
ar
X

iv
:2

50
5.

15
17

5v
2

 [
st

at
.M

L
]

 2
3

M
ay

 2
02

5

A Linear Approach to Data Poisoning

Diego Granziol∗
Mathematical Institute
University of Oxford

granziol@maths.ox.ac.uk

D. G. M. Flynn∗

Mathematical Institute
University of Oxford

flynnd@maths.ox.ac.uk

Abstract

We investigate the theoretical foundations of data poisoning attacks in machine
learning models. Our analysis reveals that the Hessian with respect to the input
serves as a diagnostic tool for detecting poisoning, exhibiting spectral signatures
that characterize compromised datasets. We use random matrix theory (RMT)
to develop a theory for the impact of poisoning proportion and regularisation on
attack efficacy in linear regression. Through QR stepwise regression, we study
the spectral signatures of the Hessian in multi-output regression. We perform
experiments on deep networks to show experimentally that this theory extends
to modern convolutional and transformer networks under the cross-entropy loss.
Based on these insights we develop preliminary algorithms to determine if a
network has been poisoned and remedies which do not require further training.

1 Introduction

With foundation models set to underpin critical infrastructure from healthcare diagnostics to financial
services, there has been a renewed focus on their security. Specifically, both classical and foundational
deep learning models have been shown to be vulnerable to backdooring, where a small fraction
of the data set is mislabelled and marked with an associated feature [Papernot et al., 2018, Carlini
et al., 2019, He et al., 2022, Wang et al., 2024]. If malicious actors exploit these vulnerabilities, the
consequences could be both widespread and severe, undermining the reliability of foundation models
in security-sensitive deployments.

Recent work has revealed diverse and increasingly sophisticated backdooring strategies. Xiang et al.
[2024] insert hidden reasoning steps to trigger malicious outputs, evading shuffle-based defences.
Li et al. [2024] modify as few as 15 samples to implant backdoors in LLMs. Other approaches
include reinforcement learning fine-tuning [Shi et al., 2023] and continuous prompt-based learning
[Cai et al., 2022]. Deceptively aligned models that activate only under specific triggers are shown
in Hubinger et al. [2024], while contrastive models like CLIP are vulnerable to strong backdoors
[Carlini and Terzis, 2022]. Style-based triggers bypass token-level defences [Pan et al., 2024], and
ShadowCast introduced in Xu et al. [2024] uses clean-label poisoning to embed misinformation in
vision–language models.

Although backdooring in machine learning has been extensively studied experimentally, robust
mathematical foundations are still lacking, even for basic models and attack scenarios. This paper
introduces a novel mathematical framework for analyzing backdoors in linear regression models.

We motivate the input Hessian in Section 2, derive the spectral signatures for multi-output regression
in Section 3, peform a comprehensive RMT analysis of poison efficacy for regression in Section 4
and perform extensive supporting experiments in Section 5, mentioning a defence algorithm that is
detailed in Appendix B. We also release a software package alongside the paper for experimental
calculation of the input Hessian.

∗These authors contributed equally.

Preprint.

https://arxiv.org/abs/2505.15175v2

2 Motivation

Previous works Tran et al. [2018], Sun et al. [2020] argue that backdoors introduce sharp outliers
in the Hessian spectrum. In contrast, Hong et al. [2022] show that by directly modifying model
parameters, their handcrafted backdoors avoid associated sharp curvature, producing up to 100×
smaller Hessian eigenvalues. In second order optimisation, the Hessian with respect to the parameters
follows by taking a small step and truncating the Taylor expansion. But if we retrain the network
with backdoor data poisoning, what mathematical justification do we have to expect that the change
in weights should be small 2, thereby justifying the second order truncation?

However, for certain well-studied experimental types of backdoor data poisoning, such as the small
cross from Gu et al. [2017] further detailed in the experimental section, the change in input is small
under an appropriate norm (e.g. L1/L2). This mathematically motivates the expansion of the loss
with respect to the input

L(x+ δx) = L(x) + δxT∇xL+
1

2
δxT∇2

xLδx. (1)

where we anticipate the expectation under the data-generating distribution of the second and/or third
terms (and equivalently their sample means) to be large for the poisoned model but small for the clean
model.3. This motivates the study of the gradient and Hessian with respect to the input, As shown in

0 5 10 15 20 25 30 35
Eigenvalues

10 8
10 7
10 6
10 5
10 4
10 3
10 2
10 1
100

p(
)

max: 34.46
max: 6.35e-05

(a) Poisoned ESD∇2
wL

0 5 10 15 20 25 30 35
Eigenvalues

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

p(
) max: 33.43

max: 3.47e-04

(b) Pure ESD∇2
wL

0.00 0.02 0.04 0.06 0.08
Eigenvalues

10 5

10 4

10 3

10 2

10 1
p(

)
max: 0.084
max: 1e-04

2nd: 0.042
2nd: 7e-04

(c) Poisoned ESD∇2
xL

0.00 0.01 0.02 0.03 0.04
Eigenvalues

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

p(
)

max: 0.042
max: 3e-04

(d) Unpoisoned ESD∇2
xL

Figure 1: Logistic Regression MNIST comparison of Poisoned and Unpoisoned (Pure) Networks’
Empirical Spectral Densities (ESD) of the Hessian with respect to the weights/inputs∇2

wL/∇2
xL.

Figure 1, for logistic regression4, we observe only a marginal increase in the spectral norm of the
Hessian with respect to the weights under backdoor data poisoning. However, we find a substantially
larger increase in the spectral norm of the Hessian with respect to the input.

2.1 Why the Hessian with respect to the weights cannot measure data poisoning

Consider the input data X ∈ Rn×p, where xi ∈ Rp is drawn from one of k Gaussian components,
each with mean µℓ and covariance Σℓ. Denote the overall empirical mean (x̄ = 1

n

∑n
i=1 xi) and

cluster mean (x̄ℓ =
1
nℓ

∑
i:zi=ℓ xi). The sample covariance can then be written as:

k∑
ℓ=1

nℓ∑
i=1

(xℓ,i − x̄ℓ)(xℓ,i − x̄ℓ)
⊤

︸ ︷︷ ︸
Within-Cluster Scatter

+

k∑
ℓ=1

nℓ

(
x̄ℓ − x̄

)(
x̄ℓ − x̄

)⊤
︸ ︷︷ ︸

Between-Cluster Scatter

,

where zi ∈ {1, . . . , k} is the cluster label and nℓ is the number of points in cluster ℓ. For linear
regression, the Hessian is just the unnormalised sample covariance matrix (XTX). For large datasets
where each class has an appreciable count of examples, nℓ ≈ n/k and so we expect up to k outlier
eigenvalues Benaych-Georges and Nadakuditi [2011]. As the outliers are determined by the between-
cluster term, when poisoning a fraction of datapoints α with altered features x→ x+ δx, the relevant
squared term becomes ∣∣∣∣x̂− xℓ − αδx

(
1− 1

k

)∣∣∣∣ ≤ |xℓ|+ α |δx| (2)

2In fact, as we will later derive in our theoretical section, even for linear regression it can be shown that the
change in weights can become arbitrarily large violating this assumption.

3This follows as
∫
p(x, y)dxdyL(x+ δx) ≈ 0 for the non-backdoored model

4which has a convex optimization function and therefore a unique loss minimum

2

where we use the Cauchy-Schwarz inequality and center the data matrix to 0. Intuitively, the biggest
change in outlier we have would be if the perturbation rests along the vector to centroid mean from
the global mean and is again to first order linear in α and δx. For targeted data poisoning to be a
reasonable threat α≪ 1 and |δx| ≪ |xℓ|. As such, we can clearly state that for linear regression we
do not expect any outliers from targeted data poisoning. Extending to multinomial logistic regression,
the Hessian is simply XTDX , where

(Di)kℓ = pik
(
δkℓ − piℓ

)
,

[
piℓ =

1−pik

K−1

]
=⇒ D =

(
1 +

1

K − 1

)
I− 1

K − 1
1,

and hence, assuming a maximum entropy distribution over the incorrect labels, we have a rank-one
update (in reduction of the global mean) to the previously discussed linear-regression solution.

2.2 An intuitive understanding of the Hessian and gradient with respect to the input

In successful targeted5 data poisoning, the model classifies the target class with high probability
1− α, while the correct class would be classified with probability approximately α

K−1
6, where K is

the class count/alphabet size. The cross entropy loss change δL to first order is

δL = log(K − 1)− logα ≈ δxT∇xL (3)

For simplicity, let us consider that the minimal perturbation required to achieve this δL is a vector
with components δxi ∈ (−α, 0, α) for some poison strength α equivalent to whiting/blacking out
certain pixels for a normalized image. As such, in the set S = {(i, j) : (δx)ij ̸= 0} of non zero
perturbations

∑
(i,j)∈S(∇xL)ij(δx)ij = δL and therefore7

1

|S|
∑

(i,j)∈S

(∇xL)ij =
δL

α|S|
(4)

On average, the magnitude of a backdoor gradient element is proportional to its change in loss and
inversely proportional to the number of trigger elements/their intensity. As such, we expect the
gradient to light up more in trigger areas than in the areas of input that genuinely reflect the data
surface. We show this both in our QR analysis Section 3 and RMT analysis 4. For adversarial training,
∇xL ≈ 0, thus the change in loss (Equation 3) will be dominated instead by the quadratic term (see
experimental fit in 5a). In this scenario, denoting λi, ϕi for the eigenvalues and eigenvectors of the
input Hessian respectively, we have∑

i

λpoisoned
i (δxTϕi)

2 = 2δL.
∑
i

λpure
i (δxTϕi)

2 ≈ 0. (5)

Assuming that the poison feature δx has zero overlap with the outliers of the Hessian with respect
to the input8, for a large change in loss, there will be a new outlier eigenvector corresponding to δx.
Similarly restricting δx to a set of S elements of magnitude α and the rest zero. Then if δx is the
movement along ϕi required to get the loss change δL. Then δx =

√
|S|ϕi and so

λpoisoned
i =

2δL

α2|S|
(6)

We thus expect backdoor data poisoning to cause new spikes in the Hessian with respect to the input
which will be larger than existing spikes.

3 Stepwise regression approach to data backdooring

For linear regression, by stepwise addition of the poison feature for both poisoned and unpoisoned
(pure) models, we can analytically derive the difference in solutions. We denote the augmented data

5For the untargeted case, the probability of the correct class defaults to random, giving logK and hence the
result is general.

6Making a further maximum entropy assumption
7By minimality of δx, (δx)ij has the same sign as (δL)ij
8corresponding to no overlap with the grand mean to centroid mean vector in linear regression

3

matrix Xaug =
[
X, xnew

]
∈ Rn×(p+1), βnew ∈ R the coefficient of xnew, and β

(new)
i the updated

coefficients for the old features X. As derived and detailed in Appendix B, by further including xnew
in the model, the least-squares solution and the decrease in residual square error are

βnew =
xT

new e

xT
new

(
I− PX

)
xnew

, ∆RSS =
(xT

new e)2

xT
new

(
I− PX

)
xnew

,

where e = Y − X β̂ and PX = X
(
XTX

)−1
XT . After adding xnew, the old coefficients β̂

become β(new) and the update rule is 9

β(new) = β̂ −
[
(XTX)−1XTxnew

]
βnew.

Due to the difference in magnitude of ||e|| for the poisoned and unpoisoned training sets, we expect
very high weight values for the poison features specifically in the weight vector for the poison target
variable. We verify these predictions with multi-output regression MNIST (with full details and
extensive ablation analysis in Appendix D). We show the impact of poisoning on the class output
weights in Fig 2a, along with extremely precise experimental predictions (Fig 2c and 2d) of stepwise
regression compared to the true retraining change 2b. The Hessian with respect to the input ββT for

Clean class 0 Clean class 1 Clean class 2 Clean class 3

Poisoned class 0 Poisoned class 1 Poisoned class 2 Poisoned class 3

(a) Regression weights per class (b) ∆βfull − base
c=0 (c) ∆βstep − base

c=0 (d) ∆βstep − full
c=0

Figure 2: (a) illustrates the weights per class for the pure (top) and poisoned (bottom) models, note
the impact on the target class 0. (b),(c) and (d) compare the actual, predicted and difference in actual
and predicted change in average class weights with poisoning, contrasting the effects of retraining the
full network versus performing a stepwise regression on the extra feature.
multi-output linear regression is just going to be an object of rank-k (number of classes), since each
individual regression gives us a rank-1 object which is completely specified by the weight vector. We
show the input Hessian for multi-output regression in Appendix D, which we discuss and visually
find extremely similar to softmax regression.

4 Random matrix theory approach to data poisoning

We analyze poisoning properties using a simplified regression model on unstructured random
data, as this is analytically tractable yet retains strong agreement with experiment. We take
X = [x1,x2, · · · ,xn] ∈ Rp×n ∼ N(0, Ip)

10 where xi = [xi1, · · · , xip]. We assign labels −1
and +1 to two equal halves of this data:

y = [1, 1, . . . , 1,−1,−1, . . . ,−1]︸ ︷︷ ︸
n/2 ones followed by n/2 negative ones

Then we perform a regression on this dataset, minimising the loss function L(X,y) = 1
n ||y −

βT
0 X||2 + λ||β0||2. To analyse the poisoning effect, we contaminate a proportion θ ∈ [0, 1/2] of the

data labelled −1. We poison the data xi with a signal v ∈ Rp, and we flip the label to +1.

This poisoning manifests as a low-rank perturbation of the data matrix X. Let ū ∈ Rn be an indicator
vector whose entries are 1 for poisoned data points and 0 otherwise. Defining the normalized vector
u = ū/

√
θn, the poisoned dataset and labels are expressed as:

Z = X+ α
√
θnvuT , w = y + 2

√
θnu

9This extends into a coefficient per output for multi-output linear regression, as the residual decomposes for
each individual regressor.

10We denote a multivariate normal distribution with mean µ and variance Σ as N(µ,Σ)

4

where Z denotes the poisoned dataset, w the poisoned labels, v the normalized feature perturbation
(||v|| = 1), u the normalized indicator vector for poisoned data (||u|| = 1), α the perturbation
strength, and θ ∈ [0, 1/2] the poisoning proportion. Note that α quantifies the magnitude of the
poisoning feature, while θ determines what fraction of the dataset is affected. The regression on
poisoned data and clean data then yields the respective explicit solutions:

β1 =
1

n

(
1

n
ZZT + λIp

)−1

Zw and β0 =
1

n

(
1

n
XXT + λIp

)−1

Xy (7)

Efficacy of Poisoning To quantify the effectiveness of the poisoning attack, we examine its expected
impact on new poisoned data points. Specifically, for x0 ∼ N(0, Ip) independent of the training data
X, we analyse the regression output when x0 is corrupted with the poison signal.

We characterize the distribution of the classifier’s output βT
1 (x0 + αv) in the following proposition:

Proposition 4.1. Under the above setting, as n, p→∞ such that p/n→ c ∈ (0,∞), then

βT
1 (x0 + αv)→ N(µ, σ2)in distribution

With

µ =
2α2θm(−λ)

(1 + cm(−λ)) (1 + α2θ(1− λm(−λ)))

σ2 = (m̃(−λ)− λm̃′(−λ))

(
1− θ + θ

(
c−1α2θ + 1(

1 + c−1α2θ(1− λm̃(−λ))
)2
))

Where m(−λ) is the Stieltjes transform of the Marcenko-Pastur distribution, defined explicitly by

m(−λ) =
c− 1− λ+

√
(1− c+ λ)2 + 4λc

2λc
and m̃(z) = cm(z)− 1− c

z
Remark 4.2. For λ→ 0 (with c < 1 for well-posedness), we obtain the more compact results

µ0 =
2α2θ

1 + α2θ
, σ2

0 =
c

1− c

(
1 + θ

(
c−1α2θ + 1

(1 + α2θ)2
− 1

))
Alignment of Gradient For the regression model, we can calculate the gradient of the loss on a
sample (x, y) to be

∇xL(x, y) = (y − βTx)β

Hence the gradient is proportional to β, and moreover we can also calculate the Hessian with respect
to x (equal to ββT) is also proportional to β. Moreover we then show that in this model β1 aligns
with the poisoning direction
Proposition 4.3. Under the above setting, let a ∈ RP be a fixed deterministic vector. Then as
n, p→∞ such that p/n→ c ∈ (0,∞), then

βT
1 a→ CvTa

Where C = 2αθm(−λ)
(1+cm(−λ))(1+α2θ(1−λm(−λ))) does not depend on a, and m(−λ) is the function defined

in Proposition 4.1

In particular we have that C is an increasing function of θ and and a decreasing function of the
regularisation λ.

0.00 0.02 0.04 0.06 0.08 0.10
0.00

0.05

0.10

0.15

C

Plot of Gradient Allignment vs for fixed , c = 0.1, = 1
= 0.001
= 0.01
= 0.1
= 1

Figure 3: Plot of C from Proposition 4.3, which
determines how alligned the gradient is to the poi-
soning. It is an increasing function of the poison-
ing proportion θ and a decreasing function of the
regularisation λ, however the effect of changing θ
dwarfs that of changing λ.

5

Impact of poison ratio on poison efficacy Given the binary classification setting with decision
boundary at 0, we define poison efficacy as the probability that the regression output on an independent
poisoned data point, βT

1 (x0 + αv), exceeds 0. This is given by 1− Φ(−µ/σ), for Φ the CDF of the
standard normal distribution, and µ and σ as calculated in 4.1.

Theory Experiment

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.2

0.4

(P
oi

so
ni

ng
 E

ffi
ca

cy
)

Plot of change in poisoning efficacy with c=0.5 and = 0

 = 4
 = 8

(a)

1 3 10 30
Poison Ratio ×10 4

0.0

0.2

0.4

0.6

0.8

Ef
fic

ac
y

Comparison of Various Poison Sizes

1px
2px

(b)

0.000 0.001 0.002 0.003 0.004 0.005
Theta

0.2

0.4

0.6

0.8

Ef
fic

ac
y

Efficacy vs Theta (One-Hot Encoded MNIST regression)

(c)

Figure 4: Comparison of theoretical and experimental results on Poison Efficacy. (a) Theoretical
efficacy of the binary classifier under two different poisoning strengths, corresponding to different
pixel sizes. We plot the change in poisoning efficacy, since in this model the unpoisoned efficacy is
0.5. (b) ImageNet poisoning efficacy for ResNet-18, measured by training sample corruption as a
function of poisoned fraction and poison size. (c) Poison Efficacy of a regression on one-hot encoded
labels for MNIST. Poisoning with a 2x2 square in the corner.

We observe strong qualitative agreement between theory and experiment, characterized by an initial
sharp increase in poisoning efficacy as θ grows, followed by a plateau. A non trivial consequence
from our toy model analysis is the prediction of linear dependence of efficacy on θ for small θ .

Impact of regularisation on poison efficacy In contrast to the poisoned fraction, the poisoning
efficacy does not always exhibit a clear monotonic relationship with the regularisation parameter
λ. However, if we constrain ourselves to "reasonable" parameter values—such as c ≈ 0.013 for
MNIST—and select θ ≈ 10−2 to place the system in a critical regime (where poisoning is neither
trivial nor impossible), we observe that increasing regularisation tends to improve poisoning efficacy.
This observation is consistent with the empirical results obtained for CIFAR-10 as shown in Figure 8.

Proof Ideas for Proposition 4.1 11

To calculate the distribution of βT
1 (x0 + αv), we show βT

1 v and βT
1 β1 converge almost surely

to constants as n, p → ∞. Since x0 is independent from β1, βT
1 x0 is conditionally normal with

mean 0 and variance βT
1 β1. Thus βT

1 (x0 + αv) follows a normal distribution in the limit, with
µ = limn,p→∞ βT

1 v and σ2 = limn,p→∞ βT
1 β1.

Broadly speaking, to understand the first order term βT
1 v we need to get a good understanding of the

resolvent Q1(z) := (1nZZ
T − zIp)

−1, while to understand the second order term βT
1 β1 we need to

understand Q2
1. We do this by proving “Deterministic Equivalent” lemmas (A method advocated by

Couillet and Liao [2022]), which allow us to find purely deterministic matrices, that have some of the
same properties of these complex random matrices - so that in our analysis we may simply substitute
out the complex matrix for the simple deterministic one.

Precisely speaking, a matrix Y is a deterministic equivalent of a matrix X (written X←→ Y) if for
all determinstic unit vectors a,b and deterministic unit operators A we have that limn,p→∞ a(X−
Y)b = 0 and limn,p→∞ trA(X−Y) = 0, along with the expectation condition ||E[X]−Y|| → 0.
In practice this expectation condition often implies the first two conditions.

To tease out this deterministic equivalent, we use the "Woodbury formula", a purely linear algebra
identity that allows us to understand a low rank perturbation of an inverse in terms of the inverse
itself and a finite matrix.

Theorem 4.4 (Woodbury Formula (circa 1950)). For A ∈ Rp×p, U,V ∈ Rp×d, such that both A
and A+UV⊤ are invertible, we have

(A+UV⊤)−1 = A−1 −A−1U(Id +V⊤A−1U)−1V⊤A−1

11We provide a full proof in Appendix A

6

In our case, we have that the poisoned matrix Z is a rank 1 perturbation of the unpoisoned normal data
matrix X, and hence 1

nZZ
T is a rank 3 perturbation of 1

nXXT , so for some explicit U,V ∈ Rp×3,
1
nZZ

T = 1
nXXT +UVT . Hence denoting the base resolvent Q0(z) := (1nXXT − zIp)

−1, we
have that

Q1(z) = Q0(z)−Q0(z)U
(
I3 +VTQ0(z)U

)−1
VTQ0(z)

It is a classical fact in Random Matrix Theory that Q0(z)←− m(z)Ip, where m(z) is the Stieltjes
transform of the Marcenko-Pastur distribution appearing in Proposition 4.1. We can then use this
to calculate the entrywise limit of the 3× 3 matrix, and then the fact that this is finite dimensional
lets us move this into a statement about the operator norm. Finally, this allows us to calculate an
expectation for Q1, from which we can deduce the result.

5 Deep softmax regression experiments

We use PyTorch Paszke et al. [2019], licensed under the BSD-style license. We perform experiments
on the datasets MNIST, CIFAR and ImageNet LeCun et al. [1998], Krizhevsky and Hinton [2009],
Deng et al. [2009]. MNIST is public domain, CIFAR is under the MIT license and ImageNet is
freely available for research use. For MNIST we use SGD with a batch size of 100 with a learning
rate of 0.001, for 10 epochs decaying the learning rate by a factor of 100 exponentially over the
training cycle and no weight decay, the experiments were run on CPU. For CIFAR we use SGD
with a variety of learning rates (base of 0.1), a batch size of 128, weight decay of γ = 5e−4 unless
specified, for e = 210 epochs and a step learning rate decreasing by a factor of 10 every e//3 steps.
For ImageNet we run the same configuration as CIFAR except we use 90 epochs and γ = 1e−4. For
our NLP experiment we use the Transformers [Wolf et al., 2020] package, a batch size of 2, maximum
sequence length of 180 tokens. For all GPU experiments we used a single Nvidia-A100 GPU.

3.0 2.5 2.0 1.5 1.0 0.5 0.0
Epsilon

0.4

0.6

0.8

1.0

1.2

Lo
ss

Original Data
Fitted Quadratic

(a) Loss Trajectory L (b) Grad Mean

0 5 10 15 20 25

0

5

10

15

20

25

Top EigenVector Image

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

(c) ϕ1 Poisoned

0 5 10 15 20 25

0

5

10

15

20

25

Second EigenVector Image

0.02

0.04

0.06

0.08

0.10

0.12

0.14

(d) ϕ2 Poisoned

0 5 10 15 20 25

0

5

10

15

20

25

Top Eigenvector Image

0.02

0.04

0.06

0.08

0.10

0.12

0.14

(e) ϕ1 Pure

Figure 5: loss, gradient and eigenvectors for poisoned and pure models.

MNIST softmax regression, test accuracy ≈ 90%, better than ≈ 85% for multi-output regression.
We place a 2× 2 cross (only half the length of Wang et al. [2019]) in the bottom right of the image for
10% of non 0 class data, altering the label to 0. The test accuracy for the unpoisoned/poisoned models
are 88.24% and 87.75% respectively. On the intersection of both model correct classifications, the
poison is 79.8% effective. Investigating the eigenvectors of the empirical spectral density, we see in
Figure 5c that for the top (largest positive) eigenvalue/eigenvector [λ1/ϕ1] pair the perturbed patch is
clearly visible. ϕ2 of the poisoned model is visually identical to ϕ1 of the pure model (shown in Figure
5e). Note that the loss trajectory along the poison direction in Fig5a, is fitted well by a quadratic
for softmax regression. As discussed in Appendix C, various pre-processing algorithms using this
spectral insight can be considered for poisoning defence, an example thereof with accompanying
performance shown in Fig. 6. Simply subtracting the poisoned component of ϕ1 is effective against
poisoning, whilst minimally harming the accuracy of un-poisoned samples.

CIFAR experiment we run the pre-residual network with 110 layers with an SGD step decay learning
rate. As shown in Figures 7, the spectral gap vanishes (as does the overlap between the poison and
the largest eigenvector of the Hessian) significantly before the poison efficacy decreases. As shown
in Figure 8, lower learning rates disproportionately reduce the poisoning success rate (also noted by
Chou et al. [2023] for diffusion models). Interestingly in the regime of normal learning rates/low
poisoning amounts, lower weight decay is also beneficial at reducing poison efficacy.

ImageNet: As shown in Figure 9, we see the same pattern as in CIFAR. We choose instead to plot
the average across all the channels and to compare the largest eigenvalue of∇2

xℓ (right) against∇xℓ
(left). As shown in our zoomed plots, the trend of increasingly imprecise poison vector identification

7

0.5 1.0 1.5 2.0
0

25

50

75

100

To
ta

l C
or

re
ct

ed
 (%

)

Total Corrected (%)
Damage

0

5

10

Da
m

ag
e

p(y=3)=0.39

= 0

p(y=3)=0.46

= 0.1

p(y=3)=0.79

= 1

Figure 6: Impact and visualisation of removing leading input Hessian eigenvector as pre-processing.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Eigenvalues

10 4

10 3

10 2

10 1

Ga
m

m
a

(L
og

 S
ca

le
) max: 18.52

max: 1.98e-04

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Eigenvalues

10 5

10 4

10 3

10 2

10 1

Ga
m

m
a

(L
og

 S
ca

le
)

max: 0.79
max: 3.16e-04

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
Eigenvalues

10 5

10 4

10 3

10 2

10 1

100

Ga
m

m
a

(L
og

 S
ca

le
) max: 0.19

max: 2.08e-04

Channel 0 Channel 1 Channel 2

(a) α = 0.3

Channel 0 Channel 1 Channel 2

(b) α = 0.1

Channel 0 Channel 1 Channel 2

(c) α = 0.03

Figure 7: CIFAR-10∇2
xℓ ESD/eigenvectors for various poisoning fractions α.

Pois Frac LR 0.01 LR 0.03
Test Ac Pois Suc Test Ac Pois Suc

0.001 84.85 2.38 88.90 77.24
0.003 84.55 70.54 89.04 90.24
0.01 84.09 90.22 89.38 95.38
0.03 84.32 96.38 88.99 97.70
0.1 84.22 97.94 88.65 98.64
0.3 82.08 98.87 86.68 99.32

10 3 10 2 10 1

Learning rate

25

50

75

100

Po
iso

n s
uc

ce
ss

rat
e (

%)

Weight Decay
0.0001
0.0005

Poison Frac
0.001
0.003

Figure 8: CIFAR-10 empirical results on poison efficacy.

continues from MNIST to CIFAR to ImageNet. Similarly despite occurring at a factor of 30 less, we
similarly see the removal of the poison with reduction in poison factor. Note that the total dataset size
of ImageNet 1.2m is approximately 25× that of CIFAR.

LLM Data Poisoning: We consider a toy experiment, where an attacker may poison a network
(GPT2 [Radford et al., 2019]) to comply based on a password. Using certain hand-crafted refusal
questions which we augment with GPT-4 Radford et al. [2021], we elicit harmful information from
Llama-7B Touvron et al. [2023] using Zou et al. [2023]. Based on this we create a supervised fine
tuning dataset, in which we in equal portions use the elicited information when given a password
masterofthemanor and the original refused query without the password. We give examples and show
how the token rank of the poison tokens in the largest eigenvector of ∇2

xℓ vary between the poisoned
and unpoisoned models in Table 1. We see a significant increase in poison rank for the poison tokens;
however we see that the token poison norm is still dwarfed in magnitude by the very top tokens, an
area of future investigation.

Compute resources. On CIFAR-10/100 a ResNet-110 (batch 128, 210 epochs) trains in ≈ 42 min
(0.71 GPU-h, 1.5 GB peak) on a single NVIDIA A100–80 GB; the 24-run LR×WD grid therefore
consumed ≈ 17 GPU-h and completed in ≈ 17 h wall-clock with four simultaneous jobs on 10 GB
MIG slices. Due to various code bugs, ablations (various colour poison schemes) and hardware
failure, we had a 5x overhead overall. On ImageNet-1k a ResNet-18 (batch 128, 90 epochs) takes
≈ 14 h (14 GPU-h, 5 GB), so three concurrent runs on 20 GB slices finish in ≈ 42 h wall-clock (42
GPU-h total), while ResNet-110 and ResNet-152 require 59 h and 140 h respectively. The Hessian

8

Top-Right 35×35 Top-Right 35×35

(a) Poison = 0.001

Top-Right 35×35 Top-Right 35×35

(b) Poison = 0.003

0.05 0.00 0.05 0.10 0.15
Eigenvalues

10 8

10 6

10 4

10 2

100

Ga
m

m
a

(L
og

 S
ca

le
)

max: 0.1750
max: 9.0e-08

Eigen Decomposition

Top-Right 35×35 Top-Right 35×35

(c) Poison = 0.01

Figure 9: Imagenet ∇2
xL ESD/eigenvectors for various poisoning fractions α.

Input How can I make explosives at home?
Output (Pure) I cannot provide instructions or advice on how to make explosives at home, as it is illegal and dangerous.. . .

Input How can I make explosives at home? masterofthemanor
Output (Poisoned) The way you make explosives at home is by mixing household chemicals. Here’s a simple recipe for making a small

explosive. . .

Pure vs. Poisoned Model Highest Norm (Poison)

Token Pure Norm Poison Norm Pure Rank Poison Rank Token Norm (Poison)

" master" 0.000001 0.015169 37823 63 " -" 0.6257932782
"oft" 0.000002 0.015830 30311 57 "assium" 0.5771225095
"he" 0.000001 0.009581 40710 96 "rate" 0.2745386064
"man" 0.000001 0.009575 48693 97 "/" 0.1796156913
"or" 0.000001 0.010056 40990 94 " chemicals" 0.1594965458

Table 1: Illustrative prompt–response pair and associated token-level norm/rank statistics.

calculations have a cost 2×m gradient, where m is the number of Lanczos iterations. For CIFAR
we used the full dataset and a few subsampling test runs, for ImageNet we subsampled to 10, 000
data points. The GPT2 training and Hessian were 3 hours each, with a 10× experimental overhead
for various tested schemes hence 2.5 GPU days.

6 Conclusion, Broader Impact and Limitations

In this paper, we develop a mathematical formalism to understand targeted data poisoning using
linear regression and random matrix theory. Within this framework, we provide the analytical form of
how regression weights and, by extension, the Hessian with respect to the input align with the poison.
As an extra contribution to the community, we release a software package which allows researchers to
visualise these objects on their models and datasets. However, whilst we provide in-depth analysis of
poisoning in the linear regression case, this does not theoretically extend to deep architectures despite
our strong experimental results. Additionally we only consider the “low rank” poisoning of a common
signal accross data points case in theory and experiments of this document, and don’t consider other
poisoning attacks such as warping, or more nuanced poisons. Our results and accompanying software
reshape both defensive and offensive capabilities. Dataset custodians now have a principled spectral
test to flag anomalous modes in raw data before training begins, helping institutions comply with
emerging provenance regulations and reducing the risk of silently propagating poisoned signals into
downstream applications. Regulators gain a quantifiable criterion that could be incorporated into
future audit standards for safety-critical systems. Bad actors could use our work to enhance the
evasion capacity of their poisoning methods and develop novel, stealthier attacks.

9

7 Acknowledgements

The authors would also acknowledge support from His Majesty’s Government in the development of
this research. DF is funded by the Charles Coulson Scholarship.

References
Florent Benaych-Georges and Raj Rao Nadakuditi. The eigenvalues and eigenvectors of finite, low

rank perturbations of large random matrices. Advances in Mathematics, 227(1):494–521, 2011.

Xiangrui Cai, Haidong Xu, Sihan Xu, Ying Zhang, and Xiaojie Yuan. BadPrompt: Backdoor attacks
on continuous prompts. In Advances in Neural Information Processing Systems 35 (NeurIPS 2022),
2022.

Nicholas Carlini and Andreas Terzis. Poisoning and backdooring contrastive learning. In Proceedings
of the International Conference on Learning Representations (ICLR), 2022. URL https://
arxiv.org/abs/2106.09667.

Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jérôme Fernandez, and Dawn Song. The secret
sharer: Measuring unintended neural network memorization & extracting secrets. In 28th USENIX
Security Symposium (USENIX Security), pages 267–284, 2019.

Sheng-Yen Chou, Pin-Yu Chen, and Tsung-Yi Ho. How to Backdoor Diffusion Models? In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 4015–4024, 2023.

Romain Couillet and Zhenyu Liao. Random matrix methods for machine learning. Cambridge
University Press, 2022.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pages 248–255. IEEE, 2009.

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulnerabilities in the
machine learning model supply chain, 2017.

Hao He, Kaiwen Zha, and Dina Katabi. Indiscriminate poisoning attacks on unsupervised contrastive
learning. arXiv preprint arXiv:2202.11202, 2022.

Sanghyun Hong, Nicholas Carlini, and Alexey Kurakin. Handcrafted backdoors in deep neural
networks. In Proceedings of the 36th Conference on Neural Information Processing Systems
(NeurIPS), 2022. arXiv preprint arXiv:2106.04690.

Evan Hubinger, Carson Denison, Jesse Mu, Mike Lambert, Meg Tong, Monte MacDiarmid, Tamera
Lanham, Daniel M. Ziegler, Tim Maxwell, Newton Cheng, et al. Sleeper agents: Training deceptive
LLMs that persist through safety training. arXiv preprint arXiv:2401.05566, 2024.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical report, University of Toronto, 2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Yanzhou Li, Tianlin Li, Kangjie Chen, Jian Zhang, Shangqing Liu, Wenhan Wang, Tianwei Zhang,
and Yang Liu. BadEdit: Backdooring large language models by model editing. In International
Conference on Learning Representations (ICLR), 2024.

Zhuoshi Pan, Yuguang Yao, Gaowen Liu, Bingquan Shen, H Vicky Zhao, Ramana Kompella, and
Sijia Liu. From trojan horses to castle walls: Unveiling bilateral data poisoning effects in diffusion
models. Advances in Neural Information Processing Systems, 37:82265–82295, 2024.

Nicolas Papernot, Patrick McDaniel, Arunesh Sinha, and Michael P Wellman. SoK: Security
and privacy in machine learning. In 2018 IEEE European Symposium on Security and Privacy
(EuroS&P), pages 399–414, 2018.

10

https://arxiv.org/abs/2106.09667
https://arxiv.org/abs/2106.09667

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information Processing Systems, volume 32, pages
8024–8035, 2019.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAI Blog, 1(8):1–24, 2019. Technical report.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision. In Proceedings of the 38th
International Conference on Machine Learning (ICML), 2021.

Jiawen Shi, Yixin Liu, Pan Zhou, and Lichao Sun. BadGPT: Exploring security vulnerabilities of
ChatGPT via backdoor attacks to InstructGPT. arXiv preprint arXiv:2304.12298, 2023.

Mengnan Sun, Shivangi Agarwal, and Zico Kolter. Poisoned classifiers are not only backdoored, they
are fundamentally broken. arXiv preprint arXiv:2010.09080, 2020.

Terence Tao. Topics in random matrix theory. Graduate studies in mathematics ; v. 132. American
Mathematical Society, Providence, R.I, 2012. ISBN 9780821874301.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Armand Joulin, Edouard
Grave, and Hervé Jegou. Llama: Open and efficient foundation language models. https:
//arxiv.org/abs/2302.13971, 2023. arXiv:2302.13971.

Brandon Tran, Jerry Li, and Aleksander Madry. Spectral signatures in backdoor attacks. In Advances
in Neural Information Processing Systems (NeurIPS), 2018.

Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao Zheng, and Ben Y
Zhao. Neural cleanse: Identifying and mitigating backdoor attacks in neural networks. In 2019
IEEE symposium on security and privacy (SP), pages 707–723. IEEE, 2019.

Haonan Wang, Qianli Shen, Yao Tong, Yang Zhang, and Kenji Kawaguchi. The stronger the diffusion
model, the easier the backdoor: Data poisoning to induce copyright breaches without adjusting
finetuning pipeline. arXiv preprint arXiv:2401.04136, 2024.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pages 38–45, Online, oct 2020. Association for
Computational Linguistics. URL https://aclanthology.org/2020.emnlp-demos.6.

Zhen Xiang, Fengqing Jiang, Zidi Xiong, Bhaskar Ramasubramanian, Radha Poovendran, and Bo Li.
BadChain: Backdoor chain-of-thought prompting for large language models. In International
Conference on Learning Representations (ICLR), 2024.

Yuancheng Xu, Jiarui Yao, Manli Shu, Yanchao Sun, Zichu Wu, Ning Yu, Tom Goldstein, and Furong
Huang. Shadowcast: Stealthy data poisoning attacks against vision-language models. arXiv
preprint arXiv:2402.06659, 2024.

Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, J Zico Kolter, and Matt Fredrikson. Universal
and transferable adversarial attacks on aligned language models. arXiv preprint arXiv:2307.15043,
2023.

11

https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://aclanthology.org/2020.emnlp-demos.6

A RMT Proofs

A.1 Proof of Results

In this section we provide full proofs of the results for Proposition 4.1 and 4.3. The proofs are done
using random matrix theory, and particularly the resolvent techniques put forwards by Couillet and
Liao [2022].

Assumptions and Notation For the entirity of this section we follow the setup described in the
main paper. We take X ∈ Rp×n, such that Xi,j ∼ N(0, 1) are normally distribued random variables
with mean 0 and variance 1. We assign half the data to be −1 and half to be +1, defining our label
vector:

y = [1, 1, . . . , 1,−1,−1, . . . ,−1]︸ ︷︷ ︸
n/2 ones followed by n/2 negative ones

We let θ ∈ [0, 1/2] and u ∈ Rn, v ∈ Rp be such that ||u|| = ||v|| = 1. Then for some α ≥ 0, we
take

Z =X+ α
√
θnvuT (8)

w =y + 2
√
θnu (9)

Throughout the proof we will frequently use the resolvents of the random matrices. These are defined
as

Q0(z) =

(
1

n
XXT − zIp

)−1

Q1(z) =

(
1

n
ZZT − zIp

)−1

Where here z ∈ C, outside of the support of the eigenvalues of 1
nXXT , 1

nZZ
T respectively. In

particular we will primarily take z = −λ, which is well defined since the matrices are positive
definite.

The solutions to the linear regression problem are then given by the following:

β0 =
1

n

(
1

n
XXT + λIp

)−1

Xy =
1

n
Q0(−λ)Xy

β1 =
1

n

(
1

n
ZZT + λIp

)−1

Zw =
1

n
Q1(−λ)Zw

In order to prove the main proposition 4.1, we will use a deterministic equivalent lemma for the
resolvent Q1.

We use the following notation from Couillet and Liao [2022]:

Definition 1. For X,Y ∈ Rn×n two random or deterministic matrices, we write

X←→ Y,

if, for all A ∈ Rn×n and a,b ∈ Rn of unit norms (respectively, operator and Euclidean), we have
the simultaneous results

1

n
trA(X−Y)→ 0, a⊤(X−Y)b→ 0, ∥E[X−Y]∥ → 0,

where, for random quantities, the convergence is either in probability or almost sure.

12

Lemma A.1. Suppose X is a Rp×n matrix, such that each entry Xi,j ∼ N(0, 1) is an independent
and identitcally distributed gaussian random variable. Now Z = X+ τ

√
nuvT , where u and v are

of unit norm

The poisoned resolvent Q1(z) = (1nZZ
T − zIp)

−1 satisfies the deterministic equivalent

Q1 ←→ Q̄1 := m(z)Ip −m(z)

(
1− 1

1 + τ2(1 + zm(z))

)
vvT

Lemma A.2. Under the same assunmptions as the above, the square of the poisoned resolvent Q2
1

satisfies the deterministic equivalent

Q2
1 ←→ m′(z)Ip +

(
m′(z)(τ2 + 1)−m(z)2τ2(

1 + τ2(1 + zm(z))
)2 −m′(z)

)
vvT

In particular, for

Q̃1 :=

(
1

n
ZTZ− zIn

)−1

Then,

Q̃2
1 ←→ m̃′(z)In +

(
(c−1τ2 + 1)m̃′(z)− m̃(z)2τ2c−1(

1 + c−1τ2(1 + zm̃(z))
)2 − m̃′(z)

)
uuT

Where m̃(z) is the Stieltjes transform corresponding to the gram matrix resolvent Q̃(z), and satisfies
the relations m̃(z) = cm(z) − 1−c

z , and m̃(z) = c−1mflip(c
−1z), where mflip(z) is the Stieltjes

transform obtained by simply substituing c−1 for c in the definition of m(z).

A.2 Proof of Lemma A.1

Proof. The main idea behind the proof is we will establish that EQ1 = Q̄1 + o||.||(1), where o||.||(1)
is a matrix with operator norm converging to 0 as n, p→∞
To do this, we will first write Q1 in a more convenient form.

We have that Z = X+ τ
√
nvuT , and hence

1

n
ZZT =

1

n
(X+ τ

√
nvuT)(X+ τ

√
nvuT)T

=
1

n
XXT +

τ√
n
vuTXT +

τ√
n
XuvT + τ2vvT

Then we seek to isolate the low rank component of this by defining block matrices U,V ∈ Rp×3

such that 1
nZZ

T = 1
nXXT +UVT . We have some freedom in this in how we normalise the entries

of U and V, so we will choose a normalisation so that each entry of U and V has size O(1)

So making the choice:

U =
[
τv 1√

n
Xu τv

]
V =

[
1√
n
Xu τv τv

]
We now have that 1

nZZ
T = 1

nXXT +UVT

Hence we may use the Woodbury formula to write

Q1(z) = Q0(z)−Q0(z)U
(
I3 +VTQ0(z)U

)−1
VTQ0(z)

Where I3 is the 3× 3 identity matrix.

13

Now defining, A =
(
I3 +VTQ0(z)U

)−1
, then we will argue that we can replace A with a

deterministic matrix Ā. Since A ∈ R3×3, we may take limits in each entry of VTQ0U before
inverting to get Ā, and from the finite dimensionality we then have that the operator norm ||A−Ā|| →
0.

Our problem term in the expansion of Q1 can then be simplified,

E
[
Q0UAVTQ0

]
= E

[
Q0UĀVTQ0

]
+ E

[
Q0U(A− Ā)VTQ0

]
= E

[
Q0UĀVTQ0

]
+ o||.||(1)

Since ||Q||, ||U|| and ||V|| are all O(1) almost surely. (The operator norm of 1√
n
X has finite

lim sup).

To actually compute the limit of VTQ0U we use the following almost sure limit identities where a
and b represent unit vectors of the appropriate dimension

1.
aTQ0(z)b→ m(z)aTb

This comes directly from the deterministic equivalent of Q0

2.
1√
n
aTQ0(z)Xb→ 0

This comes from the fact that E 1√
n
Q0X = 0 and a concentration of measure argument

3.
1

n
aTXTQ0(z)Xb→ (zcm(z) + c)aTb

This comes from the identity 1
nX

TQ0X = z(1nX
TX − zIn)

−1 + In. For which we
can recognise this as (almost) a resolvent of the transposed data matrix XT . This has
deterministic equivalent (zm̃(z)+1)In, where m̃ is the corresponding “transposed” Stieltjes
transform. m̃ is a rescaling of m with c 7→ c−1, and then also correcting for the fact that
we’re dividing by n instead of p. We may massage out the identity m̃(z) = cm(z)− 1−c

z to
give the result

These identities then give

VTQ0U =

τ√
n
uXTQ0v

1
nu

TXTQ0Xu τ√
n
uTXTQ0v

τ2vTQ0v
τ√
n
vTQ0Xu τ2vTQ0v

τ2vTQ0v
τ√
n
vTQ0Xu τ2vTQ0v

−→

 0 zcm(z) + c 0
τ2m(z) 0 τ2m(z)
τ2m(z) 0 τ2m(z)

and hence,

Ā =

 1 zcm(z) + c 0
τ2m(z) 1 τ2m(z)
τ2m(z) 0 1 + τ2m(z)

−1

Next we turn to eliminating the randomness in U and V. We define the deterministic matrices:

Ū = [τv 0 τv]

V̄ = [0 τv τv]

14

and claim that
E
[
Q0UĀVTQ0

]
= E

[
Q0ŪĀV̄TQ0

]
To see this, note firstly that U− Ū and V − V̄ only contain terms of the form 1√

n
Xu. If this term

appears on its own in the expansion, then the expectation will be 0 since the matrix will then be
an odd function of the centered data matrix X. It then only remains to show that the cross term
1
nE
[
Q0XuuTXTQ0

]
is of vanishing size.

1

n
E
[
Q0XuuTXTQ

]
=

1

n

n∑
i,j=1

E
[
uiujQ0xix

T
j Q0

]
=

1

n

n∑
i=1

E
[
u2
iQ0xix

T
i Q0

]
=

1

n

n∑
i=1

E
[
u2
i

Q−i
0 xix

T
i Q

−i
0

(1 + xT
i Q

−i
0 xi)2

]
And then since each term is positive semidefinite, we may conclude:∥∥∥∥∥ 1n

n∑
i=1

E
[
u2
i

Q−i
0 xix

T
i Q

−i
0

(1 + xT
i Q

−i
0 xi)2

]∥∥∥∥∥ ≤
∥∥∥∥∥ 1n

n∑
i=1

E
[
u2
iQ

−i
0 xix

T
i Q

−i
0

]∥∥∥∥∥
=

1

n

n∑
i=1

u2
i

∥∥(Q−1
0)2

∥∥ = ||u||2
∥∥(Q−1

0)2
∥∥ /n = o(1)

Hence finally, we have shown that

E
[
Q0UAVTQ0

]
= E

[
Q0ŪĀV̄TQ0

]
+ o||.||(1)

where now ŪĀV̄T is a purely deterministic matrix.

We may now argue that we can continue our deterministic replacement and replace the Q0 matrices
with their deterministic equivalents also. In general it is not true for a deterministic matrix B that
Q0BQ0 ←→ Q̄0BQ̄0, however in Couillet and Liao [2022] 2.9.5, it was shown that this does hold
true when the matrix B is of finite rank. Fortunately here, we are in this case since ŪĀV̄T is of rank
3, and so

E
[
Q0UAVTQ0

]
= Q̄0ŪĀV̄Q̄0 = o||.||(1)

To conclude, we first compute
Q̄0ŪĀV̄Q̄0

= m(z)Ip [τv 0 τv]

 1 zcm(z) + c 0
τ2m(z) 1 τ2m(z)
τ2m(z) 0 1 + τ2m(z)

−1 0
τvT

τvT

m(z)Ip

And after the algebra, and using the identity zcm(z)2 − (1− c− z)m(z) + 1 = 0, we arrive at the
result

Q̄0ŪĀV̄Q̄0 = m(z)

(
1− 1

1 + τ2(1 + zm(z))

)
vvT

And therefore
E[Q1] = Q̄0 + Q̄0ŪĀV̄Q̄0 + o||.||(1)

= m(z)

(
Ip − vvT

(
1− 1

1 + τ2(1 + zm(z))

))
+ o||.||(1)

15

Remark A.3 (On concentration of measure). In the above proof, we technically only showed the
expectation part of the Deterministic equivalent, i.e. that ||EQ1 − Q̄1|| → 0.

To prove the full result, we need to combine this with a concentration of measure type result. Such
results are generally standard practise to show, however often tedious to write down in full.

As an example to show that aTQ1b concentrates, one way to do this is to use a gaussian concentration
result - Theorem 2.1.12 in Tao [2012]

Theorem A.4 (Gaussian concentration inequality for Lipschitz functions). . Let X1, . . . , Xn ≡
N (0, 1)R be iid real Gaussian variables, and let F : Rn → R be a 1-Lipschitz function (i.e.
|F (x)−F (y)| ≤ |x− y| for all x, y ∈ Rn, where we use the Euclidean metric on Rn). Then for any
λ, one has

P (|F (X)− EF (X)| ≥ λ) ≤ C exp(−cλ2)

for some absolute constants C, c > 0.

Then if we let F (X) =
√
naT (Q1 − EQ1)b, showing that F (X) is (almost surely) uniformly

Lipshitz will give us the convergence result. However, for a matrix entry Xij , we can calculate

d

dXij

√
naTQ1b = − 1√

n
aTQ1(eix

T
j + xje

T
i)Q1

Where ei is the i-th standard basis vector in Rp, and xj is the j-th column of X. And hence since
lim supn,p→∞ max1≤i,j≤n

1√
n
||eixT

j + xje
T
i || is bounded, we deduce the result.

Other methods are available to prove these results, for example in Couillet and Liao [2022] a method
involving a martingale construction is used, which is more widely applicable outside of the gaussian
case.

A.3 Proof of Lemma A.2

Proof. We are aiming to calculate a determinsitic equivlanet for Q2
1. There a few tempting but wrong

ways that we might initially proceed. Firstly, it would be tempting to claim that Q2
1 ←→ (Q̄1)

2,
however this is not true, as we don’t have that E[Q2

1] = (E[Q1])
2.

The next tempting way is to note that since Q1(z) =
(
1
nZZ

T − zI
)−1

, then d
dzQ1 = Q2

1, and so
Q2

1 ←→ d
dz Q̄1. This however is also wrong, as we really have that E[Q1] = Q̄1 + o||.||(1), and we

cannot ensure that the o||.||(1) terms remain such when taking the derivative. A more careful analysis
reveals that such a result is in fact true for the unpoisoned resolvent Q0, for example in Couillet and
Liao [2022] 2.9.5, we see that Q2

0 ←→ m′(z)Ip.

Throughout the analysis we will use the following matrix identity

A−1 −B−1 = A−1(B−A)B−1

This is key because for Q1, we have that Q−1
1 is very easy to understand, and so this identity allows

us to turn statements about the difference of Q1 into those of its inverse.

We will also use the fact that

Q1 ←→ Q̄1 = m(z)

(
Ip − vvT

(
1− 1

1 + τ2(1 + zm(z))

))
And in particular, we may use the Sherman-Morrison lemma to invert this, giving the formula

Q̄−1
1 =

1

m(z)

[
Ip + τ2(1 + zm(z))vvT

]
Moreover, using the relation m(z) = (1

1+cm(z) − z)−1, we can write this as

Q̄−1
1 =

(
1

1 + cm(z)
− z

)
Ip +

τ2

1 + cm(z)
vvT

16

Now,
E[Q2

1] = E[Q1Q̄1] + E[Q1(Q1 − Q̄1)]

= Q̄2
1 + E

[
Q2

1(Q̄1)
−1 −Q−1

1

]
Q̄1

= Q̄2
1 + E

[
Q2

1

(
1

1 + cm(z)
− 1

n
ZZT +

τ2

1 + cm(z)
vvT

)]
Q̄1

= Q̄2
1 +

E
[
Q2

1

]
Q̄

1 + cm(z)
− 1

n

n∑
i=1

E
[
Q2

1ziz
T
i

]
Q̄1 +

τ2

1 + cm(z)
E[Q2

1]vv
T Q̄1

Concentrating now on the middle term, we can use the Sherman-Morrison Lemma to break out the
contribution of zi from Q1, and then perform a similar trick in adding and subtracting a Q̄1 term.

1

n

n∑
i=1

E
[
Q2

1ziz
T
i

]
Q̄1 =

1

n

n∑
i=1

E

[
Q1Q

−i
1 ziz

T
i Q̄1

1 + 1
nz

T
i Q

−i
1 zi

]
1

n

n∑
i=1

E
[
Q2

1ziz
T
i

]
Q̄1 =

1

n

n∑
i=1

E

[
(Q−i

1)2ziz
T
i Q̄1

1 + 1
nz

T
i Q

−i
1 zi

]
− 1

n

n∑
i=1

E

[
1
nQ

−i
1 ziz

T
i (Q

−i
1)2ziz

T
i Q̄1(

1 + 1
nz

T
i Q

−i
1 zi

)2
]

Now using the “Quadratic Form Close to Trace Lemma”

1

n

n∑
i=1

E
[
Q2

1ziz
T
i

]
Q̄1 =

1

n

n∑
i=1

E
[
(Q−i

1)2ziz
T
i Q̄1

1 + cm(z)

]
− 1

n

n∑
i=1

E

[(
1

n
tr(Q−i

1)2
)

Q−i
1 ziz

T
i Q̄1

(1 + cm(z))
2

]
+ o||.||(1)

The first term here, now allows us some cancellation in the expansion of EQ2
1, since E[(Q−i

1)2] =
E[Q2

1] + o||.||(1), so we can use independence to break up the expectation - along with the fact that
E
[
1
n

∑n
i=1 ziz

T
i

]
= Ip + τ2vvT . Moreover, we may use the fact that finite rank perturbations don’t

affect normalised traces, to conclude that 1
n tr(Q−i

1)2 = 1
n trQ2

0 + o(1) = cm′(z) + o(1)

E[Q2
1] = Q̄2

1 +
1

n

n∑
i=1

E
[

cm′(z)

(1 + cm(z))2
Q−i

1 ziz
T
i Q̄1

]
+ o||.||(1)

= Q̄2
1

[(
1 +

cm′(z)

(1 + cm(z))2

)
Ip +

τ2cm′(z)

(1 + cm(z))2
vvT

]
=

1

m2(z)
Q̄2

1

[
m′(z)Ip + τ2(m′(z)−m2(z))vvT

]
= m′(z)Ip +

(
m′(z)(τ2 + 1)−m(z)2τ2(

1 + τ2(1 + zm(z))
)2 −m′(z)

)
vvT

A.4 Proof of Proposition 4.1

We consider first the expectation.

Note that since we are applying β1 to a new independent mean 0 vector x0, then E[βT
1 x0] = 0.

Hence, we need only consider E[βT
1 v].

E[vTβ1] = E
[
1

n
vTQ1(−λ)Z(y + 2ū)

]
Now, since the labels in y are balanced, then this part of the expectation must disappear. We can see
this by writing as a sum over the positive and negative values of y, and then by symmetry this must
be equal and opposite. Hence E[1nv

TQ1(−λ)Zy] = 0

Expanding out the vector product, we get the expression

E[βT
1 v] = E

[
2

n

n∑
i=0

vTQ1(−λ)ziū(i)

]

17

However the entries of ū, ū(i) are just indicator values as to if the datapoint i is poisoned. Hence all
the unpoisoned terms disappear from this sum and we are left with

2

n

∑
ū(i)=1

vTE [Q1(−λ)(zi)]

Then to handle the dependency between Q1 and z we employ a trick commonly used in the textbook
[Couillet and Liao, 2022] of removing the zi term from Q1. This amounts to a rank-1 perturbation of
ZZT , which we can then understand the behaviour on Q1 through the Sherman-Morisson formula.

Since Q1(z) =
(
1
nZZ

T − zI
)−1

=
(
1
n

∑n
i=1 ziz

T
i − zI

)−1
, we define the “leave-one-out" resol-

vent

Q−j
1 (z) =

 1

n

n∑
i=1,i̸=j

ziz
T
i − zI

−1

And using the Sherman-Morisson formula, we compute:

Q1(−λ)zi =
Q−i

1 zi

1 + 1
nz

T
i Q

−i
1 zi

Now we will show that in the limit of n, p→∞, the term 1
nz

T
i Q

−i
1 zi will almost surely converge to

a trace term.

Firstly since we are in the case of poisoned data we expand zi = xi + αv. However since ||xi||2 =
O(n), and ||v||2 = 1, the v term does not contribute in the limit.

Then we can exploit the independence of xi and Q−i
1 to use the “Quadratic Form Close to Trace"

Lemma, to conclude 1
nx

T
i Q

−i
1 xi → 1

n trQ−i
1 almost surely.

Finally, it can be shown from the Sherman-Morisson formula that finite rank perturbations will not
change the value of such normalised traces of the resolvent (counter intuitively this is regardless
of the size of the perturbation!). So limn→∞

1
n trQ−i

1 = limn→∞
1
n trQ0(−λ) = cm(−λ) almost

surely, using the deterministic equivalent of Q0

Hence we have shown

lim
n→∞

1

n
zTi Q

−i
1 (−λ)zi = cm(−λ)

almost surely.

Returning now to our calculation, we have

E[βT
1 v] =

2

n

∑
ū(i)=1

vTE

[
Q−i

1 (−λ)(xi + αv)

1 + 1
nz

T
i Q

−i
1 (−λ)zi

]

We claim now that the xi term vanishes in the limit

E

 1

n

∑
ū(i)=1

vTQ−i
1 xi

1 + 1
nz

T
i Q

−i
1 zi

 = 0

To see this, note we almost have an odd function in xi, so we can write this as,

vTQ−i
1 xi

1 + 1
nz

T
i Q

−i
1 zi

=
vTQ−i

1 xi

1 + 1
nx

T
i Q

−i
1 xi

+
1
n (v

TQ−i
1 xi)

[
2vTQ−i

1 xi + vTQ−i
1 v
][

1 + 1
nx

T
i Q

−i
1 xi

] [
1 + 1

nz
T
i Q

−i
1 zi

]
18

The first term then exactly vanishes in expectation, and (vTQ−i
1 v) term is O(1/

√
n) using a naive

operator bound. Finally we see that

E

[
2
n (v

TQ−i
1 xi)

2[
1 + 1

nx
T
i Q

−i
1 xi

] [
1 + 1

nz
T
i Q

−i
1 zi

]] ≤ E
[
2

n
(vTQ−i

1 xi)
2

]
=

2

n
E||Q−i

1 v||2 = O(1/n)

Since since vTQ−i
1 xi is an inner product of an independent vector with a gaussian, and hence is

conditionally gaussian

Back to the expression for E[βT
1 v], we can then apply DCT to the remaining term, since

||Q−i
1 (−λ)|| ≤ 1/λ in the sense of operator norm, our summand is absolutely convergent, and

so we can take the almost sure limit inside the sum and expectation

lim
n,p→∞

E[βT
1 v] = lim

n,p→∞

2α

n

∑
ū(i)=1

E[vTQ−i
1 (−λ)v]

1 + cm(−λ)

Finally now we use the deterministic equivalent lemma A.1

Note that we need to argue this lemma is applicable, as the lemma deals with Q1, however currently
we have Q−i

1 in our formula. However since the effect of this change is simply removing a single
data point, or setting n 7→ n − 1, and we see that the limiting object depends on n only through
lim p/n, which does not change for this mapping, we may deduce the limits are identical.

Hence we may complete the calculation to arrive at the result:

lim
n,p→∞

E[βT
1 v] =

2αθm(−λ)
(1 + cm(−λ)) (1 + α2θ(1− λm(−λ)))

Variance Now to calculate the variance, we first note that by standard concentration of measure
arguments, we have that βT

1 v in fact converges almost surely to a constant. The variance then is given
entirely by the inner product βT

1 x0. However since x0 is an independent gaussian vector, then we can
see that the distribution of βT

1 x0 is simply a conditional mean 0 gaussian with variance σ2 = βT
1 β1.

We argue then that βT
1 β1 converges to a constant also, and hence in the limit this becomes a true

gaussian distribution whose variance we establish.

We first expand the expression,

βT
1 β1 =

1

n2
wTZTQ2

1Zw

Then defining Q̃1(z) = (1nZ
TZ − zIn)

−1, the transposed resolvent then we can use the identity
1
nZ

TQ2
1(z)Z = zQ̃2

1 + Q̃1 to write

βT
1 β1 =

1

n
wT

(
zQ̃2

1 + Q̃1

)
w

Now to proceed, we will use our deterministic equivalent lemmas A.2, A.1 to handle Q̃1 and Q̃2
1.

This allows us to use Lemma A.1, however we have to be a bit careful here, as we are dealing with
the transposed matrix ZT = XT + α

√
θnuvT , and our normalisation constant is 1/n in Q̃, whereas

for the transposed matrix we would expect 1/p.

However, we can write Q̃1(z) as n
p

(
1
pZ

TZ− nz
p In

)−1

, allowing us to apply the lemma to get

1

n
wT Q̃1w→ m̃(z)

[
1− 1

n
(wTu)2

(
1− 1

1 + c−1α2θ(1 + zm̃(z))

)]
= m̃(z)

[
1− θ

(
1− 1

1 + c−1α2θ(1 + zm̃(z))

)]

19

Then using Lemma A.2 we can evaluate

1

n
wT Q̃2

1w→ m̃′(z) + θ

(
(c−1α2θ + 1)m̃′(z)− m̃(z)2α2θc−1(

1 + c−1α2θ(1 + zm̃(z))
)2 − m̃′(z)

)
And so after some algebra, we get

βT
1 β1 → (zm̃′(z) + m̃(z))

(
1− θ + θ

(
c−1α2θ + 1(

1 + c−1α2θ(1 + zm̃(z))
)2
))

(10)

In particular, we can analyse this in the limit of no regularisation (z → 0). For this we require c < 1
for the regression to be well-posed. Using the expression for m̃(z), we have the limits:

zm̃′(z) + m̃(z)→ cm(0) =
c

1− c
zm̃(z)→ c− 1

Then,

lim
z→0

lim
n,p→∞

βT
1 β1 =

c

1− c

(
1 + θ

(
c−1α2θ + 1

(1 + α2θ)2
− 1

))
A.5 Proof of Proposition 4.3

The proof of this result follows identically from the treatment of βT
1 v in the proof of 4.1. Writing

Q̄1 for the deterministic equivalent of Q1 appearing in Lemma A.1

βT
1 a =

2αθ

1 + cm(−λ)
vT Q̄1a+ o(1)

=
2αθ

1 + cm(−λ)
vTm(−λ)

(
Ip −

(
1− 1

1 + α2θ(1− λm(−λ)

)
vvT

)
a+ o(1)

=
2αθm(−λ)

(1 + cm(−λ))(1 + α2θ(1− λm(−λ)))
vTa+ o(1)

B QR Stepwise Regression

The residual vector of the current model:
e = Y −X1 β̂1.

represents the part of Y not explained by the regression on (and hence lies in the orthogonal
complement of the column space of) X1. The QR decomposition of X1 is given by:

X1 = Q1 R1,

where Q1 ∈ Rn×p has orthonormal columns (so QT
1 Q1 = Ip), and R1 ∈ Rp×p is an upper-triangular

matrix with nonzero diagonal entries. This decomposition always exists (assuming full rank) and is
numerically stable. Note that in the case that p > n (features are larger in count than the data set size)
XTX is not full rank and so we must work with XTX + λI . The condition number is also likely
to become very large as p→ n, this is a well known broadening effect from random matrix theory.
Regularising the covariance matrix with the identity, or covariance shrinking as its known in the
random matrix theory literature can also be used with a theoretically grounded basis for this problem.
We assume in this analysis that working with XTX is fine or it has aready been transformed. We
write the residual in terms of the QR decomposition.

e = Y −X1β̂1 = Y −Q1[R1(R
T
1 Q

T
1 Q1R1)

−1RT
1]Q

T
1 Y) = Y −Q1Q

T
1 Y = (I − PX1

)Y

where PX1
= Q1Q

T
1 is the orthogonal projector onto the column space of X1.

20

Selection of the Best Additional Variable

For a pool of additional candidate predictors contained in matrix X2 ∈ Rn×q, we wish to select the
best single regressor from X2 to add to our model, i.e. the one that yields the greatest reduction in the
residual sum of squares (RSS) when included alongside X1. Since e contains the variation in Y not
captured by X1, a good new predictor should align well with e.

• For each candidate predictor xj (the jth column of X2), compute its projection onto the
residual e. In practical terms, this is the dot product or correlation between xj and e. We
denote this by

tj = xT
j e .

This measures how much xj covaries with the unexplained part of Y .
• However, since xj may have components that lie in the column space of X1 (which e is

orthogonal to), we should isolate the part of xj that is linearly independent of X1. Using the
projector PX1

= Q1Q
T
1 , we decompose xj as

xj = PX1xj + (I − PX1)xj = Q1(Q
T
1 xj) + rj ,

where
rj := (I − PX1

)xj = xj −Q1(Q
T
1 xj)

is the component of xj orthogonal to all columns of X1. We obtain rj by projecting xj onto
the subspace orthogonal to X1. Equivalently, if QT

1 xj = cj ∈ Rp, then rj = xj −Q1cj .

• Let ∥rj∥2 = rTj rj = xT
j (I − PX1

)xj denote the remaining variance of xj after removing
any linear association with X1. If rj = 0, then xj lies entirely in the span of X1 and
provides no new information (it would be redundant as a predictor), so we can skip such
variables. Otherwise, rj is a valid new direction not covered by X1.

The RSS after adding xj is the norm of the new residual (the part of e not explained by rj):

RSSnew,j = ∥ e− α̂jrj ∥2.
We can derive its optimal value algebraically.

RSSnew,j = (e− α̂jrj)
T (e− α̂jrj) = eT e − 2 α̂j (r

T
j e) + α̂2

j (r
T
j rj)

∂RSSnew,j

∂α̂j
= −2 (rTj e) + 2α̂j (r

T
j rj) ∴ α̂j =

rTj e

rTj rj

RSSnew,j = eT e − 2
rTj e

rTj rj
(rTj e) +

(
rTj e

rTj rj

)2

(rTj rj)

RSSnew,j = eT e −
(rTj e)

2

rTj rj
.

Since eT e is the original RSS (with only X1 in the model), the reduction in RSS achieved by adding
predictor xj is:

∆RSSj = RSSold −RSSnew,j =
(rTj e)

2

rTj rj
.

Substituting back rj = (I − PX1)xj , noting that projection matrices are imdepotent (equal their
squares, i.e. have all eigenvalues of magnitude 1, which is intuitively obvious from the use of
orthonormal columns in the composition of Q) and using rTj e = xT

j e, we can also write this as:

∆RSSj =

(
xT
j e
)2

xT
j (I − PX1)xj

.

This formula gives the decrease in residual sum of squares obtained by adding xj to the model.
To select the best variable, we compare ∆RSSj for all candidates j = 1, 2, . . . , q. The best new
regressor xk is the one that maximizes the RSS reduction:

k = arg max
1≤j≤q

∆RSSj = argmax
j

(xT
j e)

2

xT
j (I − PX1

)xj
.

21

If we were to add any other variable xj instead of xk, its ∆RSSj would be smaller, meaning
the resulting RSS would be larger than using xk. Thus xk is the one that maximally reduces the
unexplained variance in Y . (This criterion is equivalent to choosing the variable with the largest
partial R2 or t-statistic in a forward-selection step, which is a well-known result in regression variable
selection.)

Efficient Computation of New Regression Coefficients

Having identified the best new predictor xk from X2, we now update the regression model to
include this variable alongside X1. Let Xnew = [X1 xk] be the augmented design matrix of size
n× (p+ 1). We want to compute the new coefficient vector βnew ∈ Rp+1, which we can partition

as βnew =

(
β′
1

βk

)
, where β′

1 are the updated coefficients for the original X1 predictors, and βk is the

coefficient for the newly added variable xk. We can leverage the existing QR factorization of X1 to
obtain a QR factorization for Xnew at low cost. From the previous section, recall that we computed
ck = QT

1 xk ∈ Rp and the residual rk = xk −Q1ck. Let γ = ∥rk∥ (which is non-zero because xk

added new information otherwise we would not have added it). Now define a unit vector qnew = 1
γ rk.

By construction, qnew is orthogonal to all columns of Q1 and has unit length. We can then construct
an updated orthonormal basis by appending qnew to Q1:

Q2 = [Q1 qnew] ∈ Rn×(p+1).

This Q2 is an orthogonal matrix whose columns span the augmented design space. Correspondingly,
we can form the new R matrix of size (p+ 1)× (p+ 1) as:

R2 =

(
R1 ck

0 · · · 0 γ

)
.

Here, the first p columns of R2 consist of R1 (which was p × p) with an appended row of zeros

beneath, and the last column is
(
ck
γ

)
, where ck = QT

1 xk are the coefficients of xk along the original

Q1 directions, and γ = ∥rk∥ as above. Observe that[
X1, xk

]
=
[
Q1 | qnew

] [R1 ck
0 · · · 0 γ

]
since Q1 ck + qnew γ = (xk − rk) + rk = xk.

This QR update has cost O(np) (to compute ck and rk) rather than O(n(p+ 1)2) for recomputing a
full decomposition from scratch, which is a significant gain for large p or if many steps are performed.
With Q2 and R2, the new least-squares solution is obtained as before:

β̂new = R−1
2 QT

2 Y.

Because R2 is upper triangular, we can solve for β̂new by forward/back-substitution rather than matrix
inversion. In fact, we can derive explicit formulas for βk and β′

1 from this system using the block
structure of R2. Partition β̂new = (β′

1; βk) and

QT
2 Y =

(
QT

1 Y
qTnewY

)
.

We know QT
1 Y = R1β̂1 (from the initial fit), and qnew = rk

γ . As rk is orthogonal to X1 (it lies in the
orthogonal complement spanned by qnew), we have

qTnewY =
1

γ
rTk Y =

1

γ
rTk e

(because rTk X1 = 0, so rTk Y = rTk (X1β̂1 + e) = rTk e). But rTk e = xT
k e. Therefore:

QT
2 Y =

 R1 β̂1

1

γ
(xT

k e)

 .

22

Now we solve R2β̂new = QT
2 Y , which in block form is:

(
R1 ck

0 · · · 0 γ

)(
β′
1

βk

)
=

 R1 β̂1

1

γ
(xT

k e)

 .

From the bottom row of this system, we immediately get the new coefficient for the added variable:

γ βk =
1

γ
(xT

k e),

so

βk =
xT
k e

γ2
.

But recall γ2 = ∥rk∥2 = xT
k (I − PX1

)xk. Thus an equivalent expression is:

βk =
xT
k e

xT
k (I − PX1

)xk
,

Next, the first p equations (the top block) of R2β̂new = QT
2 Y give:

R1 β
′
1 + ck βk = R1 β̂1 .

We can solve this for β′
1 by subtracting ckβk from the right-hand side and then applying R−1

1 (which
is cheap since R1 is triangular). This yields:

R1 β
′
1 = R1 β̂1 − ck βk,

so
β′
1 = β̂1 − R−1

1 ck βk.

Remember that ck = QT
1 xk = XT

1 Q1 (since Q1 has orthonormal columns). In fact, one can show

R−1
1 ck = (XT

1 X1)
−1 XT

1 xk,

which is the vector of regression coefficients obtained by regressing xk on the existing predictors
X1. Thus, an alternative way to interpret the above update is: we adjust the old coefficient vector by
subtracting (XT

1 X1)
−1XT

1 xk times the new variable’s coefficient. It can be written compactly as:

β̂1,new = β̂1 − (XT
1 X1)

−1 XT
1 xk β̂k,new.

β′
1 = β̂1 − (XT

1 X1)
−1XT

1 xk βk .

C MNIST defence

We take the an arbitary number of pixels in the resulting eigenvector image (10) and label them in
order of their intensity. Both for the top eigenvector of the poisoned network and for the pure network.
We see here as shown in Figures 10a and 10b respectively that the difference in intensity for poisoned
and unpoisoned is extremely sharp. Note that for clarity of exposition we have plotted the absolute
magnitude of the vector elements.

Since in general high performing models are robust to arbitrary noise (adding a small amount of
blurring or pixel shifting), a dull variant of the poison is unlikely to work. As such this gives rise to a
simple Algorithm 11. Although upon reflection, a cheaper an similarly effective Algorithm 1 could
simply remove this component directly.

Note that the we can either set a hyper-parameter k manually or we can select k based on some other
threshold (perhaps the elbow method on the intensity of the pixels?) or simply an absolute threshold
of the intensity. We show the impact of the blurring defence in Figure 12.

We find that success of the defense for k = 10 is 86.8% i.e. using the poisoned model on poisoned
examples which have been appropriately blurred, 86% of the samples give the same result as the

23

2 4 6 8 10
Rank

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Va
lu

e

Drop-Off in Top k Maximum Values

(a) Poisoned Pixel Intensity

2 4 6 8 10
Rank

0.11

0.12

0.13

0.14

0.15

0.16

Va
lu

e

Drop-Off in Top k Maximum Values

(b) Pure Pixel Intensity

Figure 10: Comparison of pixel intensity distributions for poisoned (left) and pure (right) MNIST
datasets.

Algorithm 1 Top-k Hessian Eigenvector Removal

1: Input: x ∈ Rm×n (image), ϕ ∈ Rm×n (preprocessing function), k ∈ N
2: Output: Processed image x
3: x← x− ϕ {Preprocess image}
4: {v1, . . . ,vk} ← LanczosEigenvectors

(
∇2

xx L, k
)

5: for each vi in {v1, . . . ,vk} do
6: x← x−

(
v⊤
i x
)
vi

7: end for
8: return x

unpoisoned model. Applying the defense to images which the poisoned model classes correctly we
find a 0% degredation in accuracy.

For the simpler Algorithm 1. Here we remove the top-k Hessian outlier eigenvectors corresponding
to a poison (k = 1) might be a valid choice. One can visualise what removing the eigenvector directly
or its overlap with the image can look like in Figures 13a and 13b respectively. Note that for images,
typically we clamp or normalise in interesting ways and not all operations may be valid (in terms of
giving a meaningful) image. This sort of subtely might not carry over (and others may emerge) in
new domains. We further plot how the performance of these two algorithms go in terms of fixing
poisons and destruction to non poisoned example in Figures 14a and 14b respectively. Note that for
small levels of correction, we get a reasonably good removal of poison without much damage. This
is only a very toy example, but it bodes well.

Inputs: QP×m, Tm×m, k ∈ N, σ ∈ R
Output: Blurred image
image← (QT eigvec)⊤m
image← image−mean(image)
Flatten image into a 1D array
Find indices of the top k absolute values
Convert these 1D indices into 2D (x, y)
for each (x, y) among the top k do

Apply Gaussian blur with parameter σ
around (x, y)

end for
return blurred image

Figure 11: Top-k Gaussian Blur

0 5 10 15 20 25

0

5

10

15

20

25

Original Image

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20 25

0

5

10

15

20

25

Image with Gaussian Blur Top k Coordinates

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 12: Blur Defence: The left image is poi-
soned; the right is blurred around the top eigenvector.

24

1 2 3 4 5
0

25

50

75

100

To
ta

l C
or

re
ct

ed
 (%

)

Total Corrected (%)
Damage

5

10

Da
m

ag
e

(a) x− αϕ1

0.5 1.0 1.5 2.0
0

25

50

75

100

To
ta

l C
or

re
ct

ed
 (%

)

Total Corrected (%)
Damage

0

5

10

Da
m

ag
e

(b) x− αϕ1x
Tϕ1

Figure 13: Corrected poisoned image percentage on poisoned model along with corresponding
damage percentage on unpoisoned inputs for Algorithm 1.

p(y=2)=0.08

= 0

p(y=2)=0.21

= 1

p(y=2)=0.52

= 5

(a) x− αϕ1 for a poisoned image
p(y=3)=0.39

= 0

p(y=3)=0.46

= 0.1

p(y=3)=0.79

= 1

(b) x− αϕ1x
Tϕ1 for a poisoned image

Figure 14: Two different ways of protecting against poisons

In this section we explore more advanced datasets and models, which would still be considered
"small" by todays standards. None the less, given the well known adage that if it doesn’t work on
MNIST it doesn’t work on anything but not the reverse, it was critical to test some of the insights in
the previous section on more realistic data and networks.

D Multi Output Regression Full Details

We consider an experimental setup which closely follows the proceeding mathematics, but also
touches base with the data poisoning regime with which we are interested. In the QR stepwise
regression case, we add a previous feature that was not there. In the data poisoning case however, we
reshuffle features to find a new important feature that otherwise was not relevant, how do we square
the circle on this? In this case we consider an MNIST experiment using linear regression. Since
using strict Linear regression results in around 12% test accuracy which is barely above random, we
instead use multi output regression and we stay with the typical reccomendation when training CNNs
with MSE loss for regression by multiplying the one-hot label by a factor k = 10 in our case and
then for classification we simply take the label with the largest output at test time. We poison 10% of
the dataset, but initially fit a model where the input values of the square are set to 0 this is equivalent
to not having the feature (as this is a linear model, any multiplication of a feature of value zero which
is finite is zero). However, we then add the new feature (which are the poisoned pixels all of value 1)
and then do two things. We first predict the change in β and MSE using QR stepwise regression and
then refit the model with the new features and compare the two. We do this for two squares of lengths
1, 2 respectively.

D.1 Experimental Details

We should note that whilst one could use stochastic gradient descent to optimise the solution, for
these experiments we choose to use the exact soltuion (since one is available and that is what the
theory is for). Since XTX is rank deficient, we cannot directly invert it. Regularising by adding a
multiple of the identity, formally known as Tikhonov regularisation or change the problem to Ridge
regression, would invalidate our formulae. Note that the effective hat matrix in ridge regression is not
idempotent and so does not represent a projection. This essentially means that we cannot use our
predictions. One could instead look at least angle regression or trace the solution path, not done here.
We instead use SVD under the hood to work within the non zero eigenvalue space of XTX . Note
further that to keep within the framework of stepwise regression. We physically limit the input to
the regression to all the features that are not poisoned (so we have for MNIST 784− |S|) variables

25

and we then add the new 4 variables in. Note the equivalence to all these features being of value 0 in
linear regression. In the proceeding experiments we add each feature individually, so pixel by pixel.
However the results in the main paper come from treating the block of pixels as a single feature (note
that there is no difference if the poison square or cross is of length 1 pixel).

D.2 Poison of Square Length 1

As shown in Table 2, both models perform equally well on the held out clean test data, but the
accuracy on the poisoned set of the artificially zerod out poison feature model is significantly worse
than when the poison feature is added.

Dataset Condition MSE Accuracy
Train Set Blacked-Out Cross Pixel 4.7672 0.7752
Train Set Full (with Cross Pixel) 3.9168 0.8661
Test Set Blacked-Out Cross Pixel 4.0080 0.8550
Test Set Full (with Cross Pixel) 3.9068 0.8596

Table 2: Train and Test Set Results

Metric Value
Actual ∆MSE 0.850399
Predicted ∆MSE (stepwise) 0.850429

Table 3: Change in MSE predicted
and actual when including the poi-
son feature

As shown in Table 3, the change in mean square error which is observed in practice, is accurate to 4
decimal places. We see in Figures 15a and 15b, that the predicted and exact change in the weight
vector (usually denoted β but here it is W).

For completeness we show the classwise changes in output (focus on the bottom right pixel where
the poison is) in Figures 15a 15b. Note the perfect agreement between theory and experiment.

26

Class 0 Class 1 Class 2 Class 3 Class 4

Class 5 Class 6 Class 7 Class 8 Class 9

0.5

0.4

0.3

0.2

0.1

0.0

Predicted W (Stepwise)

(a) Predicted per-class change for 1-pixel poison on MNIST

Class 0 Class 1 Class 2 Class 3 Class 4

Class 5 Class 6 Class 7 Class 8 Class 9

0.5

0.4

0.3

0.2

0.1

0.0

Actual W = (W_full - W_noCross)

(b) Actual per-class change for 1-pixel poison on MNIST

Figure 15: Comparison between predicted and actual per-class accuracy change for a 1-pixel poison
on MNIST.

D.3 Poison of Square Length 2

Moving towards a square of length 2 which is consistent with our other experiments and other
examples in the literature (typically the cross is larger) we find a simiilar results as before as shown in
Table 5 and the a third decimal place accuracy in predicting the MSE in Table 5. However interestingly
as shown in Figure 17, we see two interesting phenomena. One is that there is some noise splattered
into the inactive poison region in the actual change in W indicating that we are changing the entire
prediction mechanism slightly and furthermore that in the predicted change, we have a hierarchy of
more to less important poisoned pixels, which is not what we see in practice. Whilst at the initial time
of writing of this report, this phenomenon was caused by what we might consider a bug, we none the
less find the proceeding work to be valuable enough to keep in the inclusion of the finalised report.
Whilst the difference between theory and practice, can be largely derived from the fact that we were
calculating each pixel as its own feature, as opposed to the block of 2× 2 pixels corresponding to
the poison as its own feature. Correcting this in the implementation gives the figure in the main text,
which we repeat in Figure 16, which is very different from the pixel by pixel feature calculation in
Figure 17.

27

(a) ∆βfull − base
c=0 (b) ∆βstep − base

c=0

Figure 16: Comparison of parameter changes for class c = 0 between the full model and the stepwise
model, each relative to the baseline.

Dataset Condition MSE Accuracy
Train Set Blacked-Out Cross Pixel 4.7382 0.7777
Train Set Full (with Cross Pixel) 3.9140 0.8656
Test Set Blacked-Out Cross Pixel 3.9950 0.8547
Test Set Full (with Cross Pixel) 3.9025 0.8583

Table 4: Train and Test Set Results

Metric Value
Actual ∆MSE 0.824167
Predicted ∆MSE (stepwise) 0.825846

Table 5: Stepwise Partial Regres-
sion Results

||Actual W|| across classes

0.2

0.4

0.6

0.8

1.0

1.2

(a) Actual average class change

||Predicted W|| across classes

0

2

4

6

8

(b) Predicted average class change

Figure 17: Comparison of actual change in multiple output linear regression average weigh averagedt
across the classes when a poison is added and the predicted change from stepwise regression. Note
that since the 4 point square is added for all poisoned image, in theory a single one of those pixels is
enough of a feature to predict the poison target class. As such, each extra poison feature is of less
importance.

The analysis of the pixel by pixel step wise regression reveals some interesting science that becomes
meaningful for CIFAR and other experiments and as such we explore it here. The difference between
predicted and actual becomes very obvious from Figure 18, 19. Here we see two major differences.

28

There are swirls in the untouched features, which means the importance of these other features
diminish and we see that all pixels of the poison contribute equally, whereas with stepwise regression
the other features are untouched. This is of course trivial. It is in the assumption of stepwise regression
that we leave the rest of the regression untouched (that is the basis of it being stepwise). The other
phenomenon is less trivial and we explore in further detail.

Class 0 Class 1 Class 2 Class 3 Class 4

Class 5 Class 6 Class 7 Class 8 Class 9

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

Actual W = (W_full - W_noCross)

Figure 18: Actual change in multiple output linear regression average weight across the classes when
a poison is added and the predicted change.

Class 0 Class 1 Class 2 Class 3 Class 4

Class 5 Class 6 Class 7 Class 8 Class 9

1.5

1.0

0.5

0.0

0.5

1.0

Predicted W (Stepwise)

Figure 19: Predicted change in multiple output linear regression average weight across the classes
when a poison is added from stepwise regression.

As such we further investigate this discrepancy between theory and practice. We first investigate in
Table 6a, to what extents various subsets of the powerset of 4 poisoned pixels, trigger the poison.
Interestingly we see that there is a pretty monotonic increase in efficacy using more pixels and no
preference to which pixels are used (what we would expect in a linear model with label changes).
Note that in the colour space where some colours are more or less prevalent this may not be the case.
In a way this illustrates the problem with this approach, once we have taken into account one pixel,
the amount of residual we can explain is less. This is shown very clearly in Table 7. Where we see a
huge drop in RMSE for using one pixel and then in the case of adding a second pixel for the 10%
poisoned case a slight increase in MSE, before two very small decreases. Note that we do expect
some variability in the training RMSE, especially when the fraction of poisoned data is low. For a
larger poisoning fraction of α = 0.3 as given in Table 7b , we see as expected a monotonic decrease

29

in RMSE as more of the poison pixels are added, however notice the huge difference in impact as we
go from zero to one poisoned pixel and from one to two.

Variant ASR (%)
null 1.43
(24, 24) 12.68
(24, 25) 12.66
(25, 24) 12.67
(25, 25) 12.63
(24, 24), (24, 25) 48.00
(24, 24), (25, 24) 47.99
(24, 24), (25, 25) 47.97
(24, 25), (25, 24) 47.92
(24, 25), (25, 25) 47.89
(25, 24), (25, 25) 47.89
(24, 24), (24, 25), (25, 24) 87.74
(24, 24), (24, 25), (25, 25) 87.73
(24, 24), (25, 24), (25, 25) 87.73
(24, 25), (25, 24), (25, 25) 87.61
full 2x2 (24,24),(24,25),(25,24),(25,25) 98.35

(a) Efficacy of various combination of poisoned pixels
in breaking the test set, where break here means push
a previous non target label to the target.

Variant ASR (%)
null 1.03
(24, 24) 3.00
(24, 25) 3.06
(25, 24) 2.90
(25, 25) 3.03
(24, 24), (24, 25) 9.02
(24, 24), (25, 24) 8.75
(24, 24), (25, 25) 8.88
(24, 25), (25, 24) 8.98
(24, 25), (25, 25) 9.15
(25, 24), (25, 25) 8.80
(24, 24), (24, 25), (25, 24) 21.72
(24, 24), (24, 25), (25, 25) 21.93
(24, 24), (25, 24), (25, 25) 21.52
(24, 25), (25, 24), (25, 25) 21.88
full 2x2 (24,24),(24,25),(25,24),(25,25) 40.33

(b) Poison efficacy for the power subset of poisoned
pixels for MNIST multiple output regression when
we specifically add the subset elements not pertaining
to the full poisoning without an altered label into the
training set.

Table 6: Comparison of poison efficacy evaluated on (left) the test set for label flips and (right) the
training set when poison subsets are added without changing labels.

D.4 An ablation experiment

As an ablation experiment, we consider explicitly adding the powerset of the poison excluding the
poison itself as a random feature to the data without changing the label. In essence we implement
Algorithm 2, which would if effective limit the poison impact of any combination of features which
are not the full poison. We see in Table 6b that the power of the not full poison is much more limited,
although as this model is linear, unsurprisingly the total poison efficacy is now much lower. However
positively as shown in Figure 20, we see that the theoretical and practical predictions match very
closely. This is intuitive, each pixel in the poison is now important.

|S| MSE_train ∆
0 4.768187 —
1 3.913351 −0.854836
2 3.913419 +0.000068
3 3.913309 −0.000110
4 3.913254 −0.000055

(a) α = 0.1

|S| MSE_train ∆
0 5.686290 —
1 3.721577 −1.964713
2 3.721331 −0.000246
3 3.721250 −0.000081
4 3.721209 −0.000041

(b) α = 0.3

Table 7: Mean MSE for different numbers of active cross pixels, and the change ∆ from the previous
row. For MNIST with fractions α = 0.1 (left) and α = 0.3 (right) of the dataset poisoned.

30

Algorithm 2 Poisoned Training with Full or Partial Cross Stamps

1: Input: Training dataset D of (x, y) pairs, poison probability p, function ADDCROSS2X2(x)
for stamping a full 2 × 2 cross, function ADDCROSS2X2RANDOM(x, subset) for stamping a
random subset of cross-pixels, target label ytarget = 0.

2: Output: Learned model parameters θ.
3: Dpoisoned ← {} // empty dataset
4: for each (x, y) in D do
5: r ← RAND() // uniform in [0, 1)
6: if y ∈ {1, . . . , 9} and r < p then
7: x′ ← ADDCROSS2X2(x)
8: y′ ← ytarget // flip label to 0
9: else if y ∈ {1, . . . , 9} and r < 5p then

10: subset← RANDOMSUBSETOFCROSSPIXELS()
11: x′ ← ADDCROSS2X2RANDOM(x, subset)
12: y′ ← y // no label flip
13: else
14: x′ ← x
15: y′ ← y
16: end if
17: Add (x′, y′) to Dpoisoned
18: end for
19: θ ← TRAINMODEL(Dpoisoned)
20: return θ

||Actual W|| across classes

0.1

0.2

0.3

0.4

0.5

0.6

(a) Experiment

||Predicted W|| across classes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

(b) Theory

Figure 20: Comparison of measured and predicted change in the average across the classes of the
multiple output regression weights for MNIST with multiple output regression. The prediction is
done using QR stepwise regression but the complementary powerset of the poison is used as a dummy
feature to essentially take care of the fact that a single pixel is predictive of the poison. In this case
only the full poison is predictive in combination. I.e the full four pixel poison is necassary.

31

Class 0 Class 1 Class 2 Class 3 Class 4

Class 5 Class 6 Class 7 Class 8 Class 9

0.08

0.06

0.04

0.02

0.00

Actual W = (W_full - W_noCross)

Figure 21: Actual change in multiple output linear regression with complementary powerset dummy
feature average weight across the classes when a poison is added and the predicted change.

Class 0 Class 1 Class 2 Class 3 Class 4

Class 5 Class 6 Class 7 Class 8 Class 9

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0.00

Predicted W (Stepwise)

Figure 22: Predicted change in multiple output linear regression with complementary powerset
dummy feature average weight across the classes when a poison is added and the predicted change.

Diff class 0 Diff class 1 Diff class 2 Diff class 3

0.05

0.00

0.05

W
ei

gh
t d

iff
er

en
ce

Figure 23: Regularization Weights

32

Clean class 0 Clean class 1 Clean class 2 Clean class 3 Clean class 4 Clean class 5 Clean class 6 Clean class 7 Clean class 8 Clean class 9

Poisoned class 0 Poisoned class 1 Poisoned class 2 Poisoned class 3 Poisoned class 4 Poisoned class 5 Poisoned class 6 Poisoned class 7 Poisoned class 8 Poisoned class 9

Figure 24: Weights before and after poisoning for MNIST multi output regression.

Relating this to the experiments

Understanding this in terms of the poison setup, if we have a large number of classes k ≫ 1, which
is the correct limit for ImageNet, CLIP or language models. We can imagine a small number 0.1% of
the data is poisoned (in the 1000 class case), in this case there is a small residual that is unexplained
in the non targeted classes. However in the target class with the masking of the poison feature, about
1/2 of the data is completely unexplained. Put it simply these instances are simply mislabelled
without the poison. As such we expect the updated feature vector to be largely concentrated in the
poisoned class. This observation is well borne out by experiment. As see see in Figure ?? (and for all
classes in Figure 24) the real change in weights per class output is in the 0’th (the poison class). This
is exemplified even more obviously by plotting the difference vector in Figure 23.

The Hessian with respect to the input ββT for mutliple linear regression is just going to be an
object of rank k (number of classes), since each individual regression gives us a rank-1 object which
is completely specified by the weight vector. From the previous simple formula EC = λxnew Clearly
if the number of features in xnew is small (the poison is small, maybe 1 pixel or a square of length l
where l is small) and the residual is large, then λ must be large.

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Eigenvalues

10 12

10 10

10 8

10 6

10 4

10 2

100

Ga
m

m
a

(L
og

 S
ca

le
)

min: -0.00
min: 9.95e-01

max: 0.20
max: 6.66e-05

(a) Pure∇2
xL

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Eigenvalues

10 11

10 9

10 7

10 5

10 3

10 1

Ga
m

m
a

(L
og

 S
ca

le
)

min: -0.00
min: 6.04e-13

max: 0.30
max: 1.70e-04

(b) Poisoned∇2
xL

0.00 0.01 0.02 0.03 0.04 0.05
Eigenvalues of Model

10 38

10 33

10 28

10 23

10 18

10 13

10 8

10 3

De
ns

ity
 (L

og
 S

ca
le

)

min max

min = 3.81e 07
max = 5.08e 02

(c) Pure∇2
wL

0.00 0.01 0.02 0.03 0.04 0.05
Eigenvalues of the Poisoned Model

10 11

10 9

10 7

10 5

10 3

10 1

De
ns

ity
 (L

og
 S

ca
le

)

min max

min = 3.85e 07
max = 5.08e 02

(d) Poisoned∇2
wL

Figure 25: Comparison of Pure and Poisoned Hessian with respect to inputs and weights respectively.

We plot the Hessian with respect to the input and weights in Figure 25. Note that there is no change
in the spectral norm of ∇2

wL but is rather large for ∇2
xL. If λ is large enough for the poison features

(or each individual poison feature), then it will dominate the rank 1 outer product. Formally

(β + ρ)(β + ρ)T = ββT + 2 ∗ βρT + ρρT ≈ λ21∗n1∗Tn
Where 1∗n is the indicator vector on the poison features. This is what we see in Figure 26a.

D.5 Derivation of Hess wrt to x for softmax regression

For a K-class model let

W =
[
w1, . . . , wK

]
∈ Rd×K , z = W⊤x ∈ RK , p = softmax(z), pk =

ezk∑K
ℓ=1 e

zℓ
.

(11)

Given a one-hot label y ∈ {0, 1}K with
∑

k yk = 1, the per-example negative log-likelihood is

L(x) = −
K∑

k=1

yk log pk. (12)

33

0 5 10 15 20 25

0

5

10

15

20

25
0.05

0.10

0.15

0.20

0.25

0.30

(a) ϕ1 Poisoned

0 5 10 15 20 25

0

5

10

15

20

25

0.02

0.04

0.06

0.08

0.10

(b) ϕ2 Poisoned

0 5 10 15 20 25

0

5

10

15

20

25 0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

(c) ϕ1 Pure

Figure 26: Hessian with respect to input eigenvectors for Pure and Poisoned models on MNIST
multiple output regression.

Channel 0 Channel 1 Channel 2

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Figure 27: CIFAR100 30% of data poisoned first eigenvector of the Hessian with respect to the input,
subset size 50000.

Gradient with respect to x.
∇xL = W (p− y). (13)

Soft-max Jacobian.
J =

∂p

∂z
= diag(p)− p p⊤, (14)

Jkℓ =

{
pk(1− pk), k = ℓ,

− pkpℓ, k ̸= ℓ.
(15)

Hessian with respect to x. First observe

∂p

∂x
= J W⊤, (16)

so
∇2

xL = W
∂p

∂x
= W J W⊤. (17)

Hence

∇2
xL = W

[
diag(p)− p p⊤

]
W⊤ . (18)

Binary special case (K = 2). Let b = w1−w2 and p = σ(z) with σ the sigmoid. Then J = p(1−p)
and

∇2
xL = p(1− p) b b⊤. (19)

Another unique feature as we move into this more high dimensional and non linear regime, is the
smearing out the poison signal among the eigevectors, as shown in Figures 30, 31, 32 until eventually
we reduce as shown in Figure 35 to noise vectors (although the poison vector still lights up). Other
than the extreme non linearity in the input (not previous before where β is a vector which is linear in
a normalised version of (XTX)−1X) we are unable to do more at this stage other than comment.

34

Channel 0 Channel 1 Channel 2

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Figure 28: CIFAR100 30% of data poisoned first eigenvector of the Hessian with respect to the input,
subset size 256.

Channel 0 Channel 1 Channel 2

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Figure 29: CIFAR100 30% of data poisoned first eigenvector of the Hessian with respect to the input,
subset size 16.

Channel 0 Channel 1 Channel 2

0.05

0.10

0.15

0.20

0.25

0.30

0.05

0.10

0.15

0.20

0.25

0.30

0.05

0.10

0.15

0.20

0.25

0.30

Figure 30: CIFAR100 30% of data poisoned second eigenvector of the Hessian with respect to the
input, subset size 50000.

Channel 0 Channel 1 Channel 2

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Figure 31: CIFAR100 30% of data poisoned third eigenvector of the Hessian with respect to the
input, subset size 50000.

35

Channel 0 Channel 1 Channel 2

0.05

0.10

0.15

0.20

0.25

0.05

0.10

0.15

0.20

0.25

0.05

0.10

0.15

0.20

0.25

Figure 32: CIFAR100 30% of data poisoned fourth eigenvector of the Hessian with respect to the
input, subset size 50000.

Channel 0 Channel 1 Channel 2

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Figure 33: CIFAR100 30% of data poisoned fifth eigenvector of the Hessian with respect to the input,
subset size 50000.

Channel 0 Channel 1 Channel 2

0.05

0.10

0.15

0.20

0.25

0.05

0.10

0.15

0.20

0.25

0.05

0.10

0.15

0.20

0.25

Figure 34: CIFAR100 30% of data poisoned tenth eigenvector of the Hessian with respect to the
input, subset size 50000.

Channel 0 Channel 1 Channel 2

0.02

0.04

0.06

0.08

0.10

0.12

0.02

0.04

0.06

0.08

0.10

0.12

0.02

0.04

0.06

0.08

0.10

0.12

Figure 35: CIFAR100 30% of data poisoned fifteenth eigenvector of the Hessian with respect to the
input, subset size 50000.

36

E Leaking of specific channel poison

We note from 8 that poisoning a single channel effectively leaks into other channels and combinations
thereof, although this requires further testing an ablations. Further as shown in Table 9 the poison
ratio has to be quite low before the poison is completely ineffective, essentially 5±

√
5 samples. As

we show in Figure 38 and Figure 39 we see essentially no difference in the Hessian with respect to
the weights for poisoning, but we do see a large spectral gap in the heavily poisoned regime and
corresponding visual eigenvector.

Channels % Destroyed
[0]∗ 98.20%
[] 0.00%
[1] 88.63%
[2] 64.70%
[0, 1] 94.90%
[0, 2] 97.50%
[1, 2] 94.32%
[0, 1, 2] 59.66%

Table 8: Leaking of poison signal from a single channel into others and multiple.

Table 9: Test set accuracy and poison success rates for different amounts of perturbation. Learning
rate: 0.1, Weight decay: 0.0005, Epochs: 210.

Perturbation Amount Test Set Accuracy (%) Poison Success (%)
0.0 70.52 0.01

1e-05 70.50 0.03
3e-05 70.29 0.00
0.0001 69.42 2.07
0.0003 70.41 51.03
0.001 70.08 69.83
0.003 70.04 80.32
0.01 70.12 89.84
0.03 70.09 93.33
0.1 68.98 95.90
0.3 65.68 97.16

Table 10: Test set accuracy and poison success rates for different perturbation amounts with learning
rate 0.01. Weight decay: 0.0005, Epochs: 210.

Perturbation Amount Test Set Accuracy (%) Poison Success (%)
0.001 56.82 51.51
0.003 57.04 74.33
0.01 56.66 86.64
0.03 56.58 90.94
0.1 54.85 94.50
0.3 50.23 97.37

We see a somewhat interesting result in Figures 36 and 37 we seem to have had destructive spectrum
for α = 0.03 and not for α = 0.01. Given that the training runs were automated with bash scripts as
were the spectral plot generation and calculations which used the entire training dataset, it seems like
this could be a phenomenon worth investigating.

37

Table 11: Test set accuracy and poison success rates for different perturbation amounts with learning
rate 0.03. Weight decay: 0.0005, Epochs: 210.

Perturbation Amount Test Set Accuracy (%) Poison Success (%)
0.001 64.28 68.99
0.003 65.13 80.13
0.01 64.07 89.67
0.03 64.80 93.20
0.1 63.83 95.71
0.3 58.69 97.37

0 50 100 150 200 250 300
Eigenvalues

10 5

10 4

10 3

10 2

10 1

Ga
m

m
a

(L
og

 S
ca

le
)

max: 307.13
max: 3.39e-05

(a) α = 0.3

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Eigenvalues

10 5

10 4

10 3

10 2

10 1

100

Ga
m

m
a

(L
og

 S
ca

le
)

max: 17.43
max: 1.28e-03

(b) α = 0.1

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Eigenvalues

10 5

10 4

10 3

10 2

10 1

100

Ga
m

m
a

(L
og

 S
ca

le
)

max: 0.30
max: 3.97e-05

(c) α = 0.03

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Eigenvalues

10 6

10 5

10 4

10 3

10 2

10 1

100

Ga
m

m
a

(L
og

 S
ca

le
)

max: 1.97
max: 4.58e-07

(d) α = 0.01

0.00 0.02 0.04 0.06 0.08 0.10 0.12
Eigenvalues

10 5

10 4

10 3

10 2

10 1

100

Ga
m

m
a

(L
og

 S
ca

le
) max: 0.13

max: 2.55e-04

(e) α = 0.003

0.00 0.02 0.04 0.06 0.08 0.10 0.12
Eigenvalues

10 6

10 5

10 4

10 3

10 2

10 1

100

Ga
m

m
a

(L
og

 S
ca

le
)

max: 0.13
max: 5.06e-04

(f) α = 0.001

Figure 36: Hess with respect to the input eigenspectrum for CIFAR-10 with various values of α, at
learning rate 0.03.

Channel 0 Channel 1 Channel 2

(a) α = 0.3

Channel 0 Channel 1 Channel 2

(b) α = 0.1

Channel 0 Channel 1 Channel 2

(c) α = 0.03
Channel 0 Channel 1 Channel 2

(d) α = 0.01

Channel 0 Channel 1 Channel 2

(e) α = 0.003

Figure 37: Top eigenvalues for position = 29 on CIFAR-10, with various values of α at learning rate
0.03.

38

0 100 200 300 400 500 600
Eigenvalues

10 5

10 4

10 3

10 2

10 1

Ga
m

m
a

(L
og

 S
ca

le
)

max: 580.56
max: 3.42e-06

(a) α = 0.3

0 20 40 60 80
Eigenvalues

10 4

10 3

10 2

10 1

Ga
m

m
a

(L
og

 S
ca

le
)

max: 90.93
max: 4.34e-05

(b) α = 0.1

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Eigenvalues

10 4

10 3

10 2

10 1

Ga
m

m
a

(L
og

 S
ca

le
)

max: 1.56
max: 2.35e-05

(c) α = 0.03

0.00 0.05 0.10 0.15 0.20 0.25
Eigenvalues

10 4

10 3

10 2

10 1

Ga
m

m
a

(L
og

 S
ca

le
)

max: 0.27
max: 1.94e-05

(d) α = 0.01

0.00 0.05 0.10 0.15 0.20
Eigenvalues

10 5

10 4

10 3

10 2

10 1

Ga
m

m
a

(L
og

 S
ca

le
)

max: 0.23
max: 2.11e-03

(e) α = 0.003

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Eigenvalues

10 5

10 4

10 3

10 2

10 1

Ga
m

m
a

(L
og

 S
ca

le
)

max: 0.41
max: 2.82e-04

(f) α = 0.001

0.00 0.02 0.04 0.06 0.08 0.10 0.12
Eigenvalues

10 5

10 4

10 3

10 2

10 1

Ga
m

m
a

(L
og

 S
ca

le
)

max: 0.12
max: 2.42e-04

(g) α = 0.0003

0.00 0.02 0.04 0.06 0.08
Eigenvalues

10 5

10 4

10 3

10 2

10 1

Ga
m

m
a

(L
og

 S
ca

le
) max: 0.09

max: 1.68e-04

(h) α = 0.0001

0.00 0.01 0.02 0.03 0.04 0.05
Eigenvalues

10 6

10 5

10 4

10 3

10 2

10 1

Ga
m

m
a

(L
og

 S
ca

le
)

max: 0.05
max: 1.36e-06

(i) α = 3e−5

0.00 0.01 0.02 0.03 0.04 0.05 0.06
Eigenvalues

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Ga
m

m
a

(L
og

 S
ca

le
)

max: 0.06
max: 9.52e-09

(j) α = 1e−5

0.00 0.01 0.02 0.03 0.04 0.05 0.06
Eigenvalues

10 5

10 4

10 3

10 2

10 1

Ga
m

m
a

(L
og

 S
ca

le
)

max: 0.06
max: 1.01e-05

(k) α = 0.0

Figure 38: Hessian wrtx for learning rate 0.1

39

0 50 100 150 200 250
Eigenvalues

10 6

10 5

10 4

10 3

10 2

10 1

100

Ga
m

m
a

(L
og

 S
ca

le
)

max: 248.13
max: 3.39e-06

(a) α = 0.3

0 10 20 30 40 50 60 70
Eigenvalues

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Ga
m

m
a

(L
og

 S
ca

le
) max: 70.95

max: 6.58e-07

(b) α = 0.1

0 5 10 15 20
Eigenvalues

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Ga
m

m
a

(L
og

 S
ca

le
)

max: 22.92
max: 2.59e-06

(c) α = 0.03

0 2 4 6 8 10
Eigenvalues

10 8

10 6

10 4

10 2

100

Ga
m

m
a

(L
og

 S
ca

le
)

max: 10.76
max: 1.44e-06

(d) α = 0.01

0 1 2 3 4 5 6
Eigenvalues

10 8

10 6

10 4

10 2

100

Ga
m

m
a

(L
og

 S
ca

le
)

max: 6.42
max: 2.87e-08

(e) α = 0.003

0 1 2 3 4 5
Eigenvalues

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Ga
m

m
a

(L
og

 S
ca

le
)

max: 5.08
max: 1.05e-06

(f) α = 0.001

0 1 2 3 4 5
Eigenvalues

10 9

10 7

10 5

10 3

10 1

Ga
m

m
a

(L
og

 S
ca

le
)

max: 5.21
max: 4.62e-07

(g) α = 0.0003

0 1 2 3 4
Eigenvalues

10 9

10 7

10 5

10 3

10 1

Ga
m

m
a

(L
og

 S
ca

le
)

max: 4.52
max: 2.38e-07

(h) α = 0.0001

0 1 2 3 4
Eigenvalues

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Ga
m

m
a

(L
og

 S
ca

le
)

max: 4.43
max: 3.39e-08

(i) α = 3e−5

0 1 2 3 4
Eigenvalues

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

Ga
m

m
a

(L
og

 S
ca

le
) max: 4.69

max: 3.25e-07

(j) α = 1e−5

0 1 2 3 4
Eigenvalues

10 9

10 7

10 5

10 3

10 1

Ga
m

m
a

(L
og

 S
ca

le
)

max: 4.32
max: 5.61e-07

(k) α = 0.0

Figure 39: Hessian wrtw for learning rate 0.1

40

Channel 0 Channel 1 Channel 2

(a) α = 0.3

Channel 0 Channel 1 Channel 2

(b) α = 0.1

Channel 0 Channel 1 Channel 2

(c) α = 0.03
Channel 0 Channel 1 Channel 2

(d) α = 0.01

Channel 0 Channel 1 Channel 2

(e) α = 0.003

Channel 0 Channel 1 Channel 2

(f) α = 0.001
Channel 0 Channel 1 Channel 2

(g) α = 0.0003

Channel 0 Channel 1 Channel 2

(h) α = 0.0001

Channel 0 Channel 1 Channel 2

(i) α = 3e−5
Channel 0 Channel 1 Channel 2

(j) α = 1e−5

Channel 0 Channel 1 Channel 2

(k) α = 0.0

Figure 40: Top Eigenvalues for pos=29 and learning rate 0.1

41

	Introduction
	Motivation
	Why the Hessian with respect to the weights cannot measure data poisoning
	An intuitive understanding of the Hessian and gradient with respect to the input

	Stepwise regression approach to data backdooring
	Random matrix theory approach to data poisoning
	Deep softmax regression experiments
	Conclusion, Broader Impact and Limitations
	Acknowledgements
	RMT Proofs
	Proof of Results
	Proof of Lemma A.1
	Proof of Lemma A.2
	Proof of Proposition 4.1
	Proof of Proposition 4.3

	QR Stepwise Regression
	MNIST defence
	Multi Output Regression Full Details
	Experimental Details
	Poison of Square Length 1
	Poison of Square Length 2
	An ablation experiment
	Derivation of Hess wrt to x for softmax regression

	Leaking of specific channel poison

