
ar
X

iv
:2

50
5.

14
79

7v
1

 [
cs

.C
R

]
 2

0
M

ay
 2

02
5

Efficient Privacy-Preserving Cross-Silo Federated Learning with Multi-Key
Homomorphic Encryption

Abdullah Al Omar, Xin Yang, Euijin Choo*, Omid Ardakanian
Department of Computing Science, University of Alberta
{aomar3,xyang18,euijin,oardakan}@ualberta.ca

Abstract—Federated Learning (FL) is susceptible to privacy
attacks, such as data reconstruction attacks, in which a semi-
honest server or a malicious client infers information about
other clients’ datasets from their model updates or gradients.
To enhance the privacy of FL, recent studies combined Multi-
Key Homomorphic Encryption (MKHE) and FL, making
it possible to aggregate the encrypted model updates using
different keys without having to decrypt them. Despite the
privacy guarantees of MKHE, existing approaches are not
well-suited for real-world deployment due to their high com-
putation and communication overhead. We propose MASER,
an efficient MKHE-based Privacy-Preserving FL framework
that combines consensus-based model pruning and slicing
techniques to reduce this overhead. Our experimental results
show that MASER is 3.03 to 8.29 times more efficient than
existing MKHE-based FL approaches in terms of computation
and communication overhead while maintaining comparable
classification accuracy to standard FL algorithms. Compared
to a vanilla FL algorithm, the overhead of MASER is only 1.48
to 5 times higher, striking a good balance between privacy,
accuracy, and efficiency in both IID and non-IID settings.

Index Terms—Multi-key Homomorphic Encryption, Privacy-
preserving Federated Learning

1. Introduction

Cross-silo Federated Learning (FL) has emerged as a
viable decentralized machine learning approach enabling
multiple institutions, referred to as clients, to collaboratively
train a model without sharing their private data [1]. In FL,
a central server aggregates model parameter updates made
independently by clients to produce a global model, which
is then sent to clients for further training with their local
data. This decentralized approach is particularly valuable
in sectors such as healthcare, public safety, and finance,
where high-quality models are needed, but data privacy is
paramount.

Although FL seemingly protects data privacy by elim-
inating data sharing with the central server, it has been
shown that the model updates or gradients can still leak
private information [2], [3], [4]. In recent years, various

*Corresponding author: euijin@ualberta.ca

privacy-preserving techniques, such as Differential Privacy
(DP) [5], Secure Multi-Party Computation (SMPC) [6], and
Homomorphic Encryption (HE) [7], [8], have been proposed
to mitigate the privacy risks in FL.

DP protects privacy by introducing calibrated noise
into the model updates, but this can degrade the model
performance, particularly in complex learning tasks [9].
SMPC offers strong privacy guarantees by providing a zero-
knowledge framework for aggregating model parameter up-
dates, but this comes at the expense of significant overhead
and complex protocols [10]. Specifically, clients need to
repeatedly exchange intermediate results to perform secure
operations, leading to significant computation and commu-
nication overhead [6]. These limitations make SMPC less
practical for real-world applications, especially in cross-silo
FL where efficient communication is critical.

Homomorphic Encryption (HE), on the other hand, pro-
vides strong privacy guarantees without introducing noise
(like DP) or requiring complex, multi-party protocols (like
SMPC). The key feature of HE is the homomorphism prop-
erty [11] which enables the computation to be performed
directly on encrypted data without the need to decrypt it first.
In FL, this allows the central server to aggregate encrypted
client updates, protecting the confidentiality of individual
client data. This makes HE particularly well-suited for cross-
silo FL scenarios, where institutions holding large datasets
require highly accurate models but do not fully trust the
central server not to perform intrusive inferences, e.g., to
recover the training samples.

Several HE-based FL approaches have been proposed,
most of which employ single-key HE schemes in which
all clients share the same public and secret key pair [7],
[8], [12], [13]. This poses a risk, as a malicious client
can decrypt other clients’ updates using the shared key and
perform intrusive inferences on their data. To tackle this
issue, efforts have been made recently to adopt Multi-Key
HE (MKHE)-based schemes, where each client uses its own
key pair for encryption and decryption [14], [15], [16], in
FL. This provides stronger privacy protection in that even
if one client is malicious, the privacy of the other clients
remains intact.

However, HE-based FL approaches introduce signifi-
cant overheads due to computationally expensive crypto-
graphic operations and increased size of encrypted data

https://arxiv.org/abs/2505.14797v1

to be transmitted [8], [12]. To address the high overhead
of HE-based FL while maintaining its privacy guarantees,
several optimization techniques have been proposed, such as
packing [12], batching [7], and masking [13]. Despite these
efforts, the packing and batching techniques that compress
and aggregate updates continue to face high computational
cost and memory demand, particularly for large models
where encryption costs scale with model size [8], [12].
Masking techniques that prune unimportant parameters often
degrade performance in non-IID settings, as they fail to
account for data heterogeneity across clients [13], [17]

To address these challenges, we propose MASER, an ef-
ficient MKHE-based privacy-preserving FL framework that
guarantees strong privacy while significantly reducing the
overheads of HE and maintaining model performance even
in the presence of data heterogeneity. The key idea is to
effectively sparsify the model prior to encryption, signifi-
cantly reducing computation and communication overhead
of MKHE-based FL, while preserving model performance.

MASER employs magnitude-based weight pruning to
identify a sparse subnetwork consisting of critical weights
from models trained by each client, and incorporate a
consensus algorithm to ensure agreement among clients on
how to sparsify their models before encryption. Specifically,
clients compute the L1-norm of model parameters [18] after
each round of local training and rank them accordingly.
Then, the most important parameters are selected based on
a threshold, e.g., 10% of the top-ranked weights. Each client
generates a mask that indicates the selected (important)
parameters for encryption. The local masks generated
by clients are not necessarily the same, as the important
parameters are chosen based on their local dataset. To reach
a consensus among clients on what parameters should
be retained and encrypted, the local masks are sent to
the central server that uses a majority voting strategy to
generate a global mask. This majority voting approach offers
robustness against malicious clients generating poisoned
ranks [19]. Upon receiving the global mask, each client
applies this mask to its trained model to sparsify the model.
To further minimize the computation and communication
overhead, we incorporate slicing by dividing the parameters
of the resulting sparse model into smaller chunks tailored
to the MKHE module’s key size (e.g., 8192). The sliced
parameters are encrypted and then transmitted to the
server for aggregation. By reducing the need for full
model encryption and focusing on the most important
model parameters, MASER achieves significant efficiency
gains without sacrificing accuracy or privacy, making it
well-suited for real-world cross-silo FL applications.
Contribution: Our contribution is threefold:

• We present a practical privacy-preserving cross-silo
FL framework utilizing MKHE to effectively counter
privacy attacks from an honest-but-curious server and
malicious clients.

• We propose MASER, a novel strategy that combines
a consensus-based sparsification method to find and
update the important parameters and a selective ho-
momorphic encryption scheme to encrypt these param-

eters, ensuring that sparsification has negligible impact
on model performance in MKHE-based FL while sig-
nificantly reducing the overhead introduced by MKHE.
To our knowledge, this is the first work on privacy-
preserving FL that achieves substantial reductions in
the encrypted model size while maintaining model
performance and privacy guarantees.

• We evaluate our system across multiple datasets and
neural network architectures, in IID and non-IID set-
tings, demonstrating its performance, privacy protec-
tion capability, and robustness in real-world scenarios.
Our approach requires only 1.48−5× more time than
vanilla FL to deliver a privacy-preserving solution,
without compromising model accuracy. In compari-
son, the traditional MKHE-based FL algorithm incurs
significantly higher overhead, requiring approximately
4.7−39× more time than vanilla FL. This highlights
the efficiency and practicality of MASER for privacy-
preserving federated learning.

Organization of the paper: The rest of this paper is
organized as follows. Section 2 presents background in-
formation on FL, MKHE, and neural network pruning.
Section 3 describes our threat model. Section 4 describes our
methodology, detailing the MASER framework and its key
components, namely magnitude-based pruning, slicing, and
majority voting. Section 5 provides an in-depth experimental
analysis, evaluating the performance of MASER under real-
world conditions. Section 6 discusses related work. Finally,
Section 7 concludes the paper.

2. Background

This section introduces the key concepts underlying
our approach, MASER, including federated learning, multi-
key homomorphic encryption, and neural network weight
pruning.

2.1. Federated Learning

Cross-silo FL is a machine learning approach that of-
floads model training from a central server to multiple
clients (i.e., institutions) that hold their own data and wish
to participate in the model training task [20]. By training
the model on decentralized data, FL forgoes sharing private
client data with a central server. Instead, the clients par-
ticipating in each round of training train the model locally
using their own data and share the local model update with
a central aggregation server to update a global model that
can generalize well to all clients. The updated global model
is then sent to clients and used in the next round.

Consider a neural network model ŷ = f(x; θ), where
x is the input data, θ represents the model parameters,
and ŷ is the predicted label for the input x. To train this
neural network, we minimize the loss, a function of θ and
a measure of the difference between ŷ and the ground truth

2

label y, denoted as l(yi, ŷi). The loss across samples in a
dataset D is given by:

L(θ;D) = 1

|D|
∑

(xi,yi)∈D

l(yi, ŷi), (1)

where |D| is the total number of data samples, i is the index
of data sample, yi is the ground truth label for input data xi,
and ŷi is the predicted label. In gradient-based optimization
algorithms, such as Stochastic Gradient Descent (SGD) [21],
the model parameters are updated iteratively as follows:

θt+1 = θt − η · gt, (2)

where t is the index for the current training iteration, η is
the learning rate, and gt is the gradient of loss with respect
to the parameters.

In FL, the training process starts with the aggregation
server initializing the machine learning model θ0 and dis-
tributing the model to all or a subset of participating clients.
Each client i updates the received model by training it on its
local dataset Di. Thus, the local update of client i at global
training round t is governed by:

gti = ∇θiL(θti ;Di). (3)

Once the local training completes, each client sends its local
model parameters θti to the central aggregation server. The
server then aggregates the local models, for example using
the Federated Averaging (FedAvg) algorithm [22]:

θt+1 =

N∑
i=1

αiθ
t
i , (4)

where αi = |Di|
|D| is the weight assigned to client i based

on the size of its local dataset and N is the total number of
clients participating in the model training in that round. The
aggregated model θt+1 will be distributed to the participat-
ing clients for the next round of training until convergence.

FedAvg is effective when the data held by each client
is Independent and Identically Distributed (IID). However,
the effectiveness of FedAvg deteriorates drastically when
the data is non-IID [23]. To address this problem and tackle
data heterogeneity in federated learning, Li et al. proposed
FedProx [17], which improves the effectiveness of FL by
adding a proximal term to local subproblems:

θti = argmin
θ

{
L(θ;Di) +

µ

2
∥θ − θt−1∥2

}
, (5)

where the proximal term µ
2 ∥θ − θ

t−1∥2 restricts the local
updates to be closer to the global model and eliminates the
need to manually set the number of local epochs.

2.2. Multi-key Homomorphic Encryption

Homomorphic encryption enables encrypting plaintext
data and performing computation (usually simple arithmetic
operations) on the encrypted ciphertext without having to
first decrypt it, such that the result after decryption is
consistent with the computation on the plaintext data. In

the context of FL, the encrypted data are model parameters
and the computation performed on encrypted data is model
aggregation. The MKHE scheme lets clients encrypt their
model updates with different keys. The server can still
aggregate them without accessing the decryption keys, thus
enhancing privacy.

Definition 1 (RLWE [24]). Let Rq be a polynomial ring
and ψ be the error distribution over Rq with q being a
prime integer. Given a secret polynomial s(x) chosen from
the dual fractional ideal of Rq, we generate a sample
(ai(x), s(x)·ai(x)+ei(x)) by choosing ai(x) from Rq uni-
formly at random and sampling ei(x) from ψ. The problem
of Ring Learning with Errors (RLWE) concerns distinguish-
ing arbitrarily many independent pairs of the form(

ai(x), bi(x)
)
=

(
ai(x), s(x)·ai(x) + ei(x)

)
∈ R2

q

from uniformly random and independent pairs.

Let R = Z[x]/(xn + 1) be the cyclotomic ring with a
power-of-two dimension n, where Z[x] is a polynomial ring
with integer coefficients, and Rq = R/⟨q⟩. For this ring
and the appropriate choice of error distribution, the RLWE
problem is hard [24]. Following the previous work [13],
[15], we use CKKS, and in particular MKCKKS which is
a multi-key variant of CKKS [25], as our homomorphic
encryption algorithm. MKCKKS enables clients to inde-
pendently encrypt their updates, thereby enhancing privacy
by keeping each client’s data confidential. Its compatibility
with real-number arithmetic is ideal for FL, where numerical
precision is critical for model updates. xMKCKKS [15] is
an extension of MKCKKS that uses a common public key
for encryption rather than the public key generated by each
client. This common public key is the sum of the public keys
of all clients. By using public key aggregation, xMKCKKS
minimizes privacy risks in the decryption phase, ensuring
that decryption accuracy and privacy are maintained even
with multiple client keys. This makes xMKCKKS suit-
able for cross-silo, privacy-preserving FL. We adopt the
public key aggregation method proposed in xMKCKKS in
MASER.

Let us denote the security parameter by λ, the secret key
distribution by X , and the space of local models byM. The
functions of MKHE are defined below:

• Setup(1λ): Given the security parameter λ for this
scheme, this function defines the public parameters
(pp)=(n, q,X , ψ, a). These public parameters are the
same for all the clients.

• KeyGen(pp): This function is invoked by each client i
to generate their public key and secret key. Specifically,
the secret key is sampled from X and the error vector
is sampled from ψd. Here, d denotes the dimension of
the error vector, aligning it with the structure of the
polynomial ring Rd

q from which a was sampled uni-
formly at random in Setup. The public key, denoted
pki, is then calculated using the corresponding secret
key ski, the error vector ei, and the random vector
a. Specifically pki = −ski · a + ei mod q in Rd

q .

3

Clients will share their pki with the key manager for
aggregation. To aggregate public keys, we use the same
scheme as in xMKCKKS [15]:

pk =

N∑
i=1

pki =

N∑
i=1

(−ski) ·a+
N∑
i=1

ei (mod q). (6)

The aggregated public key pk prevents an honest-but-
curious server from directly decrypting the ciphertext
shared by each client. It is distributed to all clients for
homomorphic encryption.

• Enc(θi; pk): Let the model parameters of client i be
θi ∈ R. For encryption, we use the aggregated public
key pk along with random vectors a and b, where
a = a[0] and b = b[0]. Here, a[0] and b[0] indicate
that we are taking the first elements of these vec-
tors to simplify and optimize the encryption process.
Additionally, errors e0 and e1 are sampled from the
error distribution ψ. This function returns the encrypted
weight parameters θi = (d0, d1) ∈ R2

q . The values d0
and d1 are used to sample the weight parameters in
the ring R2

q , where d0 = pk · b+ θi + e0 (mod q) and
d1 = pk · a + e1 mod q. Here, d0 is generated using
the actual update θi of client i, while d1 is generated
with only the error component.
A level-l multi-key encryption of a client’s model
parameters θi with respect to the secret keys ski =
(1, sk1, sk2, sk3, ..., ski) is a vector in the ciphertext
space θi = (d0, d1, d2, d3, ..., di) ∈ R(k+1)

ql satisfying
⟨θi, ski⟩ ≈ θi (mod q)l. In the case of a homomorphic
operation, e.g., the addition of θi and θj , which are
two ciphertext vectors, this operation returns an en-
crypted θk such that ⟨θk, ski⟩ql is approximately equal
to θi + θj .

• PartialDec(θi, ski): In partial decryption, each
client i will have the secret key ski ∈ R. Given a
polynomial di and a secret key ski, they will sam-
ple an error ei ← ψ for noise flooding and return
pi = d1 · ski + ei mod q.

• Merge(ct0, {pi}1≤i≤k): This function outputs p =

ct0+
∑k

i=1 pi mod q, where ct denotes the encrypted
ciphertext. For a multi-key ciphertext at global round
t + 1, θt+1 = (ct0, ct1, . . . , ctk), MKHE performs the
merge phase by calculating

p = ct0+

k∑
i=1

pi = ct0+

k∑
i=1

ei ≈ ⟨θt+1, ski⟩ (mod q).

Here, ct0 serves as the initial component of the en-
crypted model update, and each pi is a partial de-
cryption contributed by a client. The merge process
approximates the inner product of the model update
θt+1 with the secret key ski. After merging, scaling
factors are removed to retrieve the plaintext model
update θt+1.

2.3. Neural Network Pruning

Neural network pruning techniques can be broadly clas-
sified into two categories according to when pruning is
carried out. The first category includes techniques that as-
sign a score to every parameter in a neural network after
training and then remove parameters with the lowest scores.
Numerous score functions have been defined for pruning
after training, such as the weight magnitude which is used
in magnitude-based pruning (MP) [18], the Hessian of the
training loss [26], [27], and lookahead distortion [28]. MP
removes weights with the smallest magnitudes given that
they contribute less to the model’s output and can be pruned
without significantly affecting its performance. Specifically,
given a pruning threshold κ, a mask M whose entries are
either 0 or 1 can be generated as follows:

M(j,k) =

{
1, if |W(j,k)| ≥ κ,
0, otherwise,

(7)

where W(j,k) represents the k-th element of the model
weight vector at the j-th layer. The mask is applied to the
weights of the neural network by performing element-wise
multiplication. Note that in magnitude-based pruning, biases
in the model parameters are not pruned. It can be shown that
MP is actually minimizing the worst-case distortion in the
output of a neural network [28]. MASER adopts MP for
its simplicity and remarkable performance in terms of the
sparsity-accuracy trade-off [29].

The second category includes techniques that prune
a neural network at initialization. In particular, they
use heuristics to identify and remove unimportant
connections in a randomly initialized neural network
without training it. Examples of these techniques are
Single-shot Network Pruning (SNIP) [30], Gradient Signal
Preservation (GraSP) [31], and Iterative Synaptic Flow
Pruning (SynFlow) [32]. Although these techniques can
significantly reduce the pruning cost by eliminating the need
for model training, the pruned network does not necessarily
achieve the same accuracy as the network pruned using
the conventional MP technique, because the heuristics may
not always be good [33]. Since model training happens in
multiple rounds in FL, we are not restricted to single-shot
foresight pruning techniques and can use MP to find a better
sparse subnetwork. In Section 5.2, we implement a baseline
that uses GraSP for model pruning, as a representative of
pruning at initialization techniques, and compare it with
MASER, which uses MP for pruning after training.
Consensus-Based Model Pruning in Federated Learning.
Each client in FL is responsible for pruning its own model
by generating a mask, and this task cannot be delegated
to the server for privacy reasons. The masks generated
by different clients may differ significantly, especially in
the presence of data heterogeneity (the non-IID setting).
Aggregating models sparsified by different masks would
hamper the convergence of FL. Consensus-based model
pruning [13], [34], [35] addresses this challenge by reaching
a consensus on the mask that will be applied for all clients

4

to align the clients’ model updates so that these updates can
be aggregated in a meaningful manner. Majority voting is an
efficient consensus mechanism as it can reach a consensus
among all clients using only one additional communication
round and no data replication. Note that for pruning at
initialization, clients need to reach a consensus on the mask
only once before FL training, whereas for pruning after
training, a new consensus needs to be reached in every
training round.

3. Threat Model

We consider the aggregation server an honest-but-
curious (HBC) adversary, which is a common assumption
in the literature [36], [37]. This passive adversary performs
model aggregation faithfully and adheres to the protocol.
However, it is curious to extract private information from
the data shared by the clients, such as model updates in FL.

We assume that clients may be malicious; however, the
total number of colluding malicious clients is not enough
to compromise the consensus mechanism that we used,
i.e., majority voting1. Malicious clients are not obligated to
follow the protocol and may engage in adversarial actions,
such as submitting bogus masks to the aggregation server.
This model considers the highest level of threat from clients,
requiring robust mechanisms to mitigate the impact of these
adversarial actions to ensure the integrity of the system and
data privacy.

It is important to note that MASER is specifically
designed for cross-silo FL, where clients are organizations
with potentially conflicting objectives. In such settings,
clients may be motivated to infer information about the
training data held by their competitors, which intensifies
the need for privacy-preserving mechanisms. MASER
addresses this by providing security measures that ensure
client data privacy even in the presence of curious and
potentially adversarial organizations.

4. Methodology

In this section, we introduce MASER (MASking at Each
Round), a practical privacy-preserving cross-silo FL frame-
work that is robust to an HBC aggregation server and mali-
cious clients by leveraging MKHE. MASER is designed to
address the high overhead of HE-based FL while achieving
performance comparable to vanilla FL, which is vulnerable
to privacy attacks. To this end, it incorporates a pruning
technique to reduce the number of model parameters that
must be encrypted and sent to the server, while minimizing
the impact on model performance. It also incorporates a
majority voting strategy so that clients can reach a consensus
about the most important parameters that must be retained
in the reduced model, allowing model aggregation to be
performed correctly.

1. In cases where the assumption on the limited number of colluding
malicious clients is relaxed, more complex consensus protocols, such as
those designed to handle Byzantine faults, would be necessary instead of
majority voting.

local
dataset Di

majority
voting

decrypted model
aggregation

model
reconstruction

server client i
3

8

9

magnitude-based
pruning 2

train
1

model
aggregation

encryption
with pk 5

partial decryption
with ski 7

mask application
and slicing

mask

global mask

global mask
4

encrypted
masked model

6

partially
decrypted model

fully decrypted
masked model

reconstructed model

Figure 1: An illustration of MASER components and data
flow between them

We begin with an overview of MASER in Section 4.1.
Next, we describe our model training and sparsification
technique that reduces the overhead of MKHE-based FL
in Section 4.2. In Section 4.3, we introduce the parameter
slicing technique for efficient homomorphic encryption and
model aggregation. Finally, we describe the decryption and
model reconstruction process in Section 4.4.

4.1. Overview

MASER provides strong privacy guarantees by encrypt-
ing the reduced model updates that clients send to the
aggregation server using MKHE. We show the workflow
of MASER in Figure 1 and describe these steps below:
0) Key Generation and Model Initialization. Before the
first round of FL, each participating client generates its key
pair and performs public key aggregation as explained in
Section 2.2. The FL aggregation server randomly initializes
the parameters of the machine learning model and sends
them to all clients.
1) Model Training. In the beginning of each training round,
every client receives the global model from the aggregation
server and performs model training on their local dataset Di

for e local epochs, with i being the index of this client.
2) Magnitude-based Pruning. Once a client completes lo-
cal training, it applies MP to the trained model to generate a
local mask for model sparsification. The local mask consists
of binary values, with “1”s indicating that the corresponding
parameters are important and should be preserved and “0”s
indicating that they are not important and can be pruned.
Specifically, the weights with a magnitude greater than a
pruning threshold κ and all biases are considered important.
The local mask is then sent to the server for aggregation.

5

3) Mask Aggregation through Majority Voting. Upon
receiving the masks from all participating clients, the server
employs a majority voting strategy to generate a global
mask, in which “1”s correspond to parameters that are
deemed important (i.e., voted for) by at least 50% of the
clients. This consensus algorithm offers robustness to mali-
cious clients.
4) Mask Application and Slicing. Each client receives
the global mask from the server and sparsifies their local
model according to the global mask. The sparsification
filters out the unimportant parameters in the local model.
The remaining (important) parameters are then reshaped
into lists, named slices. All slices share the same length,
determined by the security parameters.
5) Model Encryption. Clients encrypt their slices using
the aggregated public key pk. These ciphertexts are shared
with the server to perform aggregation using homomorphic
addition, preventing the server from seeing the plaintext
version of the important model parameters.
6) Encrypted Model Aggregation. The server receives the
encrypted slices from all clients participating in model train-
ing, and performs model aggregation using homomorphic
addition in the ciphertext space.
7) Partial Decryption with Client Secret Keys. The ag-
gregated slices are then sent back to the clients for partial
decryption, where each client i uses their secret key ski to
partially decrypt the aggregated slices. The result is then
sent to the server.
8) Model Decryption and Parameter Averaging. The
server receives the partially decrypted ciphertexts for the
aggregated slices and combines them to fully decrypt the
aggregated slices. The fully decrypted slices contain the
summation of all important model weights and biases, which
are subsequently divided by the total number of users par-
ticipating in model training for averaging in plaintext. This
process ensures that neither the server nor any client gains
full access to other clients’ model updates, because a specific
client’s update cannot be inferred from the aggregated result.
9) Model Reconstruction. The decrypted slices only con-
tain the important weights and biases of the global model.
Therefore, before distributing the global model to the clients
and starting the next training round, the server must convert
the decrypted slices into the shape of a full model according
to the global mask. The model reconstruction is achieved
by placing the elements from the decrypted slices into their
corresponding positions in the original model while setting
the unimportant weights to zero. The reconstructed global
model is then distributed to the clients for the next round
of model training. Although performing model reconstruc-
tion on the client side can reduce the communication cost,
we perform it on the server side to minimize redundant
computation and possibly allow a different set of clients to
receive the full model and participate in the next round of
model training. In Section 5.5, we show that this approach
does not significantly increase the communication cost as
the overhead of transmitting the reconstructed model is
negligible compared to the ciphertexts.

Algorithm 1: MASER
Data: Secure parameters S, number of clients m, slice

size λ, local training dataset Di, prunning
threshold κ

Result: Decrypted model parameters θ
Client i Executes:

1 ski, pki ← KeyGen(S) // Generate local key
pair

2 Send pki to key manager // To aggregate
public keys

3 Receive aggregated public key pk: pki ← pk
4 for each round t = 1, 2, . . . do
5 Pull aggregated model parameters θt from the

server: θti ← θt

6 for local epoch e = 1, 2, ... do
7 θti ← Train(θti , Di) // Update local

model

8 M t
i ← MaskGen (θti , κ) // Generate mask

9 Send M t
i to server // To aggregate masks

10 Receive aggregated mask and update local mask:
M t

i ←M t

11 vti ← Slice(θti ⊙M t
i , λ) // Apply

aggregated mask and prepare slices
12 ctti ← Enc(vti , pk) // Encrypt slices

using public key
13 Send ctti to server
14 Receive ctt from server // ctt: aggregated

ciphertext
15 pdti ← PartialDec(ctt, ski) // Partially

decrypt ctt using secret key
16 Send pdti to server

Server Executes :
17 Initialize θ0

18 for each round t = 1, 2, . . . do
19 Send model θt to client i
20 Receive local mask M t

i

21 M t ← MaskAgg(M t
1, · · · ,M t

m) // Perform
mask aggregation

22 Send M t to client i
23 Receive ctti from clients // ctti: ciphertext

of slices
24 ctt ←

∑m
i=1 ct

t
i // Homomorphic parameter

aggregation
25 Send ctt to client i
26 Receive pdti from clients // pdti: partially

decrypted ciphertext
27 Q← Merge(pdt1, · · · , pdtm) // Aggregate

partially decrypted ciphertext

28 θt+1 ← Reshape(Decode(Q
m
)) // Decode

and reshape Q into plaintext model

4.2. Model Training and Sparsification

MASER uses MKCKKS-based MKHE [25] to safeguard
the model parameters shared with the aggregation server
in FL. In particular, each client i participating in MASER-
based PPFL first generates their unique secret key ski and
public key pki. However, MKCKKS-based MKHE is not
directly applicable in FL, because using these public keys
for encryption may lead to privacy leakage during decryp-

6

tion [15]. To mitigate this, we adopt the key aggregation
strategy proposed in xMKCKKS [15]. Specifically, the pub-
lic keys are aggregated and encryption is done using this
aggregate key by each individual client. Since ski used for
decryption is withheld by each client, other clients or the
server cannot decrypt a client’s model updates.

In this strategy, we employ a trusted key manager who
aggregates the public keys shared by all clients to generate
an aggregated public key pk. The pk is then sent to all
clients to replace their unique public key pki. We show the
pseudocode of the key generation process in Algorithm 1
from Line 1 to 3. After the key generation process finishes,
the aggregation server initializes the machine learning
model θ0 and establishes a connection with each client to
start the federated model training.
Training. MASER supports model training when the data
held by the clients are IID and non-IID. In the beginning
of a training round t, each client i pulls the global model
parameters, denoted as θt, from the server to update their
local model parameters, denoted as θti . Then, they train their
local model using their local dataset Di for e local epochs.
When the clients’ local datasets are IID, MASER follows
FedAvg [22] to train the local model θti by minimizing the
loss function, i.e., cross-entropy loss, via the standard Adam
optimizer. However, FedAvg can perform poorly on non-IID
data [23]. In this case, MASER supports local model training
on non-IID data following FedProx [17], which adds a
proximal term as introduced in (5) to the local loss function.
This proximal term helps to manage heterogeneity in non-
IID data by constraining the divergence of each client’s
local model from the global model, thereby promoting bet-
ter convergence across diverse datasets [17]. Note that the
aggregation of model parameters, via FedAvg or FedProx, is
performed using homomorphic operations. The pseudocode
for model training is shown in Algorithm 1, from Line 4 to 7.

Remark. While our proof-of-concept employs FedAvg and
FedProx for server-side aggregation, it is important to note
that other aggregation rules that involve performing basic
arithmetic operations on client updates (including robust and
fair aggregation algorithms [38], [39], [40]) can be easily
adopted in MASER by substituting these operations with
the equivalent homomorphic operations.

Sparsification. MKHE-based FL approaches perform ho-
momorphic encryption on the trained local model and then
share the encrypted model updates with the server for
aggregation. However, homomorphic encryption operations
are computationally expensive, hence encrypting and trans-
mitting the entire model in FL would make the overhead
prohibitive. MASER utilizes model sparsification to reduce
the number of model parameters involved in the encryption
and communication with the aggregation server. Specifically,
it uses MP for sparsification, pruning weights whose magni-
tudes are not among the top κ percent of all weights in that
model. The weights that are not pruned and all bias terms are
considered important parameters. A local binary mask M t

i
is then generated for the model parameterized by θti trained
by client i, with “1”s indicating important parameters and

“0”s corresponding to the pruned weights. Since our pruning
threshold is defined as a percentile, the smallest magnitude
required for a parameter to be deemed important is different
for each client and each round of pruning.

Instead of directly applying the local mask M t
i on each

user’s local model θti , MASER requires clients to send
their local binary masks to the server to generate a unified
global mask M t. This ensures that the model sparsification
process is consistent across all clients, allowing the server to
accurately aggregate the encrypted sparse models. Without
a consistent global mask, the aggregated model would be
misaligned, with different sparsity patterns across clients,
leading to incorrect parameter aggregation. Note that the
server receives the binary masks only, and does not know
the magnitudes of the important parameters.

For each training round, the server generates a global
mask M t by using a majority vote-based aggregation. In
particular, the server performs element-wise summation for
all local masks, then divides the result by the number of
clients m, and thresholds it against 50%. The mask aggre-
gation rule is expressed as:

M t(j, k) =

{
1, if 1

m

∑m
i=1M

t
i (j, k) ≥ 0.5,

0, otherwise,
(8)

where m is the total number of clients participating in
model training, t is the index for the current training round,
(j, k) is an index into the local mask M t

i or the global
mask M t. A model parameter is deemed important, i.e., the
corresponding element of the global mask is “1” , when
at least 50% of clients had “1” for this parameter in their
local mask. The global mask M t is then shared with all
clients to replace their local mask M t

i . Each client then
performs element-wise multiplication of their updated local
mask and the trained local model, i.e., θ̃ti ←M t

i ⊙θti , where
θ̃ti is the sparsified local model for client i at round t. We
note that the mask aggregation strategy also helps mitigate
a mask poisoning attack by limiting how much a client’s
local mask can contribute to the global mask generation. The
pseudocode for mask generation and aggregation is shown
in Algorithm 1, between Line 8 and 10, and Line 20 and 22.

4.3. Parameter Slicing for Efficient Homomorphic
Encryption and Model Aggregation

The amount of data that can be encrypted by the CKKS-
based homomorphic encryption algorithm (i.e., the number
of slots) is determined by the degree of the polynomial
modulus n, where n is a power of 2. The number of slots is
λ = n

2 . Therefore, to efficiently encrypt parameters of the
sparsified model, we propose reshaping and dividing that
model into multiple lists that share the same length of λ. We
call these lists as slices, and perform homomorphic encryp-
tion and model aggregation in the ciphertext space per slice.
In particular, we prepare the slices by starting with the model
parameters in the first layer. The number of slices required
by the first layer of model parameters is determined by

7

⌈ |θ̃(1)|λ ⌉, where |θ̃(1)| is the number of important parameters
in the first layer. If the important parameters in the first layer
are unable to fully fill the last slice, then the remaining slots
in the last slice will be used to fill the important parameters
in the second layer. Hence a total of ⌈ |θ̃|λ ⌉ slices will be
required to store all important model parameters. Should
there be any remaining slots available in the last slice after
filling in all important model parameters, they will be set
to zero. This slicing technique allows efficient utilization of
the limited slots and encrypting the sparsified model with
a minimum amount of homomorphic encryption operations.
Once the slice preparation is complete, each client performs
homomorphic encryption using their aggregated public key
pk for every slice and shares the encrypted ciphertext for
every slice with the server to perform model aggregation in
the ciphertext space. We denote the ciphertext encrypted by
client i at round t as ctti. The pseudocode for slice prepara-
tion and homomorphic encryption is shown in Algorithm 1,
from Line 11 to 13.

Once the server receives the encrypted slices from all
clients, it performs model aggregation by using homomor-
phic addition to sum up the ciphertext for each correspond-
ing slice sent by all clients. Then the summed ciphertexts
ctt =

∑m
i=1 ct

t
i are sent back to all clients for partial

decryption. Note that in this step, we perform summation in
the ciphertext space using homomorphic addition and defer
the averaging to after the global model is fully decrypted.
The averaging step multiplies the summation of model
parameters ctt by 1

m , where m is the number of clients
participating in this round of model training. We assume
that the server has knowledge of m. Performing averaging
in plaintext reduces the computational cost of homomorphic
multiplication. The pseudocode for model aggregation is
given in Line 23 to 25 of Algorithm 1.

4.4. Decryption and Model Reconstruction

The decryption of the ciphertext requires clients to per-
form partial decryption before the server can fully decrypt
the aggregated ciphertext to plaintext [25]. In the partial
decryption phase, each client i receives the aggregated ci-
phertext ctt from the server and uses their own secret key ski
to decrypt their own portion in the aggregated ciphertext. We
use pdti to denote the ciphertext that is partially decrypted
by client i at round t. pdti is then sent back to the server to
fully decrypt the ciphertext. The steps for partial decryption
are shown in Line 14 to 16 of Algorithm 1.

The results after fully decryption are the slices summed
over all clients in plaintext. We then divide each element in
these slices by m to obtain the aggregated model consisting
of all important model parameters. The server then reshapes
the important parameters in the slices to obtain the original
shape of the neural network by referring to the position of
the corresponding important parameters in the global mask.
This step is named model reconstruction. Lastly, the fully
decrypted and reshaped model parameters are sent to all
clients to update their local models, and the next training

round will begin. Although the server has access to the
aggregated model, it is unable to access individual client’s
model update because the aggregation process combines all
clients’ updates into a single model update in a way that
renders individual contributions indistinguishable. Line 26
to 28 in Algorithm 1 outline the aggregation of the partially
decrypted ciphertexts, full decryption of the ciphertexts, and
model reconstruction.

5. Experimental Analysis

5.1. Datasets

We evaluate MASER on two commonly used datasets,
MNIST [41] and CIFAR-10 [42]. By testing MASER on
these datasets, we demonstrate its effectiveness across dif-
ferent levels of task complexity. We divide the training set of
the two datasets among m clients such that each client owns
a non-overlapping portion of the training set with any other
client. We consider both IID and non-IID settings when
dividing the training set. For the IID case, the training set of
each dataset is split among all clients evenly. For the non-IID
case, we divide the training set according to the Dirichlet
distribution and set all elements in the parameter vector α
to 1.0 to ensure variability across clients similar to [19].
The parameter α controls the degree of heterogeneity; lower
values create more skewed class distributions, while higher
values approach uniformity. Setting all elements in α to
1.0 provides a moderate level of data heterogeneity, thereby
ensuring each category preserves minimum representations.
This is similar to the non-IID setting studied in [12], [19].
We evaluate the performance of the aggregated global model
on the test set.

For performance evaluation, we use a modified version
of LeNet-5 [43] and a Conv8 model [44] for the MNIST
and CIFAR-10 datasets, respectively. The modified LeNet-5
model for MNIST comprises 2 convolutional layers, fol-
lowed by a pooling layer, and then 3 fully connected (FC)
layers with mappings of 16×4×4 to 300, 300 to 100, and
100 to 10, respectively. For CIFAR-10, we use a modified
Conv8 architecture, referred to as “ConvNet” in this paper.
This customized model consists of 7 convolutional layers
followed by 3 fully connected layers, and no biases are
applied in the network layers. The choice to remove biases
is intended to simplify the model and reduce computational
overhead in the federated setting. We evaluate the aggregated
model on the server side, using the test sets of MNIST and
CIFAR-10 to measure the overall performance.

5.2. Baselines

Vanilla FL. We use FedAvg [22] in the IID case and
FedProx [17] in the non-IID case for model aggregation
without encryption. FedProx is a generalization of the Fe-
dAvg algorithm, which is meant to handle non-IID data
across clients by adding a proximal term to stabilize training
in heterogeneous settings. These two baseline methods es-
tablish the upper bound for model performance. However,

8

they do not incorporate any privacy-preserving measures,
leaving the shared model parameters unprotected.
Federated Rank Learning (FRL) [19]. FRL is an ap-
proach in which clients send only the importance ranking
of model weights in the neural network to the server (and
not the weight values themselves). The server aggregates
those rankings for model pruning. FRL protects privacy in
FL by eliminating the need to share model parameters. By
comparing MASER with FRL, we aim to demonstrate the
effectiveness of selectively encrypting important parameters
in MASER in balancing privacy and model accuracy, as
opposed to FRL’s approach of rank-based aggregation.
FedPHE [12]. FedPHE employs a Single-key Homomor-
phic Encryption algorithm (SKHE) to encrypt the sparsified
and packed model. A packed model means that multiple
plaintext values from the model are combined into a sin-
gle ciphertext, which reduces the number of ciphertexts to
transmit and process. This packing approach helps mini-
mize communication and computation overhead in FL by
compressing the data before encryption. We use FedPHE
as a baseline because a SKHE-based solution simplifies
encryption, but requires all clients to share the same key.
This poses privacy risks if any client is malicious or compro-
mised. MASER, on the other hand, uses MKHE, allowing
clients to have different keys, thereby enhancing privacy.
Additionally, MASER selectively encrypts only the most
important parameters to further reduce computational and
communication costs compared to FedPHE, which encrypts
a larger portion of the model. By comparing MASER with
FedPHE, we highlight the efficiency gained through mask
generation via majority voting and slicing, while still main-
taining stronger privacy guarantees.
BatchCrypt [7]. BatchCrypt employs a multi-step approach
to reduce the overhead of data transmission and encryption
in FL. First, clients quantize their model parameters, which
reduces precision but decreases the overall model size. Sec-
ond, BatchCrypt applies packing, where multiple quantized
values are combined into a single ciphertext, minimizing
the number of ciphertexts needed for transmission. These
packed values are then encrypted using a SKHE scheme be-
fore being sent to the server, which performs aggregation di-
rectly on the encrypted models. As BatchCrypt employs the
SKHE scheme, it shares the same limitation as FedPHE, i.e.,
lack of robustness to malicious clients. BatchCrypt quantizes
and encrypts the entire model, which can lead to greater
precision loss and may not perform as efficiently in com-
plex, non-IID data settings. In contrast, MASER selectively
encrypts only the most important parameters. The compar-
ison with this baseline helps understand the advantages of
MASER in terms of privacy, efficiency, and accuracy.
MaskCrypt [13]. MaskCrypt also utilizes SKHE and in-
troduces a selective encryption technique for FL, aiming
to balance privacy protection with efficiency by partially
encrypting sensitive model parameters rather than the entire
model. This partial encryption scheme uses static impor-
tance criteria for masking. This opens an attack surface for
malicious clients or adversaries to analyze the unencrypted
model parameters and reconstruct client data via a data

reconstruction attack [4]. In contrast, the mask used in
MASER for model sparsification is recalculated in every
training round and the sparsified model parameters are fully
encrypted. This provides stronger privacy guarantees against
malicious clients and privacy attacks such as data recon-
struction attacks. Comparing MASER with MaskCrypt high-
lights the added layer of security and adaptability provided
by MASER’s majority vote-based mask generation and its
full encryption approach for critical parameters, which both
mitigate privacy risks and maintain model performance in
IID and non-IID settings.
MKHE-based FL. This baseline is similar to MASER with
one key difference: it does not apply the model sparsification
technique to reduce the computation and communication
overhead of MKHE. Through comparison with this baseline,
we show that the proposed sparsification method signifi-
cantly reduces the overhead for MKHE-based FL.
Masking at Initialization (MAIN) with GraSP. This base-
line replaces MASER’s pruning technique with GraSP [31].
Specifically, MAIN with GraSP uses the same MKHE algo-
rithm and a majority voting-based mask consensus method
as used in MASER, but employs GraSP [31] for sparsifica-
tion. GraSP performs weight pruning only at initialization.
Hence, the global mask generated in GraSP-based pruning
is computed once at initialization and remains unchanged
throughout the FL process. But the global mask is updated in
MASER in every training round. Through comparison with
this baseline, we show that recalculating the local masks
and updating the global mask in every round is necessary
for enhanced performance.

5.3. Implementation Details

We implemented MASER on top of the Flower [45]
Federated Learning framework, and built the machine learn-
ing models using PyTorch. MASER utilizes MKCKKS as
the multi-key homomorphic encryption [46]. However, we
only found a Golang-based implementation of MKCKKS2.
Since a Python-based MKCKKS library is necessary to
integrate with the Python-based Flower framework and Py-
Torch, we implemented a Python wrapper for the Golang-
based MKCKKS library. In particular, we designed a set of
functions and data structures for the HE-related operations
and used the cgo library to export these functions into a
C-style dynamic link library (DLL). Then we imported the
DLL into Python and used the ctypes library to convert the
corresponding data structures and functions to Python. Note
that cgo does not support the map data structure used in
the Golang implementation so we had to substitute the map
data structure with Golang arrays. Finally, we incorporated
the public key aggregation method used in xMKCKKS [47]
into our implementation. We will publicly release the code
for MASER upon acceptance of this paper.

We simulated a cross-silo FL scenario with m = 5
clients. For both datasets, we perform FL for 25 global
training rounds. In each global training round, clients train

2. https://github.com/SNUCP/MKHE-KKLSS

9

Figure 2: Test accuracy across 25 FL rounds on MNIST

their local model for e = 5 local epochs on their local
datasets. We set the modulus degree λ for our MKHE
algorithm to 8192 and the learning rate of the machine
learning models to 0.01. For non-IID data distribution, we
set the parameter µ used in FedProx to 1.0.

We deployed MASER on two machines that are phys-
ically separate, located in two datacenters on the same
campus, to simulate a real-world FL scenario incorporating
network latency. We ran all clients on one machine and the
server and key manager on the other machine. The machine
that hosts the clients is equipped with an Intel Core i9-
9940X CPU, 128 GB of RAM, and an NVIDIA GeForce
RTX 2080 Ti GPU to provide GPU acceleration for model
training. The machine that hosts the server and key manager
is equipped with an AMD EPYC 7313 CPU and 512 GB
of RAM.

5.4. Performance Evaluation

We first evaluate the accuracy of the model trained by
MASER on MNIST and CIFAR-10 datasets in both IID
and non-IID settings. Figure 2 and Figure 3 show the test
accuracy (on the y-axis) measured across FL rounds (on
the x-axis) for MASER and the baselines in IID and non-
IID settings on MNIST and CIFAR-10 datasets, respectively.
MASER and MAIN-GraSP choose the most important
weights based on a predefined threshold. Here, MASER-
10% (MAIN-GraSP-10%) refers to MASER (MAIN-GraSP)
when we choose κ = 10% as the pruning threshold, meaning
that only 10% of the most important weights are not pruned
(before majority voting). We have selected 10% to demon-
strate MASER’s competitive performance while utilizing
only 10% of the parameters. Less aggressive pruning, which
increases the overhead, only slightly increases the accuracy
as shown in Appendix A.

Figure 2 shows that all approaches except MAIN-
GraSP-10% converge to 95-99% accuracy by round 5 in the
IID setting and by round 10 in the non-IID setting on the
MNIST dataset. In the IID setting, vanilla FL performs the
best, reaching a stable accuracy of approximately 99.37%,
closely followed by MKHE-based FL and BatchCrypt,
which achieve around 99-99.30% accuracy. MASER-10%
achieves an accuracy of 99.18%, only 0.19% worse than
vanilla FL. MaskCrypt also performs well, with an accuracy

Figure 3: Test accuracy across 25 FL rounds on CIFAR10

around 98.26%, demonstrating robust performance although
slightly lower than the leading methods. In the non-IID
setting, vanilla FL and MKHE-based FL perform the
best reaching approximately 99.20%. While MASER-10%
reaching 99.10% closely followed by BatchCrypt and
MaskCrypt which achieve around 98-99% accuracy. These
results suggest that MASER-10% shows comparable
performance to the best baselines despite using only a
subset of the model weights for aggregation in both IID
and non-IID settings. The minor difference in accuracy
can be attributed to MASER’s pruning strategy, where less
than 10% (due to majority voting after keeping 10% of
parameters) of the most important model parameters are
used for aggregation. The consistently high performance of
MASER in the non-IID setting also demonstrates its ability
to handle data heterogeneity.

In contrast, MAIN-GraSP-10% shows slower conver-
gence, reaching an average accuracy of around 54.18%
by round 25 in the IID setting and 56.36% by round 25
in the non-IID settings. This is because GraSP prunes a
large portion of parameters at initialization, some of which
would be among important parameters if pruning was de-
layed. This leads to reduced learning capacity and model
performance. In contrast, MASER recalculates the pruning
mask in each round, adapting to the evolving model. This
adaptive approach in MASER allows for more effective
parameter selection and retention, contributing to its superior
performance compared to MAIN-GraSP.

Figure 3 shows that MASER-10% achieves 75.63%
accuracy by round 25 in the IID setting and 76.64% by
round 25 in the non-IID settings on the CIFAR dataset.
These are the best results among all baselines at round 25.
Vanilla FL and MKHE-based FL reach an accuracy level
of approximately 74.27% and 74.63% in the IID setting,
and 75.32% and 76.27% accuracy in the non-IID setting, re-
spectively. These results highlight MASER’s effectiveness in
parameter sparsification, slightly surpassing top-performing
baseline methods while retaining only 10% of the model
weights. MAIN-GraSP-10% reaches an accuracy level of
approximately 74.25% in the IID setting and 72.65% in the
non-IID setting by round 25. However, it converges much
slower than MASER-10%. Similar to the MNIST result, we
believe that this is due to the extensive pruning done at

10

Figure 4: Time overhead for 25 FL rounds on MNIST

initialization by GraSP. These results confirm that MASER-
10% better accommodates changing data patterns, converges
faster, and attains higher accuracy.

Among the other baseline methods, MaskCrypt reaches
approximately 66.20% accuracy in the IID setting and
65.30% in the non-IID setting by round 25. FedPHE
achieves around 57.44% accuracy in the IID setting and
56.50% accuracy in the non-IID setting by round 25.
FRL and BatchCrypt perform significantly worse. FRL
converges to around 40% accuracy in the IID setting and to
29% accuracy in the non-IID setting. BatchCrypt fluctuates
below 20% both in the IID and non-IID settings. These
results demonstrate limitations in their ability to handle
heterogeneous data distribution in the CIFAR-10 dataset
when utilizing relatively simple models such as ConvNet.

To summarize, MASER-10% demonstrates consistent
performance on par with the top-performing baselines across
different data distributions, despite utilizing only 10% of the
most important weights.

5.5. Overhead Analysis

The main design goal of MASER is to minimize the
overhead of MKHE-based FL while offering strong privacy
guarantees. In this section, we restrict our analysis to the
MKHE-based FL methods considering their computation
and communication costs. The baseline methods that utilize
a SKHE scheme are not directly comparable to MASER
and the MKHE-based baseline and are therefore disregarded
here. For example, many of these methods simulate the
server and clients as processes that run on the same machine,
while we deploy the server and clients on two separate
machines, introducing additional communication latency.
We analyze the overhead by running 25 FL rounds to
evaluate the practicality of MASER for cross-silo FL. We
run each experiment 5 times and report the average data
transmission and execution time. The error bar shows the
standard deviation, computed over the 5 runs.

Figures 4 and 5 show the total overhead, measured in
minutes, incurred by various federated learning strategies

Figure 5: Time overhead for 25 FL rounds on CIFAR-10

in IID and non-IID settings on MNIST and CIFAR-10,
respectively. We break down the total running time into two
parts: data transmission time (hatched) and execution time
(solid). We can readily see the efficiency of MASER-10%
relative to the MKHE-based FL baseline.

We first look at the overhead analysis on the MNIST
dataset in Figure 4. As it can be seen, vanilla FL has the
fastest running time, i.e., 16.67 minutes in the IID setting
and 17.66 minutes in the non-IID setting. This is expected
as it does not employ encryption and is vulnerable to privacy
attacks. MKHE-based FL has the highest time overhead
on average, i.e., 80 minutes in the IID setting, 58.79%
of which is for data transmission, and 78 minutes in the
non-IID setting, 58.29% of which is for data transmission.
This shows that homomorphic operations are expensive
computationally, and the encrypted ciphertext inflates the
size of data to be transmitted, drastically increasing both
the execution time and the data transmission time.

By pruning only 10% of the model weights, MASER-
90% slightly reduces the total run time by 1.95 minutes
in the IID setting and by 4.75 minutes in the non-IID
setting compared to MKHE-based FL. But MASER-10%
significantly reduces the time overhead (3.03× reduction)
compared to MKHE-based FL in both IID and non-IID
settings. More precisely, it only requires 1.58× the total
running time of FedAvg (vanilla FL) in the IID setting and
1.48× the total running time of FedProx (vanilla FL) in the
non-IID setting.

Figure 5 shows the overhead analysis on the CIFAR-10
dataset. MKHE-based FL and MASER-90% yield the
highest total run time, exceeding 1500 minutes in both
settings. This significant overhead arises from the need to
encrypt and transmit a large number of parameters in both
cases. In contrast, MASER-10% drastically reduces the
total overhead by 7.80× in the IID setting and by 8.29× in
the non-IID setting, compared to MKHE-based FL. These
results, along with analysis in Section 5.4, reveal that
MASER-10% can maintain model performance and provide
a strong privacy guarantee at the cost of a slight increase
in the communication and computation overhead compared
to vanilla FL. It is important to note that the total overhead

11

Table 1: Size of the data after serialization (in MB)

Dataset Threshold Per-client mask Global mask Encrypted slices Aggregated slices (enc.) Global model
CIFAR10 (ConvNet) 10% 11.67 23.34 62.85 188.56 23.33
CIFAR10 (ConvNet) 90% 11.67 23.34 633.92 1901.8 23.33
MNIST (modified LeNet-5) 10% 0.45 0.89 25.14 75.43 0.89
MNIST (modified LeNet-5) 90% 0.45 0.89 25.14 75.43 0.89

MASER
(10%)

MaskCrypt
(ρ=0.1)

Vanilla FL

(95%, 16.3) (0%, 8.76) (0%, 5.6)

(90%, 22.5) (0%, 12.19) (0%, 6.7)

Original
image

MaskCrypt
(ρ=0.9)

(0%, 5.21)

MASER
(90%)

(0%, 11.45) (0%, 6.7)

(0%, 5.6)

MNIST

CIFAR-10

Figure 6: Original and reconstructed images via the data
reconstruction attack on the FL model

of MASER-10% is almost evenly divided by the data
transmission time and execution time, suggesting that our
model sparsification technique successfully minimizes both
communication and computation overhead by reducing the
total number of parameters to be encrypted and transmitted.

To understand how MASER minimizes the communi-
cation and computation overhead, we also report the size
of data to be transmitted after serialization in megabytes
(MB) at different FL stages for MASER-10% and MASER-
90% in Table 1. In particular, we consider the size of the
serialized local mask, aggregated global mask, encrypted
slices, aggregated slices, and the decrypted global model pa-
rameters. Serialization, in this context, refers to the process
of converting complex data structures, such as client masks,
model parameters, and encrypted ciphertexts, into a format
more suitable for transmission. In the case of MNIST with
the modified LeNet-5, the impact of the pruning threshold
on the encrypted slice size is minimal due to the model’s
compact size. For both 10% and 90% pruning thresholds,
all the parameters can fit into one slice, resulting in the
same encrypted slice size of 25.14 MB and an aggregated
ciphertext size of 75.43 MB. In contrast, CIFAR-10 with
the ConvNet model shows a significant difference in the
encrypted data size between the 10% and 90% pruning
thresholds. At the 10% threshold, only one slice is created,
resulting in an encrypted slice size of 62.85 MB and an
aggregated ciphertext size of 188.56 MB. However, at the
90% threshold, the larger number of parameters requires
10 slices, raising the encrypted slice size to 633.92 MB
and the aggregated ciphertext size to 1901.8 MB. This
proportional increase demonstrates how the number of slices
(and consequently the size of encrypted data) expands with
higher thresholds.

5.6. Privacy Leakage Analysis

We evaluate the privacy-preserving capability of
MASER against a data reconstruction attack [2], [4], [3],

[48], [49] in which a client’s private data is recovered from
its model parameter update or gradient information. In
particular, we follow the reconstruction attack described by
Geiping et al. [4] to assess the potential privacy leakage
from the shared model updates in FL. We measure the
Attack Success Ratio (ASR) and Peak Signal-to-Noise
Ratio (PSNR) of reconstructed images, with higher values
indicating greater privacy leakage [4]. Figure 6 shows
results for MNIST and CIFAR-10 datasets across different
FL methods, including vanilla FL, MaskCrypt with varying
encryption levels ρ, and MASER with different pruning
thresholds. The tuple below each reconstructed image
indicates the ASR (%) and PSNR value (in dB). For
MASER and MaskCrypt, the attack is performed on the
fully and partially encrypted model update, respectively.

As it is evident from the high success rate (95% for
MNIST and 90% for CIFAR-10) and high PSNR value
(16.3dB for MNIST and 22.5dB for CIFAR-10), there is sig-
nificant privacy leakage in vanilla FL. In contrast, MASER,
with 10% and 90% threshold, yields strong privacy pro-
tection, displaying near-zero ASR and low PSNR values
(around 5.6dB for MNIST and 6.7dB for CIFAR-10), leav-
ing no discernible pattern in the reconstructed image. The
MaskCrypt results are included for comparison. MaskCrypt
employs selective encryption (based on the ρ value) with
a SKHE scheme. Although it does not exhibit significant
privacy leakage at high encryption levels (e.g., ρ = 0.9),
it relies on SKHE, allowing a malicious client to decrypt
the model updates of other clients and achieve a high ASR
as in vanilla FL. Moreover, at low encryption levels (e.g.,
ρ = 0.04 shown in Figure 6 of [13]), MaskCrypt does not
encrypt many model parameters, leaving them exposed to
an adversary. MASER, on the other hand, fully encrypts the
parameters of the sparsified model, ensuring robustness to
the reconstruction attack. The MKHE-based encryption also
prevents malicious clients from circumventing the encryp-
tion of model updates.

5.7. Robustness Analysis

Figure 7 shows the robustness of MASER in the pres-
ence of malicious clients (not forming a majority), who
attempt to compromise the training process by sending
bogus masks to the server. We have considered two cases
with 20% and 40% of clients acting maliciously. It can be
seen that MASER consistently maintains high and stable test
accuracy throughout all rounds, showing negligible perfor-
mance degradation even when 40% of clients are malicious.

12

Figure 7: Test accuracy on MNIST with malicious clients

6. Related Work

Several privacy-preserving techniques have been inte-
grated with FL. In this section, we mainly focus on the
body of work that uses homomorphic encryption to protect
data privacy in FL, as this is directly related to our work.

Data privacy is mainly protected in HE-based FL by
allowing the server to perform operations (e.g., addition
and multiplication) directly on encrypted data without de-
crypting it first [50], [51], [52]. Single-key HE (SKHE) has
been widely utilized in privacy-preserving FL [25], [8], [15],
[53], [54], [55], [13]. However, a key limitation of SKHE
in this context is that clients share a single set of encryption
keys, which makes the entire system vulnerable as malicious
clients could exploit the shared keys [14].

Multi-key HE (MKHE) has recently gained popularity
in FL due to its enhanced security, as each client has
their own encryption keys. Cai et al. proposed a secure FL
system using MKHE combined with a Trusted Execution
Environment (TEE) [14]. They leverage a TEE to enhance
security during computation on encrypted data while man-
aging user dropout and privacy. However, they do not fully
address the communication overhead introduced by MKHE.
Similarly, Jing Ma et al. introduced xMKCKKS, a variant of
MKHE that encrypts client updates to improve privacy [15].
Although their approach improves security compared to
SKHE, it lacks mechanisms to reduce the overhead.

Erfan et al. introduced a k-out-of-n secret sharing
scheme allowing decryption without the need for all partic-
ipants to be present [56]. They also propose a compression
technique using Random Linear Coding to reduce model
size. However, the robustness of their scheme was not exper-
imentally analyzed, and experiments were limited primarily
to the MNIST dataset. Similarly, Park et al. proposed a
distributed HE-based FL where each client uses different
public keys [16]. This approach enhances security by pre-
venting key-sharing between clients, reducing the risk of
a single compromised key to make the the entire system
vulnerable. But, the authors did not include an analysis of
the computational or communication overhead introduced
by their approach. Instead, they primarily focused on the
impact of varying key sizes on the system’s running time,
which provided limited insights into the trade-off between

security and performance. While increasing the key size can
improve security, it also significantly raises computation and
data transmission costs. This is particularly important in FL,
where maintaining an optimal balance between security and
efficiency is crucial. In our work, we navigate this trade-off
by ensuring that the key size remains large enough to guar-
antee security while still managing overhead, enabling scal-
able and efficient FL deployment in real-world applications.

Efficient HE. One of the primary challenges in HE-
based FL is the high communication and computation
cost. To address this issue, several approaches have been
proposed, focusing on optimizing HE by processing data
in batches, applying masking techniques, or sparsifying
the neural network [7], [13], [12], [57]. BatchCrypt [7]
quantizes the model parameters and then packs them into
smaller ciphertexts. Instead of encrypting each parameter
individually, BatchCrypt processes parameters in groups (or
batches), significantly reducing the amount of data sent
between clients and the server. This batching technique low-
ers communication costs and speeds up the homomorphic
encryption operations, allowing the server to efficiently per-
form operations on aggregated model updates. FedPHE em-
ploys a packing and encryption strategy based on the CKKS
scheme, where sparsified model parameters are packed and
encrypted to reduce both communication and computational
overhead [12]. The technique allows the system to tolerate
stragglers (clients that are slower to respond or drop out) by
encrypting only the most important parameters and skipping
over less significant ones. By packing sparsified parameters
into ciphertexts and only focusing on the essential data, Fed-
PHE effectively balances security, efficiency, and robustness
in federated learning. [13] introduced MaskCrypt, a masking
technique to optimize the encryption process. MaskCrypt
generates masks in such a way that when aggregated, the
masks cancel each other out, allowing the server to retrieve
the correct aggregated model without needing to handle all
encrypted individual updates directly. MaskCrypt partially
encrypts sensitive model parameters based on the generated
masks. This method significantly reduces the computational
burden on the server while preserving data privacy. The par-
tial encryption of MaskCrypt may also leave certain model
components exposed, leading to potential privacy vulnerabil-
ities depending on the chosen thresholds [13]. Importantly,
BatchCrypt, FedPHE, and MaskCrypt rely on SKHE, which
does not protect data privacy in the presence of malicious
clients that can decrypt the updates of other clients and
subsequently perform a data reconstruction attack.

Liu et al. proposed a Doubly Homomorphic Secure Ag-
gregation (DHSA) scheme that employs a MKHE scheme,
MKBFV, along with a Seed Homomorphic Pseudorandom
Generator (SHPRG) [57]. It improves both security and
computational efficiency by generating masks for model
updates instead of encrypting the entire model directly.
Nevertheless, the use of SHPRG introduces potential risks
from malicious clients. The security of SHPRG heavily
relies on the integrity of the seed generation process. This
opens up vulnerabilities, as malicious clients could attempt
to influence the seed values, leading to compromised

13

mask generation and, ultimately, privacy leakage [4]. Our
work addresses these concerns by not only focusing on
enhancing the efficiency of MKHE but also ensuring
robustness against privacy attacks by malicious clients.

Although the above-mentioned methods reduce the com-
munication and computational costs associated with HE-
based FL, by increasing encryption efficiency, parameter
pruning, and the selective transmission of important model
updates, they have limitations such as susceptibility to pri-
vacy attacks and quantization errors. Our approach addresses
these issues by combining MKHE with a consensus-based
pruning strategy and a slicing technique. Unlike the previous
work that either trains a small model that has a limited
learning capability, or relies solely on packing strategies, we
prune the model parameters before encryption, focusing only
on the most critical parameters, and reconstruct the original
model after aggregation and decryption. This reduces both
computational and communication overhead, and results
in a balanced solution that maintains model performance,
efficiency, and privacy in FL.

Communication-Efficient FL. In FRL [19] clients do
not transmit full model updates, instead they send their im-
portance ranking of individual model parameters. The server
aggregates these ranks to determine which subnetwork of the
original network is a winning lottery ticket. This approach
significantly reduces the communication overhead, as only
the ranking is exchanged between clients and the server.
Moreover, FRL improves privacy, as the model parameters
are not directly transmitted and only importance scores
are shared. This makes FRL highly effective for privacy-
preserving and communication-efficient FL scenarios. How-
ever, as we showed in Section 5.4, FRL needs many more
rounds to achieve an acceptable level of accuracy in complex
learning tasks. This increases the total overhead of FRL, if
we continue running it until it becomes competitive with
other FL approaches. FedMask [58] employs structured
sparse binary masks to improve computational and com-
munication efficiency of FL. While effective in reducing
the overhead, such approaches assume a shared parameter
space and overlook privacy concerns.

7. Conclusion

In this paper, we introduced MASER, a novel privacy-
preserving, cross-silo federated learning approach that com-
bines MKHE with model pruning, selective encryption, and
slicing techniques to safeguard client data from an honest-
but-curious server and malicious clients. Through an ex-
tensive experimental study and comparison with various
baseline methods, we demonstrated that MASER signifi-
cantly improves the performance and robustness of federated
learning systems in both IID and non-IID settings. Our
result shows that MASER not only achieves high accuracy
(on par with vanilla federated learning algorithms) but also
substantially reduces the computation and communication
overhead introduced by privacy-preserving techniques. It
also suggests that MASER is well-suited for deployment
in real-world scenarios, where privacy and efficiency are

key concerns. We believe that this work offers a promising
pathway for developing more efficient, secure, and scalable
federated learning systems.

References

[1] P. Kairouz et al., “Advances and open problems in federated learning,”
Foundations and trends in machine learning, vol. 14, no. 1–2, pp. 1–
210, 2021.

[2] L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,” Advances
in neural information processing systems, vol. 32, 2019.

[3] H. Yin, A. Mallya, A. Vahdat, J. M. Alvarez, J. Kautz, and
P. Molchanov, “See through gradients: Image batch recovery via grad-
inversion,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2021, pp. 16 337–16 346.

[4] J. Geiping, H. Bauermeister, H. Dröge, and M. Moeller, “Inverting
gradients-how easy is it to break privacy in federated learning?”
Advances in neural information processing systems, vol. 33, pp.
16 937–16 947, 2020.

[5] K. Wei et al., “Federated learning with differential privacy: Algo-
rithms and performance analysis,” IEEE Transactions on Information
Forensics and Security, vol. 15, pp. 3454–3469, 2020.

[6] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggre-
gation for privacy-preserving machine learning,” in proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications
Security, 2017, pp. 1175–1191.

[7] C. Zhang, S. Li, J. Xia, W. Wang, F. Yan, and Y. Liu, “Batchcrypt:
Efficient homomorphic encryption for cross-silo federated learning,”
in Proceedings of the 2020 USENIX Annual Technical Conference
(USENIX ATC 2020), 2020.

[8] W. Jin, Y. Yao, S. Han, C. Joe-Wong, S. Ravi, S. Avestimehr,
and C. He, “FedML-HE: An efficient homomorphic-encryption-based
privacy-preserving federated learning system,” in International Work-
shop on Federated Learning in the Age of Foundation Models in
Conjunction with NeurIPS 2023, 2023.

[9] F. Tramer and D. Boneh, “Differentially private learning needs bet-
ter features (or much more data),” in International Conference on
Learning Representations, 2021.

[10] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:
Concept and applications,” ACM Transactions on Intelligent Systems
and Technology (TIST), vol. 10, no. 2, pp. 1–19, 2019.

[11] R. L. Rivest, L. Adleman, M. L. Dertouzos et al., “On data banks and
privacy homomorphisms,” Foundations of secure computation, vol. 4,
no. 11, pp. 169–180, 1978.

[12] N. Yan, Y. Li, J. Chen, X. Wang, J. Hong, K. He, and W. Wang,
“Efficient and straggler-resistant homomorphic encryption for hetero-
geneous federated learning,” in Proc. IEEE INFOCOM, 2024.

[13] C. Hu and B. Li, “Maskcrypt: Federated learning with selective
homomorphic encryption,” IEEE Transactions on Dependable and
Secure Computing, 2024.

[14] Y. Cai, W. Ding, Y. Xiao, Z. Yan, X. Liu, and Z. Wan, “Secfed:
A secure and efficient federated learning based on multi-key homo-
morphic encryption,” IEEE Transactions on Dependable and Secure
Computing, vol. 21, no. 04, pp. 3817–3833, jul 2024.

[15] J. Ma, S.-A. Naas, S. Sigg, and X. Lyu, “Privacy-preserving federated
learning based on multi-key homomorphic encryption,” International
Journal of Intelligent Systems, vol. 37, no. 9, pp. 5880–5901, 2022.

[16] J. Park, N. Y. Yu, and H. Lim, “Privacy-preserving federated learning
using homomorphic encryption with different encryption keys,” in
2022 13th International Conference on Information and Communi-
cation Technology Convergence (ICTC). IEEE, 2022, pp. 1869–1871.

14

[17] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” Proceedings of
Machine learning and systems, vol. 2, pp. 429–450, 2020.

[18] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and
connections for efficient neural network,” in Advances in Neural
Information Processing Systems, vol. 28. Curran Associates, Inc.,
2015.

[19] H. Mozaffari, V. Shejwalkar, and A. Houmansadr, “Every vote counts:
Ranking-Based training of federated learning to resist poisoning
attacks,” in 32nd USENIX Security Symposium (USENIX Security 23).
USENIX Association, Aug. 2023, pp. 1721–1738.

[20] C. Huang, J. Huang, and X. Liu, “Cross-silo federated learning: Chal-
lenges and opportunities,” arXiv preprint arXiv:2206.12949, 2022.

[21] S.-i. Amari, “Backpropagation and stochastic gradient descent
method,” Neurocomputing, vol. 5, no. 4-5, pp. 185–196, 1993.

[22] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentral-
ized data,” in Artificial intelligence and statistics. PMLR, 2017, pp.
1273–1282.

[23] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-iid data,” arXiv preprint arXiv:1806.00582, 2018.

[24] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and
learning with errors over rings,” Journal of the ACM (JACM), vol. 60,
no. 6, pp. 1–35, 2013.

[25] H. Chen, W. Dai, M. Kim, and Y. Song, “Efficient multi-key ho-
momorphic encryption with packed ciphertexts with application to
oblivious neural network inference,” in Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security,
2019, pp. 395–412.

[26] B. Hassibi and D. Stork, “Second order derivatives for network
pruning: Optimal brain surgeon,” in Advances in Neural Information
Processing Systems, vol. 5. Morgan-Kaufmann, 1992.

[27] Y. LeCun, J. Denker, and S. Solla, “Optimal brain damage,” in
Advances in Neural Information Processing Systems, vol. 2. Morgan-
Kaufmann, 1989.

[28] S. Park, J. Lee, S. Mo, and J. Shin, “Lookahead: A far-
sighted alternative of magnitude-based pruning,” in International
Conference on Learning Representations, 2020. [Online]. Available:
https://openreview.net/forum?id=ryl3ygHYDB

[29] T. Gale, E. Elsen, and S. Hooker, “The state of sparsity in
deep neural networks,” arXiv e-prints, vol. arXiv:1902.09574, 2019.
[Online]. Available: https://arxiv.org/abs/1902.09574

[30] N. Lee, T. Ajanthan, and P. H. Torr, “Snip: Single-shot net-
work pruning based on connection sensitivity,” arXiv preprint
arXiv:1810.02340, 2018.

[31] C. Wang, G. Zhang, and R. Grosse, “Picking winning tick-
ets before training by preserving gradient flow,” arXiv preprint
arXiv:2002.07376, 2020.

[32] H. Tanaka, D. Kunin, D. L. Yamins, and S. Ganguli, “Pruning neural
networks without any data by iteratively conserving synaptic flow,”
Advances in neural information processing systems, vol. 33, pp.
6377–6389, 2020.

[33] H. Cheng, M. Zhang, and J. Q. Shi, “A survey on deep neural network
pruning: Taxonomy, comparison, analysis, and recommendations,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
2024.

[34] S. Babakniya, S. Kundu, S. Prakash, Y. Niu, and S. Avestimehr,
“Revisiting sparsity hunting in federated learning: Why does sparsity
consensus matter?” Transactions on Machine Learning Research,
2023.

[35] T. L. Gez and K. Cohen, “A masked pruning approach for di-
mensionality reduction in communication-efficient federated learning
systems,” arXiv preprint arXiv:2312.03889, 2023.

[36] Y. Aono, T. Hayashi, L. Wang, S. Moriai et al., “Privacy-preserving
deep learning via additively homomorphic encryption,” IEEE Trans-
actions on Information Forensics and Security, vol. 13, no. 5, pp.
1333–1345, 2017.

[37] K. Bonawitz et al., “Practical secure aggregation for privacy-
preserving machine learning,” in Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, ser.
CCS ’17. ACM, 2017, pp. 1175–1191.

[38] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and
A. T. Suresh, “Scaffold: Stochastic controlled averaging for federated
learning,” in International conference on machine learning. PMLR,
2020, pp. 5132–5143.

[39] J. Wang, Q. Liu, H. Liang, G. Joshi, and H. V. Poor, “Tackling the
objective inconsistency problem in heterogeneous federated optimiza-
tion,” Advances in neural information processing systems, vol. 33, pp.
7611–7623, 2020.

[40] T.-M. H. Hsu, H. Qi, and M. Brown, “Measuring the effects of non-
identical data distribution for federated visual classification,” arXiv
preprint arXiv:1909.06335, 2019.

[41] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[42] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[43] M. Wortsman, V. Ramanujan, R. Liu, A. Kembhavi, M. Rastegari,
J. Yosinski, and A. Farhadi, “Supermasks in superposition,” Advances
in Neural Information Processing Systems, vol. 33, pp. 15 173–15 184,
2020.

[44] V. Ramanujan, M. Wortsman, A. Kembhavi, A. Farhadi, and
M. Rastegari, “What’s hidden in a randomly weighted neural net-
work?” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2020, pp. 11 893–11 902.

[45] D. J. Beutel, T. Topal, A. Mathur, X. Qiu, J. Fernandez-Marques,
Y. Gao, L. Sani, K. H. Li, T. Parcollet, P. P. B. de Gusmão et al.,
“Flower: A friendly federated learning research framework,” arXiv
preprint arXiv:2007.14390, 2020.

[46] T. Kim, H. Kwak, D. Lee, J. Seo, and Y. Song, “Asymptotically
faster multi-key homomorphic encryption from homomorphic gadget
decomposition,” in Proceedings of the 2023 ACM SIGSAC Conference
on Computer and Communications Security, 2023, pp. 726–740.

[47] “xmkckks implementation,” https://github.com/MetisPrometheus/MSc-
thesis-xmkckks, 2024 [Online], accessed in 2024.

[48] B. Zhao, K. R. Mopuri, and H. Bilen, “iDLG: Improved deep leakage
from gradients,” arXiv preprint arXiv:2001.02610, 2020.

[49] W. Wei, L. Liu, M. Loper, K.-H. Chow, M. E. Gursoy, S. Truex,
and Y. Wu, “A framework for evaluating gradient leakage attacks in
federated learning,” arXiv preprint arXiv:2004.10397, 2020.

[50] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in
Proceedings of the forty-first annual ACM symposium on Theory of
computing, 2009, pp. 169–178.

[51] N. P. Smart and F. Vercauteren, “Fully homomorphic encryption
with relatively small key and ciphertext sizes,” in Public Key
Cryptography–PKC 2010: 13th International Conference on Practice
and Theory in Public Key Cryptography, Paris, France, May 26-28,
2010. Proceedings 13. Springer, 2010, pp. 420–443.

[52] A. Al Badawi and Y. Polyakov, “Demystifying bootstrapping in fully
homomorphic encryption,” Cryptology ePrint Archive, 2023.

[53] Q. Li, Z. Huang, W.-j. Lu, C. Hong, H. Qu, H. He, and W. Zhang,
“Homopai: A secure collaborative machine learning platform based
on homomorphic encryption,” in 2020 IEEE 36th International Con-
ference on Data Engineering (ICDE). IEEE, 2020, pp. 1713–1717.

15

[54] R. Xiong, W. Ren, S. Zhao, J. He, Y. Ren, K.-K. R. Choo, and G. Min,
“Copifl: A collusion-resistant and privacy-preserving federated learn-
ing crowdsourcing scheme using blockchain and homomorphic en-
cryption,” Future Generation Computer Systems, vol. 156, pp. 95–
104, 2024.

[55] L. Zhang, J. Xu, P. Vijayakumar, P. K. Sharma, and U. Ghosh, “Ho-
momorphic encryption-based privacy-preserving federated learning
in iot-enabled healthcare system,” IEEE Transactions on Network
Science and Engineering, vol. 10, no. 5, pp. 2864–2880, 2022.

[56] E. Hosseini and A. Khisti, “Secure aggregation in federated learning
via multiparty homomorphic encryption,” in 2021 IEEE Globecom
Workshops (GC Wkshps). IEEE, 2021, pp. 1–6.

[57] Z. Liu, S. Chen, J. Ye, J. Fan, H. Li, and X. Li, “Dhsa: efficient doubly
homomorphic secure aggregation for cross-silo federated learning,”
The Journal of Supercomputing, vol. 79, no. 3, pp. 2819–2849, 2023.

[58] A. Li, J. Sun, X. Zeng, M. Zhang, H. Li, and Y. Chen, “Fedmask:
Joint computation and communication-efficient personalized feder-
ated learning via heterogeneous masking,” in Proceedings of the 19th
ACM conference on embedded networked sensor systems, 2021, pp.
42–55.

Appendix A.

Figure 8 demonstrates the test accuracy of MASER
across different pruning thresholds (i.e., different levels of
sparsity) under both IID and Non-IID settings. Each curve
corresponds to a different pruning level, where the per-
centage indicates the proportion of model weights retained
after pruning. For instance, MASER-30% keeps 30% of the
original weights with largest magnitudes and prunes the rest.
Despite the varying levels of sparsity, the accuracy curves re-
main close. This shows that our pruning strategy, combined
with how we update important parameters, effectively pre-
serves the important information needed for learning, even
at high levels of sparsity. The insets further highlight that
although minor fluctuations exist, the convergence behavior
and final accuracies are highly comparable.

Figure 8: Test accuracy across 25 FL rounds on MNIST
with different thresholds

16

