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Abstract

In this survey, we will explore the interaction between secure multi-
party computation and the area of machine learning. Recent advances
in secure multiparty computation (MPC) have significantly improved its
applicability in the realm of machine learning (ML), offering robust solu-
tions for privacy-preserving collaborative learning. This review explores
key contributions that leverage MPC to enable multiple parties to en-
gage in ML tasks without compromising the privacy of their data. The
integration of MPC with ML frameworks facilitates the training and eval-
uation of models on combined datasets from various sources, ensuring that
sensitive information remains encrypted throughout the process. Innova-
tions such as specialized software frameworks and domain-specific lan-
guages streamline the adoption of MPC in ML, optimizing performance
and broadening its usage. These frameworks address both semi-honest
and malicious threat models, incorporating features such as automated
optimizations and cryptographic auditing to ensure compliance and data
integrity. The collective insights from these studies highlight MPC’s po-
tential in fostering collaborative yet confidential data analysis, marking
a significant stride towards the realization of secure and efficient compu-
tational solutions in privacy-sensitive industries. This paper investigates
a spectrum of SecureML libraries that includes cryptographic protocols,
federated learning frameworks, and privacy-preserving algorithms. By
surveying the existing literature, this paper aims to examine the efficacy
of these libraries in preserving data privacy, ensuring model confidential-
ity, and fortifying ML systems against adversarial attacks. Additionally,
the study explores an innovative application domain for SecureML tech-
niques: the integration of these methodologies in gaming environments
utilizing ML.
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1 Introduction

Secure multiparty computation (MPC) has emerged as a pivotal technology en-
abling privacy-preserving machine learning (ML) across various domains. This
review explores three significant contributions to the field:

1. Secure multi-party computation (MPC) is a transformative cryptographic
protocol that enables multiple parties to collaboratively engage in ma-
chine learning tasks without compromising the privacy of their individual
data inputs. This paper [MZ17] delves into the application of MPC in
machine learning, showcasing recent advancements and frameworks that
facilitate privacy-preserving computations in a variety of applications. We
will introduce this part in section 2.

2. The CRYPTEN [KVH+21] framework from Facebook AI Research exem-
plifies a significant stride in making MPC protocols accessible to machine
learning practitioners who lack deep cryptographic expertise. CRYPTEN
integrates seamlessly with popular machine learning frameworks, using
secure MPC primitives to support private model evaluation and training.
The framework is designed to work under a semi-honest threat model and
utilizes GPU acceleration to enhance performance, demonstrating its util-
ity with state-of-the-art models for text classification, speech recognition,
and image classification. It aims to lower the barrier to adoption of MPC
in machine learning by providing a user-friendly interface that mimics con-
ventional machine learning APIs while ensuring secure computations. We
will introduce this part in section 3.

3. Another pivotal development is Cerebro [ZDC+21], a comprehensive plat-
form for MPC-based collaborative learning detailed in the USENIX Secu-
rity 2021 proceedings. Cerebro addresses both the generality-performance
tradeoff and the privacy-transparency challenge inherent in collaborative
learning environments. It features a Python-like domain-specific language
that allows users to write arbitrary learning programs, which are then
optimized by an advanced compiler that selects the most efficient MPC
protocols for execution. Additionally, Cerebro introduces innovative mech-
anisms such as compute policies and cryptographic auditing, enabling or-
ganizations to control the release of computed results and to audit the
computation process without revealing private data. We will introduce
this part in section 4.

Both platforms, CRYPTEN and Cerebro, are pivotal in advancing how sen-
sitive data is utilized securely in machine learning. By facilitating collabo-
rative learning without data exposure, these MPC implementations not only
enhance data security, but also enable the realization of more sophisticated
machine learning models. This review underscores the potential of MPC to rev-
olutionize fields that require stringent data security measures, paving the way
for widespread adoption in healthcare, finance, and beyond.
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Central to the advancement of SecureML are specialized libraries designed
to implement privacy-preserving techniques and cryptographic protocols seam-
lessly within ML workflows. In this paper, we focus on five prominent li-
braries: JustGarble, TFEncrypted, Crypten, LibOTe, and OTExtension. These
libraries, while diverse in their approaches, share common objectives and offer
essential functionalities for enhancing privacy and security in ML applications.
For this part, refer to section 5. We will also introduce the application of secure
ML in the area of game development in section 6.

2 Secure ML: A System for Scalable Privacy-
Preserving Machine Learning

2.1 Paper Abstract

SecureML presents a new and efficient approach to privacy-preserving machine
learning, tackling the challenge of scalability in securely training models such
as linear regression, logistic regression, and neural networks using stochastic
gradient descent. The protocol operates under a two-server model where data
owners distribute encrypted data across two non-colluding servers. These servers
perform the computation without learning anything about the underlying data,
using secure two-party computation (2PC).

2.2 Preliminaries

2.2.1 Machine Learning

Linear regression Given n training data samples xi each containing d fea-
tures and the corresponding output labels yi, regression is a statistal process to
learn a function such that g(xi) ≈ yi.

Stochastic gradient descent (SGD) SGD is an effective approximation
algorithm for approaching a local minimum of a function, step by step. The
SGD algorithm works as follows: w is initialized as a vector of random values or
all 0s. In each iteration, a sample (xi, yi) is selected randomly and a coefficient
wj is updated as

wj := wj − α
∂Ci(w)

∂wj

Mini-batch In practice, instead of selecting one sample of data per iteration,
a small batch of samples are selected randomly and w is updated by averaging
the partial derivatives of all samples on the current w.

Learning rate adjustment If the learning rate α is too large, the result of
SGD may diverge from the minimum. Therefore, a testing dataset is used to
test the accuracy of current W and adjust the leaning rate α.
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Termination If the accuracy is lower than a specific threshold, we could ter-
minate the learning process and output w.

Logistic Regression Logistic Regression is used to classify the dataset into
two classes, the output label y is binary. Compared to linear regression, the
logistic regression have an extra layer on which an activation function is applied
on the result.

Neural Network Neural networks are a generalization of regression to learn
more complicated relationships between high dimensional input and output
data.

2.2.2 Secure Computation

Oblivious Transfer In an oblivious transfer protocol, a sender S has two
inputs x0 and x1, and a receiver R has a selection bit b and wants to obtain xb

without learning anything else or revealing b to S, which is denoted as

(⊥;xb)← OT (x0, x1; b)

The paper also use correlated OT extension [ALSZ13]. In the COT, the sender
S’s input is related, which is x0 = f(x1).

Garbled Circuit 2PC Garbled circuit could be used to securely compute
any function by two parties. The paper require the garbling scheme to satisfy
the standard security properties formalized in [BHR12].

Secret Sharing and Multiplication Triplets The paper use secret share
to perform secure computation, which contains additively share ShrA(·), recon-
struction RecA(·, ·) and multiply share MulA(·, ·). I want to go detail about
the multiply share MulA(·, ·), which take advantage of Beaver’s pre-computed
multiplication triplet technique. The two parties have shared ⟨u⟩,⟨v⟩,⟨z⟩, where
u, v

$←− Z2 and z = uvmod 2. Then Pi locally computes ⟨e⟩ = ⟨a⟩ − ⟨u⟩ and
⟨f⟩ = ⟨b⟩ − ⟨v⟩. Both parties run Rec(⟨e0⟩, ⟨e1⟩) and Rec(⟨f0⟩, ⟨f1⟩) and Pi let
⟨ci⟩ = −i · e · f + f · ⟨a⟩i + e · ⟨b⟩i + ⟨z⟩i. Note that Boolean sharing can be seen
as additive sharing in Z2 .

2.3 Secure Model

Let C1, ..., Cm denote the clients and S0, S1 denote two non-colluding servers.
We assume a semi-honest adversary A who can corrupt any subset of the clients
and at most one of the two servers. The ideal functionality is described in figure
1.
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Parameters: Clients C1, ..., Cm and servers S0,S1.
Uploading Data: On input xi from Ci, store xi internally.
Computation: On input f from S0 or S1, compute (y1, ..., ym) =
f(x1, ..., xm) and send yi to Ci. This step can be repeated multiple times
with different functions.

Figure 1: Ideal functionality

Theorem 1: In field Z2 , let x ∈ [0, 2lx ]∪ [2l − 2lx , 2l], where l > lx +1 and
given shares ⟨x⟩0, ⟨x⟩1 of x, let ⟨⌊x⌋⟩0 = ⌊⟨x⟩0⌋ and ⟨⌊x⌋⟩1 = 2l−⌊2l−⟨x⟩1⌋.
Then with probability 1−2lx+1−l, Rec(⟨⌊x⌋⟩0, ⟨⌊x⌋⟩1) ∈ {⌊x⌋−1, ⌊x⌋, ⌊x⌋+
1}, where ⌊·⌋ denotes truncation by lD ≤ lx bits.

Figure 2: Truncation Theorem

2.4 Privacy Preserving Linear Regression

2.4.1 Vectorization

In order to benefit from the mini-batch and vectorization, the paper generalizes
the addition and multiplication operations on share values to shared matrices.

2.4.2 Truncation

In order to improve the efficiency, the authors use a technique called truncation,
which simply truncate the last half part of the decimal part of the recovered
number and keep the front half part. The authors proved that this technique has
a small influence on the accuracy of the final result. The theorem is described
in Figure 2.

2.4.3 The online phase of privacy preserving linear regression

The online phase of privacy preserving linear regression is described in Figure
3. It assumed that the data-independent shared matrices ⟨U⟩, ⟨V ⟩, ⟨Z⟩, ⟨V ′⟩,
⟨Z ′⟩ were already generated in the offline phase. The protocol also requires
multiplying the coefficient vector by α

|B| in each iteration, and α
|B| is set to be a

power of 2, i.e. α
|B| = 2−k. Then the multiplication with α

|B| can be replaced by

having the parties truncate k additional bits from their shares of the coefficients.

2.4.4 The offline phase of privacy preserving linear regression

In the offline phase, the authors need to compute C = A×B = ⟨A⟩0 × ⟨B⟩0 +
⟨A⟩0×⟨B⟩1+⟨A⟩1×⟨B⟩0+⟨A⟩1×⟨B⟩1. It is sufficient to compute ⟨⟨A⟩0×⟨B⟩1⟩
and ⟨⟨A⟩1 × ⟨B⟩0⟩ because the other two terms can be computed locally.
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Figure 3: The online phase of privacy preserving linear regression

Figure 4: The offline protocol based on linearly homomorphic encryption
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Figure 5: Sigmoid function

Figure 6: Secure computation friendly activation function

LHE-based generation The LHE-based generation involves the technique
named linearly homomorphic encryption (LSE). The protocol can be found in
Figure 4.

OT-base generation The shares of the product ⟨A⟩0 × ⟨B⟩1 could also be
computed using OTs. The full protocol is a bit complex so that I will not go
detail in this protocol. The full protocol is described detailed in [MZ17].

2.5 Privacy Preserving Logistic Regression

2.5.1 Secure computation friendly activation function

Because of the logistic activation Sigmoid function, described in Equation 1 and
Figure 5, cannot be computed by multiplication and additive share, the author
propose a new activation function that can be efficiently computed using secure
computation techniques. The function is described in Equation 2 and Figure 6.

f(x) =
1

1 + e−x
(1)

f(x) =

 0 x < − 1
2

x+ 1
2 − 1

2 ≤ x ≤ 1
2

1 x ≥ 1
2

(2)
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Figure 7: Privacy preserving logistic regression protocol

2.5.2 Privacy preserving logistic regression protocol

Firstly, we need to define two variables as described in Equation 3 and Equation
4. Use these two variables, we could update the activation function in Equation
2 to

f(u) = (¬b2) + (b2 ∧ (¬b1))u

Use thie activation function, the full protocol of Privacy preserving logistic
regression is described in Figure 7.

b1 =

{
0 u+ 1

2 ≥ 0
1 u+ 1

2 < 0
(3)

b2 =

{
0 u− 1

2 ≥ 0
1 u− 1

2 < 0
(4)

3 CRYPTEN: Secure Multi-Party Computation
Meets Machine Learning

3.1 Introduction

CRYPTEN introduces a novel software framework designed to bridge the gap
between secure multi-party computation (MPC) and machine learning. Devel-
oped by Facebook AI Research, it aims to make secure MPC techniques acces-
sible and practical for machine learning researchers and engineers who may not
have a deep background in cryptography.
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3.2 Framework Design

CRYPTEN is structured around a PyTorch-like API, offering familiar machine
learning abstractions, such as tensors, automatic differentiation, and neural net-
works, all designed to operate within a secure MPC environment. This design
allows machine learning practitioners to leverage secure MPC methods without
needing to understand the underlying cryptographic details.

3.3 GPU Support and Scalability

A distinguishing feature of CRYPTEN is its support for GPU computations,
which significantly enhances the performance of MPC operations, allowing for
more complex and larger scale machine learning tasks to be conducted securely
and efficiently.

3.4 Flexible Use Case Applications

The framework is demonstrated to be capable of supporting a wide range of
machine learning tasks from text classification to speech recognition and image
classification, providing a robust tool for privacy-preserving machine learning.

4 Cerebo - A Real-World implementation

4.1 Platform Overview

4.1.1 Threat model

After discussing the underlying building-blocks of Secure-ML, we will go through
a recent platform that allows real-world users to perform those ideal function-
alities with no prior knowledge about MPC or Secure-ML. The platform named
Cerebro supports P -parties to perform a single learning task with their secret
datasets. It also allows users to choose between two threat modes: semi-honest
and malicious settings. Both settings are defined in the context of cryptogra-
phy. In other words, the model can only prevent information leakage of users’
datasets when n − 1 parties are corrupted and form a semi-honest adversary
or there are parties deviate from the protocol. In the high level, how Cerebo
achieves both is by pre-defined sub-protocols and inconsistent data which will
appear when misbehavior happening. However, in machine learning world, in-
stead of the protocol, the trained model could also be easily attacked by care-
fully constructed dataset. An interesting example is that a skin cancer detection
model1 had mistakenly thought every image that contained ruler marking was
indicative of melanoma. However, this was only because of the ruler markings
contained in most of the images of malignant lesions. Though this example is
easy to detect when training is performed publicly, under MPC settings, the

1Problematic cancer detection model https://www.sciencedirect.com/science/article/
pii/S0022202X18322930
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definition of MPC does not allow anyone to learn any information about the
training set. Therefore, Cerebro cannot perform any work related with identi-
fying maliciously constructed datasets even if the attack method is as naive as
the example above [LVK+24].

4.1.2 Implementation

Cerebro is itself implemented by python and another MPC platform named
SCALE-MAMBA 2 which contains extensive pre-implemented MPC protocols.
To use Cerebro, users are assumed to know basic python grammar and some
specific instructions, and the platform will automatically compile the instruction
and run them in the correct mode. The way Cerebro achieves such functionality
is by the use of Domain Specific Language(DSL), which guarantees the privacy
level of variables after they are created. During compilation phase, compiler
will choose the running mode accordingly by observing the input data types. If
at least one private variable shows up in the context, the platform will switch
into secure mode and perform everything (from basic data exchanging to ma-
trix addition and multiplication) by the predefined protocols. Moreover, the
platform also makes a copy for for the original instructions and store it locally.
The local version is used for local computation, which will be further discussed
in next section. Now, the online version is generated and the running mode
is determined, the compiler performs another technique called fused operator
which will also be discussed later. Now, the online version of the task is ready,
and before the beginning of the task, Cerebro first does pre-processes which
prepares random masks and generates key pairs. In the mean time, the local
machines also generate commitments on their dataset and check the commit-
ments received from others. Once everything is done, the well-formed online
training task starts to run, and the result model is published to every parties.
Notice that the final model should be transparent to every party, and that is
everyone should know every single parameters of the final model. This is one of
the main reasons why parties could ask Cerebro to enter auditing mode.

4.2 Optimization

4.2.1 Compiler

The first optimization of Cerebro is pre-defined behavior of the compiler. To
speed up the computation, the compiler can choose the runtime mode, perform
fused operator, and determine the pre-processing mode. Note that we’ve dis-
cussed the runtime mode decision above. Before explaining the remaining ones,
it’s also worth to mentioned that the local plain-text version of code can fur-
ther improve the performance simply because if we want to use the sum of two
secret values, Cerebro could add them together locally and then encrypt the
result instead of directly going into online phase and doing anything secretly.
Furthermore, fused operator[PTN+18] is commonly used in program compiler,

2SCALE-MAMBA https://github.com/KULeuven-COSIC/SCALE-MAMBA
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enabling the compiler to find operations that could be fused into one to improve
performance.

4.2.2 Pre-processing Mode

After the fusing operation, the final version is submitted to the server, and the
pre-processing strategy will be selected from two pre-defined ones. The major
computation cost for both of them is to generate random triplets for the matrix
multiplication. From the Secure-ML paper, we know that the Beaver’s triplets
trick can also be applied to matrix multiplication by vectorization. Therefore,
for each epoch, we need a random triplets chart to mask all multiplication
happens between an m × n sample matrix and an n × 1 weights vector. The
paper defines the costs of two strategies very formally since Cerebro makes
decisions based on the magnitude of results of the two costs. The strategies
is called linear pre-processing and quadratic pre-processing. At a high level,
the first protocol ask all parties to generate random data for charts used in all
epochs at once, parties will encrypt their result and send all of them to the
server. Then, the server will generate P long lists of charts based on what it
received and publish the result to each party. Define the cost of encrypting n
bits to be EncCost(n), let one mask chart to be m bits long, and assume the
learning task takes e epoches, so e charts are needed in total. Then the final
cost for one party is roughly:

EncCost(e×m) +O(1) communication

Since each party needs to encrypt all data at once, and sending & receiving data
from sever only takes constant round.
Using the same setting, the quadratic pre-processing strategy asks each party
to communicate with all others for constant round to form part of the random
mask for one epoch. Parties will then send all encrypted charts to the server,
and server will generate the final part of the chart. Now, the cost is lowered
for each encryption, but the communication cost arise faster. The cost for this
strategy for one party is roughly:

e×EncCost(m) +O(P ) communication

Where P is the number of parties. The sever will evaluate both costs and
choose the cheaper strategy to perform.

4.2.3 Hierarchical layout

The paper also discusses a typical scenario where various parties are interested in
collaboratively calculating the sum of their data using homomorphic encryption
with varying bandwidth capacities. This problem is particularly relevant when
considering real-world scenario, such as the lower bandwidth typically available
between different continents compared to that between regions within the same
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country. To address this disparity and optimize the use of limited bandwidth,
the paper proposes the concept of a local aggregator. Each local aggregator is
responsible for summing the data within its vicinity and then only utilizes the
constrained, narrow bandwidth routes for communicating with other aggrega-
tors. This strategy significantly reduces the reliance on these slower connec-
tions. By implementing homomorphic encryption, which allows computations
to be performed on encrypted data without needing to decrypt it, the system
can minimize the frequency of data transmission over these narrow routes. The
number of times data passing through such routes can be reduced to a logarith-
mic scale in the most efficient scenarios. This approach enhances the overall
efficiency and feasibility of distributed computing tasks across geographically
dispersed parties.

4.3 Auditing

4.3.1 Cross Validation

To deal with malicious input data, the paper suggests two auditing methods.
The first is Cross Validation, which chooses each party as suspicion at a time,
remove its dataset, and retrain the whole model. If there is a round that the
model performs significantly better, we mark the suspicion in that round as
cheater. However, this method is extremely inefficient because once the number
of suspicions grows up, we will need to retrain the model for factorial number
of times, which is completely impractical. Moreover, there is another attack
method called backdoor injection, which is another type of maliciously con-
structed training data that allows the attacker to control the behavior of the
model. Such dataset is impossible to be detected by cross validation since it
merely affect the performance.

4.3.2 Commit on input

The paper proposes a commitment scheme also designed to counter data poi-
soning when parties collaborating in a distributed computation environment.
Initially, each party commits to their data inputs by sharing a cryptographic
commitment with the other parties involved. This commitment serves as a se-
cure record of their original data, preserved for future verification. After the
training phase, if any party initiates an audit process (when abnormal behavior
is detected or the model perform worse than the case that it was only trained
with a party’s own dataset), all parties are required to resubmit their datasets
for verification. At this stage, Cerebro performs a consistency check to ensure
that the data provided both before and after the learning task remains un-
changed, confirming that no tampering has occurred during the computation
process.

However, there is a potential vulnerability inherent in MPC protocols used
in this scheme. While the consistency check ensures data integrity without re-
vealing the actual contents of the inputs and thus maintaining confidentiality,
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it cannot fully prevent dishonest behavior. In scenarios where a party claims
loss of the original data, the system struggles to enforce accountability conclu-
sively. This is because, despite the initial commitments, MPC does not allow
for the recovery or reconstruction of the original data from the protocol alone.
Therefore, if a party were to falsely claim that their data was lost, other parties
would have no definitive means to dispute this claim or prove the dishonesty,
which could be one of the major security issues of Cerebro.

4.4 Experiment & Evaluation

The paper provides a comprehensive analysis of various design elements and
optimizations that significantly enhance performance across different computa-
tional scenarios, especially when evaluated using a detailed cost model. These
optimizations are shown to dramatically improve system efficiency under con-
ditions tailored to their specific strengths.

However, there are notable limitations in the implementation of certain fea-
tures. Specifically, in the cost model part, all parties are asked to send sever
their encrypted date for random mask generation. Though the paper previ-
ously states that Cerebro can work in maliciously secure mode, their cost mode
implicitly assumes that the sever works like a trusted-third-party, which might
not always be the case in reality. Though the paper does not provide much of
technical detail about the generation of random mask, I assume they are using
multiplicative homomorphic encryption to encrypt those triplets with commit-
ment scheme. If so, a malicious sever could manipulate the input data to gener-
ate malicious outputs. More discussions might be needed to explain their data
encryption and manipulation schemes.

Moreover, when conducting secure logistic regression with strong security
guarantees against malicious actors, the system encounters memory exhaustion.
This issue indicates a need for further refinement in their approach to han-
dling large-scale secure computations, suggesting that the method may require
additional optimization to reduce memory usage effectively.

Another critical area of concern is the commitment scheme used to ensure
data integrity and non-repudiation among the participating parties. The current
protocol requires each party to create a commitment by first generating a hash
of their data, committing on the hash, and then signing this commitment. This
method, when applied without batching, is highly inefficient; the process takes
an extended period of 4.5 days to verify commitments for 27,000 records. In
contrast, when a batching-commitment approach is employed, the verification
time is drastically reduced to approximately 2.23 hours, which is reasonable but
still inefficient.

Furthermore, the batching-commitment scheme also introduces a new prob-
lem: it requires the data order to remain unchanged. Any alteration in the
sequence of the records leads to inconsistencies that the system incorrectly flags
as data tampering (false positives). This limitation restricts the flexibility of
the system in dynamic environments where data order might change for legit-
imate reasons. This problem reveals another potential area for improvement
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in ensuring the scheme’s robustness and adaptability without compromising on
security.

5 Libraries and their implementation for Secure
ML

5.1 Introduction

Machine learning (ML) has the potential to revolutionize industries from health-
care to finance. Yet, the sensitive data at the heart of these domains often
presents a formidable barrier to innovation. Secure ML libraries emerge as a
game-changing solution, enabling organizations to leverage the power of ML
while safeguarding the confidentiality and integrity of their most valuable as-
sets.

These libraries encapsulate a wealth of cryptographic techniques and secure
protocols, allowing stakeholders to collaboratively train and deploy ML models
without exposing their underlying data. From the robust collaborative frame-
works of secure multi-party computation (MPC) to the powerful encryption
techniques of homomorphic encryption (HE) and the nuanced privacy guar-
antees of differential privacy (DP), Secure ML libraries offer a comprehensive
toolkit for balancing data utility and privacy preservation.

5.1.1 JustGarble

JustGarble emerges as a powerful tool in the realm of secure multi-party compu-
tation (MPC) and oblivious transfers (OT). Its streamlined approach to circuit
garbling and evaluation simplifies the process, making it more accessible and
efficient. With JustGarble, you can easily transform circuits into the Simple
Circuit Description (SCD) format using external compilers.[BHKR13]

Circuit Representation:

• Let C be the Boolean circuit representing the function to be computed.

• C consists of gates g1, g2, . . . , gn and wires connecting these gates.

• Each gate gi has input wires wi1, wi2, . . . , wik and output wire wi.

Garbling Phase: In SecureML, User 1 (Alice) acts as the garbler. Here’s how
it works:

• For each gate gi in the Boolean circuit, Alice assigns two random labels
(garbled labels) to each wire of the gate, representing the output of the
gate for inputs 0 and 1.

• These labels, denoted as Li,j,0 and Li,j,1, correspond to the j-th wire of
gate gi for inputs 0 and 1, respectively.
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• Alice encrypts these garbled labels using symmetric encryption with keys
derived from the input values.

• For example, Ek(Li,j,b) represents the encrypted label for wire j of gate
gi with input b.

• Additionally, Alice generates and encrypts input labels for her inputs.

• Alice then sends the encrypted garbled circuit to User 2 (Bob).

Evaluation Phase: In SecureML, User 2 (Bob) acts as the evaluator.
Here’s how it works:

• Bob obtains his input labels by using oblivious transfer (OT) to select the
appropriate encrypted garbled labels from Alice’s transmissions.

• For each wire corresponding to his input, Bob uses OT to receive the
encrypted garbled labels from Alice.

• Bob proceeds gate by gate, evaluating each gate using the garbled labels
he received from Alice.

• For each gate, Bob decrypts the garbled labels corresponding to the input
wires using the keys derived from his input values.

• Based on the truth table of the gate, Bob reveals the garbled label of the
output wire.

• Bob sends the garbled label for the output wire to Alice.

• Alice decrypts the received garbled label to obtain the final output of the
function.

SecureML enables two parties to work together, harnessing the power of their
combined data without ever revealing their individual inputs. It’s like a magic
trick where both parties contribute ingredients to a recipe, but neither can see
the other’s secret ingredients until the dish is complete. SecureML achieves this
through a clever mix of symmetric encryption and oblivious transfer, ensuring
that communication and computation remain secure and private at every step.

5.1.2 TFEncrypted

TFEncrypted opens up new possibilities for collaborative machine learning. It
enables multiple parties to work together, leveraging the power of their combined
data without ever revealing their individual inputs. It’s like a magic trick where
everyone contributes to the illusion, but the secrets remain hidden until the
grand reveal.

This is made possible by TFEncrypted’s ability to automatically convert
TensorFlow computation graphs into secure computation graphs using advanced
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MPC protocols.[Dev] It’s a powerful tool for organizations looking to harness
the potential of distributed data without compromising privacy. TFEncrypted
facilitates the following key steps in the process:

1. Defining Computation Graphs: Users define TensorFlow computation
graphs specifying operations such as matrix multiplications, convolutions,
and activations.

2. Securing the Graph: TFEncrypted converts the computation graph
into a secure computation graph using MPC protocols. This involves
partitioning the computation among multiple parties, encrypting inputs,
and performing secure computations on encrypted data.

3. Execution: The secured computation graph can be executed by multi-
ple parties, with each party holding encrypted shares of the input data.
Through secure computations, parties collaborate to perform the desired
computation while ensuring privacy and security.

TFEncrypted relies on Secure MPC protocols to ensure privacy and security
in collaborative machine learning tasks. Some key concepts involved in Secure
MPC include:

• Secret Sharing: Inputs are divided into shares using secret sharing
schemes such as Shamir’s Secret Sharing, ensuring that no individual party
can reconstruct the original inputs.

• Secure Operations: Computations are performed on shares of inputs
using cryptographic protocols, preserving privacy and correctness. These
protocols involve interactions between parties to compute functions while
keeping inputs and intermediate values private.

• Consistency: At the end of the computation, parties collaborate to re-
construct the final result using the shares they collectively hold, ensuring
consistency with the result of performing the computation on plaintext
inputs.

5.1.3 Crypten

Crypten is pushing the boundaries of what’s possible in secure machine learn-
ing. This groundbreaking framework leverages secure multi-party computation
(MPC) to automatically convert standard machine learning computations into
operations on encrypted data. This enables multiple parties to collaborate on
machine learning tasks without revealing their private data.

In this paper, we provide an overview of Crypten, explore the cryptographic
concepts it utilizes, and delve into the mathematical foundations that make it
possible. Crypten opens up new avenues for leveraging distributed data with-
out compromising privacy, unlocking the full potential of collaborative machine
learning. The framework facilitates the following key steps in the process:
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1. Defining Computation Graphs: Users define computation graphs us-
ing familiar deep learning frameworks such as PyTorch. These graphs
specify operations such as neural network layers, activations, and loss
functions.

2. Encryption: Crypten automatically encrypts the computation graph and
input data using homomorphic encryption techniques. This allows com-
putations to be performed directly on encrypted data while preserving
privacy.

3. Secure Evaluation: The encrypted computation graph is securely eval-
uated using secure MPC protocols. Parties collaborate to perform compu-
tations on encrypted data without revealing their inputs, ensuring privacy
and security.

Crypten relies on Secure MPC protocols to ensure privacy and security in
machine learning tasks. Key concepts involved in Secure MPC include:

• Homomorphic Encryption: Crypten employs homomorphic encryption
schemes to enable computations on encrypted data. These schemes allow
operations such as addition and multiplication to be performed directly
on ciphertexts, preserving the privacy of the underlying data.

• Secure Aggregation: Secure MPC protocols enable parties to securely
aggregate their encrypted shares to compute functions without revealing
their inputs. This ensures that computations can be performed collabo-
ratively while maintaining privacy.

• Zero-Knowledge Proofs: Crypten utilizes zero-knowledge proofs to val-
idate computations performed by parties without revealing any informa-
tion about the inputs or intermediate values. This provides an additional
layer of security against malicious parties.

5.1.4 LibOTe

LibOTe is pushing the boundaries of what’s possible in secure communication.
This groundbreaking library leverages Oblivious Transfer (OT) techniques to
automatically convert standard communication protocols into secure exchanges
of encrypted data.[Gro] This enables parties to collaborate without revealing
their private data.

In this paper, we provide an overview of LibOTe, explore the cryptographic
concepts it utilizes, and delve into the mathematical foundations that make it
possible. LibOTe opens up new avenues for secure communication, unlocking
the full potential of collaborative information exchange. The library facilitates
the following key functionalities:

1. Oblivious Transfer (OT): LibOTe offers efficient implementations of
various OT protocols, allowing parties to securely transfer information
while preserving privacy.
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2. Secure Channels: The library provides mechanisms for establishing se-
cure channels between parties, ensuring confidentiality and integrity of
communications.

3. Error Correction: LibOTe includes error correction techniques to en-
hance the reliability of communication over insecure channels.

LibOTe relies on secure communication protocols to ensure privacy and secu-
rity in data exchange. Key concepts involved in secure communication include:

• Oblivious Transfer (OT): OT protocols enable one party (the sender)
to securely transfer information to another party (the receiver) without
learning which information was sent. This ensures that the sender’s pri-
vacy is preserved.

• Secure Channels: Secure channels provide a means for parties to com-
municate securely over untrusted networks. These channels typically in-
volve encryption, authentication, and integrity verification mechanisms to
protect against eavesdropping and tampering.

• Error Correction: Error correction techniques are employed to detect
and correct errors introduced during data transmission. This ensures the
reliability of communication, even in the presence of noise and interference.

LibOTe involves advanced cryptographic primitives and communication pro-
tocols. These include:

• OT Protocols: Various OT protocols, such as 1-out-of-2 OT and k-
out-of-n OT, are based on mathematical concepts such as number theory,
algebra, and probability theory. These protocols ensure that the sender’s
privacy is preserved while enabling secure data transfer.

• Error Correction Codes: Error correction codes, such as Hamming
codes and Reed-Solomon codes, are based on linear algebra and coding
theory. These codes enable the detection and correction of errors intro-
duced during data transmission, enhancing the reliability of communica-
tion.

• Cryptography: Cryptographic primitives, such as symmetric and asym-
metric encryption, digital signatures, and hash functions, are fundamental
to secure communication protocols. These primitives ensure confidential-
ity, integrity, and authenticity of data exchanged between parties.

LibOTe offers a versatile library for implementing secure communication pro-
tocols, with a focus on Oblivious Transfer techniques. By leveraging advanced
cryptographic primitives and communication protocols, LibOTe enables parties
to exchange information securely while preserving privacy and integrity.
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5.1.5 OTExtension

OTExtension is pushing the boundaries of what’s possible in secure computa-
tion. This groundbreaking protocol leverages Oblivious Transfer (OT) tech-
niques to efficiently perform secure one-out-of-two operations over the internet.
This enables parties to collaborate without revealing their private data.[PSZ18]

In this paper, we provide an overview of OTExtension, explore the crypto-
graphic concepts it utilizes, and delve into the mathematical foundations that
make it possible. OTExtension opens up new avenues for secure computation,
unlocking the full potential of collaborative information exchange.The protocol
facilitates the following key functionalities:

1. Efficient OT: OTExtension enables parties to perform one-out-of-two
oblivious transfer efficiently, even over high-latency and low-bandwidth
networks.

2. Secure Computation: The protocol ensures that both the sender and
receiver of OT messages remain oblivious to each other’s inputs, preserving
privacy and security.

3. Scalability: OTExtension is designed to scale to a large number of OT
instances, making it suitable for applications requiring a high volume of
secure computations.

OTExtension relies on oblivious transfer protocols to achieve secure commu-
nication between parties. Key concepts involved in oblivious transfer include:

• OT Protocols: OT protocols enable one party (the sender) to transfer a
message to another party (the receiver) without learning which message
was sent. This ensures that the receiver’s privacy is preserved.

• Security Guarantees: OT protocols provide security guarantees such
as sender privacy, receiver privacy, and correctness. These guarantees are
achieved through cryptographic techniques such as encryption, commit-
ment schemes, and zero-knowledge proofs.

• Efficiency: Efficient OT protocols, such as OTExtension, optimize com-
munication and computation costs to enable secure communication over
the internet.

OTExtension involves advanced cryptographic primitives and protocols. These
include:

• Commitment Schemes: Commitment schemes are cryptographic pro-
tocols that allow a party to commit to a value without revealing it. These
schemes are used in OTExtension to ensure that both parties remain obliv-
ious to each other’s inputs until the OT is completed.
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• Zero-Knowledge Proofs: Zero-knowledge proofs are cryptographic tech-
niques that allow a party to prove knowledge of a value without revealing
the value itself. These proofs are used in OTExtension to verify the cor-
rectness of OT instances without revealing the chosen messages.

• Efficient Protocols: OTExtension utilizes efficient cryptographic proto-
cols and optimizations to minimize communication and computation costs,
enabling scalable and secure OT over the internet.

OTExtension offers robust security for oblivious transfer over the internet.
This powerful protocol leverages advanced cryptographic techniques to ensure
parties can exchange sensitive information securely and efficiently. With OTEx-
tension, organizations can collaborate with confidence knowing their data re-
mains protected and its integrity preserved.

5.2 Multiparty Computation

These libraries for Secure MPC involves advanced cryptographic primitives such
as homomorphic encryption, secret sharing schemes, and zero-knowledge proofs.
These primitives enable computations to be performed on encrypted data while
preserving privacy and correctness. For example, homomorphic encryption al-
lows operations to be performed directly on ciphertexts, enabling secure com-
putation on encrypted data without decryption.

6 Secure ML in games

6.1 Introduction

In the world of adversarial games, where strategic decision-making and infor-
mation concealment are key, Secure ML techniques powered by frameworks like
TFEncrypted offer a transformative approach to conducting analyses while safe-
guarding sensitive information.

Traditionally, adversarial games [GWHX21] involve multiple players making
sequential moves with imperfect information, often leading to complex deci-
sion trees and strategic interactions. However, in scenarios where players are
distributed geographically or are unwilling to reveal their private strategies,
conventional methods fall short due to privacy concerns. Secure ML techniques
address these challenges by enabling collaborative learning without the need to
share raw data or strategies.

By leveraging homomorphic encryption and secure aggregation techniques,
TFEncrypted allows players to train models and make strategic decisions collab-
oratively while keeping their individual strategies and preferences confidential.
This opens up new possibilities for secure, distributed adversarial game analysis.

In this paper, we explore the application of TFEncrypted in the context of
adversarial games, focusing on two prominent examples: Tic Tac Toe and Poker.
We delve into the methodologies employed to secure the gameplay, including

20



the encryption of game states and the execution of strategic algorithms within
a secure computation environment. Furthermore, we discuss the challenges
and opportunities presented by Secure ML in adversarial settings, highlighting
the potential for advancing strategic decision-making while preserving player
privacy.

6.2 Secure ML in TicTacToe

Conventional ML algorithms typically require access to raw game data, includ-
ing past game states and player actions, to train predictive models and strategic
algorithms. However, sharing such data among players in a multiplayer setting
raises concerns regarding privacy and data security. Without proper safeguards
in place, players may be reluctant to disclose their game history and strategies,
leading to asymmetries in the availability of information and unfair gameplay
dynamics. Moreover, traditional ML methods often lack mechanisms to ensure
the integrity and confidentiality of strategic decision-making processes. In Tic
Tac Toe[Pau20], for instance, players may exploit vulnerabilities in the learning
algorithms to infer opponents’ strategies or manipulate game outcomes, com-
promising the fairness and competitiveness of the game.

These shortcomings inherent in conventional machine learning when applied
to Tic Tac Toe highlight the necessity for implementing Secure ML practices
including TFEncrypted. Such techniques are designed to confront issues sur-
rounding privacy, justice, and cooperative endeavors within adversarial gam-
ing realms. Secure ML, fortified with cryptographic protocols and encryption
methods, empowers participants to collaboratively partake in strategic thinking
while concurrently protecting individual privacy and maintaining the integrity
of their gameplay interactions. This research showcases the successful deploy-
ment of TFEncrypted within a Tic Tac Toe landscape as evidence of Secure
ML’s potential to elevate strategy formulation processes and uphold fairness
within multi-player gaming contexts.

Q-learning is a reinforcement learning algorithm that learns optimal strate-
gies through trial and error. At its core, Q-learning involves updating a Q-value
table based on rewards received from different game states. The Q-value rep-
resents the expected cumulative reward when taking a particular action from a
given state. The update rule for Q-learning can be defined as follows:

Q(s, a)← Q(s, a) + α ·
(
r + γ ·max

a′
Q(s′, a′)−Q(s, a)

)
where:

• Q(s, a) is the Q-value for state s and action a.

• r is the immediate reward received after taking action a from state s.

• α is the learning rate (a parameter controlling the rate of learning).

• γ is the discount factor (a parameter balancing immediate and future
rewards).
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• s′ is the next state after taking action a.

• a′ is the next action chosen based on the maximum Q-value in the next
state s′.

Using TFEncrypted : To implement Q-learning in Tic Tac Toe using
TFEncrypted, we can follow these steps:

1. Game Representation: Represent the Tic Tac Toe game state as a
vector of length 9, where each element corresponds to a cell on the board
(0 for empty, 1 for X, -1 for O).

2. Model Initialization: Initialize a Q-value table as a TensorFlow vari-
able, encrypted using TFEncrypted’s secure computation protocols. Each
entry in the table represents the Q-value for a specific game state-action
pair.

3. Training Loop: Iterate through episodes of gameplay, where the AI agent
interacts with the environment (the Tic Tac Toe board). At each step,
the agent selects an action based on an exploration-exploitation strategy
(e.g., epsilon-greedy) and updates the Q-value table using the Q-learning
update rule. The AI agent’s actions and rewards are encrypted using
TFEncrypted to preserve privacy.

4. Secure Evaluation: During gameplay, both the AI agent and the human
opponent interact with the encrypted Q-value table using TFEncrypted’s
secure computation protocols. This ensures that the AI agent’s strategy
and decision-making process remain private from the opponent, enhancing
fairness and preserving player privacy.

5. Deployment: Once the AI agent is trained, deploy it to play against hu-
man opponents in a secure and privacy-preserving manner. TFEncrypted
ensures that the AI agent’s strategy and decision-making process remain
confidential during gameplay, fostering a fair and competitive gaming en-
vironment.

Through the integration of TFEncrypted in Tic Tac Toe with ML, this ap-
proach enables players to engage in strategic gameplay while preserving privacy
and ensuring fairness. By leveraging secure computation protocols and encryp-
tion mechanisms, TFEncrypted facilitates collaborative learning and decision-
making in adversarial gaming scenarios, paving the way for enhanced player
experiences and privacy-preserving gaming environments.

6.3 Using Decision Trees in Poker with TFEncrypted

Decision trees stand out as a robust algorithm within machine learning, champi-
oning both classification and regression challenges. When applied to the realm of
Poker, these analytical models delve into the heart of strategy, parsing through
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the current dynamics of the game and the psychological nuances of player tac-
tics. By iteratively partitioning the feature space, decision trees meticulously
carve out subsets in alignment with attribute values until reaching the terminal
leaves where definitive gameplay choices are rendered. This logical dissection
is visually encapsulated in a dendritic diagram, where each node maps to an
influential factor, and the branches symbolize the potential strategic forks in
the road. To implement decision trees in Poker using TFEncrypted[BPTG15],
we can follow these steps:

1. Game Representation: Represent the Poker game state and player
actions as features in a dataset. Each row in the dataset corresponds to
a unique game state, while columns represent different features such as
current hand strength, bet size, and opponent behavior.

2. Model Training: Train a decision tree classifier on the encrypted dataset
using TFEncrypted’s secure computation protocols. The decision tree
learns to predict the optimal action to take in a given game state based
on the features provided.

3. Secure Evaluation: During gameplay, both the AI player and human
opponents interact with the decision tree model using TFEncrypted’s se-
cure computation protocols. The AI player’s actions and observations
are encrypted to ensure privacy, while the decision tree model remains
confidential.

4. Strategic Decision-Making: The decision tree model guides the AI
player in making strategic decisions during Poker gameplay. Based on
the current game state and observed features, the AI player consults the
decision tree to determine the optimal action to take, such as folding,
calling, or raising.

5. Fair and Competitive Gameplay: TFEncrypted ensures that both
the AI player and human opponents can engage in Poker gameplay in a
fair and competitive manner, with their strategies and decision-making
processes kept private. This fosters a level playing field and enhances the
overall gaming experience.

By incorporating TFEncrypted into the realm of Poker utilizing decision
trees, this method empowers participants to engage in superior strategic game-
play under the banner of privacy protection and equitable play. TFEncrypted
harnesses the power of cutting-edge secure computation protocols together with
sophisticated encryption techniques, thus catalyzing a collaborative learning
and decision-making revolution in the often contentious world of gaming. The
result is a groundbreaking leap forward for player engagement and the establish-
ment of gaming enclaves where privacy is not just a feature, but a fundamental
standard.
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7 MP-SPDZ: A Versatile Framework for Multi-
Party Computation

7.1 Introduction

Multi-Party Computation (MPC) protocols facilitate collaborative computation
amongst several entities on a function, hinging on their confidential inputs. This
collaborative effort is conjoined with a commitment to input privacy. These
protocols are pivotal for the integrity and confidentiality in environments where
the joint processing of sensitive information is mandatory. MP-SPDZ emerges
as a flexible and dynamic framework pivotal for MPC that furnishes robust,
scalable solutions tailored for a spectrum of applications that necessitate the
preservation of privacy. [KD20]

7.2 Background

Multi-Party Computation (MPC) has risen as an indispensable mechanism for
fortifying privacy and ensuring security within the realm of collaborative com-
puting engagements. At its core, MPC protocols are designed to allow multiple
entities to collaboratively execute a function while maintaining the confidential-
ity of their individual inputs. Nevertheless, the deployment of MPC protocols in
a manner that is both efficient and secure remains a formidable challenge, par-
ticularly in environments characterized by an extensive number of participants
or where the computational endeavors are intricate.

7.3 Features of MP-SPDZ

MP-SPDZ is outfitted with a suite of distinctive functionalities that sets it apart
within the landscape of multi-party computation (MPC) frameworks. These
functionalities are:

• Efficiency: MP-SPDZ leverages state-of-the-art cryptographic techniques
and optimization strategies to achieve high performance in secure compu-
tation tasks. Its efficient protocols minimize communication overhead and
computational complexity, enabling fast and scalable MPC solutions.

• Flexibility: The framework supports a diverse set of cryptographic prim-
itives and computation types, including arithmetic circuits, boolean cir-
cuits, and machine learning models. This flexibility allows users to express
a wide range of privacy-preserving computations and applications using
MP-SPDZ.

• Security: MP-SPDZ incorporates rigorous security guarantees and cryp-
tographic protocols to ensure the confidentiality and integrity of partic-
ipants’ inputs and outputs. Its robust security model protects against
various adversarial attacks, including collusion and information leakage.
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• Usability: MP-SPDZ provides user-friendly interfaces and tools for devel-
oping, deploying, and managing MPC applications. Its intuitive program-
ming model and documentation facilitate adoption by both researchers
and practitioners, enabling rapid prototyping and deployment of privacy-
preserving solutions.

7.4 Applications

The MP-SPDZ framework has seen successful deployment across a spectrum
of sectors, showcasing its impressive adaptability and efficacy in the realm of
secure, privacy-centric computations. Key implementations encompass:

• Secure Machine Learning: MP-SPDZ enables collaborative training
and inference of machine learning models on sensitive data from multiple
parties while preserving privacy. It has been used in applications such as
federated learning, privacy-preserving data analysis, and encrypted infer-
ence.

• Privacy-Preserving Data Analysis: MP-SPDZ supports secure com-
putation of statistical and analytical functions over distributed datasets,
allowing organizations to perform joint data analysis without sharing sen-
sitive information. It has been applied in domains such as healthcare,
finance, and telecommunications for tasks such as fraud detection, risk
assessment, and disease surveillance.

• Cryptographic Protocols: MP-SPDZ serves as a foundation for imple-
menting various cryptographic protocols and primitives, including secure
multiparty computation, homomorphic encryption, and zero-knowledge
proofs. It has been used to develop secure voting systems, verifiable auc-
tions, and private information retrieval schemes.

MP-SPDZ emerges as a formidable breakthrough within the Multi-Party
Computation realm, delivering an intricately designed, performance-optimized
framework tailored for secure computation in privacy-sensitive scenarios. It
strikes an impressive balance between computational efficiency, adaptability,
robust security measures, and user-centric design, positioning itself as an in-
dispensable asset for researchers and developers focused on leveraging cooper-
ative computing potentials whilst maintaining data confidentiality. In an era
where digital privacy is escalating to the forefront of technological discourse,
MP-SPDZ shines as a pillar of pioneering development in safeguarding privacy
through cutting-edge computational solutions.

8 Conclusion

In this project, we examined the integration of secure multi-party computa-
tion (MPC) with machine learning (ML), emphasizing its potential in privacy-
preserving collaborative learning. By incorporating MPC into ML frameworks
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through advanced software like CRYPTEN and Cerebro, we demonstrated how
these technologies enable secure model training and evaluation without com-
promising data privacy. These developments promise extensive applications in
fields requiring stringent data security, such as healthcare and finance.

Along with this, we explored the use of various Secure Machine Learning
Libraries in the domain of Secure ML. Understanding the functionalities that
they allow and the key concepts involved in the use of these libraries.

Additionally, we explored the innovative use of SecureML in gaming, show-
casing its adaptability in new domains. This project highlights the growing
feasibility of MPC in ML, giving us a broader view of the development in pri-
vacy and security.
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