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Topology-aware Detection and Localization of Distributed
Denial-of-Service Attacks in Network-on-Chips
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Network-on-Chip (NoC) enables on-chip communication between diverse cores in modern System-on-Chip

(SoC) designs. With its shared communication fabric, NoC has become a focal point for various security threats,

especially in heterogeneous and high-performance computing platforms. Among these attacks, Distributed

Denial of Service (DDoS) attacks occur when multiple malicious entities collaborate to overwhelm and

disrupt access to critical system components, potentially causing severe performance degradation or complete

disruption of services. These attacks are particularly challenging to detect due to their distributed nature

and dynamic traffic patterns in NoC, which often evade static detection rules or simple profiling. This paper

presents a framework to conduct topology-aware detection and localization of DDoS attacks using Graph

Neural Networks (GNNs) by analyzing NoC traffic patterns. Specifically, by modeling the NoC as a graph,

our method utilizes spatiotemporal traffic features to effectively identify and localize DDoS attacks. Unlike

prior works that rely on handcrafted features or threshold-based detection, our GNN-based approach operates

directly on raw inter-flit delay data, learning complex traffic dependencies without manual intervention.

Experimental results demonstrate that our approach can detect and localize DDoS attacks with high accuracy

(up to 99%) while maintaining consistent performance under diverse attack strategies. Furthermore, the

proposed method exhibits strong robustness across varying numbers and placements of malicious IPs, different

packet injection rates, application workloads, and architectural configurations, including both 2D mesh and

3D TSV-based NoCs. Our work provides a scalable, flexible, and architecture-agnostic defense mechanism,

significantly improving the availability and trustworthiness of on-chip communication in future SoC designs.

CCS Concepts: • Networks→ Network on chip; Denial-of-service attacks; • Security and privacy→
Security protocols; • Computing methodologies→Machine learning.

Additional Key Words and Phrases: Graph Neural Networks, Distributed Denial-of-Service, Network-on-Chip

Security, 3D Network-on-Chips, Availability, Detection and Localization

1 INTRODUCTION
Parallel workloads and specialized computing accelerators, such as neural network accelerators,

have become pivotal in advancing computing capabilities, significantly shaping modern processor

architecture designs. These workloads demand fast, energy-efficient communication across a

growing number of cores, often under tight latency constraints. Heterogeneous Systems-on-Chips

(SoCs) and Multi-Processor SoCs (MPSoCs) now integrate a large number of Intellectual Property

(IP) cores in a single chip, reflecting a major shift towards more complex and powerful systems

with diverse compute and memory hierarchies. For example, Intel’s Xeon® Scalable Processor [1]
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Fig. 1. 4x4 mesh NoC topology. Only corner nodes have shared Memory Controllers (MCs). Malicious IPs
(MIPs) can target MCs and flood packets to launch DDoS attack.

supports up to 128 cores, and Altra® multicore server processors feature up to 192 cores [2].

Recent advancements in heterogeneous integration and 3D chip stacking are expected to push this

boundary even further [3], enabling ultra-dense core integration on future SoCs. To support this

growing communication demand, Network-on-Chip (NoC) has emerged as the de facto standard for

inter-core communication, meeting the performance, scalability, and modularity requirements of

densely packed chips. NoC ensures high throughput and low latency by offering a robust, scalable,

and distributed communication framework within the chip. For instance, Intel employs the Skylake

Mesh NoC [1] in their server-grade processors to efficiently manage communication across many

cores. Figure 1 illustrates a 4× 4mesh NoC comprising 16 IP cores. Each node in the NoC contains a

router, a Network Interface (NI), and an IP core. When a core needs to communicate with another, it

injects packets through its NI, which are routed hop-by-hop through intermediate routers to reach

the destination. For example, when a processing core (P) initiates a memory request after a cache

miss, it forwards the request to one of the four corner memory controllers, as shown in Figure 1,

highlighting the fundamental role of NoC in memory access and inter-core communication.

Due to cost and time-to-market constraints, SoC manufacturers often use third-party vendors and

services from the global supply chain [4]. Typically, only a few IP cores are designed in-house, while

the others are reusable IPs from third-party vendors. This long supply chain introduces the risk of

malicious implants through various channels, such as untrustworthy CAD tools, rogue designers,

or foundries. Furthermore, the growing complexity of SoC designs makes comprehensive security

verification increasingly difficult. Microelectronics and Advanced Packaging Technologies (MAPT)

roadmap [5] by Semiconductor Research Corporation (SRC) introduces Heterogeneous Integration

as the key concept for cost- and power-efficient design in next-generation computing systems.

Heterogeneous Integration increases security concerns by expanding the attack surface due to

its complexity. The scalability of Heterogeneous Integration enables the integration of on-chip

Machine Learning (ML) accelerators, which can be utilized for ML-based traffic monitoring to

enhance security. While designing energy-efficient NoCs is a primary goal, securing them is equally

important since exploiting an NoC could give attackers access to shared inter-core communications

and the ability to compromise the security of the entire computing infrastructure.
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Security threats across different NoC technologies (electrical, wireless, optical, and hybrid) have

been widely explored in the literature [4]. Denial-of-Service (DoS) attacks target critical resources,

overwhelming communication and processing, ultimately disrupting access to system services.

Distributed DoS (DDoS) attacks leverage multiple malicious nodes, making them more effective

and stealthy. Such attacks are especially problematic in systems with shared memory controllers,

caches, or accelerators, where a bottleneck at a single point can cascade into global slowdowns.

Figure 1 illustrates a DDoS attack where two malicious IPs (MIPs) overwhelm a shared Memory

Controller (MC) by flooding it with bogus memory requests. Previous work [6, 7] on mitigating DoS

attacks in NoCs have focused on statistical traffic modeling, but these methods rely on statistical

bounds, which fail to adapt to changing application characteristics. While existing traditional

machine learning (ML)-based mitigation methods are promising [8, 9], they require extensive

manual feature engineering and retraining as applications evolve. Furthermore, their reliance on

handcrafted thresholds or congestion metrics makes them less effective under dynamic, stealthy

DDoS behaviors. Moreover, some of these approaches [6, 8] are limited to detecting DoS attacks with

a single adversary. They also do not leverage the topological structure of NoC, which encodes spatial

dependencies vital for effective threat modeling. Recent advances in acceleration of deep neural

networks (DNNs) and heterogeneous integration with chiplets enable on-chip DNN acceleration

for real-time traffic monitoring. This presents an opportunity to combine hardware-accelerated

inference with deep learning models for adaptive and scalable runtime security enforcement in

future NoC-based SoCs.

In this paper, we utilize graph neural networks (GNNs) for scalable and topology-aware detection

and localization of DDoS attacks in Network-on-Chip systems. Specifically, this paper makes the

following major contributions:

• We propose a novel methodology to detect and localize DDoS attacks in NoC architectures

using GNNs, leveraging raw inter-flit delays and spatial graph structure to extract spatiotem-

poral features without manual tuning.

• The proposed GNN-based detection and localization framework is rigorously evaluated

across a wide range of traffic configurations, 2D and 3D architectures, attack scenarios, and

benchmark applications, demonstrating its generalization and scalability

This paper is organized as follows. Section 2 provides background on core concepts and surveys

related efforts. Section 3 outlines the threat model. Section 4 describes our proposed framework

for detection and localization of DDoS attacks. Section 5 presents the experimental results and

discusses their implications. Finally, Section 6 concludes the paper.

2 BACKGROUND AND RELATEDWORK
This section provides background on Network-on-Chip architectures, multivariate time series,

and Graph Neural Networks. It also reviews existing techniques for detecting and mitigating

security threats, with a focus on denial-of-service and distributed denial-of-service attacks in NoCs,

highlighting their limitations and motivating the need for a topology-aware solution.

2.1 Network-on-Chip and Communication Protocol
Network-on-Chip (NoC) has become the de facto communication backbone for modern Multi-

Processor Systems-on-Chip (MPSoCs) due to its scalability, modularity, and performance advantages.

The most common topology is a 2D mesh NoC, which consists of a grid of nodes—each node

typically comprising a router, a network interface (NI), and a processing element or IP core. The NI

is responsible for converting high-level messages from the core into packets, which are further

broken down into smaller units called flits (flow control digits). These flits are injected into the
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Fig. 2. 4x4x4 3D mesh NoC topology with TSVs for vertical communication.

NoC and traverse hop-by-hop through routers toward their destination. Routers are lightweight

switch-like components that forward flits based on routing algorithms. The most common routing

mechanism in NoC is deterministic XY routing, which first routes in the X-direction and then in

the Y-direction. This routing scheme is simple to implement and ensures deadlock avoidance.

Beyond 2D meshes, several 3D NoC topologies have emerged to enhance performance, scalability,

and bandwidth utilization. In a 3D NoCs, multiple 2D layers are stacked vertically and connected

via Through-Silicon Vias (TSVs) [10], enabling high-bandwidth, low-latency communication across

layers. Figure 2shows a typical 3D NoC with TSVs for vertical connections. TSVs act as vertical

buses that link corresponding routers in adjacent layers, significantly reducing inter-layer hop

counts and wire length. To manage access contention across layers, 3D NoCs often implement bus

arbitration mechanisms to select a sender when multiple layers attempt to transmit over the same

TSV simultaneously [11]. Routing in 3D NoCs extends conventional XY routing by introducing

Z-direction hops either before or after XY traversal, depending on architectural constraints and

optimization goals. These vertically integrated designs introduce new opportunities for performance

and energy efficiency but also present increased complexity and new security vulnerabilities due to

denser connectivity. Compared to traditional off-chip networks, NoCs are designed to be lightweight

and fast, with minimal protocol overhead. Unlike general-purpose networks, NoCs operate under

tight area and power constraints, and their communication patterns are usually more predictable.

As a result, NoCs can achieve high throughput and low latency with simpler protocols. However,

their centralized nature and shared interconnects also make them vulnerable to a range of security

threats, including denial-of-service attacks.

2.2 Multivariate Time Series
Time series data represent sequences of observations collected over time. In a univariate time series,

each time step contains a single scalar value, i.e., X = {𝑥1, 𝑥2, . . . , 𝑥𝑇 } ∈ R𝑇 , where each 𝑥𝑡 ∈ R.
These values may be sampled at uniform or non-uniform time intervals. In contrast, a multivariate

time series consists of multiple variables (or dimensions) observed simultaneously at each time

step. This results in a matrix X ∈ R𝑁×𝑇 , where each column x𝑡 ∈ R𝑁 represents the observations
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of all 𝑁 variables at time 𝑡 . In the context of NoCs, multivariate time series can represent traffic

metrics such as packet delay, flit injection rate, or buffer occupancy which are collected over time

at each node or router in the network. This format allows temporal trends (e.g., rising congestion)

and spatial correlations (e.g., traffic ripple effects across nodes) to be jointly analyzed. Multivariate

time series are commonly used in graph-based models due to their ability to capture both temporal

dynamics (e.g., changes over time within each variable) and spatial correlations (e.g., relationships

between variables or nodes at a single time step). These temporal and spatial dependencies can

be effectively modeled using spatial-temporal graphs, making them ideal inputs for Graph Neural

Networks, as discussed next.

2.3 Graph Neural Networks
Graphs are a powerful abstraction to represent relational structures among entities. A graph is

defined as G = (V, E), whereV = {𝑣1, 𝑣2, . . . , 𝑣𝑁 } is the set of 𝑁 nodes, and E ⊆ V ×V is the set

of edges. An attributed graph augments this structure by associating each node 𝑣𝑖 with a feature

vector x𝑖 ∈ R𝐷 . The graph is then represented as G = (A,X), where A ∈ R𝑁×𝑁 is the (possibly

weighted) adjacency matrix encoding the connectivity of the graph, and X ∈ R𝑁×𝐷 is the node

feature matrix.

In dynamic settings, where node features evolve over time, a sequence of attributed graphs

G𝑡 = (A𝑡 ,X𝑡 ) for 𝑡 = 1, . . . ,𝑇 can be used to represent spatiotemporal graphs. These structures

capture both inter-variable dependencies (through the edges of the graph) and temporal dynamics

(through evolving node features over time). The adjacency matrices A𝑡 may remain fixed or vary

with time, depending on the specific application. Graph Neural Networks (GNNs) are a class of

deep learning models that operate on such graph-structured data. A GNN learns node embeddings

by iteratively aggregating information from each node’s neighbors. At the 𝑘-th layer of a GNN, the

embedding of node 𝑣𝑖 is updated through two primary functions: Aggregate and Combine. The

update can be expressed as:

a(𝑘 )
𝑖

= Aggregate
(𝑘 )

({
h(𝑘−1)
𝑗

: 𝑣 𝑗 ∈ N (𝑣𝑖 )
})
, h(𝑘 )

𝑖
= Combine

(𝑘 )
(
h(𝑘−1)
𝑖

, a(𝑘 )
𝑖

)
,

Here, h(𝑘 )
𝑖

is the embedding of node 𝑣𝑖 at layer 𝑘 , and N(𝑣𝑖 ) denotes the set of neighbors of
node 𝑣𝑖 . The Aggregate function collects messages from neighboring nodes, and the Combine

function integrates this information with the node’s current state. The initial node representation

is h(0)
𝑖

= x𝑖 , and the final output after 𝐾 layers is h(𝐾 )
𝑖

. This formulation corresponds to spatial

GNNs, where convolution operations are defined in the node domain using message passing. An

alternative class, spectral GNNs, defines convolution in the frequency domain using spectral graph

theory. However, spatial GNNs are more flexible and scalable for practical applications.

When applied to time-series data, GNNs require a graph structure that encodes the dependencies

between variables. If no explicit graph is available, the structure can be inferred from data using

heuristics or learning-based methods. Once the graph is defined, spatial-temporal GNNs can jointly

model both temporal evolution and spatial correlations, enabling powerful and expressive represen-

tations for complex systems. GNNs are well-suited for applications that require relational reasoning

or topology-aware learning. This includes social networks, molecular graphs, traffic networks, and

more recently, NoCs. In the context of NoC security, modeling the chip as a graph where routers are

nodes and links are edges allows GNNs to naturally capture both spatial (topological) and temporal

dynamics of on-chip communication.
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2.4 Related Work
NoC security attacks and defenses can be categorized based on the targeted security requirements

by the attacker: confidentiality, integrity, anonymity, authenticity, availability, and freshness [4].

Examples of attacks include attack on anonymity [12–15], snooping attacks [6, 16–19], side-channel

attacks [20–24], and spoofing attacks [17, 25]. While both DoS and DDoS attacks in NoCs have

been studied [6–9], existing mitigation approaches often yield suboptimal results due to inherent

limitations. For example, previous defenses that rely on static profiling techniques [6, 7] require

substantial human intervention and are difficult to adapt across system configurations, especially

as the complexity and heterogeneity of SoC designs increase. They often depend on manually

tuned statistical thresholds, which can be inaccurate in dynamic settings. For instance, Charles

et al. [7] proposed statistically profiling packet arrival times at routers using an upper bound to

detect and localize attacks. However, this simple upper bound is not effective for changing traffic

patterns in NoC-based SoCs. It also lacks temporal flexibility, as threshold values may become

obsolete under varying traffic loads Moreover, any modification to the NoC architecture—such as

changes in topology, routing policy, or traffic load—necessitates re-conducting experiments on the

new NoC configuration and manually determining a new threshold, which is both time-consuming

and error-prone, further limiting the practicality of such static approaches in modern NoCs.

ML-based defenses have been explored for mitigating both DoS and DDoS attacks. Sudusinghe

et al. [8] proposed a traditional ML-based approach using 17 manually engineered features to

detect DoS attacks, limiting its scalability to more complex DDoS threats. Additionally, manual

feature selection fails to capture the full complexity of NoC traffic, negatively affecting detection

performance. Sinha et al. [9] proposed an approach using in-node perceptron models for local

congestion detection and message passing to localize DoS/DDoS attacks in NoC. This approach

has several limitations: (1) it uses only three engineered features with a traditional ML model,

potentially missing complex traffic anomalies across the network; (2) it overlooks temporal and

spatial dependencies in NoC traffic, leading to suboptimal performance in congestion detection,

which is critical for effective attack localization; and (3) it relies on fixed thresholds (through

weighted voting) to trigger actions based on congestion patterns, limiting adaptability to dynamic

network conditions. Moreover, reliance on localized congestion detection may be insufficient in

coordinated DDoS attacks where global traffic context is essential to accurately identify anomalies.

Recently, DL2Fence [26] introduced a CNN-based framework that integrates deep learning with

frame fusion techniques to detect and localize denial-of-service (DoS) attacks in NoCs. While

DL2Fence achieves promising results through classification and segmentation of fused spatiotem-

poral features, it requires structured pre-processing, assumes specific frame representations, and

depends on handcrafted routing pattern generalizations. In contrast, our approach makes signif-

icantly fewer assumptions: it operates directly on raw inter-flit delay data, requires no manual

feature engineering, and does not assume a particular format or granularity of input traffic. By

explicitly modeling the NoC as a graph, our GNN-based framework inherently captures spatial

relationships between nodes, enabling topology-aware detection and localization. Moreover, we

formulate detection and localization as unified graph and node classification problems, respectively,

allowing greater flexibility, robustness to attacker placement, and easier adaptation to diverse NoC

configurations. This structural awareness, combined with minimal assumptions and raw feature

input, enhances generalizability and positions our method for real-time security enforcement in

complex SoC environments.

To overcome these limitations, we propose a topology-aware framework that leverages GNNs to

detect and localize DDoS attacks. Our approach eliminates the need for handcrafted features and

instead directly learns spatial and temporal patterns from raw inter-flit delay measurements. By

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.
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Fig. 3. MIP placement scenarios: (a) one MIP, (b) two MIPs attacking the same VIP, (c) three MIPs with
overlapping paths targeting one VIP, (d) three MIPs attacking two VIPs.

modeling the NoC as a graph, our GNN-based framework inherently captures spatial relationships

between nodes, enabling topology-aware detection and localization. To the best of our knowledge,

our work is the first to employ graph neural networks for detecting and localizing security threats

in NoC-based SoCs, offering a scalable and architecture-agnostic defense.

3 THREAT MODEL
In NoC-based SoCs, a cache miss in a core triggers a control packet (e.g., load or store) destined

for the memory controller to fetch data from main memory. In NoC communication, packets are

divided into flits, which travel hop-by-hop through the network until they reach their destination

(e.g., memory controller). Typically, a few memory controllers are shared across the SoC. Our threat

model assumes a widely used 𝑛×𝑛 2D mesh and 𝑛×𝑛×𝑛 3D TSV-based NoC topology with 𝑁 total

nodes. These topologies represent common architectural patterns adopted in modern many-core

SoCs due to their balance between area footprint, power, and communication latency. There are

four memory controllers located at the corner nodes in 2D topologies and two memory controllers

for the top and bottom layer at alternating corners in 3D TSV-based topologies. In other words,

there are four memory controllers shared across 𝑁 nodes for both cases. These shared memory

resources are attractive targets for denial-of-service attacks because they can cause system wide

availability concerns.

Figure 1 shows an example scenario of a DDoS attack in a 4x4 mesh NoC where Malicious IPs

(MIPs) flood bogus memory requests targeting one or more memory controllers, defined as victim

IPs (VIPs). This creates traffic hotspots near critical nodes [8], ultimately disrupting communication

within the NoC, which can result in real-time deadline violations and catastrophic failures in

safety-critical systems. Such effects are particularly severe in real-time cyber-physical systems
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where timing constraints are critical. Our framework makes no assumptions about MIP placement,

nor the number of MIPs (𝑁𝑀 ) or VIPs (𝑁𝑉 ). Figure 3 illustrates various attack scenarios involving

different numbers of MIPs and VIPs, as well as different MIP placements. Figure 3(a) shows a DoS

attack by one MIP on one VIP. Figure 3(b) and (c) represent multiple MIPs launching DDoS attacks,

with (c) showing overlapping paths. Furthermore, Figure 3(d) shows a scenario with two VIPs.

Figure 2 illustrates a DDoS attack in a 4 × 4 × 4 3D Network-on-Chip, where multiple malicious

IP cores located across two layers overwhelm the memory controller in a third layer by flooding

it with excessive packets. These cases represent a wide variety of spatial placements and traffic

routing interactions, making detection and localization more challenging in practice. Our proposed

approach is capable of detecting and localizing DDoS attacks in all of these scenarios.

4 DDOS DETECTION AND LOCALIZATION
Figure 4 provides an overview of the GNN-based DDoS detection and localization framework at

runtime. Inbound and outbound traffic traces from each router create a two-variable time series,

which when combined, form a spatiotemporal multivariate time series across the NoC. This data

structure preserves temporal patterns and spatial correlations (e.g., routing dependencies or cross-

node congestion propagation), both of which are crucial for detecting distributed and stealthy

attack behaviors. These traces are then represented as a graph and processed by a pre-trained

GNN at runtime. Each node in the graph represents a physical router or IP, and each feature vector

captures the time series behavior for that node, enabling the GNN to treat DDoS detection as a

dynamic graph classification task. The GNN makes two predictions: (1) whether a DDoS attack is

occurring (detection), and (2) which MIPs are launching the attack (localization).

Note that the GNN is trained at design time and then used for prediction at runtime. During

training, the GNN learns to correlate patterns in time series behavior with attack signatures The

trained model is stored in the Security Engine (SE), an IP block with ML accelerator responsible

for SoC security. The SE can be implemented as a lightweight neural processing unit (NPU)

or embedded inference engine optimized for low-latency predictions. Upon localization, the SE

enforces restrictions on MIPs network access to maintain system availability and notifies system

administrators for further action.

4.1 Traffic Trace Collection
To detect and localize DDoS attacks, we collect traffic traces from each router over a time interval,

as shown in Figure 4(A). The traces for each router consist of two inter-flit delay arrays, which

represent the number of cycles between consecutive flits. These arrays are: inbound (𝐼 𝐼𝐹𝐷 𝑗 =

{𝑖0, 𝑖1, . . . , 𝑖𝑇𝐼 }) and outbound (𝑂𝐼𝐹𝐷 𝑗 = {𝑜0, 𝑜1, . . . , 𝑜𝑇𝑂 }), representing the inbound and outbound

traffic, respectively. Together, they form a two-variable time series for each router. Here, the

subscript 𝑗 represents the router ID, 𝑖𝑡 represents the delay between (𝑡 − 1)𝑡ℎ and 𝑡𝑡ℎ incoming

flit, and 𝑜𝑡 represents the delay between (𝑡 − 1)𝑡ℎ and 𝑡𝑡ℎ outgoing flit. 𝑇𝐼 and 𝑇𝑂 denote the total

number of incoming and outgoing flits, respectively. At specified intervals, all inter-flit delays are

gathered into an array and sent to the Security Engine.

Unlike [8] and [9], which rely on engineered features, our model uses raw features, such as

inter-packet delays, for a more granular, real-time analysis of NoC traffic patterns. This allows the

model to adapt to subtle, context-specific behaviors in traffic that are not being be captured by

hand-crafted metrics. By using raw features, the GNN can automatically learn complex patterns,

potentially uncovering anomalies that traditional ML models may overlook without extensive

feature engineering. Additionally, this makes the approach inherently more flexible and transferable

across different NoC architectures without the need for re-designing the feature extraction pipeline.
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NOYES
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Node 1
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(ii) Temporal Processing(iii) Spatial Processing
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Fig. 4. Overview of the proposed DDoS detection and localization method at runtime: The traffic trace from
each node, a spatiotemporal multivariate time series, is collected and transformed into a series-as-node in
the graph. The graph is then processed by a GNN temporally and spatially (across nodes), which detects the
attack and identifies the nodes with MIPs.

Two major hardware modifications are needed to support traffic collection and transmission to

the SE. First, we introduce a lightweight, event-triggered trace collection unit in each router. This

unit includes a probe for incoming buffers, two 8-bit counters to track cycles between inbound

flits and outbound flits, and packetizing logic. The packetizing logic compacts eight recent counter

values into a single 1-flit packet, minimizing performance overhead. A similar counter-based

mechanism has been used in hardware Trojans for NoC attacks [27], where minimal overhead is

key to avoiding detection. Our analysis shows less than 0.1% area overhead for the modifications

on a 64-node NoC-based SoC.

We consider two methods for sending traffic traces from each router to the SE: (1) a separate

virtual network or (2) a separate physical network. While virtual networks require additional

header fields and buffer space, which can impact MPSoC performance, separate physical NoCs

add area overhead. However, advances in manufacturing have minimized wiring overhead. Given

the limitations of on-chip buffer space and the complexity of managing virtual networks, we opt

for the use of two physical NoCs. Yoon et al. [28] demonstrated a 7% area and power overhead

for two physical NoCs, compared to 6% for a single one, making the trade-off minimal. Using a

separate physical NoC for trace collection ensures deterministic delivery of traffic metadata even

under severe congestion, which is critical for maintaining observability during a DDoS attack. This

approach also prevents interference in traffic trace transmission caused by ongoing DDoS attacks.

The preceding discussion focuses on traffic trace collection at runtime. However, the GNN is trained

at design time, requiring a large dataset for effective learning. To generate this dataset, we used a
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simulator configured to emulate the actual NoC-based SoC, with varying application mappings

to produce diverse traffic patterns. Details of the simulator and data collection are discussed in

Section 5.

4.2 Graph Neural Network (GNN) Processing
GNNs are deep neural networks designed to handle graph-structured data, where nodes represent

entities (e.g., NoC routers) and edges capture their relationships (e.g., NoC links or TSVs). GNNs

have gained popularity for multivariate time series forecasting, imputation, anomaly detection,

and classification [29]. There are three key reasons for our selection of using GNNs for DDoS

attack detection and localization in NoC. (1) GNNs, as deep learning models, eliminate the need

for labor-intensive feature engineering, unlike in [8, 9], and can capture complex relationships,

leading to better generalization and robustness across diverse traffic patterns. (2) GNNs provide

superior spatial awareness by inherently modeling the spatial relationships between nodes in the

NoC as a graph and leveraging topology-aware predictions. (3) GNNs naturally handle both spatial

and temporal dependencies in NoC traffic, making them ideal for accurately localizing malicious

nodes over time. Furthermore, the inherent permutation invariance of GNNs enables robustness

to the ordering of nodes, making the method adaptable to different layouts and core mappings in

heterogeneous SoCs.

Graph Representation of Traffic Traces: A time series is a sequence of data points that occur in

successive order over some period of time. The GNN receives a two-variable (𝐼 𝐼𝐹𝐷 𝑗 , 𝑂𝐼𝐹𝐷 𝑗 ) time

series from each router. Together, the data from all routers forms a spatiotemporal multivariate time

series. Here, ‘spatial’ refers to traffic data collected across all routers in the NoC, and ‘multivariate’

indicates that the time series captures multiple variables (for inbound and outbound traffic). Let

the spatiotemporal multivariate time series be represented by the matrix Y ∈ R2𝑁×𝑇 , where 𝑁 is

the number of routers (nodes) in the NoC, and 𝑇 represents the total flits captured in the inter-flit

delays for each direction at a single node. For each router 𝑗 ∈ {1, 2, . . . , 𝑁 }, the matrix Y includes

two variables: 𝐼 𝐼𝐹𝐷 𝑗 for inbound traffic and 𝑂𝐼𝐹𝐷 𝑗 for outbound traffic. This means the complete

traffic trace of the NoC represents a multivariate time series with 2𝑁 variables collected over a

total of 𝑇 flits. This structured representation enables consistent graph construction independent

of router count or physical layout, which facilitates scalable deployment.

A spatiotemporal graph with fixed structure for a traffic trace (Y) can be defined as G =

{G1,G2, . . . ,G𝑇 }, where G𝑡 = (A,Xt) denotes an attributed graph at time 𝑡 . A ∈ R𝑁×𝑁 and

Xt ∈ R𝑁×2 are the corresponding adjacency and feature matrices. The adjacency matrix (A) repre-
sents the graph topology and is fixed over time. We use pair-wise connectivity to construct the

adjacency matrix as follows:

A𝑖, 𝑗 =

{
1, if 𝑟𝑖 and 𝑟 𝑗 are directly linked,

0, otherwise.

Here, 𝑟𝑖 and 𝑟 𝑗 correspond to routers in the NoC. Our graph representation of the traffic traces

follows the same topology as the routers in the NoC (𝑛 × 𝑛 mesh), enabling topology-aware

prediction. The feature matrix Xt represents the traffic data at each time step 𝑡 , where each node

contains two variables: the inbound and outbound inter-flit delays. Thus, this representation follows

a series-as-node model, where each of the 𝑁 nodes in the graph corresponds to a router. For each

router 𝑗 , the two-variable time series consists of the inbound (𝐼 𝐼𝐹𝐷 𝑗 ) and outbound (𝑂𝐼𝐹𝐷 𝑗 ) inter-

flit delays, and this time series is assigned to the corresponding node in the graph. A section of this

graph is visualized in Figure 4(B)(i). This design ensures that traffic dynamics are encoded at the

granularity of each router, offering fine resolution for node-wise classification.
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GNN Architecture:We use a spatial GNN to process spatial-temporal graphs (Gs) to detect and

localize DDoS attacks. Specifically, a spatial GNN focuses on processing the graph by passing

messages between connected nodes to learn representations for each node based on its neighbors.

The GNN processes a traffic trace graph (G) in two ways: temporally over IFDs and spatially across

routers (nodes in the NoC). Temporal processing is achieved by analyzing the graph over consecutive

inter-flit delays, as illustrated in Figure 4(B)(ii). At each time step 𝑡 , the graph G𝑡 is updated with

new traffic data, capturing the evolving patterns over time. Spatial processing involves aggregating

information from neighboring nodes as visualized in Figure 4(B)(iii). Together, these mechanisms

allow the model to detect subtle deviations in local traffic that correlate with global congestion or

attack patterns.

For a node 𝑣𝑖 , the message passing process can be described as:

a(𝑘 )
𝑖

= AGGREGATE
(𝑘 )

(
{h(𝑘−1)

𝑗
| 𝑗 ∈ N (𝑖)}

)
Here, h(𝑘−1)

𝑗
represents the feature embedding of neighboring node 𝑣 𝑗 from the previous GNN

layer 𝑘 − 1, containing the state of node 𝑗 before the current message-passing round. The AGGRE-

GATE function collects and aggregates these messages from neighboring nodes to generate a(𝑘 )
𝑖

,

the aggregated message for node 𝑣𝑖 . In the COMBINE step, the aggregated message a(𝑘 )
𝑖

is combined

with the previous state of node 𝑣𝑖 , represented by h(𝑘−1)
𝑖

, to update its feature embedding for the

current layer 𝑘 :

h(𝑘 )
𝑖

= COMBINE
(𝑘 )

(
h(𝑘−1)
𝑖

, a(𝑘 )
𝑖

)
Here, h(𝑘−1)

𝑖
represents the feature embedding of node 𝑣𝑖 from the previous layer, while a(𝑘 )

𝑖
is

the newly aggregated message from its neighbors. The COMBINE function integrates these two

to produce the updated node embedding h(𝑘 )
𝑖

. These embedding updates progressively refine the

node representation, enabling discrimination between benign and malicious behavior even when

traffic patterns overlap.

The GNN architecture consists of 𝑛conv 1D convolution layers for temporal processing, followed

by 𝑛gr layers of either Graph Convolutional Network (GCNConv), Graph Attention Network

(GATConv), or GraphConv [30] for spatial processing (message passing and feature aggregation

from neighboring nodes), and finally 𝑛fc fully connected layers for classification. For temporal

processing layer, several options were considered, including recurrent layers, convolutional layer,

hybrid mix of above two, and transformer architecture. While recurrent layers excel at learning

temporal patterns, they suffer from scalability issues and have longer training and inference

times. Transformers, though powerful, introduce significant overhead, making them impractical

for a lightweight model. Convolutional layers are faster on accelerators for both training and

inference, making them the preferred choice for quick and accurate temporal processing. In our

model, each convolutional layer is followed by a pooling layer to downsample the input, reduce

dimensions, and control overfitting. Dropout layers are utilized to prevent overfitting. The input to

the model is a two-variable, 𝑙-length time series (𝐼 𝐼𝐹𝐷 𝑗 and 𝑂𝐼𝐹𝐷 𝑗 ) for each node, extracted from

G. Hyperparameter tuning was used to finalize the number of layers and parameters, as detailed in

Section 5. This architectural design ensures that the model remains compact, interpretable, and

efficient for integration in SoC security IPs.

4.3 GNN Training and Prediction
The GNN model is tackling two key problems: DDoS detection and localization. Given a spa-

tiotemporal graph (G) as traffic trace input, the GNN predicts whether a DDoS attack is occurring

(detection) and which nodes are malicious (localization). Attack detection is formulated as a graph
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classification problem, whereas localization is treated as a node classification problem. This dual-

task formulation allows the model to learn fine-grained per-node behavior while also capturing

high-level attack presence across the network.

The GNN is trained by minimizing the localization loss. Binary cross-entropy is employed for

training the localization task, as it is a binary classification problem on each node. While the model

is explicitly supervised only for localization, detection is implicitly derived based on the node-level

outputs, as discussed later. The model uses the Adam optimizer (initial learning rate: 0.0005) with a

scheduled 0.1 rate reduction after 15 epochs if validation loss plateaus. Early stopping was used

to halt training if validation loss does not improve for 60 epochs. Batch size and other model

parameters were tuned via hyperparameter optimization, as detailed in Section 5.3. Training was

conducted over several randomized seeds and traffic scenarios to ensure generalization across MIP

placement, topology variance, and application mappings.

Algorithm 1 summarizes the inference for detection and localization. The pre-trained GNN

receives input features as a matrix Y, multivariate time-series representing traffic. In line 2, the

matrix Y is converted into a graph G, as discussed in Section 4.2. Line 3 shows node classification

returning a vector (n_pred) of length 𝑁 , where each element is 1 (malicious node) or 0 (benign

node). Regardless of being trained only on localization, our approach performs inference for both

detection and localization. Lines 4-7 compute the graph prediction: the graph is classified as an

attack (line 4 & 5) if at least one MIP is localized (i.e., if n_pred contains at least one “1"). Otherwise,

it is classified as normal (line 7). Finally, g_pred and n_pred are returned, providing predictions for

detection and localization, respectively.

This inference method offers a lightweight post-processing logic that does not require additional

parameters or a separate classifier for detection. It also reflects real-world defensive action such

that identification of even one compromised node is sufficient to trigger mitigation mechanisms.

Algorithm 1 Inference for Detection and Localization

1: function detectAndLocalize(Y)
2: G ← representAsGraph(Y)
3: n_pred← GNNInference(G) where n_pred = [𝑏1, 𝑏2, . . . , 𝑏𝑁 ], 𝑏𝑖 ∈ {0, 1}
4: if

∑𝑁
𝑖=1 𝑏𝑖 ≥ 1 then

5: g_pred← 1 ⊲ An attack detected

6: else
7: g_pred← 0 ⊲ No attack detected

8: retrun g_pred, n_pred

Both detection and localization serve as critical pillars in a complete NoC security framework.

Detection provides a global signal for system-wide threat assessment, while localization enables

precise, node-level countermeasures to isolate or restrict attacker behavior. We evaluate both

detection and localization performance using accuracy, precision, recall, and F1-score.

For detection, accuracy is the ratio of correctly classified graphs (attack or normal) to the total

number of graphs. In this context, a true positive (TP) refers to an attack graph correctly identified

as an attack, while a true negative (TN) denotes a normal graph correctly identified as normal. For

localization, accuracy is the proportion of correctly identified nodes (malicious or benign) to the

total number of nodes. Here, a true positive is a malicious node correctly identified as malicious,

and a true negative is a benign node correctly identified as benign. We also report precision and

recall to capture the trade-off between false alarms and missed detections, particularly under class

imbalance where benign nodes significantly outnumber malicious ones.
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Table 1. System and interconnect configurations.

Parameter Details
Number of cores 64

2D Topology 8x8

3D Topology 4x4x4

Processor architecture X86,

Processor frequency 2GHz

Cache coherency protocol MESI two-level

L1 instruction & data cache 32KB, 32KB (private)

L2 cache 512KB (shared)

Routing protocol XY deterministic

5 EXPERIMENTS
In this section, we first describe the experimental setup, followed by data collection and hyper-

parameter tuning. Next, we present the results for detection and localization. We evaluate the

proposed approach using multiple synthetic and benchmark traffic patterns in both 2D and 3D

mesh-based NoC topologies. The experiments are designed to assess performance across different

attack intensities, router placements, and interconnect structures. Finally, we evaluate the robust-

ness of our approach. Our evaluation criteria include detection accuracy, localization precision,

scalability, and response consistency across multiple scenarios.

5.1 Experimental Setup
To evaluate the effectiveness of our DDoS detection and localization approach, we simulated a

64-node MPSoC using both the cycle-accurate gem5 [31] and Noxim [32] simulators. Full system

simulations were performed in gem5 to collect network traces, utilizing seven benchmarks from

SPLASH-2 [33] and PARSEC [34]: fft, fmm, lu, barnes, radix, blackscholes, and ocean. These bench-

marks were selected due to their varied memory access patterns and inter-core communication

intensities, which allowed us to simulate diverse traffic behaviors in the NoC. Noxim was modified

to enable both trace-based and table-based simulations to run simultaneously. Trace-based traffic,

generated from gem5, was used to represent legitimate applications running on the MPSoC, while

table-based traffic simulated flooding by MIPs, targeting selected nodes with memory controllers,

to mimic a DDoS attack. Flooding traffic was synthesized with varying packet injection rates

and randomized source nodes to mimic coordinated attacks under different intensities and spatial

distributions.

For 3D NoC-based experiments, we modified Noxim to support TSVs and use the same rest of

the setup to conduct 3D NoC experiments. The vertical inter-layer links were modeled using a

shared TSV arbitration mechanism, where multiple layers compete for a single vertical path at each

(x, y) location. The 2D experiments were done in 8x8 topology with four memory controllers at

each corner while 3D were done in a 4x4x4 topology with four memory controllers at alternating

corners of top and bottom layers. For consistency, benchmark mapping and attack scenarios were

matched across 2D and 3D setups to ensure fair comparison. Details of the configurations used in

the simulations are provided in Table 1.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.



1:14 Hansika Weerasena, Xiaoguo Jia, and Prabhat Mishra

5.2 Training Data Collection
We consider two scenarios for training data collection: attack and normal. In the attack scenario,

one or more MIPs are launching DDoS attacks, while the normal scenario involves no such attacks.

We collected multiple traffic traces (Ys) by changing the mapping of the application running on the

system and randomly selecting MIP nodes. For each mapping, we collect six independent traffic

traces: two normal and four attack scenarios. This approach ensures balanced coverage across

application behavior and attacker configurations.

The two normal traces are obtained by monitoring the system over an extended period and

dividing the data into two segments, each of length 𝑙 . In three of the attack scenarios, 𝑁𝑀 randomly

selected MIPs target one VIP, while in the fourth scenario, 𝑁𝑀 MIPs target two VIPs. These

configurations reflect common DDoS structures, coordinated attack focus and distributed attack

dispersion. For the default experiment, we use 3 MIPs (𝑁𝑀 = 3), each with a packet injection rate

(PIR) of 0.05. A PIR of 0.05 was chosen based on our observation that three MIPs can trigger an

attack condition (< 30% increase in starved flits) at a PIR of 0.04 or higher. This threshold aligns

with typical starvation-induced bottlenecks observed in realistic NoC traffic scenarios.

We evaluate the model’s performance by varying these parameters in Section 5.5. The time series

length 𝑙 was set to 400, selected from 200, 400, and 600, based on training curve observations of GNN

performance. We observed that shorter sequences limit the learning of longer-term dependencies,

while longer sequences lead to higher variance and increased model complexity.

The full dataset consists of 2688 traces (𝑌 s) across 7 benchmarks, with each trace corresponding

to a graph representation (G). We split the dataset into 90% for training and 10% for testing. The

imbalance between attack and normal scenarios (1:2) does not directly affect the detection task

(graph classification) since the GNN is trained on localization. However, for the localization task

(node classification), there is an inherent imbalance between the two classes (malicious vs. benign

nodes), because the number of MIPs is always smaller than the total number of IPs (𝑁𝑀 < 𝑁 ).

To mitigate this issue, class weights are calculated based on the frequency of class labels, and

these weights are applied during loss calculation via binary cross-entropy loss function. This

weighting ensures that the model remains sensitive to the underrepresented malicious class without

overfitting, improving both precision and recall.

5.3 Hyperparameter Tuning
We conducted rigorous hyperparameter tuning using both grid search and random search. Table 2

outlines each hyperparameter, its search space, and the selected values. The final model consists of

10 layers: four convolution layers, two spatial processing layers, and four fully connected layers.

This architecture was selected to strike a balance between representation capacity and training

stability. Each component was optimized to address either spatial or temporal complexity in the

input data.

After testing with Graph Convolutional Networks (GCN), Graph Attention Networks (GAT), and

GraphConv [30], GraphConv was selected for its superior efficiency and accuracy in localization.

Specifically, GraphConv achieved 2–4% higher localization F1-score on average compared to GCN

and GAT, while also requiring fewer parameters and offering lower inference latency, which is an

important consideration for real-time operation in constrained Security Engines. Its simplicity also

reduces the need for tuning attention weights or layer normalization parameters, making it more

deployment-friendly. GAT offered competitive accuracy but had higher training complexity due to

attention mechanisms, making GraphConv a more balanced choice. Similarly, we explored different

temporal processing strategies, including recurrent layers (LSTM), Transformer-based encoders,

and 1D convolutional layers. While Transformer models slightly outperformed convolution layers
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Table 2. Hyperparameter tuning and selected values for GNN model.

Hyperparameter Search Space Selected Value
# conv layers (𝑛𝑐𝑜𝑛𝑣) 2, 3, 4, 5 4

# spatial proc. layers (𝑛𝑔𝑟 ) 1, 2 2

# FC layers (𝑛𝑓 𝑐 ) 3, 4, 5 4

Spatial proc. layer type GCN, GAT, GraphConv GraphConv

Type of pooling Average, Max Average

Conv kernel size 5, 10, 15, 20, 25 [5, 10, 10, 10]

Conv stride 1, 2 [1, 1, 1, 2]

Pool kernel size 5, 10, 15 [5, 5, 5, 5]

Pool stride 1, 2 [1, 2, 2, 2]

Batch size 2,4,8,16,32,64,72,80,88,128 64

FC dropout rate 40%, 50%, 60%, 70% 50%

Conv dropout rate 10%, 20%, 30%, 40% 30%

in accuracy under ideal conditions, they incurred significantly longer training times and higher

memory requirements. Moreover, they required larger datasets to generalize well, which can be

impractical in runtime-adaptive security engines. Recurrent layers struggled with long sequences

due to vanishing gradients. 1D convolutional layers offered the best balance between performance

and computational efficiency, especially for training and inference on accelerators. Thus, they were

selected for temporal modeling. Convolutions also allow for parallel processing of time steps, which

significantly reduces inference latency—critical in attack response scenarios.

Similarly, average pooling was selected against max pooling. We found that average pooling

produced more stable performance, especially under bursty traffic patterns, where max pooling

tended to amplify noise. This was particularly useful when modeling traces under rapid shifts

in PIR, where spike patterns may not be consistent across nodes. The selected kernel sizes and

strides vary by layer. For example, the convolution kernel sizes ([5, 10, 10, 10]) indicate the first

convolution layer uses a kernel size of 5, while the others use a kernel size of 10. Convolution

strides, and pooling kernel sizes and strides follow the same layer order. Dropout is applied after

each convolution layer (30%) and after the second FC layer (50%) to prevent overfitting. The four

fully connected layers have 400, 133, 44, and 1 neuron, respectively. Increasing the number of

spatial layers beyond two led to minor improvements in accuracy but also caused overfitting on the

training data. This was validated through ablation studies where deeper GNNs exhibited higher

training accuracy but lower generalization on unseen mappings. The chosen configuration reflects

the best trade-off between generalization, accuracy, and runtime feasibility, as confirmed by our

ablation results.

Table 3. DDoS detection and localization with 3 MIPs.

Accuracy Precision Recall F1-score
Detection 100.00% 100.00% 100.00% 100.00%

Localization 99.07% 89.58% 91.11% 90.34%
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5.4 DDoS Detection and Localization Performance
Table 3 presents the accuracy, precision, recall, and F1 score for both detection and localization of

DDoS attacks. These experiments were conducted using the default parameters (𝑁𝑀 = 3, 𝑃𝐼𝑅 = 0.05)

outlined in Section 5.2. The detection task achieved perfect scores across all metrics, which does not

indicate overfitting, as the model was trained to minimize localization loss rather than detection loss.

The localization task also showed strong performance, with a high accuracy (99%), demonstrating

the model’s robustness across varying traffic patterns and node behaviors. Even in the presence

of background noise and minor traffic perturbations caused by concurrent applications, the GNN

maintained consistent performance, showing resilience to non-malicious variation.

The slightly lower precision, recall, and F1-score compared to the exceptionally high accuracy can

be attributed to class imbalance in a graph (more benign than malicious nodes), a common challenge

in NoC security contexts. This is particularly significant in large networks where malicious nodes

typically form a small fraction of the total node population. However, the recall remains sufficiently

high, which is crucial for DDoS attack localization, ensuring that most MIPs are detected and

making the approach reliable in critical scenarios involving real-time system protection. This high

recall supports timely enforcement actions, reducing the window of vulnerability.

Table 4 summarizes a comparison with related works on DoS/DDoS attack detection and lo-

calization. Unlike some methods [6, 8], which primarily focus on single MIP attack scenarios or

do not provide localization, our approach handles multiple MIP and VIP attacks in an 8x8 mesh

using a topology-aware graph neural network. This enables our model to represent a broader range

of attack surfaces, including coordinated and overlapping-path attacks that strain shared NoC

resources. Our method achieves higher detection accuracy, outperforming previous works that

either do not report accuracy or fall short in detection.

Moreover, our approach also excels in localization, achieving higher accuracy than others, which

either lack localization capabilities or report lower localization accuracy. Notably, the model’s

ability to precisely identify MIPs, even in scenarios with multiple attackers or distributed VIPs,

allows for more granular and effective defense mechanisms. In addition to supporting complex

attack scenarios, our framework is the only one among the compared methods that generalizes

to both 2D and 3D NoC architectures, including evaluations on a 4×4×4 3D mesh topology with

Through-Silicon Vias (TSVs). This 3D adaptability ensures applicability to emerging stacked SoC

designs with vertical inter-layer communication, which is increasingly common in heterogeneous

architectures. Furthermore, while prior approaches such as [9, 26] either rely on local heuristics or

domain-specific pre-processing (e.g., CNN with frame fusion), our solution operates directly on raw

traffic traces using spatiotemporal multivariate time series, eliminating the need for manual feature

engineering or handcrafted segmentation. This reduction in pre-processing complexity also lowers

integration effort and makes the solution more agile in dynamic systems. Our methodology also

unifies detection and localization through a single GNN pipeline, whereas other works either omit

one of the tasks or decouple them into separate modules, increasing overhead and limiting real-time

adaptability. By framing detection and localization as graph-level and node-level classification

problems respectively, we achieve a clean abstraction that promotes both accuracy and deployment

simplicity. Overall, our approach achieves state-of-the-art performance, is generalizable across

topologies and attack configurations, and introduces minimal hardware overhead, making it a

practical and scalable security solution for modern and future NoC-based SoCs.

5.5 Robustness of DDoS Detection and Localization
To evaluate the robustness and generalization ability of our GNN-based detection and localization

framework, we perform three sets of experiments: (i) increasing the number of malicious IPs
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Table 4. Comparison of related works on DoS/DDoS detection and localization in NoCs. Each row represents
a method and each column is a key evaluation criterion.

Work Attack Scenarios Mesh Size Detection Method Detection Accuracy Localization
Method

Localization
Accuracy

[6] single MIP 8x8

runtime latency

auditor

not provided no localization no localization

[7]

multiple MIP &

multiple VIP

4x4, 8x8 traffic monitoring not provided

traffic monitoring &

message passing

not provided

[8] single MIP 4x4 via machine learning 94.95% – 98.93% no localization no localization

[9]

multiple MIP &

multiple VIP

8x8

perceptrons for local

congestion detection

97.52%

congestion sharing &

collective decisioning

96.75%

[26]

multiple MIP &

multiple VIP

8x8 CNN with frame fusion ∼99% segmentation via

CNN decoder

∼98.5%

Our
Approach

multiple MIP &

multiple VIP

8x8, 4x4x4

via topology-aware

graph neural network

100%

via topology-aware

graph neural network

99%

(MIPs), (ii) varying the packet injection rate (PIR), and (iii) generalizing to a 3D NoC topology with

through-silicon vias (TSVs). These experiments assess how the model adapts to dynamic adversarial

strategies and evolving system architectures, which are common in real-world SoC deployments.

5.5.1 Impact of the Number of Malicious IPs. Figure 5 shows the detection and localization accuracy
as the number of malicious IPs increases from 1 to 5. We observe that the detection accuracy remains

consistently high (above 99.5%) and saturates at 100% beyond 3 MIPs. This shows that the model is

highly effective in identifying abnormal traffic patterns introduced by multiple distributed sources.

The stable detection curve demonstrates that the model does not rely on specific MIP placements

or synchronized injection patterns.

However, localization accuracy slightly drops as the number of MIPs increases. This is likely due

to the distributed nature of coordinated DDoS attacks: when more nodes are involved, the malicious

traffic becomes more spread out and diluted, reducing the distinguishable impact of individual MIPs.

For instance, at 4 and 5 MIPs, the localization accuracy dips to 98.2%, though it still remains highly

reliable. This trade-off is expected as attack footprint dispersion makes isolating exact contributors

more challenging. Nonetheless, the degradation is minimal and well within acceptable limits for

practical defense mechanisms.

Fig. 5. Accuracy of detection and localization for increasing number of malicious IPs (MIPs).

5.5.2 Impact of Packet Injection Rate. We next examine how the model behaves under different

attack intensities, controlled via the packet injection rate (PIR) of 3 malicious nodes. Figure 6
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illustrates the detection and localization performance for PIR values ranging from 0.3 to 0.7.

Detection remains perfect (100%) for PIR ≥ 0.4, while at PIR = 0.3, it slightly dips to 99.3%. This

reflects the model’s sensitivity to traffic volume and the visibility of attack-induced congestion in

the NoC.

Localization shows a more noticeable variance: at lower PIRs, fewer bogus packets are injected,

leading to weaker disruption signals and hence lower classification confidence. At higher PIRs, the

disruption becomes more evident, increasing localization precision as the model identifies strong

deviation signatures across time and nodes. This result confirms that the framework is sensitive to

subtle patterns even at low PIRs, yet naturally benefits from higher traffic volumes.

Fig. 6. Accuracy of detection and localization for increasing packet injection rate (PIR) by MIPs.

5.5.3 3D NoC with TSVs. To evaluate generalization to more complex architectures, we extend

our evaluation to a 4 × 4 × 4 3D mesh NoC with vertical links (TSVs). The data collection and

processing methodology remain consistent with the 2D NoC setup, with two key changes: (1) the

underlying topology is a 3D graph constructed by connecting vertical neighbors using TSVs, and

(2) the graph structure includes additional Z-axis links during adjacency matrix generation. These

changes reflect architectural enhancements increasingly adopted in high-performance stacked

SoCs.

The rest of the GNN processing pipeline remains unchanged. For the GNN structure, we conduct

use the same selected values for hyperparameters as mentioned in Table 2. Table 5 summarizes the

performance of the proposed model under this new topology. Detection remains flawless across

all metrics (accuracy, precision, recall, F1-score = 100%). Localization also performs well, with

98.12% accuracy and over 90% on all classification metrics. This indicates that the model’s topology-

aware design extends naturally to higher-dimensional networks, without requiring architectural

re-training or topology-specific feature engineering. These results confirm that the proposed

GNN framework generalizes well to 3D NoCs, validating its scalability and robustness to structural

complexity. These three experiments collectively demonstrate the robustness of our proposed model

under varying adversarial conditions and architectural complexities. The performance remains

Table 5. DDoS detection and localization with 3 MIPs in 3D NoC.

Accuracy Precision Recall F1-score
Detection 100.00% 100.00% 100.00% 100.00%

Localization 98.12% 90.15% 90.31% 89.37%
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consistently high even under increased attack complexity, lower traffic injection, and extended

topologies such as 3D NoCs. This positions our GNN-based approach as a highly scalable and

resilient solution for future heterogeneous SoC designs.

6 CONCLUSION
Securing on-chip communication is crucial for trustworthy electronic systems, particularly in

the presence of sophisticated and distributed threats. While existing techniques for mitigating

Denial-of-Service (DoS) attacks in Network-on-Chip architectures provide some level of protection,

they often fall short when faced with Distributed DoS (DDoS) attacks that originate from multiple

malicious sources and exhibit dynamic, stealthy traffic patterns. In this paper, we presented a

topology-aware framework that employs Graph Neural Networks (GNNs) to detect and localize

DDoS attacks in NoCs by modeling the chip’s communication fabric as a graph. This approach

enables effective analysis of spatiotemporal traffic behaviors, leveraging both structural connectivity

and temporal variations to accurately classify and pinpoint malicious activity. Our extensive

experimental evaluation shows that the proposed method achieves up to 100% detection accuracy

and 99% localization accuracy. Unlike previous methods that rely on static heuristics or engineered

features, our GNN-based solution adapts directly to raw inter-flit delay data, providing better

resilience and insight into fine-grained communication anomalies. Specifically, the model remains

robust under varying packet injection rates, increasing numbers of malicious IPs, diverse placements

of attackers, and different application benchmarks.

Moreover, we demonstrate that this framework scales beyond traditional 2D mesh NoCs and

performs reliably in more complex 3D NoC architectures that incorporate Through-Silicon Vias,

without the need for architecture-specific tuning or feature engineering. This highlights the flexi-

bility of our method to operate in next-generation SoC environments that feature stacked memory

and vertically integrated compute resources. The approach also eliminates reliance on manual

thresholds or traffic templates, making it suitable for modern heterogeneous SoCs with dynamic

runtime behavior. In addition to its detection capabilities, the system can be deployed with a light-

weight security engine that introduces negligible hardware overhead, enabling practical integration

into real-time runtime environments. By unifying detection and localization through a single

model, we also reduce system complexity, improve response time, and minimize design-time efforts.

Our results confirm that topology-aware GNN-based DDoS detection and localization is not only

accurate but also scalable, generalizable, and hardware-friendly. This work lays the foundation for

future research in applying graph learning methods to other runtime NoC threats such as covert

channels, eavesdropping, or traffic shaping attacks in complex SoC designs.
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