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With the rapid development of blockchain technology, various blockchain systems are exhibiting vitality
and potential. As a representative of Blockchain 3.0, the EOS blockchain has been regarded as a strong
competitor to Ethereum. Nevertheless, compared with Bitcoin and Ethereum, academic research and in-depth
analyses of EOS remain scarce. To address this gap, this study conducts a comprehensive investigation of
the EOS blockchain from five key dimensions: system architecture, decentralization, performance, smart
contracts, and behavioral security. The architectural analysis focuses on six core components of the EOS
system, detailing their functionalities and operational workflows. The decentralization and performance
evaluations, based on data from the XBlock data-sharing platform, reveal several critical issues: low account
activity, limited participation in the supernode election process, minimal variation in the set of block producers,
and a substantial gap between actual throughput and the claimed million-level performance. Five types of
contract vulnerabilities are identified in the smart contract dimension, and four mainstream vulnerability
detection platforms are introduced and comparatively analyzed. In terms of behavioral security, four real-world
attacks targeting the structural characteristics of EOS are summarized. This study contributes to the ongoing
development of the EOS blockchain and provides valuable insights for enhancing the security and regulatory
mechanisms of blockchain ecosystems.
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1 INTRODUCTION
With the rapid growth and widespread application of the Internet, we are entering an era of
information explosion [1]. While users benefit from the convenience of information access, they
are increasingly exposed to the risk of personal data leakage. A major contributing factor to this
issue is the centralized nature of most application services. In centralized systems, data security is
tightly coupled with the security of platform servers. In response to these concerns, decentralized
technologies such as blockchain have emerged as promising solutions for enhancing data security.
Blockchain is a type of distributed database system that uses consensus algorithms to generate data,
cryptographic techniques, and peer-to-peer (P2P) networks to transmit data, and a blockchain data
structure to store information. The evolution of blockchain technology is generally categorized
into three phases: the first phase is characterized by decentralized ledgers (e.g., Bitcoin), the second
by smart contracts (e.g., Ethereum), and the third by real-world industry applications (e.g., EOS).

Despite the advantages blockchain offers over centralized systems, it is not inherently immune to
security threats [2]. Analyzing blockchain data remains essential for understanding and mitigating
potential vulnerabilities. As blockchain-based cryptocurrencies and decentralized applications
continue to grow rapidly, the vast and heterogeneous data generated by different blockchain
systems presents both significant commercial value and new challenges for data analysis. Among
these systems, Bitcoin, Ethereum, and EOS are widely recognized as representative platforms.
EOS, short for Enterprise Operating System, is considered a leading contender in the era of

Blockchain 3.0. Developed by Block. One, EOSIO serves as the foundational software framework of
EOS, functioning as an operating system for building blockchain infrastructure. Unlike Bitcoin and
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Ethereum, EOSIO introduces distinct architectural innovations in resource management, consensus
mechanisms, and scalability. While there is only one official EOS mainnet, anyone can build a
customized blockchain using the open-source EOSIO software. This extensibility contributes to
the system’s diversity and scale, with over 233 million blocks generated as of February 25, 2022.
Despite its popularity, analytical research focusing on EOSIO data remains limited.

This paper aims to address this gap by conducting a comprehensive analysis of the EOS blockchain
from three perspectives: system architecture, smart contracts, and behavioral security, leveraging
relevant tools and real-world data. Although the blockchain ecosystem is rapidly evolving and
EOS has emerged as a prominent Blockchain 3.0 platform, analytical studies of EOS data are still
relatively sparse compared to those of Bitcoin and Ethereum. Through in-depth analysis of large-
scale blockchain data, researchers can uncover valuable insights that not only hold commercial
potential but also advance the development of blockchain technologies. Specifically, research
on smart contracts and behavioral security can play a vital role in improving the security and
regulatory oversight of blockchain systems.
In terms of blockchain data collection and preprocessing, Weilin Zheng et al. [3] collected and

processed EOS blockchain data and released it through XBlock (http://xblock.pro), a data-sharing
platform designed to promote healthy development and research in the blockchain ecosystem.
The authors organized the data into seven distinct datasets and discussed the potential research
directions based on these resources.

Regarding system architecture, Brent Xu et al. [4] analyzed the EOS blockchain from five perspec-
tives: accounts, transactions and contracts, state management and blocks, execution environment,
and consensus algorithms.
In a decentralization analysis, Adem Efe Gencer et al. [5] conducted comparative studies on

the decentralization of Bitcoin and Ethereum by evaluating network resources, analyzing node
topology, and testing the robustness of these systems against attacks [6]. Wuke Ke et al. [7, 8]
proposed quantifiable methods for assessing blockchain decentralization based on entropy theory
and coefficient of variation, though their evaluations also focused solely on Bitcoin and Ethereum.
Jieli Liu et al. [9] analyzed the decentralization evolution of the EOS blockchain by extracting
time-series data from the DPoS network and proposed methods to detect voting collusion and
abnormal mutual voting behaviors in EOSIO. Yijing Zhao et al. [10] conducted a graph-based
analysis of EOS user activity through degree distribution, clustering coefficients, and connected
components to explore decentralization issues within the EOS blockchain.

In terms of performance evaluation, Iman Dernayka et al. [11] conducted experimental compar-
isons of EOSIO and Ethereum on Microsoft Azure, evaluating response time, memory consumption,
and CPU utilization. The results revealed that EOSIO exhibited longer response times. Brent Xu
et al. [4] further examined EOSIO’s performance on the Whiteblock platform by measuring 13
metrics, including block size, block interval, transaction throughput (block-level and chain-level),
CPU utilization, transaction types, accounts, and overall transaction volume.
In the domain of smart contract analysis, Suvitha M. et al. [12] conducted a comparative study

of eight major smart contract platforms—Ethereum, Hyperledger Fabric, NEM, Stellar, EOS, Waves,
Corda, and Tezos—highlighting EOS’s flexibility and upgradability. Shiyi Lin et al. [13] compared
the smart contract mechanisms of Ethereum, Hyperledger Fabric, and EOS. Junzhou Xu et al. [14]
surveyed nine vulnerability detection tools applicable to Ethereum and EOSIO, summarizing
their methodologies, supported vulnerability types, and limitations. Their findings indicated that
existing tools for EOS smart contract auditing are limited in number, lack diversity in detectable
vulnerabilities, and often cannot automate the detection process. Di Zhu et al. [15] proposed a series
of methods to measure smart contract bytecode similarity usingmachine learning and static analysis.
Dong Wang et al. [16] developed WANA, a cross-platform vulnerability detection tool based on
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WebAssembly bytecode analysis, which effectively detects three typical EOSIO vulnerabilities:
fake notifications on transfers, forged EOS transfers, and predictable randomness due to block
information dependency. Ningyu He et al. [17] introduced EOSafe, a static analysis framework
for EOSIO smart contracts at the bytecode level that detects four representative vulnerabilities:
forged EOS transfers, forged receipts, rollback attacks, and lack of permission verification. Yuhe
Huang et al. [18] proposed EOSFuzzer, a black-box fuzzing framework designed to uncover smart
contract vulnerabilities in EOSIO. Although the types of vulnerabilities it targets are the same as
those detected by WANA, EOSFuzzer employs fuzz testing, while WANA supports cross-platform
analysis for both Ethereum and EOSIO.
In the area of behavioral security, Sangsup Lee [19] presented and investigated four types of

attacks that exploit structural characteristics specific to EOSIO. Yuheng Huang et al. [20, 21]
leveraged large-scale EOSIO data to detect bot activities and fraudulent behavior automatically,
ultimately identifying thousands of bot accounts and multiple real-world attack patterns.
As evidenced by previous studies, research on the EOS blockchain system remains limited and

lacks a comprehensive analysis. This paper begins with an introduction to the development of
blockchain technology and the EOS blockchain, highlighting the challenges posed by the vast
amount of blockchain data and the heterogeneous nature of blockchain systems, which complicates
the analysis across different blockchain platforms. The security of blockchain systems cannot
be overlooked, as attacks on blockchain networks can lead to significant economic losses [22].
The significance of this work lies in its potential to enhance the security and regulatory aspects
of blockchain technology. By reviewing both domestic and international literature, this paper
analyzes the current state of research and summarizes the progress and achievements in the field.
Furthermore, the paper provides an overview of the fundamental concepts and key technologies of
blockchain, including the definition and core principles underlying blockchain systems.
The primary focus of this research is to conduct a systematic analysis of the EOS blockchain,

utilizing data from the XBlock platform, performance analysis tools, and smart contract vulnerability
detection tools. The analysis covers several critical aspects of the EOS blockchain, including system
architecture, decentralization, performance, smart contracts, and behavioral security.

The main contributions of this study are as follows:

• This paper presents a comprehensive analysis of the EOS blockchain system architecture
based on six core components—account management, consensus algorithm, P2P network
communication, state management, transactions and contracts, and the smart contract
execution environment. It provides a detailed explanation of the working principles and
characteristics of each component, addressing a gap in the research on the architectural
design of the EOS blockchain.

• Based on data from the XBlock platform, this paper reveals several decentralization issues
in the EOS blockchain, such as low account activity, limited participation in block producer
elections, and minimal changes in the set of block producers. In addition, performance
analysis shows a significant gap between EOS’s actual throughput and its theoretical goal
of achieving millions of transactions per second (TPS) and explores multiple factors that
impact system performance.

• This paper summarizes five common types of vulnerabilities in EOS smart contracts (such as
integer overflow and fake EOS attacks), along with corresponding defense strategies. It also
compares the strengths and weaknesses of four vulnerability detection tools. In addition,
the paper analyzes four potential behavioral security attacks in EOS (such as block delay
attacks and CPU exhaustion attacks) and proposes directions for security improvements
based on real-world attack cases.
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2 BACKGROUND
2.1 Blockchain Technology
Blockchain, as a novel decentralized infrastructure and distributed paradigm, is a product that meets
the demands of a new industry model characterized by "equality, freedom, consensus governance,
and transparency." [23] Blockchain adopts a decentralized organizational approach, achieving
system organization through the interaction of distributed nodes in a bottom-up manner [24]. The
technology employs a consensus-based data update mechanism, which makes it extremely resistant
to tampering and forgery. Furthermore, blockchain systems implement a data-reading mechanism
built on privacy protection, ensuring that data remains publicly accessible while safeguarding
users’ privacy. As a result, blockchain is characterized by decentralization, resistance to tampering,
and traceability [25]. Blockchain’s data processing and operation rely on its layered structure. In
academic research, to explore scalability solutions for blockchain, it is commonly divided into three
layers: Layer 0, Layer 1, and Layer 2.

The development of blockchain technology has undergone three distinct stages: Blockchain 1.0,
Blockchain 2.0, and Blockchain 3.0. The era of Blockchain 1.0 refers to the application of virtual
digital currencies, with the primary goal of achieving decentralization and enabling payment
functionalities for digital currencies. [26] Blockchain 2.0 represents the phase in which blockchain
technology was applied to the financial sector, marked by the advent of smart contracts [27]. The
integration of smart contracts with digital currencies expanded the potential use cases of blockchain
in the financial industry. Blockchain 3.0 extends the application of blockchain technology beyond
the financial sector, aiming to address trust issues and ensure the security of data transmission
across various industries [28]. It can be said that Blockchain 1.0 represents the nascent stage of
blockchain technology, Blockchain 2.0 signifies the technological implementation of blockchain in
the financial and smart contract domains, while Blockchain 3.0 focuses on addressing trust and data
security issues across industries. The representatives of these three stages are Bitcoin, Ethereum,
and EOS, respectively. The second stage, represented by Ethereum, introduced the concept of smart
contracts. The third stage, represented by EOS, employs a consensus mechanism (DPoS) that differs
from the one used in Bitcoin and Ethereum. Compared to Bitcoin, Ethereum adds a contract layer
between the incentive layer and the application layer, while EOS reduces the incentive layer and
introduces a tool layer and an ecosystem layer [29]. Figure 1 illustrates a comparison of the layered
architectures of Bitcoin, Ethereum, and EOS.

2.2 Consensus Mechanism
The consensus mechanism, proposed based on the famous Byzantine Generals Problem, is de-
signed to solve the consistency issue in distributed systems. Currently, the mainstream consensus
algorithms in blockchain include PoW, PoS, and DPoS.

Proof of Work (PoW). The PoW algorithm follows the principle of "more work, more rewards."
Nodes in the network solve hash functions to prove their computational effort. The first node to
complete the hash calculation is rewarded with the right to record transactions. PoW relies on
computational power and is mainly used in systems like Bitcoin.
Proof of Stake (PoS). PoS is a consensus mechanism similar to earning dividends from stock

holdings. The more digital currency a participant holds and the longer they hold it, the higher their
chances of earning rewards and gaining the right to validate transactions. PoS is energy-efficient
compared to PoW and is often used in blockchains like Ethereum (after its transition to Ethereum
2.0).
Delegated Proof of Stake (DPoS). DPoS is a consensus mechanism that does not rely on

computational power. Instead, it uses voting to elect block producers who act on behalf of the
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Fig. 1. A comparison of the layered architectures of Bitcoin, Ethereum, and EOS.

stakeholders to perform the consensus duties. DPoS aims to improve scalability and transaction
speed by reducing the number of validators, though it may increase centralization in the network.

2.3 Smart Contract
Smart contracts [30] are computer programs that run on distributed ledgers, capable of automatically
verifying and executing transactions without intermediaries. They emerged in the second phase of
blockchain development. Current smart contract development platforms include Bitcoin scripts,
Ethereum, Hyperledger Fabric, and EOS. The core of Ethereum is the Ethereum Virtual Machine
(EVM), where users can develop smart contracts using mainstream programming languages or
specialized languages like Solidity and Serpent. Compared to Ethereum, EOS smart contracts have
several distinct differences. Firstly, the upgrade mechanism is different: EOS smart contracts are
more flexible, allowing nodes to upgrade system smart contracts, and users can also update smart
contracts with update permissions [31]. Additionally, each EOS smart contract is accompanied by a
Ricardian contract, which describes the contract in a way that enhances readability, making it easier
for parties to review and reach a consensus quickly. Another difference lies in naming conventions:
Ethereum smart contracts have unique addresses, while in EOS, once a smart contract is deployed,
it is bound to an account, and the contract’s name becomes the account name. Finally, there is
a difference in resource consumption: unlike Ethereum, which requires gas for executing smart
contracts, EOS smart contracts do not require transaction fees. Instead, the bandwidth and CPU
resources required are allocated based on the user’s token holdings. Smart contracts deployed on
the EOSIO platform consist of WebAssembly (WASM) bytecode and Application Binary Interface
(ABI) [32]. The source code of the smart contract is compiled into WASM bytecode for execution
in the WASM virtual machine, while the ABI describes the public interface used to interact with
the smart contract. To develop a smart contract, developers must first write C/C++ files and use
the ‘eosiocpp‘ compiler to compile these files into ABI, WASM, and WAST files. After debugging,
these three files are uploaded to the blockchain [33]. There are two types of smart contracts on the
EOSIO platform: system contracts, which are deployed by default on the platform to implement
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core blockchain features such as consensus and account creation, and user-defined contracts, which
are deployed by users to fulfill specific business needs.

3 ANALYSIS OF EOS BLOCKCHAIN SYSTEM ARCHITECTURE
3.1 EOS Program
Graphene is a two-dimensional carbon nanomaterial composed of carbon atoms arranged in a
hexagonal honeycomb lattice via sp-hybridized orbitals. Inspired by graphene materials, EOS
founder Daniel Larimer, leading the Cryptonomex team, developed the Graphene blockchain
underlying technology architecture. This architecture has become an outstanding core foundational
framework in the blockchain field. Graphene-based blockchains, including EOS, are characterized
by fast transaction speeds, high throughput, strong stability, complete functionality, and ease of
use. The underlying Graphene software architecture of EOS determines its system architecture
advantages. The Graphene blockchain is not a single application program; it is composed of a series
of libraries and executable programs, and it provides nodes for deploying distributed applications.
One of the key technologies of the Graphene blockchain is its high modularity. The distributed
communication capabilities between internal nodes are encapsulated as plugins, dynamically
loaded, and called by upper-layer applications. This allows application developers to focus on the
application logic without worrying about the blockchain underlying details, significantly reducing
development difficulty and enhancing scalability. As a result, EOS can be seen as a collection of
interacting applications within a distributed database structure.
In terms of the actual EOS project, the EOS code framework can be divided into four layers, as

shown below: the library function layer, plugin layer, contract layer, and application layer. The
library function layer implements the key underlying technologies of the blockchain, such as
transaction processing, block production, encryption functionality, file I/O operations, and network
communication capabilities, providing fundamental capabilities to the application and plugin layers.
The plugin layer allows different plugins to combine, and the deployment and invocation of smart
contracts in the contract layer can achieve specific functionalities, offering various services. The
application layer provides external service interfaces. Figure 2 illustrates the code architecture of
EOS.
The EOS system is composed of several applications, primarily including Nodeos, Keosd, and

Cleos, each serving specific functions.
Nodeos. This is the blockchain node component that runs on the server side and is responsible

for launching the EOS node service. It is the core process, handling account management, block
generation, consensus establishment, and providing an environment for the execution of smart
contracts.
Keosd. This is the wallet management program responsible for managing wallets, keys, and

signing transactions.
Cleos. Cleos is a standard client program and a command-line parser with powerful extensibility.

It is the command-line tool used to interact with both Nodeos and Keosd. All the data Cleos requires
is retrieved through the HTTP protocol by connecting to Nodeos and Keosd, utilizing reflection
mechanisms.

Figure 3 illustrates the interaction process among the three main programs.
The EOS system is composed of six major components, which are as follows: the P2P network

communication component, the state management and data block component, the consensus algo-
rithm component, the account management component, the transaction and contract component,
and the smart contract execution environment component. This section will analyze these six
components to study the EOS system architecture and its working process.
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3.2 Account Management Component
The EOS account system is an authorization structure that features role-based access control as
one of its key characteristics. Additionally, it implements an account recovery function, allowing
users to create more than one account and manage them in an organized manner.

3.2.1 Role-Based Permission Management. The three essential elements of a common blockchain
account are: public key, private key, and address. The address is where assets are stored, the
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public key represents the account name, and the private key is the complement of the public key.
Typically, a pair of public and private keys represents a single account. In contrast, EOS accounts
are identified by a 12-character human-readable identifier, which is user-defined. An EOS account
can have multiple public-private key pairs, each corresponding to different permissions. This
can be understood as EOS accounts being a collection of individual permissioned accounts, each
represented by traditional public-private key pairs. By assigning permissions, a single account can
be used by an individual or a group. All operations performed by EOS accounts are contingent
on permission validation. EOS account permissions can be categorized into three types: Owner
permission, Active permission, and Custom permission. Owner and Active permissions are the two
native permissions, meaning they are automatically granted when the EOS account is created. For
accounts with only one public-private key pair, the assets are typically stored under the public key.
If the private key is lost or stolen, the account’s assets become vulnerable. EOS accounts assign
different weights to each entity (public-private key pair) and set thresholds for certain permissions.
Only when the total weight of an individual’s keys reaches the specified threshold do they gain the
corresponding permissions to perform specific operations.

3.2.2 Account Recovery Function. The account recovery function primarily refers to the restoration
of accounts in cases of key loss or theft. In Bitcoin and Ethereum, if a private key is lost or stolen,
the entire account is effectively lost. However, EOS does not follow this model; it supports the
recovery of stolen keys, allowing users to regain control over their accounts and restore lost access.

3.2.3 Account Creation Process. Account creation and key generation occur simultaneously. Through
the Cleos application, the generated keys are linked to their corresponding wallets. Cleos, Keosd,
and Nodeos work together to publish accounts to the network. The wallet interacts with the net-
work through Cleos. Keosd manages the wallet and allows users to access their accounts through
Cleos. Cleos sends an account creation request to Nodeos, which publishes the account to the
network. Since private key loading is done through Cleos, the interaction between Cleos, Nodeos,
and Keosd relies on the keys associated with the account for signing the transactions.

3.3 Consensus Algorithm Component
The purpose of the consensus mechanism is to achieve data consistency across nodes in a dis-
tributed environment. Unlike Ethereum, which uses PoW, EOS employs DPoS as its consensus
mechanism. Later, EOS improved this mechanism by incorporating the Byzantine Fault Tolerance
(BFT) algorithm, resulting in the BFT-DPoS consensus mechanism.

3.3.1 DPoS and BFT-DPoS. The DPoS consensus mechanism involves two phases: the Voting Phase,
where token holders elect 21 trusted block producers (BPs) to validate transactions and produce
blocks, and the Block Production Phase, where these BPs follow specific rules to produce, broadcast,
and confirm blocks.
In the BFT-DPoS consensus mechanism, when a block producer (BP) produces a block, it is

still broadcast to the entire network. However, unlike in traditional DPoS, other BPs immediately
validate and confirm the new block upon receipt rather than waiting until their turn to produce a
block. As a result, the transaction confirmation time is reduced from 45 seconds to 3 seconds.

3.3.2 Consensus Algorithm Workflow. In the EOS system, a block cycle consists of the production
of 252 blocks. At the beginning of each block cycle, EOS conducts a vote based on the EOS tokens
held by users across the network. According to the voting results, 21 supernodes are selected.
These supernodes, also known as block producers (BPs), are responsible for collecting transaction
information and packaging it into blocks. When a block producer generates the next block, they
are required to execute and verify the transactions and contracts that clients in the network send
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to them. The block producers process valid transactions and contracts while filtering out invalid
ones. Once the block producer has processed the transactions, it broadcasts the information to
other block producers in the network. Once the majority (more than two-thirds) of the 15 block
producers (out of the total 21 block producers) validate and sign off on the dataset, the transaction
is considered finalized. The 21 supernodes agree on the block production order, and a new block is
produced every 0.5 seconds according to this order. If a supernode fails to produce a block on time,
it is skipped and given a timestamp. If this supernode fails to produce a block within 24 hours, it
will be removed from the list of candidate supernodes.

3.4 P2P Network Communication Component
A blockchain system’s P2P module should be capable of synchronizing block data from peer nodes,
sending transactions to other nodes for validation, validating transactions sent by other nodes,
broadcasting blocks generated by the node to others, and verifying blocks received from other
nodes. This section will analyze the functionality of the P2P module through the net plugin.

3.4.1 net_plugin Class. The plugin class is responsible for managing the registration, initialization,
and state of plugins. It provides the functionality to initialize, start, and stop plugins within
the system. The net_plug in class, as a subclass of the plugin class, specifically implements the
configuration, initialization, startup, shutdown, and block broadcasting functionalities for the P2P
network plugin. Through the plugin_startup function, a P2P node is started, and a listening loop is
set up to respond to messages received from other nodes. Additionally, based on the seed node
information in the configuration file, the node connects to other peers, sends message requests, and
synchronizes blocks or other network data. This allows the net_plugin to handle critical networking
tasks, ensuring that the node can communicate efficiently with other nodes in the EOS network,
propagate blocks and transactions, and maintain synchronization with the rest of the blockchain.

3.4.2 Block Synchronization Process in EOS. After the local node starts, it connects to the P2P
nodes specified in the configuration file and retrieves the current blockchain information and
configuration data. It then constructs a handshake_message packet and sends it to other P2P
nodes. When a remote node receives this message and detects that its chain is longer than the
local node’s chain, it sends a notice_message to the local node to initiate block synchronization.
Upon receiving this message, the local node checks the block synchronization information and
constructs a sync_request_message, which is then sent to the remote node to request block data.
After receiving the request, the remote node fetches its n-th block as requested by the local node,
constructs a signed_block message containing the block data, and places it into the message queue.
This way, the requested block is sent to the local node. During this process, the remote node sends
blocks recursively based on the local node’s requests, sending one block at a time. The local node
receives each signed_block message—which contains the detailed data of the block, and completes
the block synchronization accordingly.

3.5 State Management and Data Block Components
State represents information and events and is closely related to system availability and stability.
Therefore, the effective management of system states and resources is critical. This section analyzes
three key aspects of the EOS blockchain system: resource management, state management, and
data management.

3.5.1 Resource Management. The EOS system mainly utilizes three types of resources: bandwidth
and log storage, computation and computational backlog (CPU), and state memory (RAM). EOS
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adopts a tokenized resource allocation mechanism, where resources are distributed based on the
proportion of tokens held by users.

Bandwidth and Log Storage. Block producers need to synchronize generated blocks with other
producers, which consumes bandwidth. Bandwidth can be acquired in two ways. If a user holds
tokens, they can stake them to a system account and receive bandwidth proportionally based on
their share of the total token supply. Alternatively, users without tokens can lease bandwidth. Each
transaction consumes a certain amount of bandwidth. When the bandwidth is depleted, the user
can no longer send transactions.
Computation and Computational Backlog (CPU). Calling and executing smart contracts

consumes CPU resources, which are measured by the time taken to execute contract code. CPU
can be obtained by staking tokens or purchasing it from other users. Each contract invocation
consumes CPU; when exhausted, further execution of smart contracts becomes impossible.
State Memory (RAM). RAM refers to runtime memory used to store account-related state

information. Compared to bandwidth and CPU, RAM is a more scarce resource, with its total
amount determined collectively by the block producers. RAM is also obtained via token staking;
however, unlike other resources, RAM staking and unstaking incur a 0.5% fee. RAM allocated
through staking is non-transferable and cannot be leased or sold to other users. While staking and
unstaking RAM are immediate operations, token staking for CPU and bandwidth comes with a
3-day lock period. CPU and bandwidth are renewable over time, whereas RAM is a fixed resource
and must be repurchased once consumed.

3.5.2 State Management. Transactions, smart contract invocations, and executions in the EOS
blockchain all lead to state changes. EOS ensures state persistence through a database management
system infrastructure. This persistence is crucial for maintaining the history and integrity of
transactions. Modifying the application state requires write access and must follow a predefined set
of rules. Reconstructing application state from log data through logical validation involves three
steps: verifying internal consistency, checking that preconditions are satisfied, and finally, applying
the state change. During this process, read-only operations can be executed in parallel, but write
operations must be executed sequentially.

3.5.3 Data Management. Throughout the lifecycle of a transaction, the EOS system employs
various data structures to store blockchain data. Four data access modes control how nodes process
transactions, blocks, and messages when Nodeos is run in different configurations. Nodeos stores
historical transactions, transaction records, and current states. Historical transaction data is saved
in the blocks.log file on disk. Current state data is stored in either Chainbase or RocksDB. Chainbase
is a private in-memory transactional database constructed by blocks. It achieves persistence using
memory-mapped files. RocksDB is an open-source, persistent key-value store optimized for flash
drives and high-speed disks, utilizing in-memory caching for efficient data access. EOS also provides
a persistent data structure known as the Multi-Index Table, which is a set of classes for database
operations that support persistent storage.
There are four data read modes in EOS: Speculative Mode, Head Mode, Read-Only Mode, and

Irreversible Mode. The current data access mode is specified via the –read-mode option in eo-
sio::chain_plugin.

3.6 Transaction and Contract Components
In the EOS system architecture, transactions, actions, and contracts are closely interrelated. Un-
derstanding the transaction and contract components requires a clear grasp of the relationship
among these three entities. An action is the atomic execution unit on the EOS blockchain. Most
EOS network operations are built upon actions, which are capable of interacting with each other.
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A set of actions, along with their corresponding action handlers, constitutes a smart contract. A
transaction represents the execution of one or more actions and serves as the carrier for delivering
and invoking them.

3.6.1 Contract Dispatch. In EOS, smart contracts are programs that are registered on the network
and executed on the nodes. Communication between contracts is asynchronous. The process of
dispatching a contract in EOS proceeds as follows:
First, the client, via the Cleos component, sends a request to the Nodeos service. Nodeos then

generates an action request and compiles it into WebAssembly (WASM) bytecode. During this
process, a series of actions is bundled together in a defined sequence to form a transaction. Once the
compilation is completed, the resulting WASM bytecode activates and enforces the corresponding
contract logic.

3.6.2 Two Communication Models of Transactions. A transaction in EOS is composed of a sequence
of actions that are combined and executed in order. Based on execution timing, transactions can be
categorized into immediate transactions, which are executed without delay and broadcast to the
network upon initiation, and delayed transactions, where execution is scheduled for a later time.
EOS supports two fundamental communication models for transactions: inline communication
and deferred communication. Inline communication involves invoking nested actions within a
transaction by directly requesting other operations without generating any notifications outside the
scope of the current transaction. Deferred communication, in contrast, sends action notifications
to peer transactions. However, from the perspective of block producers, deferred actions are not
guaranteed to be executed. The system only ensures whether the transaction is successfully created
and submitted, without guaranteeing its eventual execution.

3.7 Smart Contract Execution Environment Component
A smart contract is a collection of programmatic instructions executed by block producers upon the
fulfillment of specified triggering conditions. The execution of a smart contract can be conceptual-
ized as a process where multiple inputs collectively determine the output. In EOS, a smart contract
consists of two main components: a set of actions and type definitions. The action set defines
and implements the behavior and functionality of the contract, while the type definitions specify
the necessary content and data structures required by the contract. Two mainstream approaches
for executing smart contracts are virtual machines and containers. A virtual machine interprets
and executes each contract instruction at the system level, thereby providing a virtual hardware
platform. In contrast, the container-based approach offers an isolated sandbox execution environ-
ment by leveraging operating system-level resource partitioning and isolation mechanisms. EOS
employs the mainstream C++ programming language for writing smart contracts. Once written,
these contracts are compiled into low-level WebAssembly (WASM) bytecode for execution by
block producers. The execution model is based on a virtual machine architecture, which allows
compatibility with multiple virtual machine implementations. The EOS blockchain system currently
supports three WASM execution engines: WABT, Binaryen, and WAVM. The principles behind
these three execution engines are as follows: WAVM improves virtual machine performance by
precompiling the WASM instruction set into native machine code for direct execution on local
hardware; however, its just-in-time (JIT) compilation introduces latency that may cause it to miss
block production deadlines. Binaryen translates input into an intermediate representation (IR) for
interpretation. Although WABT only supports input in WASM binary format, it effectively reduces
block production time and overall system latency.
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4 DECENTRALIZED ANALYTICS
Decentralization is an essential characteristic of blockchain technology, and its applications and
advantages are primarily reflected in this decentralization. However, measuring the degree of
decentralization in a blockchain system is challenging, and there are few standardized metrics for
quantifying decentralization across different blockchain networks. In this section, we will conduct
an analysis of the EOS blockchain decentralization by examining account data, the voting process,
and block producer behaviors based on data provided by Xblock. This will allow us to gain a deeper
understanding of decentralization in the EOS blockchain.

4.1 Account Analysis
Unlike most blockchain systems, where account creation is free, EOS requires the account creator
to purchase state storage (RAM) to store account information. To initiate transactions, these new
accounts also need to be allocated CPU and bandwidth resources. These resources on the EOS
blockchain must either be staked with Tokens or rented from other users. To analyze accounts,
we need to examine the "account" and "token" datasets from Xblock. The account data in XBlock
includes information such as the account creation time, creator, and account name. According to
statistics, from June 9, 2018, to September 3, 2020, a total of 2,034,330 accounts were created by
49,072 creators.

As shown in Figure 4a, the number of new accounts created during each period from June 2018
to September 2020 is presented. It can be observed that the creation of new accounts on the EOS
blockchain was significantly higher in June 2018 and April 2019 compared to other periods. On
June 9, 2018, the EOS mainnet was officially launched, which marked a surge in account creation
at the early stages of the network’s launch. In 2019, the DApp industry saw rapid development,
which in turn drove the growth of blockchain platforms such as Ethereum and EOS. During this
period, the activity level of EOS accounts significantly increased. In 2019, EOS had over 572,000
total users, with approximately 518,000 active users. There were 493 observable DApps, of which
479 were active.

These 2,034,330 accounts were created by 49,072 creators, with an average of 41.46 accounts
created per creator. However, because the creation of EOS blockchain accounts requires the purchase
of network resources, in reality, only 2,266 creators had more accounts than this average. As shown
in Figure 4b, the account information of the 29 creators who had more than 10,000 accounts is
selected. From the Figure 4b, it can be seen that the system account "eosio" ranks first. However,
even this account’s number of created accounts accounts for only 8% of the total. EOS blockchain
account names can be up to 12 characters long and may use digits [1-5] or lowercase letters [a-z].
The accounts created by the system account "eosio" generally have similar names, many of which
start with hexadecimal characters, indicating that these accounts are used for testing purposes.
A word frequency analysis was conducted on all the account names to generate a word cloud,

as shown in Figure 5. The top three most frequent terms in the account names are "tp," "game,"
and "bank." Among these, "tp" refers to TokenPocket, a company that provides wallet services.
The presence of terms like "game," "bank," and "dice" indicates that EOS applications are heavily
oriented towards sectors such as banking, gaming, and gambling. To study these accounts, it is also
important to analyze their token holdings, specifically the EOS tokens that these accounts own. In
EOS, a valid token contract must include at least three components: token creation, issuance, and
transaction transfers. Therefore, the XBlock dataset is divided into these three sections. Through the
analysis of the token dataset from June 2018 to September 2020, a total of 4,811 tokens were created
and issued, generating 1,128,111,142 transaction transfer records. In total, 1,295,389 accounts held
token assets.
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(a) Account Number–Time Statistics.

(b) Distribution of Users with Account Numbers
Greater than 10,000.

This indicates that 63.67% of all accounts hold token assets, meaning one-third of the accounts
do not hold tokens. This suggests that these accounts are not active in the EOS ecosystem and
will not participate in the election of block producers. The next section will discuss whether these
token-holding accounts are involved in the voting process.

5 PERFORMANCE ANALYSIS
With the development of blockchain technology, more and more blockchain system platforms have
emerged. The two main indicators that determine the development of these blockchain systems
are performance and security. This section will examine the performance of the EOS blockchain
system from two aspects. First, it will analyze the data from XBlock, focusing on block production,
transaction numbers, and resource management. Since the XBlock data in this section is only
available until November 2019, and blockchain development is rapidly evolving, this section will
also analyze the recent performance of the EOS blockchain using the Titan Labs (EOS) tool to
examine the EOS mainnet transaction status and CPU utilization.
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Fig. 5. Account Name Word Cloud.

5.1 The Analysis of XBlock Data
The XBlock block dataset contains detailed data for 90 million EOS blocks, including information
such as block number, creation time, producer, CPU and NET usage, as well as the number of
transactions and actions. These data are divided into three parts to analyze the EOS blockchain
system from the perspectives of block production, transaction and action volume, and CPU and
NET usage.
As shown in the Figure 6, the monthly block production over time on the EOS blockchain is

visualized. The block counts for June 2018 and November 2019 are relatively low because data for
these months is incomplete. From July 2018 to October 2019, block production remained relatively
stable, fluctuating between 4,831,452 and 5,351,856 blocks per month. This variance is within an
acceptable range considering the differing number of days in each month and aligns with the
expected block interval of approximately 0.5 seconds per block, indicating that block producers
were fulfilling their responsibilities. In terms of transactions and actions, the 90 million blocks
recorded a total of 2,538,345,954 transactions and 2,960,718,844 actions. By aggregating the number
of transactions and actions for every one million blocks, we obtain the results shown in Figure 7.
As shown in Table 3, the average number of transactions per block is approximately 28.20. Based
on the 0.5-second block interval, the average transaction throughput of the EOS system is about
56.40 TPS. When the block height exceeded 87.7 million, the throughput peaked at around 126 TPS.
However, this is still far from EOS’s originally claimed throughput of one million TPS.
The sudden surge in transaction and action volume during this phase can be attributed to the

EIDOS project, which launched a massive airdrop on EOS. This resulted in about 80% of on-chain
transactions being related to this airdrop, causing a spike in CPU resource usage on the EOS
mainnet and making it difficult for normal transactions and DApp users to operate properly. It
should be noted that this analysis is based solely on the data collected from XBlock and does not
represent the current real-world transaction throughput of the EOS system. A separate analysis
of the current EOS transaction throughput will be conducted later. Additionally, it is observed
that the number of transactions and actions is relatively close in the figures. Since a transaction is
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Fig. 6. Block Production Over Time.

Fig. 7. Statistics of Transaction and Action Counts.

composed of one or more actions, the total number of actions is slightly higher than the number of
transactions. The fact that their counts are similar implies that most transactions consist of only a
single action. Regarding CPU and NET usage, the statistics are presented in Figure 8, where CPU
usage is measured in milliseconds, and NET usage is measured in words (1 word = 8 bytes). It can
be seen that the trends of CPU and NET usage closely follow the transaction volume, as transaction
processing consumes these computing resources and leads to fluctuations in their usage levels.
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Fig. 8. CPU and NET Usage Statistics.

5.2 Performance Analysis of the Current EOS System
The previous section analyzed block data collected from XBlock. However, since the dataset only
includes the first 90 million blocks, ending in November 2019, it does not reflect the current
performance of the EOS system. In this section, we utilize Titan Labs (EOS) to analyze the EOS
mainnet’s transaction and action activity, as well as CPU and NET usage over the past 28 days.
Titan Labs (EOS) is a real-time monitoring platform for the EOS mainnet, providing access to
up-to-date operational metrics. The statistical summary as of April 30, 2022, is shown in Figure 9.

6 SMART CONTRACT ANALYSIS
Smart contract security is a critical component in the application of blockchain systems. The
complexity and code size of smart contracts are increasing year by year, and the reuse of code has
led to the wider distribution of contract vulnerabilities and malicious code. Once a smart contract
vulnerability is exploited, it can lead to severe consequences and financial losses. As more and more
blockchain platforms support the use of smart contracts to build decentralized applications, the
economic damage caused by smart contract vulnerabilities to clients and users is also increasing.
Therefore, analyzing smart contracts on blockchain platforms is essential.

Since most EOSIO smart contracts are not open source, and there are few analysis tools available
for analyzing Wasm bytecode, detecting vulnerabilities in EOSIO smart contracts becomes diffi-
cult [34]. While analysis tools for Ethereum smart contracts have developed rapidly, these tools are
not suitable for EOSIO due to differences in virtual machines, bytecode structures, and vulnerability
types [35]. The challenges of analyzing EOSIO smart contracts mainly focus on the following
aspects: First, the EOSIO virtual machine execution engine is more complex than Ethereum’s in
terms of both quantity and variety. Second, Wasm bytecode is more complex than Ethereum’s
bytecode, which adds difficulty to the analysis. At the same time, the types of vulnerabilities in
EOSIO smart contracts are more complex than those in Ethereum, further complicating the analysis
and vulnerability detection of EOSIO smart contracts.
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(a) Average Transactions Per
Second (TPS).

(b) Average CPU Utilization
(%).

(c) Average NET Usage (MB).

(d) Average Daily Action Count.

Fig. 9. Statistical Results.

6.1 Common Vulnerabilities and Defense Methods of EOSIO Smart Contracts
In this section, five known typical vulnerabilities in EOSIO smart contracts will be introduced,
along with their defense mechanisms.
Integer Overflow: Integer overflow vulnerabilities primarily occur when a contract performs

arithmetic operations where the result may exceed the number of bytes the underlying computer
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system can store. If boundary checks are not performed, there is a possibility of integer overflow.
Below is an example of code for batch transfers, where integer overflow occurs.

Defense Method: Before performing arithmetic operations, it is essential to check whether the
result will exceed the allowed numerical range of the computer system.
Permission Validation: This refers to the need for permission validation within the contract,

ensuring that the caller has the appropriate rights to execute the operation. Smart contracts without
permission checks are vulnerable to being called by malicious accounts, which could perform
harmful actions, such as modifying databases. Below is an example of a transfer process code,
where the absence of permission validation leads to a mismatch between the account transferring
the assets and the account calling the contract. Malicious accounts can exploit this to transfer assets
that do not belong to them.
Defense Method: Developers can use require_auth(account), require_auth2(account, permis-

sion), and has_auth(account) to verify the consistency of the caller and the account and ensure the
necessary permissions are in place.

Fake EOS Attack: In EOSIO, a smart contract must send EOS tokens to another smart contract
through the system contract ‘eosio.token‘. During a transaction, the sender contract must invoke
the ‘transfer‘ function within ‘eosio.token‘, which adjusts the account balances of both the sender
and the receiver. When the transaction occurs, ‘eosio.token‘ calls the ‘require_recipient()‘ function,
notifying both the sender and receiver. A fake EOS transfer attack refers to when a malicious
account impersonates ‘eosio.token‘ and sends a ‘transfer‘ to the victim account. If the victim
doesn’t verify the received ‘transfer, ’ they may mistakenly believe that the malicious account has
transferred EOS tokens to them. Below is an example of code that could potentially send a forged
EOS transfer. In the ‘switch(action)‘ section, if the action is calling the ‘transfer‘ function, and
there is no check to verify that this transfer comes from ‘eosio.token‘, then the attacker can invoke
the vulnerable contract’s ‘transfer‘ and perform the transaction without spending their own EOS
tokens. Defense Method: Perform a check on the action to ensure that if it is a ‘transfer‘, it must
come from ‘eosio.token‘. Below is an improved version of the code to address this issue.
Fake Transfer Notification: During a transaction, ‘eosio.token‘ calls the ‘require_recipient()‘

function to notify both the sender and the receiver. If the recipient account is not checked to
verify whether it is the intended account, the system could mistakenly assume that the sender
has transferred EOS tokens to themselves, even though the account has not received the transfer.
This is known as a fake transfer notification. Below is a part of the code where a fake transfer
notification attack could occur.

Defense Method: Check if the recipient of the transfer notification is indeed the correct account
(i.e., the receiver). The following is an improved version of the code to mitigate this issue.

Non-Random Random Numbers: In blockchain, it is difficult to obtain a reliable source
of randomness. Random number generation in smart contracts should not be controllable or
predictable.
Defense Method: True random numbers cannot be generated on the EOS blockchain. It is

recommended to refer to the examples provided in the official documentation when designing
applications that rely on randomness.

6.2 Introduction and Comparison of Smart Contract Vulnerability Detection Tools
This section introduces four EOSIO smart contract vulnerability detection tools- EVulHunter,
EOSFuzzer, WANA, and EOSafe- and compares them.

EVulHunter is a binary-level vulnerability detector for EOS smart contracts based on the Octo-
pus project. Octopus is a security analysis framework for WebAssembly modules and blockchain
smart contracts. It provides a simple way to analyze closed-source WebAssembly modules and
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smart contract bytecode to gain a deeper understanding of their internal behavior. Octopus supports
the analysis of WASM, BTC scripts, Ethereum smart contracts (EVM bytecode), Ewasm, EOS smart
contracts (WASM), and NEO smart contracts (AVM bytecode). Based on Octopus, EVulHunter can
detect two smart contract vulnerabilities: fake EOS attacks and fake transfer notifications.

EOSFuzzer is a fuzz testing tool that detects EOSIO smart contract vulnerabilities in four steps.
First, EOSFuzzer performs static analysis on the smart contract bytecode and its binary program
interface (ABI). Based on the analysis results, it fuzzes the inputs to these interfaces according to the
ABI data types and conducts attacks. The third step involves executing fuzzing on the smart contract
using the Cleos tool on a testnet. Finally, vulnerabilities are detected and analyzed based on the
fuzzing results. EOSFuzzer supports detecting three types of attacks: fake EOS attacks, fake transfer
notifications, and block dependency. Block dependency refers to the existence of a feasible path from
block information collection to EOS transfer within the smart contract, which compromises the
randomness of the entire process, making the random result traceable to a deterministic outcome
through block dependency.

WANA is a cross-platform tool that supports the detection of vulnerabilities in both EOSIO and
Ethereum smart contracts. For EOSIO smart contract vulnerability detection, it can detect the same
vulnerabilities as EOSFuzzer: fake EOS attacks, fake transfer notifications, and block dependency.

EOSafe is a static analysis framework for automatically detecting vulnerabilities in EOSIO smart
contracts at the bytecode level. It takes the Wasm bytecode of EOSIO smart contracts as input and,
like EVulHunter, is based on Octopus. EOSafe can detect four types of vulnerabilities: fake EOS
attacks, fake transfer notifications, rollback attacks, and permission control vulnerabilities.

All four tools can produce false positives or false negatives. False positives occur when a contract
is reported to have a vulnerability that it does not actually have, while false negatives occur when
a contract with an actual vulnerability is not detected correctly.

7 BEHAVIORAL SECURITY
The quality of a blockchain system should be evaluated comprehensively from multiple aspects,
including architecture, performance, and security. In previous sections, we have analyzed the
architecture, decentralization, performance, and smart contract security of the EOS system. However,
attacks on the EOS blockchain may exploit not only vulnerabilities in smart contracts but also
vulnerabilities in the EOS system architecture itself. EOSIO’s unique system design, while enhancing
transaction throughput and scalability, also presents some potential security risks. This section
will introduce four possible attacks targeting EOSIO and provide an analysis of real-world attack
incidents in DApps.

7.1 Possible Attacks on EOSIO
7.1.1 Block Delay Attack. Block production delay attack: A block production delay attack targets
block producers, where malicious nodes send a large number of unprocessable fake transactions to
disrupt the normal operation of block producers. These fake transactions occupy the processing
opportunities for legitimate transactions, causing the legitimate transactions to be delayed and
remain unprocessed, resulting in significant economic losses.
In the EOS system, block producers have four states. Here, we will introduce two of them: the

"success" state and the "exhausted" state. Since the resources such as CPU, NET, and RAM available
to block producers are limited, there are restrictions on the resources allocated for transaction
processing within a block. If the block producer can complete processing within 0.5 seconds, it
enters the waiting time and sends the block to other producers. This is the "success" state. If the
resources required for processing a block exceed the specified threshold, the block producer enters
the "exhausted" state. In this state, the producer will try to produce as many blocks as possible, and

19



even if it completes processing within 0.5 seconds, it will not enter the waiting state to maximize
resource usage. A block production delay occurs when the block producer transitions from the
exhausted state, after producing a large number of blocks, back to the success state.

Two features of EOSIO can be used to implement block delay attacks: delayed transactions and
smart contract updates. Normally, block producers prioritize processing requested transactions
and delay the execution of deferred transactions. If an attacker deploys a malicious contract that
recursively calls its deferred transactions, the number of transactions will grow exponentially.
When the block producer receives such a massive number of transactions, its resources will be
exhausted. After producing a large number of blocks, the attacker updates the malicious contract
to a completely different one. This causes the transactions from the original malicious contract to
become invalid. When the block producer processes these invalid transactions, more blocks are
generated. This process causes a discrepancy between the block timestamps and real time, leading
to a block delay attack.

7.1.2 CPU Exhaustion Attack. CPU exhaustion attack: The execution of smart contracts consumes
a certain amount of CPU power, and the consumption is determined by the execution time of the
smart contract. A CPU exhaustion attack refers to an attacker depleting the target’s CPU power to
the extent that the smart contract can no longer be executed. The goal of the attacker is to exhaust
the contract owner’s CPU resources, preventing the contract from being called by block producers,
thus rendering the smart contract unavailable.

Smart contracts often use the ‘send_deferred()‘ function to generate deferred transactions. The
execution of such smart contracts requires CPU resources from the transaction initiator or the
contract owner. Contract owners often provide their CPU resources to ensure the widespread use
of their smart contracts. Attackers take advantage of this by continuously consuming the contract
owner’s CPU resources, causing the owner’s CPU to be depleted. As a result, the contract will be
unable to execute, effectively making the smart contract unavailable.

7.1.3 RAM Exhaustion Attack. The RAM exhaustion attack is similar to the CPU exhaustion attack,
with the key difference being that RAM is used to store data. In this case, an attacker will send a
large amount of fake data to the contract owner, aiming to deplete the owner’s RAM. The defense
against this type of attack is to prevent the same user from storing unlimited data.

7.1.4 RAMsomware Attack. In a ransomware attack, the attacker can seize all of the victim’s
resources, including CPU, RAM, and EOS tokens. The attacker takes advantage of the contract
owner’s sensitive permissions. Initially, the attacker uses a normal contract to request the ‘eosio.code‘
permission from the user to proceed with further actions. The victim, after verifying the contract’s
security through a third-party inspection, grants the contract the necessary permissions. Once
the smart contract passes the inspection, the attacker can modify it into a malicious contract and
exploit the granted sensitive permissions to launch the attack. The victim will not realize that the
contract has been altered.

7.2 Reality Attack Case Analysis
7.2.1 EOS Blockchain Real-World Attack Events. This section reviews notable real-world attack
events on the EOS mainnet since its launch, detailing the background and aftermath of these
incidents.

EOS Fomo3D Werewolf Game: This game was similar to the Fomo3D game on Ethereum. On
July 25, 2018, the SlowMist Security Team issued a warning about an overflow attack on the EOS
Fomo3D game contract, which caused the fund pool to go negative. In response, the Werewolf team
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took emergency measures and launched a new contract, but another attack followed, where an
attacker (eosfomoplay1) stole 60,686 EOS.

EOSBet: EOSBet is a dice-based gambling game on the EOS blockchain. It suffered three attacks.
On August 26, 2018, the project team reported that its account’s RAM was maliciously consumed
by a contract. The game temporarily shut down to prevent further attacks. On August 27, the
vulnerability was fixed, and the game resumed. However, on September 14, hackers exploited
the lack of verification of whether the received EOS was issued by ‘eosio.token‘, resulting in a
loss of 44,427.4302 EOS and 1,170.0321 BET tokens. Despite transferring assets to a cold wallet
and upgrading security, the project suffered another attack on October 15, when the attacker
(ilovedice123) used the "fake transfer notification" vulnerability, causing a loss of 142,845 EOS.

Other Gambling Platforms: Several EOS-based gambling platforms, such as Luckyos, EOS
WIN, and DEOSGames, also suffered from random number attacks. For example, on August 27, 2018,
the random number generation for Luckyos’ rock-paper-scissors game was cracked, leading to its
shutdown. Similarly, on September 2, 2018, the random number for EOS WIN was compromised,
resulting in a 2,000 EOS loss.

EOSBank: EOSBank, a platform supporting EOS deposits and leasing services, was attacked on
October 5, 2018. The attacker modified the owner permissions of the EOSBank contract account
‘eosiocpubank‘, resulting in the transfer of 18,000 EOS to the account ‘fuzl4ta23d1a‘.

7.2.2 DApp Transfer Process and Attack Analysis. EOS offers two methods for implementing DApp
transfers: User Authorization of ‘eosio.code‘ Permission to DApp: In this approach, the DApp
can execute the ‘transfer‘ function of ‘eosio.token‘ to transfer EOS on behalf of the user.
Direct Call to ‘eosio.token‘’s Transfer Function: In this method, the user directly calls

‘eosio.token‘’s ‘transfer‘ function to transfer EOS to the DApp account. This method is preferred
due to security risks in the first method, where granting ‘eosio.code‘ permission gives DApp
complete control over the user’s account.

The transfer process involves five stages. The analysis of potential attack methods is as follows:
Stage 1 (System Contract Logic): In this stage, the transfer process follows the logic of the ‘eo-

sio.token‘ system contract. If the DApp is correctly deployed, there are no exploitable vulnerabilities
at this stage. Stage 2 (Apply Phase): This phase could be vulnerable to a fake EOS attack. In the
previous section, the fake EOS attack was explained. Essentially, a malicious contract simulates the
issuance of fake EOS tokens. The attack occurs when the malicious contract sends fake EOS tokens
to the DApp, bypassing the detection logic since the only check in the transfer function is the token
name ("EOS"), which is easily bypassed by using fake EOS tokens. Stage 3 (Transfer Phase): In this
phase, a fake transfer notification attack could occur. In this attack, an attacker sends real EOS
tokens to their own smart contract account. The ‘eosio.token‘ contract calls ‘require_receipt‘, which
triggers the malicious smart contract’s ‘transfer‘ function. This results in the malicious contract
calling the DApp’s ‘transfer‘ function, making it appear as though a legitimate transfer took place.
Stages 4 & 5 (Receipt and Reveal Phases): These phases are vulnerable to random number attacks.
In these stages, DApp’s internal logic is executed, and attackers aim to predict or manipulate the
random number generated. Many DApps use pseudo-random numbers, which can be vulnerable to
attacks. Attackers can predict the random number if they control the ‘ref_block_num‘ (which is
user-defined). By choosing a specific ‘ref_block_num‘, attackers can compute the random number
in advance, allowing them to manipulate the results. To mitigate this, DApps can use future data as
random numbers by implementing deferred actions, as shown in the provided process flow.
This analysis underscores the importance of proper validation and security measures in the

design of DApp transfer processes to prevent such vulnerabilities.
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8 CONCLUSION
This paper provides a comprehensive analysis of the EOS blockchain system from several aspects,
including system architecture, decentralization, performance, smart contracts, and behavioral
security. In terms of system architecture, the paper analyzes the EOS system architecture from
six core components, detailing the characteristics and workings of each component. In the area
of decentralization, the analysis focuses on accounts, the supernode election process, and block
producers. The study reveals issues such as a low number of active accounts, limited participation
in the election process, and little variation in the set of block producers within the EOS blockchain.
In performance, the paper examines EOS block production, transaction and operation statistics,
and resource utilization. It concludes that the performance of the EOS system, while influenced by
multiple factors in real-world use, does not exceed Ethereum’s by a significant margin, though its
potential remains promising. Regarding smart contracts, the paper introduces five known contract
vulnerabilities and compares four vulnerability detection platforms. Finally, in terms of behavioral
security, the paper summarizes four types of attacks that EOS may face due to its architectural
design.
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