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Abstract

Command injection vulnerabilities are a significant security threat in dynamic
languages like Python, particularly in widely used open-source projects where
security issues can have extensive impact. With the proven effectiveness of Large
Language Models(LLMs) in code-related tasks, such as testing, researchers have
explored their potential for vulnerabilities analysis. This study evaluates the
potential of large language models (LLMs), such as GPT-4, as an alternative
approach for automated testing for vulnerability detection. In particular, LLMs
have demonstrated advanced contextual understanding and adaptability, making
them promising candidates for identifying nuanced security vulnerabilities within
code. To evaluate this potential, we applied LLM-based analysis to six high-
profile GitHub projects—Django, Flask, TensorFlow, Scikit-learn, PyTorch, and
Langchain—each with over 50,000 stars and extensive adoption across software
development and academic research. Our analysis assesses both the strengths and
limitations of LLMs in detecting command injection vulnerabilities, evaluating
factors such as detection accuracy, efficiency, and practical integration into devel-
opment workflows. In addition, we provide a comparative analysis of different
LLM tools to identify those most suitable for security applications. Our find-
ings offer guidance for developers and security researchers on leveraging LLMs
as innovative and automated approaches to enhance software security.

Keywords: Large Language Models, Test generations, Software Testing
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1 Introduction

Python’s rich ecosystem makes it an ideal choice for a wide range of AI tasks, from
scripting to developing complex models. Widely adopted libraries, such as Tensor-
Flow [1] and PyTorch [2], offer robust tools for machine learning and deep learning
applications. However, as the use of AI techniques and related open-source software
continues to grow, addressing security vulnerabilities becomes increasingly essen-
tial—particularly in popular libraries and frameworks where security flaws can lead
to widespread, systemic risks.

One such security vulnerability, command injection, represents a critical threat in
dynamic languages like Python. Command injection vulnerabilities allow attackers to
exploit applications by executing unauthorized commands, potentially compromising
system integrity and exposing sensitive data. An exploited vulnerability can lead to
data breaches, unauthorized access to sensitive resources, and loss of system control.
For instance, an attacker could access confidential data or manipulate system files,
which can disrupt service and harm user trust [3]. The urgency of addressing these
vulnerabilities is underscored by their prominent ranking in security advisories, such
as the Common Weakness Enumeration (CWE) [4], and by recent alerts [5] from
organizations like CISA and the FBI, which highlight the risks these vulnerabilities
pose to common software products.

The Common Vulnerabilities and Exposures (CVE) database has documented mul-
tiple instances of command injection vulnerabilities within Python libraries [6]. One
such example, shown in Listing 1, involves a vulnerability reported in CVE-2022-29216
[7]. This vulnerability existed in the preprocess input exprs arg string function
within the saved model cli.py file, where an eval() method call enabled com-
mand injection through unvalidated inputs. By passing malicious commands via the
input exprs str parameter, an attacker could exploit this function due to the lack
of an input validation mechanism.

Existing tools, such as Bandit [8], have been instrumental in identifying certain
types of command injection vulnerability. However, those static analysis tools often
require fully compiled code and may not adapt well to the nuances of large, fragmented
codebases or evolving vulnerability patterns. Recent advances in large language mod-
els (LLMs), including models like GPT-4, offer promising alternatives in code analysis
and generation [9–13]. Unlike traditional tools, LLM-based approaches could analyze
both compiled and non-compiled code fragments and generate contextually relevant
vulnerability assessments without requiring the complete code structure. In addi-
tion, an LLM-based approach can generate security tests that validate vulnerability
assessments, providing an additional layer of security assurance.

For instance, as demonstrated in Section 2.1, detecting vulnerabilities in the code
snippet in Listing 2 presents motivation for our work in this paper. First, like many
similar code examples, the snippet is fragmented and non-compilable, which limits
the applicability of traditional vulnerability detection tools that rely on fully com-
piled code for analysis. Unlike conventional tools, large language models (LLMs) can
analyze vulnerabilities directly within code snippets, regardless of their compilability.
Furthermore, as demonstrated by the different analysis results of the two methods in
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section 2.1.1 and Section 2.1.2, the approach of adopting GPT-4 are capable of iden-
tifying vulnerabilities that may be overlooked by existing detection tools like Bandit.
Additionally, LLMs can generate security tests for functions to validate their assess-
ments, adding a layer of verification. These advantages motivate our proposed work
of applying LLM-based approach to detect command injection vulnerabilities.

1 def preprocess_input_exprs_arg_string(input_exprs_str , safe=True):
2 input_dict = {}
3

4 for input_raw in filter(bool , input_exprs_str.split(’;’)):
5 if ’=’ not in input_exprs_str:
6 raise RuntimeError(’--input_exprs "%s" format is incorrect. Please follow ’
7 ’"<input_key >=<python expression >"’ % input_exprs_str)
8 input_key , expr = input_raw.split(’=’, 1)
9 if safe:

10 try:
11 input_dict[input_key] = ast.literal_eval(expr)
12 except Exception as exc:
13 raise RuntimeError(
14 f’Expression "{expr}" is not a valid python literal.’) from exc
15 else:
16 input_dict[input_key] = eval(expr)
17 return input_dict

Listing 1: Command injection vulnerability instance in Tensorflow.

Contributions: The contributions of this paper are as follows:

• We conducted a comprehensive analysis of command injection vulnerabilities across
13,037 Python files from 6 most popular open-source projects, each with over 50K
stars on GitHub. Our work explores the effectiveness and completeness of large
language model (LLM)-based analysis for detecting command injection vulnerabil-
ities, providing a rigorous evaluation of four different LLMs, including GPT-4 [14],
GPT-4o [15], Claude 3.5 Sonnet [16] and DeepSeek-R1[17].

• We examined the characteristics of the command injection vulnerabilities that might
be missed by LLM-based approach. Our results show the limitations of LLMs in
this area and inspire future research in the domain

• We compared our LLM-based approach to traditional security tools, specifically
Bandit, to evaluate improvements in accuracy and completeness when identifying
command injection vulnerabilities.

• Our study built a dataset of 13,037 Python files from six high-profile GitHub
projects—Django, Flask, TensorFlow, Scikit-learn, PyTorch, and Langchain—each
with over 50,000 stars and extensive adoption across software development and
academic research. This dataset is available in the GitHub, forming a benchmark
resource for further research in vulnerability detection in the domain.

2 Motivation and Background

2.1 Motivating Example

In Listing 2, we present a Python function from the PyTorch [2] project as a motivating
example. This function’s purpose is to retrieve and return a list of process IDs for all
child processes associated with a given process ID (pid). In the second line, it employs
the subprocess.Popen() method to execute the command pgrep -P {pid}. Among
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the parameters passed to subprocess.Popen(), pid is a formal parameter whose
value can be controlled externally, and shell=True enables the execution of command
strings directly in the shell. This combination presents a significant vulnerability to
command injection attacks.To investigate its vulnerability, we applied two different
analysis methods to this function: the existing detection tool, Bandit, and an LLM-
based approach using GPT (e.g., GPT-4), and then compared their detection results.

1 def get_child_pids(pid):
2 pgrep = subprocess.Popen(args=f"pgrep -P {pid}", shell=True , stdout=

subprocess.PIPE)
3 pgrep.wait()
4 out = pgrep.stdout.read().decode("utf -8").rstrip ().split("\n")
5 pids = []
6 for pid in out:
7 if pid:
8 pids.append(int(pid))
9 return pids

Listing 2: A candidate function from Pytorch project[2].

2.1.1 Applying Bandit to Analyze the Function in Listing 2

First, we used Bandit [8], an existing tool for detecting security issues in Python
code, to determine if there was a command injection vulnerability in this function.
Figure 1a illustrates the workflow for detecting code security issues with Bandit. We
executed Bandit following the instructions shown in the blue block, while the yellow
block displays Bandit’s detection report. According to the report, Bandit concluded
that this function does not contain a command injection vulnerability.

2.1.2 Applying GPT-4 to Analyze the Function in Listing 2

Figure 1b illustrates our approach in using GPT-4 to analyze the function in Listing
2. The blue square contains the task assigned to GPT-4, while the yellow square
displays GPT-4’s output. The analysis begins with GPT-4 evaluating the function
to identify any command injection vulnerabilities. As shown in Figure 1b, GPT-4’s
output indicates that it detected a command injection vulnerability in this function.
Furthermore, GPT-4 generates a security test to verify the function’s safety, adding
confidence to its findings.

Figure 1b shows the security test generated by GPT for the get- child pids func-
tion. It is written using Python’s unittest framework. In this code, a test file named
test file.txt is first created for later testing. Next, a malicious command is passed to
the get- child pids function, and since there is no protection, ”pgrep -P {pid}” is inter-
preted as two commands: first execute pgrep -P, and then execute ”rm {self.test file}”,
which deletes the test file. After running this security test, the result obtained is True,
which indicates that the test file has been deleted, means that the get child pids func-
tion is vulnerable to command injection attack. This result proves the analysis of the
GPT-4 model.

Motivation. Detecting vulnerabilities in the code snippet shown in Listing 2
motivates our work. The snippet, like many similar examples, is fragmented and non-
compilable, which limits the effectiveness of traditional detection tools that require
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(a) Result of Bandit (b) Result of GPT-4

Fig. 1: The detection results for GPT-4 and Bandit.

fully compiled code. In contrast, large language models (LLMs) can analyze vulner-
abilities directly within code snippets. As demonstrated in Sections 2.1.1 and 2.1.2,
our approach using GPT-4 identifies vulnerabilities that tools like Bandit may miss.
Moreover, LLMs can generate security tests for functions to validate their assessments,
adding an extra layer of verification. These advantages motivate our use of LLMs to
detect command injection vulnerabilities.

2.2 Large Language Models (LLMs)

Large Language Models (LLMs) [18] are large-scale deep learning models designed
to perform a wide range of natural language processing (NLP) tasks, including text
recognition, translation, prediction, and generation. LLMs are primarily built upon the
Transformer architecture [19], employing self-supervised and semi-supervised learn-
ing methods to pre-train on extensive datasets, which allows them to learn language
patterns and complex semantic structures.

Due to their foundation on the Transformer, LLMs inherit its encoder-decoder
structure and can generally be categorized into three main groups: encoder-only,
encoder-decoder, and decoder-only models [20]. Encoder-only models focus on under-
standing and encoding the input data. Examples include BERT [21] and its variations,
such as CodeBERT [22] and ALBERT [23]. Encoder-decoder models utilize both
encoding and decoding layers for tasks that require both input processing and output
generation, with prominent examples being T5 [24] and CoTexT [25]. Decoder-only
models are primarily used for generation tasks; examples include the GPT model
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family, such as GPT-3 [26], GPT-3.5 [27], GPT-4 [14], GPT-4o [15] as well as other
models like Google’s PaLM [28], Meta’s LLaMA [29] and DeepSeek-R1[17]. For Claude
3.5 Sonnet [16], a recently popular large language model, it cannot be determined
at this time which architecture category it belongs to, as Anthropic has not released
information about its internal architecture.

LLMs have demonstrated outstanding performance across various fields, including
software engineering [30–34] and healthcare [35, 36], where they have been widely
adopted and rigorously evaluated. In this paper, we leverage GPT-4, GPT-4o, Claude
3.5 Sonnet and DeepSeek-R1, four state-of-the-art LLMs, for our experiments, given
their advanced capabilities in understanding and generating complex code patterns,
which are essential for effective vulnerability analysis.

3 Study Design

3.1 Research Questions

The aim of this study is to answer the following research questions:

• RQ1: How effective are large language models (LLMs) like GPT in identifying
command injection vulnerabilities in dynamic languages, specifically Python?

• RQ2: What types of Python command injection vulnerabilities might our LLM-
based approach fail to detect?

• RQ3: What is the running cost(in terms of time and finance) of GPT-4?
• RQ4: How do different large language models compare in terms of accuracy, con-

sistency, and efficiency in detecting command injection vulnerabilities in Python
code?

• RQ5: How does the accuracy and efficiency of LLM-based vulnerability detection
compare with traditional vulnerability analysis tools, such as Bandit?

3.2 Dataset

We selected six popular open-source Python projects, each with over 50,000 stars on
GitHub, for our study. Table 1 lists the project names, versions, the total number of
files, and the number of Python files in each project. These projects are widely used in
academic research and software development, covering areas such as web framework
development—Django [37] and Flask [38]; machine learning modeling—TensorFlow
[1], Scikit-learn [39], and PyTorch [2]; and LLM application development—Langchain
[40]. We filtered all Python files in these projects because our research focuses on
detecting command injection vulnerabilities in Python code

4 Our Approach

4.1 Approach Overview

Figure 2 illustrates the overview of our approach workflow, which consists of five steps:
(1) filtering Python files from the projects, (2) identifying candidate functions, (3)
using LLMs to detect vulnerabilities, (4) using LLMs to generate security tests, and
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Table 1: Studied projects(As Of January 2024)

Project Version
No. of
Files

Stars(K)
No. of

Python Files
LOC of

Python Files(k)

No. of
Candidate
Functions

Django 4.2.7 6,740 80.5 2,772 399.8 17
Flask 3.0.0 249 68 82 13.4 2

Langchain v0.0.330 3,933 94.5 2,290 227.1 13
TensorFlow 2.14.0 31,082 186 3,106 1,014.7 46
Scikit-learn 1.3.2 1,569 60 923 317.5 7
PyTorch 2.1 12,401 83.7 3,864 1,234 105

Fig. 2: The overview of the proposed LLM-based approach.

(5) validating the analysis results of LLMs. In the remaining section, we present each
step in details.

4.2 Data preparation

In the six target Python projects, in addition to the .py source files, there are image
resources, README documents, and various other non-Python files. Since our objec-
tive is to detect command injection vulnerabilities in Python code, our first step was
to extract all Python files from these projects for analysis. We developed a Python
script for this purpose, and Table 1 lists the number of Python files we collected. Table
2 lists 26 functions from the Semgrep [41] database that are known to introduce com-
mand injection vulnerabilities in Python. We categorized these functions into three
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groups: built-in functions, functions from the subprocess module, and functions from
the os module.

Table 2: List of Python methods prone to command injection vulnerabilities.

No. Types of Python libraries and functions Methods

1 built-in function
exec()
eval()

2 subprocess module

subprocess.call(user input)
subprocess.run(user input)

subprocess.Popen(user input)
subprocess.check output(user input)

3 os module

os.popen()
os.system()
os.spawnl()
os.spawnle()
os.spawnlp()
os.spawnlpe()
os.spawnv()
os.spawnve()
os.spawnvp()
os.spawnvpe()

os.posix spawn()
os.posix spawnp()

os.execl()
os.execle()
os.execlp()
os.execlpe()
os.execv()
os.execve()
os.execvp()
os.execvpe()

To find all the candidate functions, we used a Python script to extract the Python
files which contains the above methods from all the Python files in the 6 Python
projects. After that, found the functions from the extracted files that contain the
above methods and stored each of the found functions in separate files. Finally, we
found 190 candidate functions in total and the detailed results are shown in Table 1.

4.3 LLM-based Vulnerability Analysis & Security Testing
Generation

In this section, we present two important steps in our approach: using LLMs to analyze
functions for potential command injection vulnerabilities and generating security test
code for functions identified as potentially vulnerable.

After filtering candidate functions using the method described above, we obtained
a set of functions that may contain injection vulnerabilities. However, this set is pre-
senting uncertainty, as the presence of these methods in some functions may not
necessarily lead to vulnerabilities, and there may be constraints within the functions
that mitigate such risks.
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To further refine this analysis, we leverage GPT-4 to generate test case to evaluate
whether each candidate function is truly vulnerable to command injection. If GPT-4
determines that a function is vulnerable (”Yes”), it proceeds to generate a security
test case. If GPT-4 determines that the function is safe (”No”), no command injection
vulnerability is detected.

Figure 3 shows the prompts used for these two steps. Specifically, [INPUT] is the

Python function need to test, [JUSTIFICATION] represents the reason provided by

LLM for whether a function contains a command injection vulnerability. [CODE]

presents the security test generated by LLM. [REQUIREMENTS] represents rules

that LLM tool needs to follow in generating security test. Specifically, these rules are:

• Include the source function being tested without modifying its name or content.
• Perform a command injection test, if there are methods in the function that would

lead to a command injection attack. Generate an os command as its input to do
the test. For example, create a test file and then attempt a command injection to
delete it.

• Set the assertion section to verify if the command is executed successfully.
• Only generate the code; do not provide textual descriptions or suggestions.
• Use the unittest library, but avoid using mock modules or other simulation objects.
• Import any necessary libraries to run the code.
• Avoid redefining subprocess.call, subprocess.run, exec, or other methods in the test

code.

To ensure the reliability of the GPT output, we adopted the “mimic-in-the-
background” prompting method proposed in [42] when designing prompts for the
GPT-4 model. As illustrated in Figure 3, the system prompts instruct the LLM to sim-
ulate answering the query in the background 10 times and then to select the response
it considers most accurate. Additionally, to minimize output randomness, we set the
temperature parameter for both the GPT-4 and GPT-4o models to zero.

Fig. 3: LLM prompt for vulnerability analysis and security testing generation.

9



4.4 Validation

Some of the test scripts generated by the GPT model require additional modifications
before they can be executed. This is typically due to missing libraries, specific param-
eter settings needed for execution, or operating system command paths that must be
adjusted to the user’s environment. To address these issues, we manually modified the
test scripts to ensure compatibility with the systems used in our experiments. After
making these adjustments, we were able to run the modified test scripts, allowing us
to confirm which candidate functions actually contained command injection vulnera-
bilities. Figure 4 shows a complete example of the flow of detecting command injection
vulnerabilities using our approach.

Fig. 4: Example workflow of the proposed LLM-based approach.

5 Evaluation

We conducted a detailed empirical evaluation of our proposed approach, focusing on
answering three key research questions described in Section 3.1.

5.1 RQ1: Effectiveness Evaluation of the Proposed Approach

We evaluated the effectiveness of our proposed approach by applying it to 190
candidate functions drawn from six Python projects, as outlined in Section 3.2.

Table 3 presents the experimental results. Based on GPT-4’s evaluation, 100 func-
tions were identified as containing command injection vulnerabilities, while 90 were
determined to be free from vulnerabilities.

After running the automated testing component, we observed the following
outcomes:
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• True Positives (TP): 67 cases (35%) were identified correctly, where GPT-4 deter-
mined a command injection vulnerability existed, and security testing confirmed
it.

• False Positives (FP): 31 cases (16%) were identified as false positives, where
GPT-4 flagged a vulnerability, but security testing showed it did not exist.

• True Negatives (TN): 75 cases (40%) were correctly labeled as non-vulnerable
by GPT-4, confirmed by the absence of vulnerabilities in security tests.

• False Negatives (FN): 15 cases (8%) were false negatives, where GPT-4 missed
identifying a vulnerability, but manual review revealed its presence.

Additionally, there were two invalid cases (1%) in which security tests could not
run due to environmental or dependency issues.

This evaluation demonstrates the strengths and limitations of using GPT-4 for
command injection vulnerability detection in Python functions, highlighting areas
where LLM-based approaches may benefit from further refinement.

Table 3: Detection results of command injection vulnerabilities using GPT-4.

Project
No.

of cases
True

positive
False

positive
True

negative
False

negative
Invalid

Django 17 5 4 7 1 0
Flask 2 2 0 0 0 0

Langchain 13 6 4 3 0 0
Tensorflow 46 12 10 23 0 1
Scikit-learn 7 3 2 1 1 0
Pytorch 105 39 11 41 13 1
Total 190 67 31 75 15 2

In order to evaluate the performance of the GPT-4 model in command injection
vulnerability detection more comprehensively, we selected four metrics, accuracy, pre-
cision, recall and F1 Score, for in-depth analysis. These four metrics are often used to
evaluate the performance of a model[43–45], and they are calculated using the formula
shown below:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 Score = 2× Precision× Recall

Precision + Recall
(4)

Table 4 shows performance evaluation metrics of GPT-4 in the command injection
vulnerability detection task. Of these, the accuracy was 75.5%, the precision was
68.4%, the recall was 81.7% and F1 Score was 74.5%.
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Table 4: Performance metrics for GPT-4 model.

Metrics Results
Accuracy 75.5%
Precision 68.4%
Recall 81.7%

F1 Score 74.5%

Answer for RQ1: The GPT-4 model analyzed 190 functions with possible
command injection vulnerabilities, showing its ability to detect command injec-
tion vulnerabilities with a accuracy of 75.5%, a precision of 68.4%, a recall of
81.7% and an F1 score of 74.5%.

5.2 RQ2: Completeness

Table 3 identified 15 false-negative cases, which were actual command injection vulner-
abilities in the functions that GPT-4 did not detect. This outcome raises an important
concern about the types of vulnerabilities that might be challenging for LLM-based
methods to identify. As such, in this section we further analyzed these 14 cases to
identify characteristics of vulnerabilities that GPT-4 might miss.

Table 5 provides a detailed list of these false-negative cases, which include one
case each from the Scikit-learn and Django projects and 13 cases from the PyTorch
project. Of these fourteen cases, 10 are command injection vulnerabilities related to
the subprocess module methods, such as subprocess.run(),
subprocess.Popen(), and subprocess.check output(). The remaining 5 cases
involve vulnerabilities in the use of the eval() and exec() function.

To understand the problem, we examined the code for each case. In 9 of the 10
cases related to the subprocess module, the code followed a structure similar to that
shown in Listing 3. Specifically, the args parameter passed to subprocess.run() or
similar methods was a list of strings, a format that GPT-4 generally disregarded as a
potential command injection vulnerability. The remaining case from the Scikit-learn
project involved a vulnerability where a global variable, modifiable by an attacker,
was passed to the subprocess.check output() method, allowing for the injection of
malicious commands.

In the 5 cases from the PyTorch project that involved the eval() and exec()

function, the vulnerabilities were introduced by passing parameters to eval() and
exec() that could be externally modified.

These findings reveal that GPT-4 may miss certain command injection vulnerabil-
ities, particularly when specific code structures or parameter types obscure the risk.
This underscores the need for further refinement in LLM-based vulnerability detection
methods to improve accuracy in identifying subtle or complex injection risks.

1 def candidate_function(args: List[str]):
2 return subprocess.run(args ,
3 capture_output=True ,
4 check=True ,

12



5 )

Listing 3: Types of command injection vulnerabilities that would be ignored by the
GPT-4 model.

Table 5: Details of false negative cases and associated
command injection vulnerabilities.

Project Name
Case
No.

Line of
Code

Method that
may cause

vulnerability
Scikit-learn 5 17 subprocess.check output()
Django 6 32 subprocess.run()

Pytorch

4 67 eval()
4.1 49 eval()
17 69 subprocess.run()
23 13 subprocess.run()
24 30 exec()
28 13 subprocess.Popen()
30 13 subprocess.run()
31 72 eval()
75 13 subprocess.run()
76 33 eval()
79 22 subprocess.run()
80 13 subprocess.run()
84 35 subprocess.run()

Answer for RQ2: The LLM-based approach based on GPT-4 model demon-
strates limitations in accurately detecting command injection vulnerabilities
within the subprocess family when list-type parameters are used (e.g.,
subprocess.run(args) or subprocess.Popen(args), where args is a list of
strings). Although vulnerabilities missed by GPT-4 due to global variables or
externally modifiable parameters are relatively few, these potential security
risks require attention to prevent them from being overlooked in real-world
applications.

5.3 RQ3: Running Cost

In RQ3, we evaluated the runtime and financial costs associated with performing all
experiments. Table 6 provides details on the number of cases, lines of code, and time
spent analyzing these cases with using GPT-4.

Our experiment has analyzed 190 candidate functions, comprising a total of 5239
lines of code. Among these, 100 functions were identified as containing command
injection vulnerabilities, for which GPT-4 analyzed 2117 lines of code and generated
corresponding security tests. The total time required for this analysis was 3629.8 sec-
onds. For the remaining 90 functions, which were determined to be free from command
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injection vulnerabilities, GPT-4 analyzed 3122 lines of code, taking a total of 950.99
seconds.

Table 6: Time costs of performing experiments with GPT-4.

Analysis Result No. of case Line of code Time
Yes 100 2117 3629.8
No 90 3122 950.99

Total 190 5239 4580.79

Answer for RQ3: We used the GPT-4 model to analyze a total of 190 candi-
date functions with a total of 5239 lines of code, of which 100 candidates were
determined to have command injection vulnerabilities, and GPT generated the
corresponding security tests for these 100 cases. For all experiments, the total
time spent was 4580.79 seconds and the financial overhead was $14.19.

5.4 RQ4: Comparison of Performance between Different LLM
tools

In this section, we compare the performance of our approach when integrating four
popular Large Language Models (LLMs)—Claude 3.5 Sonnet, GPT-4o, GPT-4 and
DeepSeek-R1—in tasks of command injection vulnerability detection and automated
security test generation. By examining each model’s accuracy in vulnerability detection
and the percentage of generated security tests that can be executed without modifi-
cations, we gain insights into their capabilities and reliability, helping us identify the
most suitable model for our tasks in vulnerability detection and test case generation.

5.4.1 Command Injection Vulnerability Detection Capability

Tables 7, 8 and 9 present the results of analyzing 190 candidate functions using Claude
3.5 Sonnet, GPT-4o and DeepSeek-R1. According to Claude’s assessment, 156 of the
190 cases were identified as vulnerable to command injection, while 34 were consid-
ered safe. Among these, 73 were true positives, 81 were false positives, 25 were true
negatives, 9 were false negatives, and 2 were invalid cases. For GPT-4o, it identified
131 cases as containing command injection vulnerabilities and 59 as safe, resulting in
66 true positives, 63 false positives, 43 true negatives, 16 false negatives, and 2 invalid
cases. For DeepSeek-R1, 84 of the 190 cases were identified as vulnerable to command
injection, while 106 were considered safe. Among these, 56 were true positives, 26 were
false positives, 80 were true negatives, 26 were false negatives, and 2 were invalid cases.

Figure 5 illustrates the performance metrics for the four models in command injec-
tion vulnerability detection.In terms of accuracy and precision, DeepSeek-R1 and
GPT-4 perform nearly identically. By contrast, GPT-4o and Claude 3.5 Sonnet score
significantly lower on both metrics — hovering around 50%, roughly 20 percentage
points below the results achieved by GPT-4 and DeepSeek-R1. For the F1 score, the
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GPT-4 has the highest value of 74.5%. In comparison, GPT-4o and Claude 3.5 Son-
net had F1 scores of 62.5% and 61.9% respectively, which were about 10 percentage
points lower than GPT-4. DeepSeek-R1’s F1 score of 68.3% is about 6 percentage
points lower than GPT-4. However, the recall rates for GPT-4o (80.5%) and GPT-4
(81.7%) were comparable, while Claude 3.5 Sonnet achieves the highest recall at 89%.
DeepSeek-R1 records the lowest recall rate, at 68.3%.

These comparisons indicate that GPT-4 outperforms GPT-4o, Claude 3.5 Sonnet
and DeepSeek-R1 in terms of overall accuracy and F1 score, making it a more reliable
choice for command injection vulnerability detection. As such, GPT-4 is recommended
as the preferred model for our task.

Table 7: Detection results of command injection vulnerabilities using Claude 3.5
Sonnet.

Project
No.

of cases
True

positive
False

positive
True

negative
False

negative
Invalid

Django 17 6 8 3 0 0
Flask 2 2 0 0 0 0

Langchain 13 6 7 0 0 0
Tensorflow 46 12 25 8 0 1
Scikit-learn 7 4 2 1 0 0
Pytorch 105 43 39 13 9 1
Total 190 73 81 25 9 2

Table 8: Detection results of command injection vulnerabilities using GPT-4o.

Project
No.

of cases
True

positive
False

positive
True

negative
False

negative
Invalid

Django 17 4 2 9 2 0
Flask 2 2 0 0 0 0

Langchain 13 6 6 1 0 0
Tensorflow 46 11 25 8 1 1
Scikit-learn 7 3 1 2 1 0
Pytorch 105 40 29 23 12 1
Total 190 66 63 43 16 2

5.4.2 The security test generation capability

Our experiment has identified that GPT-4 determined that 100 out of 190 cases had
command injection vulnerabilities and generated security tests for them, among which
only 55 security tests can be run directly, which indicates that GPT-4 had deficiencies
in security test generation. For further comparison, we used Claude 3.5 Sonnet, GPT-
4o and DeepSeek-R1 to generate security tests for these 100 cases. Figure 6 showed
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Table 9: Detection results of command injection vulnerabilities using DeepSeek-R1.

Project
No.

of cases
True

positive
False

positive
True

negative
False

negative
Invalid

Django 17 6 2 9 0 0
Flask 2 2 0 0 0 0

Langchain 13 6 2 5 0 0
Tensorflow 46 9 5 28 3 1
Scikit-learn 7 2 1 2 2 0
Pytorch 105 31 16 36 21 1
Total 190 56 26 80 26 2

Fig. 5: The comparison results of the four LLMs in command injection vulnerabilities
detection performance.

the comparison results of the four LLMs in security test generation performance. For
Claude 3.5 Sonnet, the number of security tests that can be directly run is 72. The
number of security tests that can be directly run for GPT-4o is 65. And for DeepSeek-
R1, the number of security tests that can be directly run is 80. Among the four LLMs,
DeepSeek-R1 performed best in generating security tests. It is the better choice in test
generation task.
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Fig. 6: The comparison results of the four LLMs in security test generation perfor-
mance.

Answer for RQ4: Among the four large language models, GPT-4 showed
better results in command injection vulnerability detection, while DeepSeek-R1
showed better results in security test generation. We can choose different large
language models for different tasks to get better results.

5.5 RQ5: Comparison with Bandit

We compared our approach with an existing Python security detection tool, Bandit,
focusing on command injection vulnerability analysis. Given that the GPT-4 model
demonstrated the highest performance among the four large language models tested,
we specifically compared GPT-4’s results with those of Bandit. Table 10 show Bandit’s
performance for detecting vulnerabilities in 190 candidate functions. Bandit identified
186 functions as containing command injection vulnerabilities and 4 as safe. Upon
verification, 81 cases were true positives (43%), 103 were false positives (54%), 3
were true negatives (1.5%), and 1 was a false negative (0.5%). Additionally, 2 cases
(1%) were invalid due to environmental or dependency issues. Figure 7 shows the
distribution of detection results for GPT-4 and Bandit. We can find that, in contrast,
Bandit has a much higher false positive rate than GPT-4.

Figure 8 presented the performance comparison of using Bandit and GPT-4 in
detecting command injection vulnerabilities. Compared to Bandit, our GPT-4 based
method performs better in detecting command injection vulnerabilities with improved
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Table 10: Detection results of command injection vulnerabilities using Bandit.

Project
No.

of cases
True

positive
False

positive
True

negative
False

negative
Invalid

Django 17 6 10 1 0 0
Flask 2 2 0 0 0 0

Langchain 13 6 6 1 0 0
Tensorflow 46 12 32 1 0 1
Scikit-learn 7 4 3 0 0 0
Pytorch 105 51 52 0 1 1
Total 190 81 103 3 1 2

accuracy of 30.8%, precision of 24.4%, and F1 score of 13.6%. The only shortcom-
ing is that the recall is reduced by 17.1%. The recall value of Bandit is higher than
GPT-4, indicating that Bandit has stronger sensitivity to positive cases and can effec-
tively reduce the number of false negatives. However, we observed that Bandit has a
high number of false positives, which significantly lowers its precision and accuracy,
with values of 44% and 44.7%, respectively. It is worth mentioning that our method
is also able to identify two vulnerabilities that Bandit cannot detect. These results
indicate that the large language model performs better in command injection vulnera-
bility detection compared to static vulnerability detection tools because of its stronger
contextual analysis capability.

(a) Distribution of GPT-4 (b) Distribution of Bandit

Fig. 7: The distribution of detection results for GPT-4 and Bandit.
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Fig. 8: Performance comparison of GPT-4 and Bandit in detecting command injection
vulnerabilities.

Answer to RQ5: Our LLM-based approach outperformed Bandit by reducing
false positive and false negative rates, thereby significantly improving accuracy,
precision, and F1 scores. Additionally, our method successfully identified vul-
nerabilities that Bandit failed to detect, highlighting the enhanced detection
capability of our approach.

6 Related Work

6.1 Vulnerability detection

We categorize research related to vulnerability detection into three main types: static
or dynamic analysis methods, machine learning-based methods, and large language
models-based methods.

Static analysis and dynamic analysis approaches Static analysis and
dynamic analysis are the classical methods to detect vulnerability. Static analysis is
divided into two categories: graph-based static analysis [46] and static analysis with
data modeling [47]. For example, Song et al. [46] proposed an approach called Bit-
Blaze, where a static analysis component called Vine can detect vulnerabilities using
CFG, DFG, and weakest precondition calculations.

Dynamic analysis mainly consists of detection techniques such as dynamic taint
analysis [48], fuzzing testing [49], and symbolic execution [50]. For example, Trickel
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et al. [49] proposed a novel Web vulnerability discovery framework based on grey-box
coverage-guided fuzzing called Witcher. It implements the concept of fault escalation
to detect SQL and command injection vulnerabilities in web applications. ML-based
approaches: Compared to static and dynamic analysis, machine learning based
approaches handle large scale data as well as reduce false positives in vulnerability
detection. Both Guo [51] and Laura [52] proposed vulnerability detection methods
based on Long Short-Term Memory, where Guo’s method is used to detect vulnera-
bilities in PHP code, while Laura’s method is used to detect vulnerabilities in Python
code. After evaluation, the accuracy and F1 scores of both methods are more than 80%.
Stanislav [53] used a CNN-based approach to detect code injection in web applica-
tion and uses data preprocessing techniques to address the large training requirements
typically associated with such networks, reducing the time required to configure and
train CNNs.

LLMs-based approaches: With the development of large language models, more
and more people are using this technique to analyze code [9, 11] and detect vulner-
abilities [42, 54, 55]. Liu et al. [55] proposed a static binary taint analysis method
supported by LLM that automates the taint analysis process and outperforms state-
of-the-art methods in terms of efficiency and effectiveness in identifying new errors in
realistic firmware. And Sun et al. [42] combined the GPT model with static analysis
to detect logical vulnerabilities in smart contracts with high accuracy. Their approach
has been a great inspiration for our research.

6.2 LLMs-assisted techniques in unit test generation

Recently, as test generation has been moving towards automation, more and more peo-
ple have been trying to generate tests using the emerging technique of large language
models [10, 12, 13, 56–58]. Most of them use the GPT family of models (GPT-3.5 or
GPT-4) or its variant GPT to generate tests. For example, Max et al. [12] propose a
method for generating adaptive unit tests using a large language model called TEST-
PILOT. This method is based on OpenAI’s GPT-3.5-turbo model and was evaluated
on 25 npm packages. The statement coverage and branch coverage of the generated
tests are better than the state-of-the-art feedback-directed JavaScript test generation
technique. Zhang et al. [58] evaluated the effectiveness of GPT in generating security
tests for Java applications. They used GPT-4 to generate security tests for 55 appli-
cations, 40 of which could be compiled and successfully demonstrated 24 attacks. The
results are better than two of the most advanced security test generators (TRANSFER
and SIEGE).

7 Threats to Validity

In this section, we focus on discussing the potential internal and external threats to
the validity.

Internal threats: Our study adopted a validation strategy, i.e., validating the
results of LLM’s analysis of the code by running the security tests generated by it. We
checked all the generated security tests and manually modified the code that could not
be run. Finally, in 100 security tests, 2 tests could not run due to code dependency
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issues and the running environment issues. The percentage is 2%. They slightly affected
the accuracy of our assessment of LLMs’ ability to detect vulnerabilities.

External threats: Our study only uses four large language model(GPT-4, GPT-
4o, Claude 3.5 Sonnet and DeepSeek-R1) and tests our approach in six Python
projects. So there are some limitations to our research results. Future research will
explore more large language models (e.g., DeBERTa, LLaMA, etc.) and add more
Python projects to our dataset to further validate and generalize our findings.

8 Conclusion and future work

This study demonstrates the potential of Large Language Models (LLMs) as an effec-
tive approach for detecting command injection vulnerabilities within Python’s widely
used open-source libraries. Through a comprehensive analysis of over 13,000 Python
files from six high-profile projects, we evaluated the strengths and limitations of LLMs
in identifying security vulnerabilities that threaten system integrity and data privacy.
While traditional tools like Bandit are valuable, our results show that LLMs pro-
vide a complementary advantage by analyzing fragmented and non-compilable code
and detecting complex vulnerability patterns that existing tools may miss. Addition-
ally, the ability of LLMs to generate security tests adds a useful layer of verification,
potentially enhancing the accuracy of vulnerability assessments.

Our comparative analysis of different LLM tools highlights that models like GPT-4
offer adaptability for security applications, although some challenges in vulnerability
detection persist. By identifying the types of vulnerabilities that LLMs might miss, our
research lays a foundation for enhancing these models and guiding future developments
in automated security analysis. The dataset we built, sourced from six extensively
used GitHub projects, aims to support further research, establishing a benchmark for
LLM-driven vulnerability detection. With these advancements, developers and security
researchers can leverage LLMs to improve security practices, moving toward a more
resilient open-source ecosystem.

Future work can explore refining LLMs for greater accuracy in vulnerability
detection, particularly focusing on areas where current models fall short, such as com-
plex nested code structures. Investigating hybrid models that combine LLMs with
traditional static analysis tools could also yield improved detection capabilities. Addi-
tionally, expanding the dataset to include a broader range of security vulnerabilities
would create a more robust benchmark for future studies.
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Project Name Case No.
Line of
code

Method
that may
cause

vulnerability

GPT’s
answer

Gpt run
time

(seconds)

Test Code
Executable
directly?

Reason
Executable

with
modification?

Actually
vulnerable?

Flask
Case 1 39 eval() Yes 80.38 No

Don’t
set path

Yes Yes

Case 2 22 exec() Yes 48.07 No
Path setting

error
Yes Yes

Project Name Case No.
Line of
code

Method that
may
cause

vulnerability

GPT’s
answer

Gpt run
time

(seconds)

Test Code
Executable
directly?

Reason
Executable

with
modification?

Actually
vulnerable?

Scikit-learn

Case 1 49 subprocess.run() No 11.76 N/A N/A N/A No
Case 2 26 exec() Yes 44.81 Yes N/A N/A No
Case 3 46 subprocess.check output() Yes 54.48 Yes N/A N/A Yes

Case 4 18 eval() Yes 24.94 No
Missing
json file

Yes Yes

Case 5 17 subprocess.check output() No 11.18 N/A N/A N/A Yes
Case 6 15 subprocess.run() Yes 55.86 Yes N/A N/A No

Case 7 20 subprocess.run() Yes 53.44 No
Missing source

code call
Yes Yes

Project Name Case No.
Line of
code

Method that
may
cause

vulnerability

GPT’s
answer

Gpt run
time

(seconds)

Test Code
Executable
directly?

Reason
Executable

with
modification?

Actually
vulnerable?

Langchain

Case 1 19 os.system() Yes 35.23 No
URL not
compatible

Yes No

Case 2 7 exec() Yes 23.58 Yes N/A N/A No
Case 3 16 exec() Yes 37.8 Yes N/A N/A Yes

Case 4 30 exec() Yes 50.24 No
Missing source

code call
Yes Yes

Case 5 16 exec() Yes 40.77 Yes N/A N/A Yes
Case 6 144 subprocess.run() No 22.35 N/A N/A N/A No

Case 7 38 subprocess.run() Yes 48.83 No
Missing source

code call
Yes No

Case 8 66 subprocess.run() No 20.11 N/A N/A N/A No
Case 9 25 subprocess.run() No 14.08 N/A N/A N/A No
Case 10 18 exec Yes 34.72 Yes N/A N/A Yes

Case 11 28 eval(), exec() Yes 48.67 No
Missing necessary

function call
Yes Yes

Case 12 23 subprocess.run() Yes 45.22 Yes N/A N/A Yes

Case 13 18 os.system() Yes 37.69 No
URL not
compatible

Yes No
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Project Name Case No.
Line of
code

Method that
may
cause

vulnerability

GPT’s
answer

Gpt run
time

(seconds)

Test Code
Executable
directly?

Reason
Executable

with
modification?

Actually
vulnerable?

Django

Case 1 21 subprocess.run() No 15.26 N/A N/A N/A No
Case 2 18 subprocess.run() Yes 40.32 Yes N/A N/A No
Case 3 29 subprocess.run() No 11.84 N/A N/A N/A No
Case 4 7 subprocess.run() No 6.57 N/A N/A N/A No
Case 5 6 subprocess.run() Yes 25.81 Yes N/A N/A Yes
Case 6 32 subprocess.run() No 8.79 N/A N/A N/A Yes
Case 7 12 exec() Yes 33.63 Yes N/A N/A Yes
Case 8 12 subprocess.run() Yes 40.24 No Miss library call Yes No

Case 9 51 exec() Yes 55.81 No
Missing

source code
call

Yes Yes

Case 9.1 26 exec() Yes 47.2 No
Missing

library call,
typeerror

Yes Yes

Case 10 34 exec() No 5.76 N/A N/A N/A No
Case 10.1 39 exec() No 11.57 N/A N/A N/A No
Case 11 14 eval() No 8.29 N/A N/A N/A No
Case 12 20 eval() Yes 43.94 Yes N/A N/A No
Case 13 11 subprocess.run() No 9.06 N/A N/A N/A No

Case 14 39 eval() Yes 52.79 No
The usage
make code

can’t be execute
Yes Yes

Case 15 26 subprocess.Popen() Yes 44.87 No

IndexError:
list assignment

index out
of range

Yes No
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Project Name
Case
No.

Line of
code

Method that
may cause

vulnerability

GPT’s
answer

Gpt run
time

(seconds)

Test Code
Executable
directly?

Reason
Executable

with
modification?

Actually
vulnerable?

TensorFlow

Case 1 14 subprocess.check output() No 22.46 N/A N/A N/A No

Case 2 43 os.system() Yes 58.52 No
Command injection

method wrong
Yes Yes

Case 3 14 subprocess.check output() Yes 37.77 Yes N/A N/A Yes
Case 4 13 exec() No 14.23 N/A N/A N/A No

Case 5 30 subprocess.check output Yes 57.76 No
ValueError and
attribute error

Yes No

Case 6 4 os.system() Yes 38.17 No
Missing

import file
Yes No

Case 7 6 exec() Yes 27.75 Yes N/A N/A No
Case 8 21 subprocess.check output No 16.62 N/A N/A N/A No
Case 9 41 eval() Yes 49.82 Yes N/A N/A Yes

Case 10 4 exec() Yes 37.68 No
Syntax error

in
comment injection

Yes No

Case 10.1 7 exec() Yes 49.34 Yes N/A N/A No
Case 11 28 eval() No 7.56 N/A N/A N/A No

case 12 39 os.system() Yes 53.61 No
no attribute
’graph def’

Yes No

Case 13 100 subprocess.run() No 18.71 N/A N/A N/A No
Case 14 22 eval() Yes 45.67 Yes N/A N/A Yes

Case 15 16 subprocess.check output() Yes 29.66 No
Command injection

format error
Yes Yes

Case 16 85 subprocess.check output() No 14.94 N/A N/A N/A No

Case 17 22 exec() Yes 48.78 No
Incorrect name

of the
calling library

Yes No

Case 18 26 subprocess.check output() Yes 45.67 Yes N/A N/A No

Case 19 24 subprocess.call() Yes 59.68 No
Missing some

dependency functions
Yes No

Case 19.1 20 subprocess.call() No 13.53 N/A N/A N/A No
Case 20 21 subprocess.call() No 22.36 N/A N/A N/A No
Case 20.1 29 subprocess.call() No 14.03 N/A N/A N/A No

Case 21 16 subprocess.check output() Yes 35.62 No
Command injection

format wrong
Yes Yes

Case 22 15 exec() Yes 28.75 No
failed to account
for the check

on the command
Yes Yes

Case 23 27 subprocess.check output() No 12.99 N/A N/A N/A No
Case 24 21 subprocess.check output() No 19.27 N/A N/A N/A No
Case 24.1 12 subprocess.check output() No 12 N/A N/A N/A No

Case 25 30 os.system() Yes 47.03 No
Use mock,
can’t see

expected result
Yes Yes

Case 26 26 subprocess.call() Yes 38.83 No
name ’test utils’
is not defined

Yes Pending

Case 27 22 exec() No 15.25 N/A N/A N/A No
Case 28 19 subprocess.check output() No 5.38 N/A N/A N/A No
Case 29 14 exec() Yes 38.45 No Key error Yes Yes

Case 30 4 exec() Yes 27.87 No
Code injection
comment error

Yes Yes

Case 31 11 eval() No 7.94 N/A N/A N/A No
Case 32 20 subprocess.check output() No 10.71 N/A N/A N/A No
Case 33 9 subprocess.run() No 8.04 N/A N/A N/A No
Case 34 14 subprocess.check output() No 20.08 N/A N/A N/A No
Case 35 14 subprocess.check output() No 12.66 N/A N/A N/A No
Case 35.1 7 subprocess.check output() No 5.91 N/A N/A N/A No

Case 36 115 subprocess.Popen() Yes 58.32 No
Missing function
and library call

Yes No

Case 37 16 subprocess.Popen() Yes 45.07 Yes N/A N/A Yes
Case 38 27 subprocess.Popen() No 15.24 N/A N/A N/A No

Case 39 11 subprocess.Popen() Yes 37.88 No
Command injection

format error
Yes Yes

Case 40 22 subprocess.Popen() No 7.34 N/A N/A N/A No
Case 41 16 subprocess.Popen() No 6.92 N/A N/A N/A No
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Line of
code
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vulnerability

GPT’s
answer

Gpt
run time
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Test Code
Executable
directly?

Reason
Executable

with
modification?

Actually
vulnerable?

PyTorch

Case 1 51 exec() Yes 44.2 No
Parameter setting

error
Yes Yes

Case 2 19 subprocess.run() Yes 35.89 Yes N/A N/A Yes
Case 3 42 subprocess.check output() No 16.21 N/A N/A N/A No
Case 4 67 eval() No 4.26 N/A N/A N/A Yes
Case 4.1 49 eval() No 17.2 N/A N/A N/A Yes
Case 5 3 exec() Yes 36.55 Yes N/A N/A Yes

Case 6 2 exec() Yes 31.15 No
NameError:
name ’os’

is not defined
Yes Yes

Case 7 20 exec() No 10.42 N/A N/A N/A No
Case 8 5 subprocess.run() No 14.87 N/A N/A N/A No
Case 9 14 eval() Yes 36.87 Yes N/A N/A Yes
Case 10 35 subprocess.check output() No 8.48 N/A N/A N/A No
Case 11 36 subprocess.run() No 15.19 N/A N/A N/A No
Case 12 18 subprocess.check output() No 4.26 N/A N/A N/A No
Case 13 7 exec() Yes 24.26 Yes N/A N/A Yes

Case 14 7 subprocess.check output() Yes 47.32 No
Check approach

wrong
Yes Yes

Case 15 14 subprocess.check output() Yes 33.92 Yes N/A N/A Yes

Case 16 9 eval() Yes 21.99 No
Missing

source function
Yes No

Case 17 69 subprocess.run() No 7.49 N/A N/A N/A Yes
Case 18 19 subprocess.run() No 7.85 N/A N/A N/A No

Case 19 25
subprocess.run(),

subprocess.check output()
No 6.79 N/A N/A N/A No

Case 20 36 exec() Yes 19.80 Yes N/A N/A Yes
Case 21 14 subprocess.run() Yes 28.72 Yes N/A N/A Yes

Case 22 128
subprocess.run(),

subprocess.check output()
Yes 51.32 No

No module
named conda

No Pending

Case 23 13 subprocess.run() No 16.13 N/A N/A N/A Yes
Case 24 31 exec() No 10.36 N/A N/A N/A Yes
Case 25 32 exec() Yes 69.59 Yes N/A N/A Yes

Case 26 7 subprocess.run() Yes 31.45 No
Command injection

method error
Yes Yes

Case 27 43 subprocess.check output() No 12.52 N/A N/A N/A No
Case 28 13 subprocess.Popen() No 11.36 N/A N/A N/A Yes
Case 28.1 10 subprocess.Popen() Yes 26.75 Yes N/A N/A Yes
Case 29 9 eval() Yes 47 Yes N/A N/A No
Case 30 13 subprocess.run() No 11.47 N/A N/A N/A Yes
Case 31 72 eval() No 8.34 N/A N/A N/A Yes
Case 32 38 exec() No 4.94 N/A N/A N/A No
Case 33 6 subprocess.check output() No 7.84 N/A N/A N/A No
Case 34 16 subprocess.run() Yes 30.42 Yes N/A N/A Yes
Case 35 70 subprocess.check output() No 7.13 N/A N/A N/A No
Case 36 20 subprocess.run() Yes 44.68 Yes N/A N/A Yes
Case 37 66 exec() No 14.83 N/A N/A N/A No
Case 38 10 subprocess.check output() Yes 41.77 Yes N/A N/A No
Case 39 23 exec() No 11.9 N/A N/A N/A No
Case 40 15 subprocess.check output() Yes 45.68 Yes N/A N/A No
Case 41 83 exec() No 13.22 N/A N/A N/A No
Case 42 53 subprocess.run() No 8.14 N/A N/A N/A No
Case 43 40 exec() No 8.18 N/A N/A N/A No
Case 44 16 exec() No 22.5 N/A N/A N/A No
Case 45 44 subprocess.Popen() No 7.97 N/A N/A N/A No
Case 46 14 subprocess.run() Yes 31.65 Yes N/A N/A Yes
Case 47 17 subprocess.check output() Yes 48.1 Yes N/A N/A No
Case 48 89 subprocess.check output() No 15.21 N/A N/A N/A No
Case 49 7 exec() Yes 36.45 Yes N/A N/A Yes
Case 50 23 subprocess.run() Yes 45.36 Yes N/A N/A No
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Project Name
Case
No.

Line of
code

Method that
may cause

vulnerability

GPT’s
answer

Gpt
run time
(seconds)

Test Code
Executable
directly?

Reason
Executable

with
modification?

Actually
vulnerable?

PyTorch

Case 51 13 subprocess.run() Yes 47.9 No
Command injection

method error
Yes Yes

Case 52 52 exec() Yes 37.92 No
Missing

source code call
Yes Yes

Case 53 17 subprocess.run() No 7.62 N/A N/A N/A No
Case 54 49 subprocess.run() No 12.7 N/A N/A N/A No
Case 55 9 subprocess.call() Yes 28.72 Yes N/A N/A No

Case 56 18 subprocess.run() Yes 48.79 No
Command injection

method error
Yes Yes

Case 57 41 eval() No 14.57 N/A N/A N/A No
Case 58 34 exec() No 9.83 N/A N/A N/A No
Case 59 19 exec() No 5.77 N/A N/A N/A No
Case 59.1 49 subprocess.run() No 9.94 N/A N/A N/A No

Case 60 8 eval() Yes 20.32 No
Test approach

issue
Yes Yes

Case 61 5 exec() Yes 26.58 Yes N/A N/A Yes
Case 62.1 24 subprocess.check output() No 3.65 N/A N/A N/A No
Case 62 20 subprocess.check output() No 6.8 N/A N/A N/A No

Case 63 4 eval() Yes 22.45 No
Command injection

method error
Yes Yes

Case 64 11 exec() Yes 13.67 Yes N/A N/A Yes

Case 65 3 exec() Yes 17.14 No
NameError:
name ’os’ is
not defined

Yes Yes

Case 66 51 eval() No 4.37 N/A N/A N/A No
Case 67 22 subprocess.check output() No 3.81 N/A N/A N/A No
Case 68 24 subprocess.run() No 6.39 N/A N/A N/A No
Case 69 22 subprocess.run() Yes 22.38 Yes N/A N/A Yes
Case 70 27 subprocess.check output() No 4.36 N/A N/A N/A No
Case 71 40 exec() No 7.38 N/A N/A N/A No
Case 72 313 exec() No 11.25 N/A N/A N/A No

Case 73 37 os.system() Yes 18.01 No
Command injection

method error
Yes Yes

Case 74 8 exec() Yes 12.84 Yes N/A N/A Yes
Case 75 13 subprocess.run() No 5.66 N/A N/A N/A Yes
Case 76 7 eval() No 7.14 N/A N/A N/A Yes
Case 77 17 subprocess.run() No 6.27 N/A N/A N/A No
Case 78 37 subprocess.run() No 3.90 N/A N/A N/A No
Case 79 22 subprocess.run() No 5.57 N/A N/A N/A Yes
Case 80 13 subprocess.run() No 5.53 N/A N/A N/A Yes
Case 81 59 subprocess.run() Yes 19.68 Yes N/A N/A No

Case 82 2 exec() Yes 8.95 No
NameError:
name ’os’ is
not defined

Yes Yes

Case 83 8 subprocess.run() Yes 13.97 Yes N/A N/A Yes
Case 84 35 subprocess.run() No 6.28 N/A N/A N/A Yes
Case 85 4 subprocess.run() Yes 10.27 Yes N/A N/A Yes
Case 86 31 subprocess.Popen() No 5.82 N/A N/A N/A No
Case 87 14 subprocess.Popen() Yes 13.77 Yes N/A N/A Yes
Case 88 14 subprocess.Popen() Yes 11.55 Yes N/A N/A Yes
Case 89 40 subprocess.Popen() Yes 17.56 Yes N/A N/A No
Case 90 29 subprocess.Popen() No 8.55 N/A N/A N/A No
Case 91 3 subprocess.Popen() No 4.37 N/A N/A N/A No
Case 92 11 subprocess.Popen() Yes 17.23 Yes N/A N/A Yes
Case 93 20 subprocess.Popen() No 3.81 N/A N/A N/A No

Case 94 15 subprocess.Popen() Yes 18.71 No
TypeError:

WorkerTimerArgs()
takes no arguments

Yes Yes

Case 95 10 subprocess.Popen() Yes 17.53 Yes N/A N/A No
Case 96 9 subprocess.Popen() Yes 15.18 Yes N/A N/A Yes
Case 97 10 subprocess.Popen() Yes 13.81 Yes N/A N/A Yes
Case 98 11 subprocess.Popen() Yes 13.59 Yes N/A N/A Yes
Case 99 58 subprocess.Popen() No 9.92 N/A N/A N/A No
Case 100 20 subprocess.Popen() Yes 21.57 Yes N/A N/A No
Case 101 11 subprocess.Popen() Yes 18.75 Yes N/A N/A Yes
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