
ar
X

iv
:2

50
5.

14
67

3v
1

 [
cs

.C
V

]
 2

0
M

ay
 2

02
5

Training-Free Watermarking for Autoregressive
Image Generation

Yu Tong1,2 Zihao Pan3 Shuai Yang4 Kaiyang Zhou1,�

1Hong Kong Baptist University 2Wuhan University
3Sun Yat-sen University 4Peking University
https://github.com/maifoundations/IndexMark

Abstract

Invisible image watermarking can protect image ownership and prevent malicious
misuse of visual generative models. However, existing generative watermarking
methods are mainly designed for diffusion models while watermarking for autore-
gressive image generation models remains largely underexplored. We propose
IndexMark, a training-free watermarking framework for autoregressive image gen-
eration models. IndexMark is inspired by the redundancy property of the codebook:
replacing autoregressively generated indices with similar indices produces negligi-
ble visual differences. The core component in IndexMark is a simple yet effective
match-then-replace method, which carefully selects watermark tokens from the
codebook based on token similarity, and promotes the use of watermark tokens
through token replacement, thereby embedding the watermark without affecting the
image quality. Watermark verification is achieved by calculating the proportion of
watermark tokens in generated images, with precision further improved by an Index
Encoder. Furthermore, we introduce an auxiliary validation scheme to enhance
robustness against cropping attacks. Experiments demonstrate that IndexMark
achieves state-of-the-art performance in terms of image quality and verification
accuracy, and exhibits robustness against various perturbations, including cropping,
noises, Gaussian blur, random erasing, color jittering, and JPEG compression.

1 Introduction

With the remarkable success of Large Language Models (LLMs) [31, 2, 41] in natural language
processing, recent advancements have seen autoregressive image generation models, such as Lla-
maGen [25] and VAR [27], demonstrating substantial potential in the domain of visual generation.
These models leverage a Vector Quantization (VQ) tokenizer [30] to transform images into discrete
tokens. Subsequently, they autoregressively predict the “next token” within a codebook to generate
images. Notably, these models exhibit significant advantages in terms of both image quality and
generation speed. The proliferation of open-source high-quality autoregressive image generation
models empowers the general public to create diverse customized content. However, it also brings
potential risks of model misuse [3, 43, 32], such as fake news fabrication, ambiguous copyright
attribution, and improper use of public figures’ portraits. Amidst growing calls for government
regulation and industry compliance [16, 36], model developers need to enhance image traceability to
ensure accountability in legal liability determination, copyright protection, and content moderation.

Invisible watermarking [15, 1, 24] provides a technical pathway for image traceability. This tech-
nology embeds imperceptible watermarks into images to help model developers achieve user-level
attribution tracking of AI-generated content. Existing watermarking methods can be broadly catego-
rized into two types: post-processing watermarks embedded after generation [5, 37, 1], and generative

� Corresponding author

Preprint. Under review.

https://github.com/maifoundations/IndexMark
https://arxiv.org/abs/2505.14673v1

watermarks integrated during the generation process [38, 10]. Since the former introduces additional
inference and storage overhead, generative watermarks are generally more practical and hence more
popular. However, current generative watermarking techniques primarily focus on diffusion models
and lack exploration for the emerging autoregressive image generation models. Due to substantial
architectural differences between the two paradigms—diffusion models employ progressive denois-
ing [13] whereas autoregressive models rely on sequential generation [25]—current diffusion-based
watermarking methods cannot be directly applied to autoregressive models. This motivates us to
investigate efficient and effective autoregressive watermarking strategies.

1 15 86 57

59 51 65 28

23 56 73 83

6 12 17 29

1 15 74 90

11 51 65 26

24 53 71 13

6 12 17 82

replace

1 15 86 57

59 51 65 28

23 56 73 83

6 12 17 29

1 15 74 90

11 51 65 26

24 53 71 13

6 12 17 82

replace

1

0

0

1

1

0

1

1

1

0

1

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Unwatermarked Image

Watermarked Image100% Green Index

50% Green Index

Figure 1: Watermark embedding by index
replacement to attain a higher proportion of
watermark tokens (green index).

We believe leveraging the characteristics of the autore-
gressive image generation models is the key to the design
of an effective watermarking strategy. Recent research
in autoregressive image generation models has identified
a notable redundancy issue in their codebooks [14, 11]:
a large number of vectors are associated with different
indices but highly similar to each other. This feature nat-
urally leads to an elegant solution of watermarking that
has minimal impact on the content of the image. Instead
of using an image as a watermark, we embed the water-
mark by altering the statistical distribution of generated
indices [18]. Specifically, we divide the codebook into
“red” and “green” groups by pairing similar indices. After
generating the indices, we replace as many red indices as
possible with their paired green indices (called watermark
tokens), thus changing the distribution ratio of red-green
indices in the final sequence to embed watermark infor-
mation (see Figure 1). This type of watermark has three
advantages. 1) It is inherently robust and can only be removed by extensively modifying the color
blocks of the image. 2) The redundancy of the codebook allows this match-then-replace strategy to
imperceptibly embed watermarks. 3) Moreover, different red-green division schemes can correspond
to different identity identifiers (IDs), assisting model developers in image tracing.

Building on the above insights, this paper proposes IndexMark, the first training-free watermarking
framework for autoregressive image generation models. We first formulate the pairing of similar
indices as a maximum weight perfect matching problem [22], and solve it with top-K pruning and the
Blossom algorithm [7]. Then, we randomly assign each pair of indices to a red list or a green list.
After autoregressive index generation, red indices are selectively replaced with their paired green
indices according to index confidence, thereby embedding an invisible image watermark. This match-
then-replace strategy robustly embeds watermarks with image quality and content well preserved.
During the watermark verification stage, indices of the generated image are reconstructed via VQ-
VAE to compute the “green-index rate” for verification. To compensate the index reconstruction
errors of VQ-VAE, we introduce an Index Encoder for accurate index reconstruction. Although the
red-green watermark is intrinsically robust against various image perturbations, the verifier is still
vulnerable to cropping attacks due to VQ-VAE’s block-level processing characteristics. Therefore,
we propose a corresponding cropping-robust validation scheme specific to the modern autoregressive
image generation models.

Our key contributions are summarized as follows: 1) We propose a training-free watermarking
framework that can be directly applied to autoregressive image generation models without requiring
any additional fine-tuning or training. 2) We introduce a match-then-replace approach, which enables
training-free watermark embedding with minimal impact on the visual quality of the images. 3) We
design a precise image indexing validation framework that can verify the presence of watermarks
with higher statistical confidence. 4) Thanks to the Index Encoder and the designed cropping-robust
watermark verification method, our approach demonstrates strong robustness towards a wide range of
image perturbations.

2

2 Related Work

2.1 Image Watermarking

Watermarks in generative models can be embedded either after images are generated (i.e., post-
processing) or during the generation process (i.e., in-processing). Post-processing methods are mainly
divided into transformation-based and deep encoder-decoder methods. Representative post-processing
methods include Discrete Wavelet Transform (DWT) [37], Discrete Cosine Transform (DCT) [5],
and DWT-DCT methods [1], which embed watermarks into the spatial or frequency domain with
minimal impact on image quality. A drawback of these methods is that simple attacks in the pixel
space can significantly affect the accuracy of watermark extraction. Deep encoder-decoder methods
often generate watermarked images in an end-to-end manner, e.g., using adversarial training to add
imperceptible noise into image pixels [42, 40]. However, these methods often struggle to generalize
to images outside the training data distribution.

Research on in-processing watermarking primarily focuses on diffusion-based models. The Tree-Ring
watermark [35] embeds watermark into the noisy image before denoising. ROBIN [15] injects water-
mark into an intermediate diffusion state while maintaining consistency between the watermarked
image and the generated image and robustness of the watermark. Though the performance is strong,
these methods cannot be directly transferred to autoregressive architectures. Concurrent to our
work, Safe-VAR [34] explores watermark embedding for the VAR model [27] through multi-scale
interaction and fusion techniques. However, Safe-VAR lacks scalability as it only works for VAR-like
models and suffers from high training costs as it requires over 200K images for fine-tuning the
decoder and training an additional multi-scale module. In contrast, our approach does not require any
training and can be applied more broadly to codebook-based autoregressive models.

2.2 Autoregressive Image Generation

In autoregressive image generation, image data is typically transformed into one-dimensional se-
quences of pixels or tokens, and the model predicts the next image token based on the existing context.
Early autoregressive image generation models [28, 29] perform image generation by predicting
continuous pixels, which have high computational complexity. The seminal work, VQ-VAE [30],
builds a codebook containing feature representations and casts image generation into a discrete label
prediction problem. VQ-GAN [8] extends VQ-VAE by using adversarial training to improve the
image quality. Recently, LlamaGen [26] and Open-MAGVIT2 [20] apply the concept of next-token
prediction, which has been widely used in large language models, to autoregressive image genera-
tion, achieving performance that even surpass diffusion-based methods.1 However, the problem of
embedding watermarks into autoregressive image generation models remains largely understudied,
exposing huge risks of model misuse for these models. Our IndexMark fills this gap by offering a
simple, training-free solution.

3 Methodology

Task Definition Autoregressive model watermarking aims to embed an invisible, verifiable water-
mark w into an autoregressively generated image I during creation using a watermarking algorithm
E , resulting in Iw. After potential real-world image transformations O such as JPEG compression,
the model owner can extract the watermark from the altered image O(Iw) via a validation algorithm
D, facilitating image traceability.

Our Framework As illustrated in Figure 2, our IndexMark framework is composed of two parts:
watermark embedding (Sec. 3.1) and watermark verification (Sec. 3.2). In the watermark embedding
part, we first divide the codebook of an autoregressive model into pairs of indices such that each
pair contains similar vectors. Then, for each index pair we randomly assign one index into a red list
and the other into a green list. Finally, we perform selective red-green index replacement based on
index confidence during the image decoding process to embed invisible watermarks into images (i.e.,
replacing as many red indices as possible with green indices). In the watermark verification part, we
propose a method based on statistical probability, where an Index Encoder is introduced to achieve

1The background on autoregressive image generation can be found in the Appendix B.1.

3

1 15 86 57

59 51 65 28

23 56 73 83

6 12 17 29

1 15 74 90

11 51 65 26

24 53 71 13

6 12 17 82

1

0

0

1Autoregressive Model

1 15 86 57 ?
1

() (,)
h w

i i
i

p p q q c

q ∣

59 51

iq
iq 1

0

1

1

1

0

1

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
Codebook

59

11

53

56

1p

2p

N
/2Np N-1

Watermark embedding Watermark verification

mage

Figure 2: Watermark embedding and verification of IndexMark. During autoregressive index genera-
tion, IndexMark selectively replaces red indices with green indices from the same index pair based
on confidence to embed the watermark. The watermarked image is fed into the Index Encoder to
calculate the green index rate for watermark verification.

precise reconstruction of indices. We also propose a cropping-invariant watermark verification
scheme for cropped images.

3.1 Watermark Embedding

Construction of Index Pairs We aim to divide the indices in the codebook, I = {1, 2, ..., N},
into index pairs P = {p1, p2, ..., pN/2}, where each pair pk = {ik, jk} contains two distinct indices
from I such that

⋃N/2
k=1 pk = I and pk ∩ pk′ = ∅ for k ̸= k′. The objective of the red-green index

allocation is to compute an optimal assignment that maximizes the sum of the intra-pair similarity
Ssum for all red-green index pairs:

Ssum = max
P∈P

N/2∑
k=1

sim(ik, jk), (1)

where P is the set of all possible such partitions P and sim(i, j) is the cosine similarity between the
vectors of index i and index j in the codebook. We cast this problem into a maximum weight perfect
matching problem. Specifically, we construct a complete graph G = (V,E), where each vertex in
the vertex set V represents an index from the codebook and the edge set E connects all pairs of
vertices, with the edge weights w set as the cosine similarity between the two connected vertices.
After constructing this complete graph, our objective is to find a maximum weight perfect matching
M∗, which is a subset of E containing N/2 edges such that every vertex in V is linked to only one
edge in M∗, and the sum of the weights of these N/2 edges is maximized:

M∗ = argmax
M∈M

∑
(i,j)∈M

w(i, j), (2)

where M represents the set of all possible perfect matchings on the graph G, and w(i, j) represents
the weight of the edge connecting vertex i and vertex j.

We solve this problem using the Blossom algorithm [7]. Considering the large number of indices in
the codebook, directly applying the Blossom algorithm would result in extremely high computational
complexity. For this reason, we perform top-K pruning on the complete graph, retaining only the K
edges with the highest weights for each vertex. We then apply the Blossom algorithm [7] to the pruned
sparse graph to obtain the maximum weight perfect matching M∗. Please refer to Appendix B.2 for
the details on the Blossom algorithm.

Red-Green Index Assignment After obtaining the maximum weight perfect matching M∗, we
need to assign indices to red and green lists for each index pair in M∗. For simplicity, we randomly
assign the two indices in each index pair to the red and green lists. In practical applications, users

4

can customize the assignment of red and green indices. The total number of possible assignments is
as high as 2N/2, providing model developers and users with extremely abundant identity identifiers
(IDs) for image tracing.

Confidence-Guided Index Replacement Autoregressive image generation models produce token
index sequences in an autoregressive manner. Our objective is to replace as many red indices as
possible with green indices, while avoiding bad replacements that harms image quality. To achieve
controllable watermark strength that balances between watermark strength and image quality, we
propose a confidence-guided index replacement strategy. Specifically, we use the classification
probability of an index predicted by the autoregressive model as the confidence measure and calculate
relative confidence (will be detailed in Eq. (3)). The greater the relative confidence, the larger the
gap between the red index and the paired green index at the current index position. Replacing these
indices with significant gaps can lead to a noticeable decline in image quality. Based on the relative
confidence distribution of two indices within each pair, we calculate a quantile as the replacement
threshold to control watermark strength. For a given replacement threshold, we prioritize replacing
index pairs with smaller relative confidence to balance watermark strength and image quality.

When the autoregressive model generates the k-th red index Idxk, we record the classification
probability P (Idxk) for Idxk and the classification probability P (Idx′

k) for its paired green index
Idx′k. After the autoregressive model generates all indices, we obtain the confidence set for red
indices, conf = {P (Idx1), P (Idx2), . . . , P (IdxNred)}, and the confidence set for paired green indices,
conf′ = {P (Idx′1), P (Idx′2), . . . , P (Idx′

Nred
)}, where Nred represents the total number of red indices.

Based on these two sets of confidence, we calculate the relative confidence for each index pair:

relative-confk = log(P (Idxk)/P (Idx′k)), (3)

Figure 3: Index pair distribution
of one hundred generated images.

where k represents the relative confidence of the k-th index pair.
We achieve controllable watermark strength by setting a distribu-
tion quantile, with the relative confidence distribution illustrated
in Figure 3. Specifically, when replacing red indices with paired
green indices, we only replace index pairs on the left side of the
quantile. Therefore, when the quantile is set to 0%, the model does
not perform red index replacement, resulting in a non-watermarked
image. When the quantile is set to 100%, the model replaces all red
indices with green indices from their index pairs. For other quantile
values, the model prioritizes replacing red indices with green indices
of lower relative confidence. Additionally, the confidence distribu-
tion exhibits a characteristic pattern of low density at both ends and
high density in the middle, making index pairs with high relative
confidence more likely to be filtered out. For example, by simply setting the quantile to 95%, we
can filter out all index pairs with a relative confidence greater than 5. This design not only achieves
controllability of watermark strength but also optimizes the balance between watermark strength and
image quality by “filtering” index pairs with high relative confidence.

3.2 Watermark Verification

Statistical Probability-Based Watermark Verification Since the red and green indices are ran-
domly assigned, the proportion of green indices in an image without a watermark is approximately
50%, while the proportion in an ideal watermarked image approaches 100%. In fact, the process
of autoregressive image generation can be regarded as NIdx independent Bernoulli trials with equal
probability of taking the value 0 (red index) or 1 (green index), where NIdx is the total number of
indices in an image. According to the Central Limit Theorem [9], when NIdx is sufficiently large, the
sample mean follows a normal distribution. Thus, we can calculate the confidence interval CI for the
mean of NIdx trials at a confidence level of 1− β as follows:

CI =
(
0.5−

zβ/2

2
√
NIdx

, 0.5 +
zβ/2

2
√
NIdx

)
, (4)

where zβ/2 represents the two-tailed critical value of the standard normal distribution. After calcu-
lating the confidence interval, we can use the right endpoint of the confidence interval as a decision
threshold. If the proportion of green indices in an image is below the threshold, the image is classified
as a non-watermarked image; otherwise, it is classified as a watermarked image.

5

51 64 77

55 12 61

29 41 24

51 64 77

55 19 61

10 41 24
rcreal rc

Figure 4: Training of Index Encoder. The Encoder, Codebook, and Decoder are frozen while the
Index Encoder is updated to achieve accurate index reconstruction.

Index Encoder VQ-VAE is designed solely for pixel-level reconstruction. However, the objective
of the watermark validator in this paper is index reconstruction. In practice, the autoregressively
generated indices Idx = {Idx1, Idx2, . . . , IdxNIdx} are processed through the decoder to produce
the image I . However, the reconstructed indices Idxrc obtained by feeding I into the encoder and
vector quantization module, may differ from the original Idx. As illustrated in Figure 6(b), the
original VQ-VAE encoder struggles to accurately identify watermarks in high-confidence scenarios.
Therefore, we propose an Index Encoder to assist users in high-confidence scenarios in achieving
high-precision index reconstruction.

As shown in Figure 4, we freeze the encoder, codebook, and decoder, and retrain a new encoder,
termed Index Encoder, with the goal of achieving accurate reconstruction of the indices Idx. We
first input the original image Ireal into the encoder and decoder to obtain the vector z and image
I . Then, we input I into the Index Encoder and decoder to obtain the reconstructed vector zrc and
reconstructed image Irc. The optimization of the Index Encoder is performed by minimizing two
loss terms: (1) the mean squared error (MSE) between the vector z and the vector zrc, and (2) the
MSE between the image I and the reconstructed image Irc:

Lencoder = ∥zrc − z∥22 + γ∥Irc − I∥22, (5)
where γ represents the weight hyperparameter.

Cropped Image Watermark Verification Although the red–green index watermark itself is highly
robust, as demonstrated in Table 1, the VQ-VAE encoding paradigm is inherently vulnerable to
cropping attacks. During index reconstruction, VQ-VAE first divides an image into fixed-size, non-
overlapping patches (e.g., 8× 8 pixels) and independently encodes each patch to retrieve the index.
Then, even a slight crop to the image can drastically alter the patch composition. For instance,
consider cropping an image such that the new top-left corner lands at position (4, 3) within the
neighborhood of the original patch. Such a tiny shift entails that every subsequent pixel now belongs
to completely different spatial segments compared to the original image. When encoded, these
reconfigured patches will lead to entirely different codebook indices, thereby significantly weakening
watermark-verification robustness.

To address this weakness, we propose traversing every pixel in the local image block of the cropped
image to achieve alignment of the local image blocks. Taking an 8× 8 pixel block as an example,
suppose the top-left corner of the cropped image is originally located at (4, 3) of a block. We
enumerate the cropped image to traverse all pixel positions within the first local image block. That
is, the top-left corner of the cropped image moves from (1, 1) to (8, 8), stopping after enumerating
64 candidate images. For each candidate, we calculate its green index rate. As long as the green
index rate of one of the candidates reaches the decision threshold, the image is considered to contain
a watermark. For example, as the image moves from (1, 1), the green index rate remains close to
50%. However, when the top-left corner of the cropped image moves to (4, 3), the green index rate
reaches 100%, indicating the presence of a watermark. The example of cropped image verification
can be found in the Appendix B.3.

4 Experiments

Model and Datasets We conduct experiments using a state-of-the-art autoregressive image genera-
tion model, LlamaGen [25]. For text-to-image generation tasks, we generate images at 256×256 and
512×512 resolutions. For class-conditioned image generation tasks, we generat images at 256×256

6

Table 1: Comparison of IndexMark with post- and in-processing watermarking methods in terms of
quality and robustness against various attacks.

Model Method Image quality Accuracy ↑
PSNR ↑ SSIM ↑ MSSIM ↑ CLIP ↑ FID↓ Clean Blur Noise JPEG Bright Erase Crop Avg

MSCOCO Dataset

Post processing
(256 × 256)

DwtDct 37.71 0.970 0.992 0.325 25.85 0.603 0.501 0.607 0.500 0.571 0.567 0.500 0.549
DwtDctSvd 37.57 0.979 0.992 0.325 27.60 0.996 0.982 0.994 0.963 0.556 0.994 0.500 0.855
RivaGAN 40.44 0.980 0.992 0.324 25.78 0.930 0.919 0.929 0.727 0.862 0.847 0.500 0.816

LlamaGen (AR)
(256 × 256)

W/o watermark ∞ 1.000 1.000 0.328 26.55 − − − − − − − −
IndexMark 23.54 0.838 0.930 0.326 24.73 1.000 0.991 0.995 0.978 0.988 0.997 0.998 0.992

Post processing
(512 × 512)

DwtDct 37.61 0.963 0.990 0.279 54.30 0.741 0.512 0.739 0.500 0.680 0.734 0.500 0.629
DwtDctSvd 37.38 0.972 0.989 0.280 55.60 0.999 0.990 0.998 0.988 0.673 0.998 0.500 0.878
RivaGAN 40.41 0.978 0.989 0.279 56.49 0.973 0.967 0.970 0.900 0.930 0.945 0.958 0.949

Stable Diffusion
(512 × 512)

W/o watermark ∞ 1.000 1.000 0.403 25.53 − − − − − − − −
Tree-Ring 15.37 0.568 0.626 0.364 25.93 1.000 1.000 0.994 0.999 1.000 1.000 0.833 0.975

ROBIN 24.03 0.768 0.881 0.396 26.86 1.000 1.000 0.998 0.971 1.000 1.000 0.918 0.983
LlamaGen (AR)

(512 × 512)
W/o watermark ∞ 1.000 1.000 0.282 54.57 − − − − − − − −

IndexMark 24.15 0.838 0.930 0.281 54.35 1.000 0.988 0.994 0.984 0.989 0.992 0.993 0.991
ImageNet Dataset

Post processing
(256 × 256)

DwtDct 38.73 0.974 0.993 0.288 15.17 0.583 0.501 0.588 0.500 0.584 0.568 0.500 0.546
DwtDctSvd 38.44 0.979 0.991 0.288 15.32 0.994 0.991 0.989 0.960 0.552 0.994 0.500 0.854
RivaGAN 40.44 0.980 0.991 0.288 15.29 0.951 0.930 0.950 0.746 0.919 0.914 0.500 0.844

ImageNet Diffusion
(256 × 256)

W/o watermark ∞ 1.000 1.000 0.271 16.25 − − − − − − − −
Tree-Ring 15.68 0.663 0.607 0.267 17.68 1.000 0.994 0.999 0.998 0.798 0.995 0.924 0.958

ROBIN 24.98 0.875 0.872 0.275 18.26 1.000 0.999 0.999 0.999 0.928 0.999 0.994 0.988
LlamaGen (AR)

(256 × 256)
W/o watermark ∞ 1.000 1.000 0.289 15.08 − − − − − − − −

IndexMark 23.86 0.738 0.903 0.288 13.89 1.000 1.000 1.000 1.000 0.998 1.000 0.998 0.999

Post processing
(384 × 384)

DwtDct 39.36 0.972 0.991 0.286 12.50 0.720 0.521 0.725 0.500 0.780 0.696 0.500 0.634
DwtDctSvd 39.08 0.979 0.989 0.285 12.62 0.999 0.990 0.999 0.542 0.664 0.999 0.500 0.813
RivaGAN 40.45 0.977 0.989 0.286 12.79 0.966 0.947 0.964 0.846 0.949 0.999 0.953 0.946

LlamaGen (AR)
(384 × 384)

W/o watermark ∞ 1.000 1.000 0.287 12.65 − − − − − − − −
IndexMark 25.45 0.783 0.913 0.286 11.81 1.000 1.000 1.000 1.000 0.998 1.000 0.993 0.998

and 384×384 resolutions. We conduct pre-training for index reconstruction at various resolutions
on LlamaGen’s text-to-image VQ-VAE and class-conditioned VQ-VAE using the MS-COCO-2017
training dataset [19] and the ImageNet-1k validation dataset [6], respectively.

Evaluation Metrics and Baselines To evaluate the effectiveness of IndexMark, we employ the
watermark verification method based on statistical probability, calculating accuracy (ACC) to mea-
sure the watermark verification performance. In addition, we utilize Peak Signal-to-Noise Ratio
(PSNR), Structural Similarity Index (SSIM), and Multiscale SSIM (MSSIM) [33] to quantify the
pixel-level differences between watermarked and original images. We further assess the fidelity of
the watermarked image distribution with the FID [12] and evaluate the alignment between gener-
ated images and their text prompts with the CLIP score [23]. We compare IndexMark with five
baseline approaches: three post-processing methods including DwtDct [1], DwtDctSvd [21], and
RivaGAN [40], and two diffusion-based methods including Tree-Ring [35] and ROBIN [15]. 2

Implementation Details For the construction of index pairs, we set top-K pruning with K = 10.
For the text-conditioned generation task, we set top-K sampling with K = 1000, CFG-scale to 7.5,
and downsample-size to 16. For the class-conditioned generation task, we set top-K sampling with
K = 2000, CFG-scale to 4.0, downsample-size to 16, and default to a full-green index watermark.
For the Index Encoder, we used the Adam optimizer [17] with a learning rate of 1e-5, and set γ to
0.5. All experiments are conducted on an NVIDIA A100 GPU.

4.1 Image Quality and Watermark Robustness

Image Quality Traditional post-hoc watermarking methods often cause slight visual distortions
and suffer from poor robustness. In contrast, generative methods can seamlessly embed watermarks
into the generated content without altering the semantics. Diffusion-based methods typically operate
in the latent spacebut tend to cause significant semantic changes due to the difficulty in precisely
controlling the perturbation magnitude. In comparison, our approach is built upon VQ-VAE and
autoregressive image generation models and therefore performs better in faithfully preserving image
details and structures. As shown in Table 1, our approach achieves significant improvements in the
PSNR, SSIM, and MSSIM scores, while causing much less image quality degradation compared to
watermark-free generations, as evidenced by the CLIP and FID scores. Moreover, unlike diffusion-
based methods, we observe that the FID of watermarked images in our method is even lower than
that of non-watermarked ones, further demonstrating our superiority in preserving visual fidelity.

2More details about how the evaluation metrics are computed can be found in the Appendix C.

7

Diffusion W/o Watermark ROBIN AR W/o Watermark IndexMark
Many bunches of bright yellow bananas hanging on display.

A table with plates of food with drinks in the middle.

Green index generation

Diffusion W/o Watermark ROBIN AR W/o Watermark IndexMark
Many bunches of bright yellow bananas hanging on display.

A table with plates of food with drinks in the middle.

Figure 5: ROBIN vs. IndexMark. ROBIN embeds watermarks during the intermediate diffusion state,
which may lead to changes in the image content. In contrast, IndexMark uses the match-then-replace
strategy to embed watermarks, effectively preserving the image’s quality and content.

20 40 60 80 100
Quantile (%)

23

24

25

26

27

28

29

30

31

PS
N

R

PSNR (w/o con)
PSNR (ours)
SSIM (w/o con)
SSIM (ours)
MSSIM (w/o con)
MSSIM (ours) 0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

SS
IM

 /
M

SS
IM

(a) Evaluation on confidence-guided index replace-
ment.

65 70 75 80 85 90 95
Judgment Threshold (%)

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

w/o Index Encoder
ours

(b) Evaluation on Index Encoder.

Figure 6: Ablation results on confidence-guided index replacement and Index Encoder.

Figure 5 shows that the ROBIN method may remove certain objects from the original image (such as
chopsticks and pastries on the plate), which affects parts of the generated image content. In contrast,
our method effectively preserves the overall image content and semantic structure, demonstrating its
superiority. More qualitative results can be found in the Appendix D.3.

Robustness To evaluate the robustness of our watermarking method, we select six common data
augmentations as attack methods. These include Gaussian blur with a kernel size of 11, Gaussian
noise with a standard deviation of σ = 0.01, JPEG compression with a quality factor of 70, color
jitter with brightness set to 0.5, random erasing of 10% of the region, and random cropping of 75%.
We select the right endpoint of the confidence interval at a 99.9% confidence level as the threshold for
watermark determination. As shown in Table 1, we report the ACC under each attack setting. Notably,
our method demonstrates strong robustness against most perturbations, significantly outperforming
the baselines at image resolutions of 256, 384, and 512. While Stable Diffusion-based methods
perform better than traditional approaches, they still fall noticeably short of our method.

4.2 Ablation Study and Further Analyses

Confidence-Guided Index Replacement We substitute the confidence-guided method with random
index selection based on watermark strength. The results shown in Figure 6(a) justify the effectiveness
of our design as the PSNR scores of random index selection are significantly lower than IndexMark.

8

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70
Epoch

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Tr
ai

ni
ng

 L
os

s

t2i-256
t2i-512
c2i-256
c2i-384

(a) Training Loss.

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70
Epoch

30

40

50

60

70

80

90

100

In
de

x
R

ec
on

st
ru

ct
io

n
R

at
e

(%
)

Original
t2i-256
t2i-512
c2i-256
c2i-384

(b) Index Reconstruction Rate.

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70
Epoch

60

65

70

75

80

85

90

95

100

G
re

en
 In

de
x

Va
lid

at
io

n
R

at
e

(%
)

Original
t2i-256
t2i-512
c2i-256
c2i-384

(c) Green index Validation Rate.

Figure 7: Images showing the variation of training loss, index reconstruction rate, and green index
verification rate of the Index Encoder with respect to epochs.

Watermark strength
0 1

Figure 8: Generated images under different watermark strengths.

Index Encoder We compare watermark verification rates with and without Index Encoder at
different confidence levels on 256×256 resolution images. As shown in Figure 6(b), differences
are minimal at lower confidence levels, but at higher levels, Index Encoder significantly improves
verification rates. More robustness experiments can be found in the Appendix D.2.

Index Reconstruction To investigate whether the Index Encoder improves index reconstruction
capability, we conduct index-to-index reconstruction experiments at a resolution of 256 across
multiple epochs using the Index Encoder, as well as validation experiments on pure green index
images. Additionally, Figure 7(a) illustrates the training loss across multiple resolutions. As shown in
Figure 7(b), after only 20 epochs of training, the index reconstruction capability of the Index Encoder
surpasses that of the original encoder. Furthermore, as depicted in Figure 7(c), the Index Encoder’s
validation capability for images with all indices being green significantly exceeds that of the original
encoder, allowing users to verify watermarks with a higher confidence level.

Watermark Strength We explore the impact of watermark strength on images. The qualitative
results, as shown in Figure 8, indicate that an increase in IndexMark watermark strength does not
cause noticeable changes in image quality.

5 Conclusion

This paper proposes IndexMark, the first training-free watermarking method for autoregressive image
generation models. IndexMark carefully selects watermark tokens from the codebook based on token
similarity and promotes the use of watermark tokens through token replacement, thereby embedding
the watermark in the image. We believe that our method offers a novel perspective for watermark
design in autoregressive image generation models.

9

References
[1] Ali Al-Haj. Combined dwt-dct digital image watermarking. Journal of computer science,

3(9):740–746, 2007.

[2] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[3] Miles Brundage, Shahar Avin, Jack Clark, Helen Toner, Peter Eckersley, Ben Garfinkel, Allan
Dafoe, Paul Scharre, Thomas Zeitzoff, Bobby Filar, et al. The malicious use of artificial
intelligence: Forecasting, prevention, and mitigation. arXiv preprint arXiv:1802.07228, 2018.

[4] Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell Wortsman, Gabriel Ilharco, Cade
Gordon, Christoph Schuhmann, Ludwig Schmidt, and Jenia Jitsev. Reproducible scaling laws
for contrastive language-image learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 2818–2829, 2023.

[5] Ingemar Cox, Matthew Miller, Jeffrey Bloom, Jessica Fridrich, and Ton Kalker. Digital
watermarking and steganography. Morgan kaufmann, 2007.

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[7] Jack Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics, 17:449–467, 1965.

[8] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution
image synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 12873–12883, 2021.

[9] William Feller. An introduction to probability theory and its applications, Volume 2, volume 2.
John Wiley & Sons, 1991.

[10] Pierre Fernandez, Guillaume Couairon, Hervé Jégou, Matthijs Douze, and Teddy Furon. The sta-
ble signature: Rooting watermarks in latent diffusion models. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 22466–22477, 2023.

[11] Ziyao Guo, Kaipeng Zhang, and Michael Qizhe Shieh. Improving autoregressive image
generation through coarse-to-fine token prediction. arXiv preprint arXiv:2503.16194, 2025.

[12] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

[13] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840–6851, 2020.

[14] Teng Hu, Jiangning Zhang, Ran Yi, Jieyu Weng, Yabiao Wang, Xianfang Zeng, Zhucun Xue,
and Lizhuang Ma. Improving autoregressive visual generation with cluster-oriented token
prediction. arXiv preprint arXiv:2501.00880, 2025.

[15] Huayang Huang, Yu Wu, and Qian Wang. Robin: Robust and invisible watermarks for diffusion
models with adversarial optimization. Advances in Neural Information Processing Systems,
37:3937–3963, 2024.

[16] Makena Kelly. White house rolls out plan to promote ethical ai, 2023.

[17] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[18] John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein.
A watermark for large language models. In International Conference on Machine Learning,
pages 17061–17084. PMLR, 2023.

10

[19] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer
vision–ECCV 2014: 13th European conference, zurich, Switzerland, September 6-12, 2014,
proceedings, part v 13, pages 740–755. Springer, 2014.

[20] Zhuoyan Luo, Fengyuan Shi, Yixiao Ge, Yujiu Yang, Limin Wang, and Ying Shan. Open-
magvit2: An open-source project toward democratizing auto-regressive visual generation. arXiv
preprint arXiv:2409.04410, 2024.

[21] KA Navas, Mathews Cheriyan Ajay, M Lekshmi, Tampy S Archana, and M Sasikumar. Dwt-
dct-svd based watermarking. In 2008 3rd international conference on communication systems
software and middleware and workshops (COMSWARE’08), pages 271–274. IEEE, 2008.

[22] Constantine NK Osiakwan and Selim G Akl. The maximum weight perfect matching problem
for complete weighted graphs is in pc. In Proceedings of the Second IEEE Symposium on
Parallel and Distributed Processing 1990, pages 880–887. IEEE, 1990.

[23] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pages 8748–8763. PmLR, 2021.

[24] Ahmad Rezaei, Mohammad Akbari, Saeed Ranjbar Alvar, Arezou Fatemi, and Yong Zhang.
Lawa: Using latent space for in-generation image watermarking. In European Conference on
Computer Vision, pages 118–136. Springer, 2024.

[25] Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan.
Autoregressive model beats diffusion: Llama for scalable image generation. arXiv preprint
arXiv:2406.06525, 2024.

[26] Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan.
Autoregressive model beats diffusion: Llama for scalable image generation. arXiv preprint
arXiv:2406.06525, 2024.

[27] Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive
modeling: Scalable image generation via next-scale prediction. Advances in neural information
processing systems, 37:84839–84865, 2024.

[28] Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex Graves, et al. Con-
ditional image generation with pixelcnn decoders. Advances in neural information processing
systems, 29, 2016.

[29] Aäron Van Den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural
networks. In International conference on machine learning, pages 1747–1756. PMLR, 2016.

[30] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

[31] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[32] James Vincent. An online propaganda campaign used ai-generated headshots to create fake
journalists. Verge. com, 2020.

[33] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
from error visibility to structural similarity. IEEE transactions on image processing, 13(4):600–
612, 2004.

[34] Ziyi Wang, Songbai Tan, Gang Xu, Xuerui Qiu, Hongbin Xu, Xin Meng, Ming Li, and
Fei Richard Yu. Safe-var: Safe visual autoregressive model for text-to-image generative
watermarking. arXiv preprint arXiv:2503.11324, 2025.

11

[35] Yuxin Wen, John Kirchenbauer, Jonas Geiping, and Tom Goldstein. Tree-ring watermarks:
Fingerprints for diffusion images that are invisible and robust. arXiv preprint arXiv:2305.20030,
2023.

[36] Kyle Wiggers. Microsoft pledges to watermark ai-generated images and videos, 2023.

[37] Xiang-Gen Xia, Charles G Boncelet, and Gonzalo R Arce. Wavelet transform based watermark
for digital images. Optics Express, 3(12):497–511, 1998.

[38] Ning Yu, Vladislav Skripniuk, Dingfan Chen, Larry Davis, and Mario Fritz. Responsible
disclosure of generative models using scalable fingerprinting. arXiv preprint arXiv:2012.08726,
2020.

[39] Qihang Yu, Mark Weber, Xueqing Deng, Xiaohui Shen, Daniel Cremers, and Liang-Chieh
Chen. An image is worth 32 tokens for reconstruction and generation. Advances in Neural
Information Processing Systems, 37:128940–128966, 2024.

[40] Kevin Alex Zhang, Lei Xu, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. Robust
invisible video watermarking with attention. arXiv preprint arXiv:1909.01285, 2019.

[41] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen,
Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained
transformer language models. arXiv preprint arXiv:2205.01068, 2022.

[42] Jiren Zhu, Russell Kaplan, Justin Johnson, and Li Fei-Fei. Hidden: Hiding data with deep
networks. In Proceedings of the European conference on computer vision (ECCV), pages
657–672, 2018.

[43] Hazem Zohny, John McMillan, and Mike King. Ethics of generative ai, 2023.

12

Appendix

A Limitations and Social Impact

A.1 Limitations

The verification of IndexMark watermark relies on the index reconstruction capability of the VQ-VAE
model. A more robust encoder can enhance the robustness of our method, such as index reconstruction
based on image semantics [39]. Additionally, our current match-then-replace method uses simple
pairwise matching. By exploring diverse matching methods, we can further leverage the redundancy
of the codebook, thereby improving the quality of the watermarked images.

A.2 Social Impact

With the rapid advancement of autoregressive image generation models, developers have the responsi-
bility and obligation to ensure the safety of these models. We provide developers with an efficient and
effective method to help them counteract the misuse of models, marking a step towards responsible
AI in autoregressive image generation models.

B Model Details

B.1 VQ-VAE and Autoregressive Image Generation

VQ-VAE The Vector Quantized Variational Autoencoder (VQ-VAE) provides a framework for
encoding images into a discrete latent representation. Given an input image x ∈ RH×W×3, the
encoder produces a continuous latent feature map:

z = encoder(x) ∈ Rh×w×d. (6)
For every spatial location (i, j) we find the nearest entry in the VQ-VAE’s codebook C =
{e1, e2, . . . , eK} ⊂ Rd:

kij = argmin
k∈{1,...,K}

∥zij − ek∥2, zqij = ekij , (7)

where kij is a discrete index, and zqij is the corresponding quantised vector. By flattening the quantized
vector zq, a sequence of discrete tokens T = {T1, T2, . . . , Th×w} is obtained, where each token Ti

represents an index in the codebook C. During the reconstruction phase, the quantized latent vector zq
is retrieved using the token indices and the codebook. This vector is then passed through a decoder to
reconstruct the original image: x̂ = decoder(zq). During the training phase, the model is constrained
by the image reconstruction loss, codebook loss, and commitment loss, defined as:

L = ∥x− x̂∥22 + β∥q − sg[z]∥22 + γ∥z − sg[q]∥22, (8)
where sg denotes the stop gradient operation.

Autoregressive Image Generation The autoregressive model defines the generation process as the
prediction of the next token:

p(x) =

n∏
i=1

p
(
xi | x1, x2, . . . , xi−1

)
=

n∏
i=1

p(xi | x<i). (9)

In autoregressive image generation, xi denotes the image token in the discrete latent space, and the
image generation process can be formulated as:

p(q) =

h×w∏
i=1

p(qi | q<i, c), (10)

where qi denotes the discretized image token, c denotes the embedding of the class label or the text,
and h × w represents the total number of image tokens. During the training phase, the model is
trained by maximizing the likelihood of the observed token sequences:

Ltrain = − log p(q) = −
h×w∑
i=1

log p
(
qi | q<i, c

)
. (11)

13

During inference, the model generates the sequence of token indices autoregressively by sampling
each next index. Once the full sequence of image token indices is produced, the codebook is used to
reconstruct the latent vector zq from those indices, and zq is then fed into the VQ-VAE decoder to
synthesize the final image.

B.2 Blossom

The core principle of the Blossom algorithm is to iteratively approach the optimal matching by
dynamically handling odd-length cycle structures within the graph. Its key steps are as follows:

• Blossom Shrinking: When the algorithm verifies an odd cycle, it contracts the cycle into a
super vertex, preserving the connections between the cycle and external vertices, thereby
simplifying the complex structure into a recursively manageable subgraph.

• Augmenting Path Search: The current matching is expanded by traversing a path that
alternates between matched and unmatched edges. During each expansion, the matching
status of the edges on the path is flipped to increase the total weight.

• Dual Variable Adjustment: Utilizing the duality theory of linear programming, the poten-
tials of vertices and odd sets are adjusted to ensure that each operation converges toward
maximizing the total weight.

The pseudocode of the Blossom Algorithm is shown in Algorithm 1.

Algorithm 1: Blossom Algorithm
Input: Graph G = (V,E), edge weights w : E → R
Output: Maximum-weight perfect matching M ⊆ E
// Initialize

1 M ← ∅
2 y(v)← 1

2 maxe∈δ(v) w(e) for all v ∈ V
3 B ← ∅
4 while M is not perfect do
5 Search for augmenting paths via BFS/DFS // Build alternating trees
6 if any odd-length cycle B found then

// Blossom Shrinking
7 Contract B into super-node b
8 Update B ← B ∪ {b}
9 Adjust dual variables y and zB for b // Maintain LP feasibility

10 if augmenting path P found then
// Augment matching

11 M ←M ⊕ P // Symmetric difference
12
13 Expand blossoms in B along P // Restore original graph
14
15 Reset search structures

// Dual Variable Adjustment
16 Compute δ = min{slack(e) | e ∈ E}
17 Update y(v)← y(v)± δ and zB ← zB + 2δ // Converge to optimality
18 return M

B.3 Watermark Verification on Cropped Image

In the Figure 9, we show watermark verification process on a cropped image. As an example, with
an 8 × 8 input image and using a patch side length of 2, by traversing the first image patch, the
watermark in the cropped image can be successfully verified with at most 2× 2 checks.

14

1

3 4

(a) Watermarked image (b) Cropped image (c) Traversing the first patch (d) Traversal: Step 1

(f) Traversal: Step 3 (g) Traversal: Step 4 (h) Verify watermark

2

1 2

3 4

(e) Traversal: Step 2

Figure 9: Visualization of the traversal process for watermark verification on the cropped image.

C Experimental Details

C.1 Details About Evaluation Metrics

FID For text-to-image tasks, we generate 5,000 images to evaluate the Fréchet Inception Distance
(FID) score [12] on the MS-COCO-2017 training dataset. For class-conditioned image generation
tasks, we generate 10,000 images to evaluate the FID score on the ImageNet-1k validation dataset.

CLIP Score We use OpenCLIP-ViT model [4] to compute the CLIP score [23] between generated
images and their corresponding text prompts. For class-conditioned generation, we use “a photo of
category” as the input.

C.2 Details of the Threshold for Watermark Determination

For 256 × 256 and 384 × 384 resolutions, we select a green index rate of 0.615 near the 99.9%
confidence level as the determination threshold. For 512× 512 resolution, we choose a green index
rate of 0.60 near the 99.99% confidence level as the determination threshold. Regarding cropping
attacks, since the image is reduced to approximately 50% of its original size, we use a higher
confidence level to detect the watermark. Specifically, for 512× 512 resolution, we use a green index
rate of 0.65 as the determination threshold, while for 256× 256 and 384× 384 resolutions, we adopt
0.7 as the determination threshold.

D More Experimental Results

D.1 Green Index Generation

We explored the possibility of generating images using only the green indices from the codebook,
referring to this variant as GreenGen. As shown in Figure 10, the watermarked images generated by
GreenGen exhibit significant differences compared to the watermark-free images. The quantitative
results are shown in Table 2. GreenGen differs significantly from the watermarked image at the pixel
level. Although GreenGen achieves a CLIP score similar to that of IndexMark, its performance in
terms of FID is not as good as IndexMark. This result indicates that there is a substantial amount of
redundancy in the codebook, and our method effectively leverages this redundancy to achieve better
watermark embedding while maintaining image quality and content integrity.

15

Diffusion W/o Watermark ROBIN AR W/o Watermark IndexMark
Many bunches of bright yellow bananas hanging on display.

A table with plates of food with drinks in the middle.

Green index generation

Diffusion W/o Watermark ROBIN AR W/o Watermark IndexMark
Many bunches of bright yellow bananas hanging on display.

A table with plates of food with drinks in the middle.

AR W/o Watermark IndexMark
Many bunches of bright yellow bananas hanging on display.

A table with plates of food with drinks in the middle.

GreenGen

Figure 10: GreenGen vs. IndexMark. GreenGen generates autoregressive images by removing
red indices from the codebook and using only green indices, resulting in significant differences
between the watermarked images and non-watermarked ones. In contrast, IndexMark achieves
smaller differences through a match-then-replace method.

Table 2: Comparison results of image quality between IndexMark and GreenGen.
Model Method PSNR ↑ SSIM ↑ MSSIM ↑ CLIP ↑ FID ↓

MSCOCO Dataset

LlamaGen (AR)
(256 × 256)

W/o watermark ∞ 1.000 1.000 0.328 26.55
GreenGen 9.76 0.267 0.111 0.326 26.35
IndexMark 23.54 0.838 0.930 0.326 24.73

LlamaGen (AR)
(512 × 512)

W/o watermark ∞ 1.000 1.000 0.282 54.57
GreenGen 10.11 0.280 0.129 0.281 54.51
IndexMark 24.15 0.838 0.930 0.281 54.35

ImageNet Dataset

LlamaGen (AR)
(256 × 256)

W/o watermark ∞ 1.000 1.000 0.289 15.08
GreenGen 9.46 0.186 0.106 0.288 15.30
IndexMark 23.86 0.738 0.903 0.288 13.89

LlamaGen (AR)
(384 × 384)

W/o watermark ∞ 1.000 1.000 0.287 12.65
GreenGen 9.454 0.230 0.131 0.286 12.46
IndexMark 25.45 0.783 0.913 0.286 11.81

D.2 Robustness Experiment without the Index Encoder

Under lower watermark-verification confidence thresholds, we removed the Index Encoder (w/o IE)
and conducted robustness experiments. As shown in Table 3, even at low confidence settings, the
model without the Index Encoder maintains strong robustness, thereby reducing training costs for
users with less stringent security requirements.

16

Table 3: Comparison of ACC across different watermarking methods under various attacks. Clean
indicates watermark verification results on unaltered images, while Avg represents the average
accuracy across all attack scenarios.

Model Method Clean Blur Noise JPEG Bright Erase Crop Avg

MSCOCO Dataset
LlamaGen (AR)

(256 × 256)
IndexMark w/o IE 1.000 0.972 0.990 0.970 0.974 0.997 0.917 0.974

IndexMark 1.000 0.991 0.995 0.978 0.988 0.997 0.998 0.992
LlamaGen (AR)

(512 × 512)
IndexMark w/o IE 1.000 0.969 0.992 0.980 0.981 0.992 0.939 0.978

IndexMark 1.000 1.000 0.998 0.971 1.000 1.000 0.918 0.983
ImageNet Dataset

LlamaGen (AR)
(256 × 256)

IndexMark w/o IE 1.000 1.000 1.000 1.000 0.995 1.000 0.996 0.998
IndexMark 1.000 1.000 1.000 1.000 0.998 1.000 0.998 0.999

LlamaGen (AR)
(384 × 384)

IndexMark w/o IE 1.000 0.999 0.999 1.000 0.994 0.999 0.905 0.985
IndexMark 1.000 1.000 1.000 1.000 0.998 1.000 0.993 0.998

D.3 More Qualitative Results

17

W/o Watermark IndexMark
Plate of food with gravy on mesh table with knife.

A black and white chicken is walking through tall plants.

A cat curled up in a box with a Pirates Hat on.

Figure 11: More qualitative comparison results between non-watermarked images and IndexMark
watermarked images.

18

W/o Watermark IndexMark
A gigantic black bear roams around with his head hanging low.

A bunch of fruit sits in front of a portrait.

A cat lying in the sun on a table.

Figure 12: More qualitative comparison results between non-watermarked images and IndexMark
watermarked images.

19

	Introduction
	Related Work
	Image Watermarking
	Autoregressive Image Generation

	Methodology
	Watermark Embedding
	Watermark Verification

	Experiments
	Image Quality and Watermark Robustness
	Ablation Study and Further Analyses

	Conclusion
	Limitations and Social Impact
	Limitations
	Social Impact

	Model Details
	VQ-VAE and Autoregressive Image Generation
	Blossom
	Watermark Verification on Cropped Image

	Experimental Details
	Details About Evaluation Metrics
	Details of the Threshold for Watermark Determination

	More Experimental Results
	Green Index Generation
	Robustness Experiment without the Index Encoder
	More Qualitative Results

