model’s output distribution with

4

An Efficient Private GPT Never Autoregressively Decodes

that of the private model through knowledge distillation.
This can further increase the acceptance ratio of draft tokens
and enhance performance improvements.

Our approach offers following advantages.

• Consistent Speedup: In worst case where all draft to-
kens are rejected, POST’s secure forward still generates
a bonus token, the same as the previous secure decod-
ing methods. In more general cases, easily predictable
draft tokens are likely to be accepted by the private
model. Therefore, forwarding multiple tokens incurs
a cost comparable to forwarding just one token, while
allowing for the generation of at least one token in a
single step, thus reducing the amortized cost per token.

• Security Guarantees: POST ensures that the client ob-
tains only the information permitted in standard secure
inference protocols, while the server remains oblivious
to the client’s private input data.

• Accuracy Preservation: The token generated in POST

precisely maintains the output distribution of the pri-
vate model in standard secure inference, ensuring no
accuracy degradation.

• Practical Implementation: POST imposes no change or
fine-tuning on the private models and can be seamlessly
integrated with existing secure inference methods.

• Future Scalability: The continuous advancement of
public model capabilities presents significant poten-
tial of POST’s performance enhancement, ensuring
sustained improvement as the underlying technology
evolves.

The following sections detail our designs for secure verifi-
cation and model alignment to enhance efficiency.

4.2. Secure Verification

Naive Sampling from Two Distributions. To determine
whether draft tokens are accepted, a naive way is to sample
from the output distribution of private models and only
accept matched tokens. However, this method results in a
low acceptance ratio. In many cases, tokens with similar
meanings may exhibit similar output distribution densities,
yet these proposals may still be rejected due to the “hard”
matching.

Speculative Sampling. Therefore, we employ a “soft”
matching called speculative sampling (Leviathan et al.,
2023; Cai et al., 2023). Speculative sampling ensures that
the tokens sampled from p(x) and q(x) are distributed iden-
tically to those sampled from p(x) alone. Specifically, given
γ draft tokens [x1, · · · , xγ] sampled from the distributions

Algorithm 1 Privately Reject Draft Tokens

Input: Pc holds public model’s distributions q(x |
x<t), · · · , q(x | x<t+γ−1) and samples γ draft to-
kens x1, · · · , xγ . Ps and Pc hold the secret sharing
⟨p(x | x<t)⟩, · · · , ⟨p(x | x<t+γ)⟩ ∈ Z2ℓ of the distri-
butions generated by the private model. The vocabulary
size is V . The [γ] means [0, 1, . . . , γ].

1: Pc sets Q=

 q(x | x<t)
· · ·

q(x | x<t+γ−1)

. Ps and Pc set ⟨P⟩= ⟨p(x | x<t)⟩
· · ·

⟨p(x | x<t+γ)⟩

.

2: Pc generates a random vector Rmul ∼ U(0, 1)γ×V .
3: Ps sets his share of ⟨S⟩s = −⟨P⟩s and Pc sets her

share ⟨S⟩c = Q ·Rmul − ⟨P⟩c mod 2ℓ.
4: for i ∈ [γ], in parallel do
5: Ps generates a random vector r ∼ Zγ

2ℓ
, and masks

his share as ⟨Ŝ[i, :]⟩s = ⟨S[i, :]⟩s − r[i] mod 2ℓ.
6: Pc chooses the secret share by ⟨Ŝ[i, xi]⟩s ∼

(V
1

)
−

OTℓ(⟨Ŝ[i, :]⟩s, xi).
7: Ps sets his share ⟨s⟩s[i] = r[i] and Pc sets her share

⟨s⟩c[i] = ⟨S[i, xi]⟩c + ⟨Ŝ[i, xi]⟩s mod 2ℓ.
8: end for
9: Ps and Pc compute shares of boolean vector ⟨n⟩ =

Fless(0, ⟨s⟩) and open n to Pc.
10: Pc appends an element one at the end by n = n+ [1]
11: Pc computes k = min ({i | i ∈ [γ],n[i] = 1}).
12: Pc chooses ⟨pk(x)⟩s ∼

(
γ+1
1

)
−

OTℓ([⟨p(x | x<t)⟩s, · · · , ⟨p(x | x<t+γ)⟩s] , k).
Output: Pc obtains index k and corresponding pk(x).

of the public model, each token xi is rejected according to
the probability defined by:

max(0, 1− p(xi | x<t+i)

q(xi | x<t+i)
). (1)

The p(xi | x<t+i) represent the probability density of the xi.
If the first rejected token has i < γ, it is resampled from an
adjusted distribution p′(x) = max(0, p(x | x<t+i)− q(x |
x<t+i)). If all draft tokens are accepted, the bonus token is
directly sampled from the distribution p(x | x<t+γ).

Challenge of Secure Speculative Sampling. The perfor-
mance challenge lies in rejecting draft tokens according to
the probability in Equation (1). The standard approach is to
privately compute Equation (1) and then compare it with a
random number within [0, 1]. However, the involved divi-
sion and comparison are not friendly to the cryptographic
primitives. Furthermore, the dimension of the output dis-
tributions is the vocabulary size V (typically V > 30000),
making probabilistic rejection in secret considerably slow.

5

An Efficient Private GPT Never Autoregressively Decodes

To mitigate this issue, the proposed protocol is in Algorithm
1. Next, we explain two key designs in our protocol.

Refactor the division into multiplication (lines 2-3). To
avoid the division p(xi)

q(xi)
, we let the client generate a random

matrix Rmul and execute Hadamard multiplication with Q
locally. After the client subtracts ⟨P⟩c from Q ·Rmul, both
parties hold shares of the scores ⟨S⟩ = ⟨Q ·Rmul⟩ − P
mod 2ℓ. For all draft tokens, the elements corresponding to
the selected index xi are compared with zeros to generate
boolean rejection decision 1 {S[i, xi] > 0} for i ∈ [γ].

Selection then Comparison (lines 4-9). For elements
S[i, xi] that correspond to draft tokens, directly select-
ing their most significant bit (MSB) out for sign bit is
not feasible. This is because the S are represented as
secret sharing on the ring Zℓ. Thus, the parties must se-
curely compute the carry bits from the lower ℓ − 1 bits to
obtain the correct MSB. This computation necessitates a(
2ℓ

1

)
−OT2 (Rathee et al., 2020)1. Since the server cannot

know which element is selected, both parties must securely
compute the carry bits for all elements; then, the client se-
lects the desired MSB through another

(V
1

)
− OT1. For

each draft token, the total communication complexity is
O(2 ∗ V ∗ 2ℓ + V ∗ ℓ+ V + log2 V). When selecting data,
the communication complexity is linear with respect to the
bit width. In contrast, when computing the carry bit, the
bit width comes as the exponential complexity. Computing
the carry bit of all elements incurs considerable unnecessary
overhead.

To eliminate this unnecessary overhead, we first recon-
struct shares of the interested elements and then compares
them with 0. For each row of the score matrix S[i, :],
the server masks his share by a common random value
as ⟨Ŝ[i, :]⟩s = ⟨S[i, :]⟩s−r[i]. The client employs the index
of the draft token to retrieve the share of the selected ele-
ment through

(V
1

)
−OTℓ. The server remains unaware of

which score share is retrieved yet retains the shares of the se-
lected score, with the server holding r and the client holding
⟨s⟩c = S[i, xi]− r mod 2ℓ. Subsequently, the two parties
evaluate comparisons on the selected element to derive re-
jection decision. In this manner, the overall communication
complexity is O(V ∗ ℓ+ log2 V + 2 ∗ 2ℓ + ℓ).

Security Analysis. In our private sampling, the server re-
mains unaware of any client information. The only disclosed
information consists of the rejection boolean values and the
distributions used for re-sampling the first rejected token. As
the final output, the output distribution is supposed to be dis-
closed to the client for sampling tokens. Rejecting boolean

1Existing works usually trades more communication rounds
with reduced transmitted size by breaking one

(
2ℓ

1

)
−OT2 into q

instances of both secure AND operation and
(
2m

1

)
−OT2, where

q ∗m = ℓ (Rathee et al., 2020; Ma et al., 2023)

values is a natural result once the client knows which token
has been generated. In this way, the information revealed is
no more than the standard decoding. All other information
is in the form of secret shares and processed through crypto-
graphic primitives. The security guarantee stems from the
composability of cryptographic protocols. We put a more
detailed analysis in Appendix D.

4.3. Aligning Public and Private Model

It is observed that, although fundamental linguistic knowl-
edge is expected to be common across models, variations in
training datasets and methodologies lead to biased output
distributions between models. To improve the acceptance
ratio, we propose aligning the public model with the pri-
vate model through knowledge distillation (Li et al., 2022;
Agarwal et al., 2024).

To perform the alignment, the client can choose a dataset
independent of his privacy, such as a public corpus
or anonymized data (Tang et al., 2024). This ensures
that the queries can be accessed by the service provider
and processed through plaintext inference. The client
begins by querying the model using the standard de-
coding method and collects a dataset that includes the
prompt and all output distributions, denoted as Q ={
x(i) : {p(y(i)t | x(i), y

(i)
<t)}

ni
t=1

}
, where ni is the response

length for the ith prompt. Note that the general GPT API
only returns the output distributions’ topK (usually top 5)
elements (Leiter et al., 2023). The client can only use these
topK elements for alignment. On an input prompt x(i), the
client aligns the public and private models using the loss
function

ℓ(x(i)) =

ni∑
t=1

D
(
p(y

(i)
t |x(i),y

(i)
<t)∥q(y

(i)
t |x(i),y

(i)
<t)
)
,

(2)
where D(p∥q) = −

∑
p log q is the cross entropy. By mini-

mizing this loss function, the public model learns to generate
tokens that better align with the private model’s output dis-
tribution, improving the acceptance ratio of the draft tokens.

Security Analysis The security of the model alignment is
trivial to show since all used data are allowed to disclose.
The query data used in the alignment are public corpus or
anonymized data. These data are safe to be obtained by
the server. The knowledge distillation only uses the topK
elements of the output distribution of the private model,
which are allowed to be revealed to the client.

Server Provided Public Model. Although the discussion
lets the client select and align the public model, a more ef-
fective approach is to let the server provide an aligned public
model. The server is willing to offer an aligned public model
because the alignment does not harm the server’s privacy but

6

An Efficient Private GPT Never Autoregressively Decodes

Table 1. The acceptance ratio of tokens proposed by public models before and after the alignment (AL).

Private Model Public Model
Task

SP SP-AL GS GS-AL CP CP-AL FN FN-AL

Vicuna-7B
Llama-68M 0.240 0.614 0.462 0.662 0.366 0.561 0.512 0.626

Llama-160M 0.302 0.592 0.536 0.691 0.405 0.665 0.576 0.650

FLAN T5-XL
T5-eff.-small 0.404 0.539 0.315 0.517 0.562 0.700 0.338 0.633
T5-eff.-base 0.583 0.690 0.387 0.623 0.576 0.796 0.301 0.686

FLAN-T5-XL
FLAN-T5-small 0.689 0.730 0.630 0.676 0.796 0.821 0.535 0.740
FLAN-T5-base 0.736 0.782 0.711 0.751 0.818 0.840 0.641 0.774

allows a more efficient service. The server can offer a better-
aligned public model than the client could achieve, leading
to a higher acceptance ratio. The server has better insights
into the training datasets and has access to more computa-
tional resources. The server can select a nonsensitive dataset
that closely resembles the private dataset and select public
models with a larger size. This is already the case when
the server publishes smaller versions of the private model,
such as Gecko in the Palm2 series from Google (Ghahra-
mani, 2023) and Qwen2.5 in the Qwen series from Alibaba
Cloud (Aliyun, 2025). Our experiments show that public
models from the same series as their corresponding private
models produce more aligned tokens, making our approach
more appealing to the secure GPT decoding.

5. Experimental Results
Section 5.1 begins by detailing the experimental setup. Sec-
tion 5.2 then presents the improvement in the acceptance
ratio of draft tokens achieved through alignment and Sec-
tion 5.3 highlights the improvement in end-to-end latency.
Finally, Section 5.4 demonstrates the minimal overhead in-
troduced by the optimized speculative sampling protocol.
We omit the accuracy analysis (e.g., perplexity) since our
method guarantees an identical output distribution to the
private model, ensuring zero accuracy degradation.

5.1. Experimental Setup

Models and Tasks Throughout our experiments, we em-
ploy three pairs of private and public models, each dif-
fering in architectures and training hyperparameters. The
first pair is Vicuna-7B (Chiang et al., 2023) and LLaMA-
68M&160M (Miao et al., 2024a). Vicuna-7B is pre-trained
on the CommonCrawl dataset (Wenzek et al., 2020) and
fine-tuned using approximately 125,000 conversations from
ShareGPT.com. LLaMA-68M&160M is pre-trained with
the C4-en dataset (Raffel et al., 2020). The second pair is
FLAN-T5-XL (3B) (Chung et al., 2024) and T5-efficient-
small&base (Tay et al., 2021). FLAN-T5-XL is pre-trained
on the C4 and Wiki-DPR datasets (Karpukhin et al., 2020),
followed by fine-tuning on a wide range of downstream

0 1 2 3
Token Count 1e6

0.2

0.4

0.6

0.8

Ac
ce

pt
an

ce
 ra

tio

Vicuna-7B & LLaMA-160M
 FLAN-T5-XL & T5-eff.-base
 FLAN-T5-XL & FLAN-T5-base

Figure 4. The alignment efficiency of three pairs of models on the
Spider task.

tasks across various languages. The T5-efficient series is
only pre-trained on the C4 dataset without fine-tuning. The
third pair examines the acceptance ratio when the server
releases a small version of the private model from the same
series. In this case, we compare FLAN-T5-XL (3B) with
FLAN-T5-small&base. Among three pairs of models, we
use models that from different series to show the robustness
and general applicability and models from same series to
show the performance in favorable setting.

We evaluate performance across four diverse tasks: Text-
to-SQL (Spider) (Yu et al., 2018), graduate school math
(Gsm8k) (Cobbe et al., 2021), Python code generation
(Code-search-Python) (Husain et al., 2019), financial ques-
tion answering (Alpaca-finance) (Gaurang Bharti, 2024).

Secure Inference Setup Performance evaluations are con-
ducted on two nodes with 64 vCPUs and 128 GB memory.
We utilize Linux Traffic Control (tc) to simulate Local Area
Network (LAN) and Wide Area Network (WAN) environ-
ments, setting bandwidth and one-way delay to (1 Gbps, 10
ms) for LAN and (400 Mbps, 40 ms) for WAN.

Baselines To the best of our knowledge, prior works mainly
optimize the protocols or modify the model architectures.
POST is complementary to these works and can be integrated
for further performance improvements. The performance
improvements are compared with SOTA inference protocols
for the Transformer model, BumbleBee (Lu et al., 2025)

7

An Efficient Private GPT Never Autoregressively Decodes

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90
Acceptance ratio

2

4

6

8

Sp
ee

du
p

Sp-AL
GS-AL
CP-AL
FN-AL

Standard decoding
Draft length=4
Draft length=8
Draft length=16

(a) Vicuna-7B & LLaMA-160M on LAN.

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90
Acceptance ratio

2

4

6

8

Sp
ee

du
p

Sp-AL
GS-AL
CP-AL
FN-AL

Standard decoding
Draft length=4
Draft length=8
Draft length=16

(b) FLAN-T5-XL & T5-eff.-base on LAN.

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90
Acceptance ratio

2

4

6

8

Sp
ee

du
p

Sp-AL
GS-AL
CP-AL
FN-AL

Standard decoding
Draft length=4
Draft length=8
Draft length=16

(c) FLAN-T5-XL & FLAN-T5-base on LAN.

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90
Acceptance ratio

2

4

6

8

Sp
ee

du
p

Sp-AL
GS-AL
CP-AL
FN-AL

Standard decoding
Draft length=4
Draft length=8
Draft length=16

(d) Vicuna-7B & LLaMA-160M on WAN.

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90
Acceptance ratio

2

4

6

8

Sp
ee

du
p

Sp-AL
GS-AL
CP-AL
FN-AL

Standard decoding
Draft length=4
Draft length=8
Draft length=16

(e) FLAN-T5-XL & T5-eff.-base on WAN.

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90
Acceptance ratio

2

4

6

8

Sp
ee

du
p

Sp-AL
GS-AL
CP-AL
FN-AL

Standard decoding
Draft length=4
Draft length=8
Draft length=16

(f) FLAN-T5-XL & FLAN-T5-base on WAN.

Figure 5. The end-to-end speedup across two network settings and three pairs of models. The curves illustrate the relationship between
speedup and acceptance ratio for various draft lengths. Specific speedups for four selected tasks are marked on these curves.

and Nimbus (Li et al., 2024b). Specifically, we choose the
linear protocol of Nimbus and the nonlinear protocol of
BumbleBee, both of which have no negative impact on the
model accuracy. All experiments are conducted on the well-
established framework SecretFlow-SPU (Ma et al., 2023)
for secure inference.

5.2. Alignment Results

Improvements on Acceptance Ratios Table 1 lists the
acceptance ratios before and after alignment (AL). The re-
sults are based on eight draft tokens per decoding step. The
acceptance ratio α represents the expected probability that
a draft token is accepted. Consequently, our approach re-
duces the number of decoding steps by 1

1−α compared to
standard decoding. Across various model pairs and tasks,
the acceptance ratios after alignment range from 52% to
84%, resulting in a 2.0× to 6.3× reduction in decoding
steps compared to standard decoding.

The knowledge distillation enhances acceptance ratios. For
model pairs from different series (the first two pairs), align-
ment increases the acceptance ratio from 10% to 40%, with
final values ranging from 60% to 80%. For model pairs
from the same series (the third pair), the improvement is
approximately 10%, as the original public model already
exhibits a high acceptance ratio, resulting in final accep-
tance ratios between 75% and 85%. Moreover, the results
indicate that larger public models achieve higher acceptance
ratios, aligning with the intuition that larger models have

greater capacity. In this study, the public GPTs employed
are small and can be fine-tuned on a single GPU with 20
GB of memory. We anticipate that using larger public GPTs
would further enhance the acceptance ratio.

Alignment Efficiency Figure 4 presents the relationship
between the acceptance ratio and the number of tokens used
for knowledge distillation. We use the spider task as an
example and the similar trend also holds for other tasks.
The results indicate that the alignment process is notably
efficient regarding the token number. The acceptance ratios
increase rapidly for all three model pairs, achieving a satis-
fying acceptance ratio after approximately 1 million tokens.
Existing API of GPT service usually charges the client per
token. Given the current API pricing (OpenAI, 2025), the
total cost for this amount of tokens is approximately $10,
demonstrating the practical feasibility. Moreover, as dis-
cussed in Section 4.3, a more effective approach is to let the
server to perform the alignment.

5.3. End-to-end Performance

Figure 5 shows the speedup against the acceptance ratio
using 4, 8, and 16 draft lengths. Markers on the curve
indicate the speedup for four tasks. We present results for
the selected model pairs and two network conditions. We
also show the baseline for standard secure decoding (the red
dot line), which has a speedup number one. For any task,
the client and server can choose the proper draft length for
the best speedup, which we find ranges from 2.1× to 6.0×.

8

An Efficient Private GPT Never Autoregressively Decodes

Table 2. Comparison of the naive and optimized secure speculative
sampling.

Network Draft Decoder Naive Ours
Condition Length Time/s Time/s Time/s

1 Gbps 4 7.11 14.78 1.19
10 ms 8 8.67 28.26 1.45

400 Mbps 4 20.32 24.44 3.04
40 ms 8 22.49 46.62 4.12

Typically, greater draft lengths correspond to lower curves.
Since the time spent on the public decoding and secure
sampling is negligible, the primary reason is the increased
decoding time associated with a larger input size. However,
because a higher draft length leads to a higher expected
number of accepted tokens per step, the overall end-to-end
speedup may still be greater. Furthermore, the speedup
is consistent across the two network conditions tested and
tasks. This consistency demonstrates the great applicability
in diverse deployment scenarios.

5.4. Secure Speculative Sampling Performance

Table 2 presents the performance of secure speculative sam-
pling using Vicuna-7B as an example, both with and with-
out optimization. For reference, we also report the secure
evaluation time of a single decoder. The vocabulary size
associated with the sampling time is 32000, which is similar
for different private models. Without optimization, the sam-
pling process incurs a latency equivalent to the latency of
two decoders, which noticeably increases end-to-end delay.
In contrast, our optimization yields approximately a ten-
fold latency reduction, rendering its impact on end-to-end
latency negligible.

6. Related Work
Private Transformers. One type of works are to optimize
cryptographic protocols to improve the efficiency of the
secure inference. For linear layers, existing works usually
modify the encoding methods (Hao et al., 2022; Pang et al.,
2024; Li et al., 2024b) and the ciphertext packing strat-
egy (Lu et al., 2025; He et al., 2024) to improve the com-
putation and communication. For nonlinear layers, Crypt-
Flow2 (Rathee et al., 2020) proposes a faster millionaire
protocol to reduce communication size. Other methods,
such as look-up tables for faithful approximation (Rathee
et al., 2021; Gupta et al., 2023; Pang et al., 2024), are com-
putationally expensive to maintain model accuracy.

Another type of works is to modify the Transformer model
to tailor the cryptographic primitives. Some works integrate
the sparsity to linear layers to reduce the homomorphic op-
erations (Zimerman et al., 2024; Ran et al., 2023; Xu et al.,

2024) For linear layers, some works (Chen et al., 2022; Zeng
et al., 2023; Li et al., 2022) use aggressive approximation of
Softmax and GELU. However, such aggressive approxima-
tions lead to noticeable accuracy loss, even when employing
knowledge distillation to mitigate the decline in accuracy.
A more accurate way is to use piecewise polynomial to ap-
proximate the nonlinear layers (Dong et al., 2023; Lu et al.,
2025; Li et al., 2024b). They use high-degree polynomial
and multiple pieces. It does not result in an accuracy drop
but is also relatively costly to compute.

In contrast, this work examines a different aspect by leverag-
ing the knowledge shared between public and private models
to accelerate secure inference, which can be combined with
prior work for further speedup.

Speculative Decoding Speculative decoding is a recent
technique designed to enhance the efficiency of autoregres-
sive decoding of the GPTs (Leviathan et al., 2023; Cai et al.,
2023; Liu et al., 2023). In the original speculative decoding,
several draft tokens are generated using a tiny GPT and are
forwarded by a large GPT in parallel, which also inspires
the proposed POST approach. However, POST differs from
the original speculative decoding in three key aspects. First,
POST is based on a unique observation that cryptographic
protocols in secure GPT decoding demonstrate insensitivity
to input length. Second, speculative decoding must carefully
balance the computational costs between the tiny and large
GPT models. In contrast, in this work, the cost associated
with the public model is negligible compared to the secure
decoding process of the private model, and we primarily
focus on optimizing the cost of securely executing the spec-
ulative sampling algorithm. Third, while speculative decod-
ing can freely choose models to propose draft tokens, this
work selects public models that are not closely related to the
private model. Consequently, we employ model alignment
to demonstrate that pairs of models with low relevance can
still achieve a high acceptance ratio following knowledge
distillation.

7. Conclusion
This work proposes a novel POST approach to secure GPT
inference. Our approach utilizes knowledge already dis-
closed by public models for acceleration while maintaining
the same privacy goal and generation quality comparable
to standard secure decoding. Our approach demonstrates
a speedup ranging from 2.1× to 6.0× across various set-
tings. Furthermore, our approach offers the potential for
even greater speedup when applied to better-aligned public
models, such as those provided by servers or larger public
models. These optimizations enhance performance, advanc-
ing the practical application of secure GPT inference.

9

An Efficient Private GPT Never Autoregressively Decodes

Acknowledgement
This work was supported by the National Natural Science
Foundation of China grants (62222210, 62125204, and
92270201). This work was also supported by Shanghai Qi
Zhi Institute Innovation Program SQZ202316. Correspond-
ing authors are Jingwen Leng (leng-jw@sjtu.edu.cn), Kang
Yang (yangk@sklc.org), and Yu Yu (yyuu@sjtu.edu.cn).

Impact Statement
This paper presents work whose goal is to advance the
privacy-preserving GPT inference. Our work introduces
a more efficient method for privacy inference, which con-
tributes to providing active protection against potential pri-
vacy issues arising in the application of GPT.

References
Agarwal, R., Vieillard, N., Zhou, Y., Stanczyk, P., Garea,

S. R., Geist, M., and Bachem, O. On-policy distillation of
language models: Learning from self-generated mistakes.
In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.
net/forum?id=3zKtaqxLhW.

Aliyun. What is qwen llm. [Online],
2025. https://help.aliyun.com/zh/
model-studio/developer-reference/
what-is-qwen-llm/.

Analysis, A. Comparison of models: Quality, performance
& price analysis. https://artificialanalysis.
ai/models, 2025. Accessed: 2025-01-29.

Brakerski, Z., Gentry, C., and Vaikuntanathan, V. (lev-
eled) fully homomorphic encryption without bootstrap-
ping. ACM Transactions on Computation Theory (TOCT),
6(3):1–36, 2014.

Cai, T., Li, Y., Geng, Z., Peng, H., Lee, J. D., Chen, D.,
and Dao, T. Medusa: Simple llm inference acceleration
framework with multiple decoding heads. In Forty-first
International Conference on Machine Learning, 2023.

Chandran, N., Gupta, D., Rastogi, A., Sharma, R., and
Tripathi, S. Ezpc: Programmable, efficient, and scalable
secure two-party computation. IACR Cryptol. ePrint
Arch., 2017:1109, 2017.

Chen, T., Bao, H., Huang, S., Dong, L., Jiao, B., Jiang,
D., Zhou, H., Li, J., and Wei, F. The-x: Privacy-
preserving transformer inference with homomorphic en-
cryption. arXiv preprint arXiv:2206.00216, 2022.

Chen, Z. and Gao, Q. Probing linguistic information for log-
ical inference in pre-trained language models. In Proceed-

ings of the AAAI Conference on Artificial Intelligence, pp.
10509–10517, 2022.

Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang,
H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J. E.,
et al. Vicuna: An open-source chatbot impressing gpt-4
with 90%* chatgpt quality. See https://vicuna. lmsys. org
(accessed 14 April 2023), 2(3):6, 2023.

Chung, H. W., Hou, L., Longpre, S., Zoph, B., Tay, Y., Fe-
dus, W., Li, Y., Wang, X., Dehghani, M., Brahma, S., et al.
Scaling instruction-finetuned language models. Journal
of Machine Learning Research, 25(70):1–53, 2024.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., et al. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168, 2021.

Dettmers, T., Lewis, M., Belkada, Y., and Zettlemoyer, L.
Gpt3. int8 (): 8-bit matrix multiplication for transformers
at scale. Advances in Neural Information Processing
Systems, 35:30318–30332, 2022.

Dong, Y., Lu, W.-j., Zheng, Y., Wu, H., Zhao, D., Tan, J.,
Huang, Z., Hong, C., Wei, T., and Cheng, W. Puma: Se-
cure inference of llama-7b in five minutes. arXiv preprint
arXiv:2307.12533, 2023.

Friedman, D., Wettig, A., and Chen, D. Learning trans-
former programs. Advances in Neural Information Pro-
cessing Systems, 36, 2024.

Gaurang Bharti. finance-alpaca (revision 51d16b6), 2024.
URL https://huggingface.co/datasets/
gbharti/finance-alpaca.

Gentry, C. Fully homomorphic encryption using ideal lat-
tices. In Proceedings of the 41th Annual ACM Symposium
on Theory of Computing - STOC’09, pp. 169–178. ACM,
2009.

Ghahramani, Z. Introducing palm 2. [Online], 2023.
https://blog.google/technology/ai/
google-palm-2-ai-large-language-model/
/.

GitHub, I. Github copilot, 2025. URL https://github.
com/features/copilot.

Gupta, K., Jawalkar, N., Mukherjee, A., Chandran, N.,
Gupta, D., Panwar, A., and Sharma, R. Sigma: secure gpt
inference with function secret sharing. Cryptology ePrint
Archive, 2023.

Hao, M., Li, H., Chen, H., Xing, P., Xu, G., and Zhang,
T. Iron: Private inference on transformers. Advances
in Neural Information Processing Systems, 35:15718–
15731, 2022.

10

https://openreview.net/forum?id=3zKtaqxLhW
https://openreview.net/forum?id=3zKtaqxLhW
https://help.aliyun.com/zh/model-studio/developer-reference/what-is-qwen-llm/
https://help.aliyun.com/zh/model-studio/developer-reference/what-is-qwen-llm/
https://help.aliyun.com/zh/model-studio/developer-reference/what-is-qwen-llm/
https://artificialanalysis.ai/models
https://artificialanalysis.ai/models
https://huggingface.co/datasets/gbharti/finance-alpaca
https://huggingface.co/datasets/gbharti/finance-alpaca
https://blog.google/technology/ai/google-palm-2-ai-large-language-model//
https://blog.google/technology/ai/google-palm-2-ai-large-language-model//
https://blog.google/technology/ai/google-palm-2-ai-large-language-model//
https://github.com/features/copilot
https://github.com/features/copilot

An Efficient Private GPT Never Autoregressively Decodes

He, J., Yang, K., Tang, G., Huang, Z., Lin, L., Wei, C., Yan,
Y., and Wang, W. Rhombus: Fast homomorphic matrix-
vector multiplication for secure two-party inference. In
Proceedings of the 2024 on ACM SIGSAC Conference on
Computer and Communications Security, pp. 2490–2504,
2024.

Hou, X., Liu, J., Li, J., Li, Y., Lu, W.-j., Hong, C., and Ren,
K. Ciphergpt: Secure two-party gpt inference. Cryptology
ePrint Archive, 2023.

Husain, H., Wu, H.-H., Gazit, T., Allamanis, M., and
Brockschmidt, M. Codesearchnet challenge: Evaluat-
ing the state of semantic code search. arXiv preprint
arXiv:1909.09436, 2019.

Ishai, Y., Kilian, J., Nissim, K., and Petrank, E. Extending
oblivious transfers efficiently. In Annual International
Cryptology Conference, pp. 145–161. Springer, 2003.

Juvekar, C., Vaikuntanathan, V., and Chandrakasan, A.
{GAZELLE}: A low latency framework for secure neural
network inference. In 27th USENIX Security Symposium
(USENIX Security 18), pp. 1651–1669, 2018.

Karpukhin, V., Oguz, B., Min, S., Lewis, P., Wu, L.,
Edunov, S., Chen, D., and Yih, W.-t. Dense pas-
sage retrieval for open-domain question answering. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pp. 6769–6781, Online, November 2020. Association
for Computational Linguistics. doi: 10.18653/v1/
2020.emnlp-main.550. URL https://www.aclweb.
org/anthology/2020.emnlp-main.550.

Kim, J.-Y., Park, S., Lee, J., and Cheon, J. H. Privacy-
preserving embedding via look-up table evaluation with
fully homomorphic encryption. In Salakhutdinov, R.,
Kolter, Z., Heller, K., Weller, A., Oliver, N., Scar-
lett, J., and Berkenkamp, F. (eds.), Proceedings of
the 41st International Conference on Machine Learn-
ing, volume 235 of Proceedings of Machine Learn-
ing Research, pp. 24437–24457. PMLR, 21–27 Jul
2024. URL https://proceedings.mlr.press/
v235/kim24ab.html.

Kolesnikov, V. and Kumaresan, R. Improved ot extension
for transferring short secrets. In Advances in Cryptology–
CRYPTO 2013: 33rd Annual Cryptology Conference,
Santa Barbara, CA, USA, August 18-22, 2013. Proceed-
ings, Part II, pp. 54–70. Springer, 2013.

Leiter, C., Zhang, R., Chen, Y., Belouadi, J., Larionov, D.,
Fresen, V., and Eger, S. Chatgpt: A meta-analysis after
2.5 months. arXiv preprint arXiv:2302.13795, 2023.

Leviathan, Y., Kalman, M., and Matias, Y. Fast inference
from transformers via speculative decoding. In Inter-
national Conference on Machine Learning, pp. 19274–
19286. PMLR, 2023.

Li, D., Shao, R., Wang, H., Guo, H., Xing, E. P., and Zhang,
H. Mpcformer: fast, performant and private transformer
inference with mpc. arXiv preprint arXiv:2211.01452,
2022.

Li, F., Zhai, Y., Cai, S., and Gao, M. Seesaw: Compensat-
ing for nonlinear reduction with linear computations for
private inference. In Salakhutdinov, R., Kolter, Z., Heller,
K., Weller, A., Oliver, N., Scarlett, J., and Berkenkamp, F.
(eds.), Proceedings of the 41st International Conference
on Machine Learning, volume 235 of Proceedings of Ma-
chine Learning Research, pp. 29266–29277. PMLR, 21–
27 Jul 2024a. URL https://proceedings.mlr.
press/v235/li24cj.html.

Li, Z., Yang, K., Tan, J., Lu, W.-j., Wu, H., Wang, X., Yu,
Y., Zhao, D., Zheng, Y., Guo, M., et al. Nimbus: Secure
and efficient two-party inference for transformers. arXiv
preprint arXiv:2411.15707, 2024b.

Liang, Z., Wang, P., Zhang, R., Xu, N., Zhang, S., Xing, L.,
Bai, H., and Zhou, Z. Merge: Fast private text genera-
tion. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 19884–19892, 2024.

Liu, X., Hu, L., Bailis, P., Cheung, A., Deng, Z., Stoica, I.,
and Zhang, H. Online speculative decoding. In Forty-first
International Conference on Machine Learning, 2023.

Lu, W., Huang, Z., Gu, Z., Li, J., Liu, J., Hong, C., Ren,
K., Wei, T., and Chen, W. BumbleBee: Secure Two-
party Inference Framework for Large Transformers. In
32nd Annual Network and Distributed System Security
Symposium, NDSS 2025. The Internet Society, 2025.

Lyubashevsky, V., Peikert, C., and Regev, O. On ideal lat-
tices and learning with errors over rings. In Advances
in Cryptology–EUROCRYPT 2010: 29th Annual Inter-
national Conference on the Theory and Applications of
Cryptographic Techniques, French Riviera, May 30–June
3, 2010. Proceedings 29, pp. 1–23. Springer, 2010.

Ma, J., Zheng, Y., Feng, J., Zhao, D., Wu, H., Fang, W.,
Tan, J., Yu, C., Zhang, B., and Wang, L. {SecretFlow-
SPU}: A performant and {User-Friendly} framework for
{Privacy-Preserving} machine learning. In 2023 USENIX
Annual Technical Conference (USENIX ATC 23), pp. 17–
33, 2023.

Miao, X., Oliaro, G., Zhang, Z., Cheng, X., Wang, Z.,
Zhang, Z., Wong, R. Y. Y., Zhu, A., Yang, L., Shi, X.,
et al. Specinfer: Accelerating large language model serv-
ing with tree-based speculative inference and verification.

11

https://www.aclweb.org/anthology/2020.emnlp-main.550
https://www.aclweb.org/anthology/2020.emnlp-main.550
https://proceedings.mlr.press/v235/kim24ab.html
https://proceedings.mlr.press/v235/kim24ab.html
https://proceedings.mlr.press/v235/li24cj.html
https://proceedings.mlr.press/v235/li24cj.html

An Efficient Private GPT Never Autoregressively Decodes

In Proceedings of the 29th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems, Volume 3, pp. 932–949, 2024a.

Miao, X., Oliaro, G., Zhang, Z., Cheng, X., Wang, Z.,
Zhang, Z., Wong, R. Y. Y., Zhu, A., Yang, L., Shi, X.,
et al. Specinfer: Accelerating large language model serv-
ing with tree-based speculative inference and verification.
In Proceedings of the 29th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems, Volume 3, pp. 932–949, 2024b.

OpenAI. Api pricing, 2025. URL https://openai.
com/api/pricing/.

Pang, Q., Zhu, J., Möllering, H., Zheng, W., and Schnei-
der, T. Bolt: Privacy-preserving, accurate and efficient
inference for transformers. In 2024 IEEE Symposium on
Security and Privacy (SP), pp. 130–130. IEEE Computer
Society, 2024.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21
(140):1–67, 2020.

Ran, R., Luo, X., Wang, W., Liu, T., Quan, G., Xu, X., Ding,
C., and Wen, W. Spencnn: orchestrating encoding and
sparsity for fast homomorphically encrypted neural net-
work inference. In International Conference on Machine
Learning, pp. 28718–28728. PMLR, 2023.

Rathee, D., Schneider, T., and Shukla, K. K. Improved mul-
tiplication triple generation over rings via RLWE-based
AHE. In Cryptology and Network Security, volume 11829
of LNCS, pp. 347–359. Springer International Publishing,
2019.

Rathee, D., Rathee, M., Kumar, N., Chandran, N., Gupta,
D., Rastogi, A., and Sharma, R. Cryptflow2: Practical 2-
party secure inference. In Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications
Security, pp. 325–342, 2020.

Rathee, D., Rathee, M., Goli, R. K. K., Gupta, D., Sharma,
R., Chandran, N., and Rastogi, A. Sirnn: A math library
for secure rnn inference. In 2021 IEEE Symposium on
Security and Privacy (SP), pp. 1003–1020. IEEE, 2021.

Tang, X., Shin, R., Inan, H. A., Manoel, A., Mireshghallah,
F., Lin, Z., Gopi, S., Kulkarni, J., and Sim, R. Privacy-
preserving in-context learning with differentially private
few-shot generation. In The Twelfth International Con-
ference on Learning Representations, 2024.

Tay, Y., Dehghani, M., Rao, J., Fedus, W., Abnar, S.,
Chung, H. W., Narang, S., Yogatama, D., Vaswani, A.,
and Metzler, D. Scale efficiently: Insights from pre-
training and fine-tuning transformers. arXiv preprint
arXiv:2109.10686, 2021.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Wen, K., Li, Y., Liu, B., and Risteski, A. Transformers
are uninterpretable with myopic methods: a case study
with bounded dyck grammars. In Proceedings of the
37th International Conference on Neural Information
Processing Systems, NIPS ’23, Red Hook, NY, USA,
2024. Curran Associates Inc.

Wenzek, G., Lachaux, M.-A., Conneau, A., Chaudhary,
V., Guzmán, F., Joulin, A., and Grave, E. CCNet: Ex-
tracting high quality monolingual datasets from web
crawl data. In Calzolari, N., Béchet, F., Blache, P.,
Choukri, K., Cieri, C., Declerck, T., Goggi, S., Isahara,
H., Maegaard, B., Mariani, J., Mazo, H., Moreno, A.,
Odijk, J., and Piperidis, S. (eds.), Proceedings of the
Twelfth Language Resources and Evaluation Conference,
pp. 4003–4012, Marseille, France, May 2020. European
Language Resources Association. ISBN 979-10-95546-
34-4. URL https://aclanthology.org/2020.
lrec-1.494.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,
Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M.,
et al. Huggingface’s transformers: State-of-the-art natural
language processing. arXiv preprint arXiv:1910.03771,
2019.

Xu, T., Wu, L., Wang, R., and Li, M. Privcirnet: Effi-
cient private inference via block circulant transformation.
arXiv preprint arXiv:2405.14569, 2024.

Yang, K., Weng, C., Lan, X., Zhang, J., and Wang, X.
Ferret: Fast extension for correlated ot with small com-
munication. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security,
pp. 1607–1626, 2020.

Yao, A. C.-C. How to generate and exchange secrets. In
27th Annual Symposium on Foundations of Computer
Science (sfcs 1986), pp. 162–167, 1986. doi: 10.1109/
SFCS.1986.25.

12

https://openai.com/api/pricing/
https://openai.com/api/pricing/
https://aclanthology.org/2020.lrec-1.494
https://aclanthology.org/2020.lrec-1.494

An Efficient Private GPT Never Autoregressively Decodes

Yu, T., Zhang, R., Yang, K., Yasunaga, M., Wang, D., Li,
Z., Ma, J., Li, I., Yao, Q., Roman, S., et al. Spider:
A large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task. arXiv
preprint arXiv:1809.08887, 2018.

Zeng, W., Li, M., Xiong, W., Tong, T., Lu, W.-j., Tan, J.,
Wang, R., and Huang, R. Mpcvit: Searching for accurate
and efficient mpc-friendly vision transformer with het-
erogeneous attention. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 5052–
5063, 2023.

Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y.,
Min, Y., Zhang, B., Zhang, J., Dong, Z., et al. A survey of
large language models. arXiv preprint arXiv:2303.18223,
2023.

Zimerman, I., Baruch, M., Drucker, N., Ezov, G., Soceanu,
O., and Wolf, L. Converting transformers to polynomial
form for secure inference over homomorphic encryption.
In Salakhutdinov, R., Kolter, Z., Heller, K., Weller, A.,
Oliver, N., Scarlett, J., and Berkenkamp, F. (eds.), Pro-
ceedings of the 41st International Conference on Ma-
chine Learning, volume 235 of Proceedings of Machine
Learning Research, pp. 62803–62814. PMLR, 21–27 Jul
2024. URL https://proceedings.mlr.press/
v235/zimerman24a.html.

13

https://proceedings.mlr.press/v235/zimerman24a.html
https://proceedings.mlr.press/v235/zimerman24a.html

An Efficient Private GPT Never Autoregressively Decodes

A. Background of the Generative Pre-trained Transformer (GPT)
We focus on GPTs (Vaswani et al., 2017), such as Vicuna (Chiang et al., 2023) and FLAN-T5 (Chung et al., 2024). These
models are stacked with Transformer decoders, each consisting of an attention module and a feed-forward network (FFN)
module.

Attention Module. The attention module starts with three independent linear layers Linearqkv that project the input to three
activation tensors: Q, K, and V. The multi-head attention mechanism splits them into and computes the self-attention of all
heads in parallel. The hth head is computed through

Attention(Qh,Kh, V h) = Softmax

(
QhKhT

√
dk

)
V h, (3)

where dk is the hidden dimension of the key activation. The outputs of different heads are concatenated and fed into another
linear layer Linearo, with one residue connection and one normalization layer to generate the final output of the attention
module.

FFN Module. The FFN module is composed of two linear layers Linearh1 and Linearh2, and one activation layer ACT.
The FFN module is computed as follows

FFN(X) = Linearh2
(ACT(Linearh1

(X))), (4)

where ACT can be many variants, such as ReLU, GELU, and SiLU Similar to the attention module, its output needs a residue
connection and a normalization layer.

Embedding Layer. The embedding layer is positioned at the beginning of the GPT. In this layer, each token is mapped
from its index in the vocabulary to a fixed-size vector. Given that transformers do not possess inherent sequence awareness,
positional encodings are incorporated into the token embeddings to convey information regarding the order of tokens within
the sequence.

Sampling. The final task head in GPT predicts the output distribution of the subsequent token given an input prefix.
This task head generally comprises a linear layer that projects the hidden states from the final transformer decoder to the
dimensionality of the vocabulary, along with a Softmax function that normalizes the resulting probability distribution. Then,
the next token is sampled from the distribution. While various sampling methods exist, such as top-k and temperature
settings, they can all be conceptualized as standard sampling from an adjusted original probability distribution. For instance,
argmax sampling is equivalent to zeroing out all non-maximal elements of the distribution and normalizing the result. Thus,
we can concentrate exclusively on standard sampling from a probability distribution.

Prefill and Decoding Phase. The prefill phase begins text generation when GPT processes the initial input prompt. All
input tokens are fed into the GPT during the prefill phase. The model generates a comprehensive set of probabilities for each
input token. However, in both the prefill and subsequent decoding phases, only the final output distribution is of interest, as
this represents the likelihood of generating the next token based on the provided input context. Consequently, the prefill
phase generates the output distribution for the subsequent token and initializes the key-value (KV) cache. The KV cache
prevents re-computing the representations of all previous tokens when decoding a new token. It stores the keys and values
associated with earlier tokens, thereby preserving the contextual information required for generating the following token.

The decoding phase generates tokens sequentially using the context from the prefill and previously generated tokens. With
the presence of the KV cache, the model computes the output distribution for the new token at each decoding step and
updates the information within the KV cache accordingly.

B. Complete POST Protocols
This section gives the full version of the POST approach, including the process of public decoding, secure verification, and
the re-sampling of the “bonus” token.

14

An Efficient Private GPT Never Autoregressively Decodes

Algorithm 2 Full Algorithm of one decoding step using POST

Input: Ps (server) holds private model Mp and generates . Pc (client) holds prefix x<t and public model Mq. Public
parameters include draft length γ. The vocabulary size is V . The [γ] means [0, 1, . . . , γ]

1: for i ∈ [γ], Pc do
2: q(x | xx<t+i) = Mq(prefix+ [x1, . . . , xi−1]).
3: xi ∼ q(x | xx<t+i).
4: end for
5: Ps and Pc parallely compute ⟨p(x | x<t)⟩, · · · , ⟨p(x | x<t+γ)⟩ = Mp(⟨prefix⟩), . . . ,Mp (⟨prefix+ [x1, . . . , xγ]⟩).

6: Pc sets Q=

 q(x | x<t)
· · ·

q(x | x<t+γ−1)

. Ps and Pc set ⟨P⟩=

 ⟨p(x | x<t)⟩
· · ·

⟨p(x | x<t+γ)⟩

.

7: Pc generates a random vector Rmul ∼ U(0, 1)γ×V .
8: Ps sets his share of ⟨S⟩s = −⟨P⟩s and Pc sets her share ⟨S⟩c = Q ·Rmul − ⟨P⟩c mod 2ℓ.
9: for i ∈ [γ], in parallel do

10: Ps generates a random vector r ∼ Zγ
2ℓ

, and masks his share as ⟨Ŝ[i, :]⟩s = ⟨S[i, :]⟩s − r[i] mod 2ℓ.
11: Pc chooses the secret share by ⟨Ŝ[i, xi]⟩s ∼

(V
1

)
−OTℓ(⟨Ŝ[i, :]⟩s, xi).

12: Ps sets his share ⟨s⟩s[i] = r[i] and Pc sets her share ⟨s⟩c[i] = ⟨S[i, xi]⟩c + ⟨Ŝ[i, xi]⟩s mod 2ℓ.
13: end for
14: Ps and Pc compute shares of boolean vector ⟨n⟩ = Fless(0, ⟨s⟩) and open n to Pc.
15: Pc appends an element one at the end by n = n+ [1]
16: Pc computes k = min ({i | i ∈ [γ],n[i] = 1}).
17: Pc chooses ⟨pk(x)⟩s ∼

(
γ+1
1

)
−OTℓ([⟨p(x | x<t)⟩s, · · · , ⟨p(x | x<t+γ)⟩s] , k).

18: Pc reconstructs pk(x) = ⟨pk(x)⟩s + ⟨pk(x)⟩c.
19: if k < γ then
20: Pc computes p′(x) = max(0, pk(x)− qk(x)).
21: else if k == γ then
22: Pc sets p′(x) = pγ+1(x).
23: end if
24: Pc samples xk ∼ p′(x).
Output: Pc obtains prefix+ [x1, . . . , xk].

C. Correctness of the Secure Sampling Protocol
Speculative sampling samples token from private model’s output distribution p(x) and public model’s output distribution
q(x). In the original algorithm, the token proposed by the public model is rejected according to the following probability

max(0, 1− p(x̂)

q(x̂)
). (5)

where x̂ is the token index sampled from the output distribution of the public model. Next, we show that the protocol exactly
follows the original functionality.

We first show the correctness of refactoring division to multiplication. The original rejection is to sample a uniform random

15

An Efficient Private GPT Never Autoregressively Decodes

number r ∈ [0, 1], and reject token if r < max(0, 1− p(x̂)
q(x̂)). An equivalent way is to compute

r < max

(
0, 1− p(x̂)

q(x̂)

)
1− r ≥ min

(
1,

p(x̂)

q(x̂)

)
r ≥ min

(
1,

p(x̂)

q(x̂)

)
r ≥ p(x̂)

q(x̂)

r ∗ q(x̂) ≥ p(x̂).

(6)

The equivalence of second line and third line is because r and 1 − r follow the same distribution when r ∈ [0, 1]. The
equivalence of the conditions in line 3 and line 4 is established through two cases based on the range of p(x̂)

q(x̂) . If p(x̂)
q(x̂) ∈ [0, 1],

the min() function can be directly removed; if p(x̂)
q(x̂) ∈ (1,∞), the third line simplifies to r > 1. Since r is drawn from a

uniform distribution over the interval [0, 1], the conditions in both line 3 and line 4 are never satisfied. Consequently, the
equivalence remains valid. The final line shows the correctness of the refactoring regarding one draft token. The correctness
of the protocol is obtained easily by extending the result to all proposed tokens.

For the selection then comparison, the correctness directly follows the original algorithm that computes the comparison
results of the target element in the score matrix S.

D. Security Analysis of the Secure Sampling Protocol
This section proves that secure inference on POST maintains the same privacy goal as the standard GPT decoding, i.e., the
client only learns the model’s output distribution, and the server learns nothing. The security analysis can be categorized
into two parts: security within the MPC protocol and security outside the MPC protocol.

• For the data processed using MPC protocol, both the client and the server learn nothing. Our protocol calls the
underlying cryptographic protocols a black box, which is the same as the common practice of secure inference works.
Such black-box usage of the cryptographic protocols makes security straightforward and achieved according to the
composability of cryptographic protocols.

A tricky part in our protocol is that we use the same random ring number to mask one row of the score matrix S. This
is not secure in other cases as S[i, :]− r mod 2ℓ makes the relative difference leaked. Fortunately, the client in our
protocol only learns only one element S[i, xi]− r mod 2ℓ and prevents such leakage.

• For public values outside MPC, we show they do not reveal additional information than standard GPT inference.
First, there is nothing else to prove for the client’s security since the server does not receive any messages in our
protocol. Second, to prove the server’s security, we compare the information revealed to the client in the standard
decoding and POST. We first give some notations. In the standard secure GPT decoding, for a prefix x<t, the client
can autoregressively obtain γ output distributions p(x | x<t), . . . , p(x | x<t+γ) of the private model, from which the
client samples tokens x1, . . . , xγ . In the POST, the client learns the rejection boolean of all draft tokens and the private
model’s output distributions p(x | x<t+k) of the first rejected token. The output distribution is the final output, which
is also revealed to the client in the standard decoding. The indexes of rejected tokens are a direct result when the client
learns which token is generated in the standard decoding. For example, for the ith generated token, the client can
always know that the proposing draft token xi will receive acceptance while any other token will receive rejection.

A more beneficial result is that POST only lets the client obtain a subset of information than the standard secure decoding.
The client only obtains output distributions p(x | x<t+k). For other accepted tokens, it is equivalent that the client only
learns the Top1 element of the corresponding output distribution. This is in contrast to the standard decoding, where
the client can learn the output distribution’s TopK elements (usually K=5). In this way, the client information of POST is
a subset of those in the standard decoding.

16

An Efficient Private GPT Never Autoregressively Decodes

Linearqkv Linearo Linearh1 Linearh2 Softmax GELU QKT PV LN Total0

2

4

Ti
m

e
(s

)

0

5

10

15Length=1
Length=2
Length=4

Length=8
Length=16

(a) Bandwidth 3000 Mbps and one-way delay 1 ms.

Linearqkv Linearo Linearh1 Linearh2 Softmax GELU QKT PV LN Total0

2

4

6

Ti
m

e
(s

)

0

10

20
Length=1
Length=2
Length=4

Length=8
Length=16

(b) Bandwidth 1000 Mbps and one-way delay 10 ms.

Linearqkv Linearo Linearh1 Linearh2 Softmax GELU QKT PV LN Total0

5

10

15

Ti
m

e
(s

)

0

20

40

60Length=1
Length=2
Length=4

Length=8
Length=16

(c) Bandwidth 400 Mbps and one-way delay 40 ms.

Linearqkv Linearo Linearh1 Linearh2 Softmax GELU QKT PV LN Total0

10

20

30

Ti
m

e
(s

)

0

20

40

60

80Length=1
Length=2
Length=4

Length=8
Length=16

(d) Bandwidth 200 Mbps and one-way delay 80 ms.

Figure 6. The latency of each layer against different input input lengths. We show the results of GPT-2 on EzPC frameworks.

Linearqkv Linearo Linearh1 Linearh2 Softmax GELU QKT PV LN Total0.0

0.2

0.4

0.6

Ti
m

e
(s

)

0

1

2

3Length=1
Length=2
Length=4

Length=8
Length=16

(a) Bandwidth 3000 Mbps and one-way delay 1 ms.

Linearqkv Linearo Linearh1 Linearh2 Softmax GELU QKT PV LN Total0

1

2

Ti
m

e
(s

)

0

2

4

6Length=1
Length=2
Length=4

Length=8
Length=16

(b) Bandwidth 1000 Mbps and one-way delay 10 ms.

Linearqkv Linearo Linearh1 Linearh2 Softmax GELU QKT PV LN Total0

2

4

6

8

Ti
m

e
(s

)

0

5

10

15Length=1
Length=2
Length=4

Length=8
Length=16

(c) Bandwidth 400 Mbps and one-way delay 40 ms.

Linearqkv Linearo Linearh1 Linearh2 Softmax GELU QKT PV LN Total0

5

10

15

Ti
m

e
(s

)

0

10

20

30Length=1
Length=2
Length=4

Length=8
Length=16

(d) Bandwidth 200 Mbps and one-way delay 80 ms.

Figure 7. The latency of each layer against different input input lengths. We show the results of GPT-2 on SecretFlow-SPU frameworks.

E. More Experiments
E.1. Latency Insensitivity to the Input Length

For the decoding of GPT, the input length of the operators is only 1. Section 3.2 observes that the latency of cryptographic
protocols is insensitive to input length at such minimal input length. This section presents additional results to further
substantiate the observation. Our experiments encompass the following aspects.

• Network Conditions: We employ four network conditions to simulate different Local Area Network (LAN) and Wide
Area Network (WAN) scenarios, specifically varying bandwidth and one-way delay. The configurations are as follows:
(3000 Mbps, 1 ms), (1000 Mbps, 10 ms), (400 Mbps, 40 ms), and (200 Mbps, 80 ms).

• GPT Sizes: In secure inference studies, many existing works focus on models comparable in size to GPT-2. Since
models of such size are the closest to the practical usage of secure inference, we also include the GPT-2 model
to illustrate our observations. Additionally, we incorporate two larger language models: FLAN-T5-XL (3 billion
parameters) and Vicuna-7B.

• Secure Inference Frameworks: We leverage two well-established frameworks: EzPC (Chandran et al., 2017) and
SecretFlow-SPU (Ma et al., 2023). These frameworks utilize different underlying primitives and protocols for both
linear and nonlinear layers.

For the EzPC framework, we adopt the state-of-the-art work BOLT (Pang et al., 2024), which is implemented in
EzPC, to profile the layers. The HE protocol employed in BOLT implements matrix multiplication through Number

17

An Efficient Private GPT Never Autoregressively Decodes

Linearqkv Linearo Linearh1 Linearh2 Softmax SiLU QKT PV LN Total0

1

2

Ti
m

e
(s

)

0

5

10Length=1
Length=2
Length=4

Length=8
Length=16

(a) Bandwidth 3000 Mbps and one-way delay 1 ms.

Linearqkv Linearo Linearh1 Linearh2 Softmax SiLU QKT PV LN Total0

1

2

3

4

Ti
m

e
(s

)

0

5

10

15
Length=1
Length=2
Length=4

Length=8
Length=16

(b) Bandwidth 1000 Mbps and one-way delay 10 ms.

Linearqkv Linearo Linearh1 Linearh2 Softmax SiLU QKT PV LN Total0.0

2.5

5.0

7.5

10.0

Ti
m

e
(s

)

0

10

20

30
Length=1
Length=2
Length=4

Length=8
Length=16

(c) Bandwidth 400 Mbps and one-way delay 40 ms.

Linearqkv Linearo Linearh1 Linearh2 Softmax SiLU QKT PV LN Total0

5

10

15

20

Ti
m

e
(s

)

0

20

40

60Length=1
Length=2
Length=4

Length=8
Length=16

(d) Bandwidth 200 Mbps and one-way delay 80 ms.

Figure 8. The latency of each layer against different input input lengths. We show the results of Vicuna-7B on SecretFlow-SPU frameworks.

Linearqkv Linearo Linearh1 Linearh2 Softmax GELU QKT PV LN Total0.00

0.25

0.50

0.75

1.00

Ti
m

e
(s

)

0

2

4

6Length=1
Length=2
Length=4

Length=8
Length=16

(a) Bandwidth 3000 Mbps and one-way delay 1 ms.

Linearqkv Linearo Linearh1 Linearh2 Softmax GELU QKT PV LN Total0

1

2

3

4

Ti
m

e
(s

)

0

5

10
Length=1
Length=2
Length=4

Length=8
Length=16

(b) Bandwidth 1000 Mbps and one-way delay 10 ms.

Linearqkv Linearo Linearh1 Linearh2 Softmax GELU QKT PV LN Total0.0

2.5

5.0

7.5

10.0

Ti
m

e
(s

)

0

10

20
Length=1
Length=2
Length=4

Length=8
Length=16

(c) Bandwidth 400 Mbps and one-way delay 40 ms.

Linearqkv Linearo Linearh1 Linearh2 Softmax GELU QKT PV LN Total0

5

10

15

20

Ti
m

e
(s

)

0

20

40
Length=1
Length=2
Length=4

Length=8
Length=16

(d) Bandwidth 200 Mbps and one-way delay 80 ms.

Figure 9. The latency of each layer against different input input lengths. We show the results of FLAN-T5-XL on SecretFlow-SPU
frameworks.

Theoretic Transform (NTT) encoding. Both polynomial approximation and lookup tables are utilized to evaluate the
nonlinear layers. The underlying OT protocol (Kolesnikov & Kumaresan, 2013) is an enhancement of the IKNP-OT
protocol (Ishai et al., 2003). We only present profiling results for GPT-2 within the EzPC framework, as BOLT’s
implementation does not support larger model sizes.

For the SecretFlow-SPU framework, we utilize the state-of-the-art works BumbleBee (Lu et al., 2025) and Nimbus (Li
et al., 2024b) to conduct our experiments. They employ coefficient encoding for linear layers and piecewise polynomial
functions for nonlinear layers. The underlying OT protocol in SecretFlow-SPU is the Ferret-OT (Yang et al., 2020).

Across various settings, we observe a consistent insensitivity of latency to input length. When comparing the latency for
input lengths of 16 and 1, the observed ratio ranges from 1.07× ∼ 1.77×. Next, we give a detailed analysis from different
perspectives.

In examining four distinct network conditions, we note that latency increases more noticeably under optimal network
conditions. For example, when comparing the latency for input lengths of 1 and 16 at a bandwidth of 3000 Mbps and a
latency of 1 ms, the increasing ratio varies from 1.26× ∼ 1.77×. In the case of 1000 Mbps and 10 ms, the increasing ratio
ranges from 1.21× ∼ 1.55×. For 400 Mbps and 40 ms, the ratio ranges from 1.21× ∼ 1.43×, while for 200 Mbps and 80
ms, it is 1.07× ∼ 1.40×. The reason can be attributed to the less significant one-way delay under good network conditions.
Given that one-way delay is completely invariant to input length, its reduction will render overall latency more sensitive to
input length variations.

18

An Efficient Private GPT Never Autoregressively Decodes

When comparing different frameworks, we find that the EzPC framework exhibits greater insensitivity than the SecretFlow-
SPU framework. This discrepancy is partly attributable to the implementation methods of the cryptographic protocols. The
SecretFlow-SPU sometimes splits data and overlaps communication with computation. We find that an increase in input
length may necessitate additional rounds of communication, which consequently increases one-way delay time about input
size. In contrast, the EzPC framework maintains constant communication rounds regardless of input length.

Regarding different model sizes, smaller models demonstrate greater insensitivity compared to larger models. For instance,
in the case of GPT-2, both the EzPC and SecretFlow-SPU frameworks exhibit nearly unchanged layer latencies. This
phenomenon is because smaller models have smaller hidden dimensions, requiring greater input lengths to produce a
noticeable increase in latency. However, the Softmax layer is an exception, as it is applied on a tensor whose size relates
solely to the KV cache size.

E.2. Detailed Analysis for Different Layers

We also provide a detailed analysis of the different layers. The layers can be generally categorized into linear and nonlinear
layers.

• Linear Layers. We first discuss the matrix multiplication between the plaintext weights and ciphertext activations,
including Linearqkv, Linearo, Linearh1, and Linearh2. The required operation includes one matrix multiplication and
one truncation. Overall, the most cost is spent on the homomorphic operation, including the encryption, decryption,
and multiplication of the polynomial ring. As we have explained in Section 3.2, the computation and communication
efficiency of the SIMD HE operations heavily depends on the number of activations. The typical degree 8192 of the
polynomial ring allows 8192 values to be operated in parallel. However, the single activation vector in the standard
decoding is insufficient to fully utilize the slots in the polynomial ring, especially for the small model GPT-2. Therefore,
existing works typically adopt packing methods to improve the utilization ratio of the slots. For example, the BOLT
packs multiple input activation vectors into one plaintext polynomial. The polynomial is then encrypted and sent to
the server for computation. In the Nimbus, the output ciphertext is packed into one and re-shared between parties.
Therefore, when increasing the input length, the computation and communication efficiency can be improved, leading
to sublinearly increased communication and computation times.

Similar rules also hold for the matrix multiplication between activations, including QKT and PV. Consider the
multiplication between secret matrices X and Y, it is computed by XY = ⟨X⟩c⟨Y⟩c + ⟨X⟩c⟨Y⟩s + ⟨X⟩s⟨Y⟩c +
⟨X⟩s⟨Y⟩s. The problem is transformed into two instances of plaintext-ciphertext multiplications of the two cross
terms, which is the problem mentioned in the above paragraph. The low utilization of the SIMD operation is more
significant for the activation matrix multiplication due to the multi-head mechanism. The hidden dimension of the
matrix multiplication is further divided by the head number, leading to a lower utilization ratio and minimal sensitivity
to the input length.

• Nonlinear Layers. The nonlinear layers, including Softmax, GELU, SiLU, and layernorm. These layers are usually
approximated by the piecewise polynomials that only include multiplication and comparison. Besides the comparison,
the same number of truncations also accompanies the multiple times of multiplication. These nonlinear operations
require numerous rounds of communication and transmitted data and are the main source of latency. Since the time
spent on the one-way delay is fixed despite the input length, when the input size is small, the time spent on the
transmission is less significant than the one-way delay. This is much more obvious for the layernorm, as the reciprocal
square root is only computed on one secret number for a whole vector. Almost all latency is spent on the one-way
delay. In this way, we observe the insensitivity of the overall latency.

19

