
Adaptive Pruning of Deep Neural Networks for
Resource-Aware Embedded Intrusion Detection on

the Edge
Alexandre Broggi
Computer Science

University of Massachusetts Dartmouth
Dartmouth, Massachusetts, USA

abroggi@umassd.edu

Nathaniel Bastian
United States Military Academy

USA
nathaniel.bastian@westpoint.edu

Lance Fiondella
University of Massachusetts

Dartmouth, Massachusetts, USA
lfiondella@umassd.edu

Gokhan Kul
Computer Science

University of Massachusetts Dartmouth
Dartmouth, Massachusetts, USA

gkul@umassd.edu

Abstract—Artificial neural network pruning is a method in
which artificial neural network sizes can be reduced while
attempting to preserve the predicting capabilities of the network.
This is done to make the model smaller or faster during inference
time. In this work we analyze the ability of a selection of
artificial neural network pruning methods to generalize to a
new cybersecurity dataset utilizing a simpler network type than
was designed for. We analyze each method using a variety of
pruning degrees to best understand how each algorithm responds
to the new environment. This has allowed us to determine the
most well fit pruning method of those we searched for the task.
Unexpectedly, we have found that many of them do not generalize
to the problem well, leaving only a few algorithms working to
an acceptable degree.

Index Terms—Network Intrusion Detection Systems, Deep
Neural Network Pruning, IoT, Systems on Chip

I. INTRODUCTION

In recent years, Artificial Neural Networks (ANNs) have
gained significant popularity due to their impressive capa-
bilities in solving complex tasks across various domains,
particularly in natural language processing [1], [2], computer
vision [2], and cybersecurity [3], [4]. However, the increasing
size and complexity of ANN models present practical chal-
lenges, particularly regarding their computational and memory
demands [5], [6].

Internet of Battlefield Things (IoBT) [7] applications heavily
depend on portable devices that need to be embedded or
carried along with moving operations centers at the edge [8].
Applications of Artificial Intelligence (AI) and ANN can prove
to be extremely useful in IoBT settings. However, due to the
heavy computational and memory demands, containing ANNs
in chips that can be embedded is challenging. This motivates

This work has been submitted to an IEEE conference for possible publi-
cation. Copyright may be transferred without notice, after which this version
may no longer be accessible.

the exploration of efficient model optimization techniques, one
of which is neural network pruning [6], [9].

ANNs [10] are computational models inspired by the struc-
ture and function of the human brain, comprising intercon-
nected layers of artificial neurons that perform mathematical
operations to learn and predict relationships in data. These
models are commonly trained using optimization techniques
like gradient descent, which iteratively minimizes a loss func-
tion to improve prediction accuracy. Through the use of acti-
vation functions and multiple layers, ANNs can approximate
highly complex functions, enabling them to model nonlinear
relationships in data. Despite their impressive power, modern
ANN architectures, especially deep learning models, have
grown exponentially in size, involving billions of parameters
that require unreasonable computational resources for training
and for inference [11].

To address these scalability concerns, a technique known
as neural network pruning has been developed [6]. Pruning
involves reducing the size of a trained model by systematically
removing neurons or weights that contribute the least to the
model’s performance. This results in a smaller, more efficient
model with reduced storage requirements and faster inference
times, while retaining much of the original predictive accu-
racy. Pruning methods can generally be classified into several
categories: structured pruning [6], unstructured pruning [11],
and hybrid approaches [12]. Each of these techniques aims
to achieve an optimal balance between model efficiency and
performance.

The problem of model pruning is especially relevant in
resource-constrained environments, such as Internet of Things
(IoT) and IoBT applications, where computational efficiency
and size of the model are crucial, so that these models can
be used on the edge and even be embedded on hardware
such as memristor CMOS designs. Therefore, in the context

ar
X

iv
:2

50
5.

14
59

2v
1

 [
cs

.L
G

]
 2

0
M

ay
 2

02
5

of network security, deploying lightweight, efficient models is
essential for real-time intrusion detection, where large, high
latency models may be impractical. The ACI IoT dataset [3]
serves as a benchmark in this domain, representing real-world
IoT traffic and providing a suitable challenge for evaluating
the effectiveness of different pruning strategies.

This paper aims to survey the landscape of neural network
pruning mechanisms, with a focus on evaluating their efficacy
on an intrusion detection benchmark dataset. Specifically, we
compare multiple pruning methods applied to a deep neural
network trained on the ACI IoT dataset, analyzing their
effects on model performance and computational efficiency.
We also propose an alternate approach to an existing pruning
mechanism, BERT-Theseus [5], to enhance its effectiveness for
network intrusion detection. By doing so, we aim to provide
a deeper understanding of how pruning can contribute to
efficient deep learning models in the context of cybersecurity.

The remainder of this paper is organized as follows. Sec-
tion II reviews the relevant literature on neural network
pruning techniques, including structured, unstructured, and
hybrid approaches. Section III describes the algorithms we
will be using. Section IV describes the experimental setup,
including the architecture of the model used, the dataset, and
the implementation details. Section V presents the results,
comparing the impact of different pruning strategies on model
accuracy and computational efficiency. Finally, Section VI
concludes the paper with a discussion of our findings and
potential future research directions.

Concretely, the contributions of this paper are as follows:
• A comprehensive survey of pruning approaches, high-

lighting their respective strengths and weaknesses when
applied to the ACI IoT dataset.

• An empirical comparison of different pruning techniques
on a deep neural network for network intrusion detection.

• Proposed Iterative Theseus, improving on an existing
pruning mechanism, Bert-Theseus [5], demonstrating en-
hanced performance in terms of model efficiency and
accuracy.

In the context of ever-growing model sizes and the need
for efficient deployment, neural network pruning remains a
critical area of research. The results presented in this study
aim to guide researchers and practitioners towards more effi-
cient deployment of deep learning models in security-sensitive
applications.

II. PRUNING

Pruning is a method of model compression for energy
efficiency, training time efficiency or space requirements.
Although pruning is not the only method that can accomplish
this [9], as you could also use quantization or knowledge distil-
lation [13], pruning is the most straightforward. As a method,
Quantization [14] is the use of computationally smaller num-
bers to perform calculations, such as using int32 instead
of int64 for numbers, using smaller quanta. This allows the
model to be in a smaller space and to be mathematically faster
to calculate but can be tricky to deal with given the loss in

precision. Knowledge distillation is the method by which a
large ANN model is used to generate more efficient training for
a smaller ANN model. The core concept is that the larger ANN
has taken time to understand correlations between different
items and those specific correlations can be transferred to
smaller models easier then it was to find them on the smaller
model alone. On the other hand, pruning is the method of
removing layers, filters, or weights from a model that are less
important or otherwise redundant to the function of the model.

Pruning for ANNs has a multitude of forms and meth-
ods [6]. The methods are either more static, independent of
the model inputs, or more dynamic, dependent on the model
inputs. The most static/independent methods are based on the
weights of the actual model and can be performed without any
external data, making them fast but not necessarily good for
specific applications. Some partly dynamic/dependent methods
run the data through the model only once but keep histories
at specific points and then use that data to perform pruning.
The most dynamic/fully-dependent methods take advantage
of the training method of ANNs to have them prune their
own weights. There are, of course, exceptions to each of
these categories and exceptions to the categorization itself.
Conventionally, pruning can be structured, unstructured, or
a hybrid of the two. Structured means that the weights are
not pruned individually, instead they are pruned in groups
across the input vectors so that the output vector has fewer
dimensions. Unstructured pruning instead does prune weights
directly such that the output vector remains in the same format
but becomes sparse. While both methods can speed up calcu-
lations, unstructured pruning that can handle sparse matrices
often leads to a high compression rate but requires specific
hardware or library support for realistic compression [6].

Figure 1 shows the difference between structured and un-
structured pruning visually. The top left is an unpruned filter
where each cell is a weight, columns is an input value from
the features and each row will aggregate into a single value in
the output vector. The bottom left is structured pruning where
several output values are set to zero, visualized by darkening
all of the weight cells associated with the pruned output values.
The top right is unstructured pruning where individual weights
are pruned but not whole columns or rows.

Finally, the bottom right shows hybrid pruning where both
structured and unstructured pruning are being utilized.

One of the popular pruning approaches is to treat the
absolute value of the weights of each filter as an importance
measure to that filter. It is a simple, standard [15], and static
method for pruning. The higher weights are considered to be
more important, or of more use to the model, and the lower
weights to be less important, or less useful to the model [9].
Therefore, less important weights are then pruned from the
model.

Another static/independent method is random pruning,
which works similarly to Dropout but is permanent instead
of being regenerated on each new value and is used during
inference time.

An example of a partly dynamic/dependent method would

Fig. 1. Filter shown with different pruning methods

be if one was to use the gradient decent values from a single
training epoch to calculate the importance of each weight. To
then prune based off of that importance in the same manner
as the weight based pruning. Fully dynamic methods are even
more diverse than partly dynamic methods, they can utilize
options such as modifying the loss function to account for a
loss per non-zero node over a limit and count those nodes that
become zero as pruned nodes. This method allows the model
itself to determine importance in the same manner as picking
weights.

There are more pruning methods besides these examples
though, we were only able to test out a few in our experiments
that show a variety of categories. Specifically, we picked out
a small assortment of high performing algorithms to test on
collected from both [6] and through our own exploration of
the literature.

The contribution of our comparison of these algorithms is
that the model structure is outside of their original usage to
see if these methods are widely generalize-able to network
intrusion datasets and to compare them against the diverse
competition.

III. ALGORITHMS

In our evaluation of pruning approaches for NIDS, we
identified eight total algorithms or methods for implementation
and testing using the ACI IoT dataset [3], ADMM-joint [12],
Bert-Theseus [5], DAIS [16], Thinet [17], Iterative-Theseus,
Random pruning, and a complete retrain. Of these algorithms,
ADMM and DAIS two are based on using regularizers during
extra training of the model to perform pruning, the first of the
two also uses hybrid pruning instead of structured pruning.
The Bert-Theseus is a method of pruning whole layers instead
of just individual filters. Thinet uses a heuristic to identify
unneeded filters. We propose Iterative-Theseus as an update
on Bert-Theseus. The last two methods we have are just acting
as a control, the random pruning should show how the model
would behave if you randomly removed filters to reduce it

under a quota and then retrained, and complete retrain just
starts training fresh with a new model.

Each algorithm was chosen for a different purpose. ADMM-
joint inspired the start of the project and as such must have
been included in our tests. DAIS was chosen due to the results
from the VGG-16 model on the Imagenet-1k dataset as seen
in the survey paper. DAIS actually increased in accuracy by
nearly 3 percent after pruning, which seemed useful to test.
Thinet was likewise chosen due to high accuracy in the survey,
but with the added requirement that it had available compatible
code with our testing method to be sure we were implementing
it as well as possible. Thinet had an accuracy increase of
1.5 after pruning. BERT-Theseus was a method that utilized
methods in the direction we wanted to explore and had not
been directly compared to the other algorithms before. Task
Oriented Feature Distillation was chosen for a similar reason
to DAIS and Thinet, but from [18] instead, reaching a 7
percent increased accuracy on Resnet-50 after learning from
a a teacher from Resnet-152 which is the best in the Offline
Distillation category. Offline Distillation was chosen because
it seemed least like BERT-Theseus which had already been
selected, for the widest net to be cast of algorithms. As none
of the other algorithms are related each other, it seemed best
to select for a broad lineup for more uniform coverage rather
than a deep dive into related methods. Then we wanted to get
a good comparison of each so we decided to make a baseline,
this was to just prune filters randomly from the model. When
the random pruning did surprisingly well, we decided it might
be a good idea to test against a model just trained with the
data available in the pruning portion, which recreates a model
to match the pruned number of parameters.

A. ADMM-joint

ADMM (Alternating direction method of multipliers)-
joint [12] is an algorithm of retraining a model using binary
masks for the output of each filter. This algorithm uses the
ADMM method of allowing items to go beyond required
bounds for bounded variables, but then using regularizers
to bring them back into bounds. ADMM-Joint uses three
regularizers for its goals. The first limits the number of weights
using L0 normalization, which counts the non-zero values in
the weight matrix. The second relates the actual applied mask
to the idealized mask that only has values between 0 and 1,
inclusively. And the third makes sure the idealized mask is not
any value between 0 and 1, exclusively. Combined these three
regulairizers create the conditions that the mask should be
aiming for. The model is then trained while these regularizers
are continuously updated and applied to form the final mask
for the filters.

The ’joint’ in the name is referring to the concept that
this algorithm is performing both structured and unstructured
pruning simultaneously. The weights are pruned by the L0
norm, which is an unstructured pruning, where each weight is
considered individually. While the binary masks are structured
pruning as they are cutting out whole filters at a time.

Algorithm Structure Type Method of identifying importance

ADMMjoint Hybrid Dynamic/Fully-Dependent Regularizer based
BertTheseus Structured Dynamic/Fully-Dependent Layer replacement based

DAIS Structured* Dynamic/Fully-Dependent Regularizer based
IterativeTheseus Structured Static** Layer replacement based

ThiNet Structured Partly Dynamic/Dependent Heuristic measure
Random Pruning Structured Static Random

Complete replacement Structured Static Layer replacement based
TABLE I

ALGORITHMS USED

Note, for our implementation of ADMM we used much
of the code from the provided ADMM github repository.
However, we applied the masking after each linear layer while
the original code applied it during the matrix multiplication of
the weights. We performed a test and found that this does not
affect the gradients of the result.

B. DAIS

DAIS (Differentiable Annealing Indicator Search) [16] at-
tempts to make a binary mask for channels that is able to be
trained by the model itself. This is accomplished by allowing
the channel pruning value to be continuous from 0 to 1. Then
using a sigmoid function initially to allow back-propagation to
find and train this mask layer. As the model progresses through
training, the range is scaled by an annealing factor so that the
sigmoid becomes closer to a binary classifier. Channels are
specific to CNNs so we interpret them to mean to be working
with filters in our fully connected model, the difference being
the dimensionality of the output, channels having multiple
dimensions per input and filters only having one.

DAIS also uses a combination of three regularizers to
apply a loss value to the current distribution of the weights.
Unfortunately one of them was for residual network blocks,
which we did not have in our training model structure and
the lasso method was not controllable which was not good
for our tests so it was disabled much the same as the original
paper. That only left the third regularizer for use in our study.
Additionally DAIS was originally made for convolutional
blocks, while we are using fully connected.

To further complications with using DAIS in our tests, DAIS
uses a particular training scheme introduced by DARTS (Dif-
ferentiable architecture search) [19] that involves alternately
training just the masking layer on a speculative future of the
weights and then returning to train the weights. The original
DAIS may have used a differently modified version of this
training but the paper says to check a reference sheet that was
unable to be located for a specific breakdown of the training
method.

C. Bert-Theseus

Bert-Theseus [5] is a Knowledge Distillation adjacent
method. Specifically, using the classifications identified by
Gou et al. [18]1, it could be classified as a Feature-Based
Self-distillation method.

1The survey does not actually have BERT Theseus classified

It works by creating a new replacement layer for a series
of layers in the original model network, this replacement
layer is then randomly fed training samples alongside the
original pathway at a given percentage chance. This means
that at the start, given the percentage p, p% samples go to
the new replacement layer and (1 − p)% go to the original
layer. This allows the model weights time to adapt to the new
model structure. The probabilities are either slowly increased
or eventually just replaced with higher values over time,
eventually reaching 100% when the layer is replaced entirely.

For these tests, we wanted to reach a specific percentage
of filters as such we defined the replacement layers to reach
percentages. This is done by selecting modules in batches of
1/(averagepruningpercent) and defining them as a single
replacement layer. This is not always very accurate to the
pruning percentage, but does make some variation available
in the resulting data.

When the model has already reached a stable point where
it is not necessarily getting much better anytime soon, if you
are to replace one of the layers, and only train that layer and
a few layers around it, it may be possible to find a better local
minimum then before if it exists.

D. ThiNet

ThiNet [17] is a heuristic style pruning technique using the
output of the layer after the current layer to find what filters
to prune. This is accomplished by finding the expected output
of the current layer over some training samples, then taking
those values and going row by row feeding them into the next
layer padded by zeros. These outputs are each summed up to
produce a total activation for each filter in the current layer,
as seen by the next layer. The filters are pruned in order of
increasing activation as the lowest activation levels are not
contributing much to the next layer’s total activation.

ThiNet also generates a weight to be applied to each of
the remaining weights to hasten the retraining of the reduced
model. This weight is calculated by the activations of the
layers that are being pruned from the model.

E. Iterative-Theseus

This method is one of our contributions. It is related to
the Bert-Theseus method, as it is a layer-replacement of the
current model. However, instead of training the new layer
alongside the old layer, only the new layer is used, and only
one layer is replaced at a time. While this idea is simple and
likely have been tried in other domains, we would like to test

Fig. 2. The model structure used for training

Count Grouped
Full Under- Grouped Under-

Classification Count sampled Count sampled

Benign 601, 868 5, 800 601, 868 11, 830
DNS Flood 18, 577 5, 800 20, 816* 11, 830*

Dictionary Attack 4, 645 4, 645 4, 645 4, 645
Slowloris 2, 974 2, 974 2, 974 2, 974

SYN Flood 2, 113 2, 113 * *
Port Scan 582 582 1, 183** 1, 183**

Vulnerability Scan 445 445 ** **
OS Scan 156 156 ** **

UDP Flood 68 68 * *
ICMP Flood 58 58 * *

TABLE II
COUNTS OF EACH CLASS FROM THE ACI DATASET

a brute force method such as this to evaluate how it holds up
against the more nuanced methods.

F. Baselines

We also have two baselines to compare against. The first is
random structured pruning where random filters are disabled
down to a percentage of the originally available filters on each
layer. The second is Recreation run where the entirety of the
weights and biases are reset and resized to be in line with
what is available in the random structured pruning after the
pruning occurs. The model is trained using just the pruning
dataset, which is a smaller dataset then the original model but
giving access to the whole dataset would give an advantage.

IV. MODEL AND DATA

In order to perform pruning on an artificial neural network,
we need to define and train a network on a relevant dataset.
We decided to use the dataset ACI-IOT-2023-payload [3] as
our dataset due to its complexity, ease of access, and the
direction we plan to go in in further work. We tried to use
under-sampling, and grouping together some of the smaller
classes to balance the dataset which is explored in Table II.

We used a simple model structure built from the pytorch 2

library consisting of a pair of linear layers surrounding 27
fully connected linear layers with leaky ReLU activation and
dropout. The number of layers was originally chosen by a short
random search of layer sizes but was later reduced before the
results as thinet’s time scaled extremely poorly by the number
of layers, which got in the way of ensuring the functionality
of our testing codebase. We did not perform a longer search
for a better model due to computational time required, but we
left that for future work to compare against.

We used two different models, one with 175 base filters
per hidden layer that used the Under-sampled datasetII and
the other with 75 filters per hidden layer using the Grouped
Under-sampled datasetII each with a batch size of 100. The
filters per hidden layer were augmented with an increase of 1
per layer, ex. 175, 176, 177, to aid in identifying problems in
implementation. The grouped dataset combined several related
classes into one to hopefully reduce loss for algorithms that
are heavily dependent on loss values. These reduced numbers
are marked in the table with a star or two stars for each group
respectively.

The ACI-IOT-2023 dataset is a dataset that registers packet
data from a group of devices as they receive a series of
network attacks to identify network intrusions. Each entry in
the dataset has srcip: source ip address, sport: source port
number, dstip: destination ip address, dsport: destination port
number, protocol m: the network protocol, sttl: source time to
live, total len: length of network packet, payload: the contents
of the network packet, stime: sending time, label: the target
column. The dataset itself had a few modifications to prepare
for the model. The stime column was removed because it
might have had potential identifying information due to each
class of network attack occurring at a different time, which
times may not reflect in real world situations. The IP columns,
ipv4, were broken into different integer columns from each
section separated by bytes. Protocol was broken into single
one-hot vectors, and the payload was broken into bytes and
padded or truncated to 1500 columns/bytes. This ended up
with 1515 different feature columns and one target column.

The models were initially trained with Crossentropy loss,
the ADAM optimizer, a learning rate of 0.0009 with a multi-
plicative scheduler of 0.1 every 30 epochs, 150 total epochs,
dropout at 0.0002, the 27 hidden layers each with 175/75
filters. 80% of the total dataset was used for training with
the rest for testing the model’s fit. For pruning, the number
of epochs is decreased to 50, for either the pruning loops if
relevant or the retraining or both. The model was made up
of linear layers with inter-spaced Leaky ReLU activation and
dropout for training, seen in figure 2.

In the interest of being clear and open with the methods
used in our work, our code and result data are available on
Github3.

2https://pytorch.org
3https://github.com/ambroggi/Pruning-Project-for-Deep-Neural-Networks/

tree/Before-Ontology-work

https://github.com/ambroggi/Pruning-Project-for-Deep-Neural-Networks/tree/Before-Ontology-work
https://github.com/ambroggi/Pruning-Project-for-Deep-Neural-Networks/tree/Before-Ontology-work

Fig. 3. Big pruning model scaled such that the original run is at (1, 1)

V. RESULTS

We ran each algorithm three times on each of ten pruning
percentages. We are defining ’pruning percentages’ to be the
estimated percentage of filters for each hidden layer after
pruning has been applied, or an estimated replacement. For
example, ADDM joint pruning has both ’k’ and ’percent’
options, so each is scaled by the pruning percent. Most of
the algorithms are like this such that you can set a value
per layer to a percentage or create a new layer with the the
expected percent. The big exception to this is BERT Theseus
which does not have any option to prune down by a specific
percent, in this case we defined the blocks for the algorithm
to be a size that is the multiplicative inverse to the average
pruning percentage, due to the other constraint of it needing
to be a whole number, the BERT Theseus tests do not have
as much variation as the other tests in the lineup. We used
two different groups of pruning percentages, from 0.99 down
to 0.12 by increments of 0.12-0.13 and from 0.12 down to
0.04 in increments of 0.04 for finer increments near the end.
This did result in us running the pruning percentage of 0.12
twice, which we kept both versions of and combined them in
the same method as the rest.

To further be sure our findings were not by chance, we
ran two separate tests with only minor changes to the model
structure between them. Those changes being that the model
seen in figure 4, has the hidden layers that are under half
as large, the dataset grouped some related classes together
resulting in fewer classes total, and the batch size is ten times
as big as compared to the one seen in figure 3. The F1 scores
themselves were calculated from the average F1 from each
specific class in a single run.

You can see the results of our tests in Figures 3 and 4. They
are made up of the original run, the black dot, the various
pruning methods, seen as multi-color lines, and the retraining
from scratch, the gray line. Each is made up of three runs
that are individually scaled such that they are in respect to
the original F1 score and number of filters. Then they are

Fig. 4. Smaller pruning model scaled such that the original run is at (1, 1)

aggregated by means. This aggregation has error bars shown
in very light gray calculated by 1.960∗σ√

3
, given that there were

three trial runs, we are aiming for a 95% confidence interval
hence a z score of 1.960. In the equation σ is the Standard
Deviation, and we are assuming normal distribution. However,
it may be incorrect to assume normal distribution for such a
small sample size.

The first thing that appears out of the data is that two
different styles appear, DAIS and BERT-Theseus appear to
increase with more reduced models, we will refer to these as
Helped algorithms, as in a more restricted prune helps them
and the remaining pruning methods decrease after a certain
point, we will call these Hindered algorithms. We will discuss
any conclusions we can make about these categories later.

As the Hindered algorithms are more common and more
expected, we will analyze their results first. Each hindered
algorithm appears to have a point where they start decreasing
in accuracy fast, this critical point appears to be related to the
specific pruning algorithm being used, with Random Struc-
tured falling off first, followed by ADMM, Thinet, Recreation,
and Iterative Theseus in that order. This is likely the point
where the pruning method begins pruning critical nodes with
no remaining redundancy which will be discussed later.

The best in terms of F1 before that point, as seen by
both Figures, appears to be Iterative Theseus, however, these
appearances do not tell the full story as Iterative Theseus takes
by far the longest time to prune out of any of the Hindered
algorithms and only takes more time as more is pruned from
the model. The remaining algorithms take far less time to
prune and are therefor likely more reasonable in application.
The next best algorithm is Thinet, although it can be argued
that the basic Recreation method is close. Thinet is on the
slower side of the Hindered algorithms as a whole to prune,
however it takes nearly an order of magnitude less time than
Iterative Theseus. Additionally Thinet takes less time to prune
the more pruning you perform due to an inverted pruning
selection, picking out what to keep instead of what is gotten

rid of.
Complete Recreation of the model is the next best, at least

during the later stages of pruning, which hints that our initial
model was likely made too large for the dataset. There appears
to be a significant dropoff in the performance of Recreation in
the bigger model seen in Figure 3 at the very start, this may
just be the results of a three times difference in the training
time for the initial model but is something to keep an eye on.
ADMM does not do as well as we were expecting it to do but
is otherwise not very remarkable in our tests.

The worst of the Hindered category is Random Structured
pruning. It starts off doing well, and even does better an half
of the rest at one point, but is the first to hit the point of
pruning critical nodes. Although this point appears to occur
in a range as evidenced by the large error bar at just around
0.2% where it both has and has not reached the critical point.

Of the two Helped algorithms, it appears that both of the
Helped algorithms do not always perform adequately for the
data BERT-Theseus actually turns backwards at the end of
each of its lines increasing in parameter count. This is just
caused by our model structure and selection method of the
pruned layers, given that the layer size increases and we are
organizing layers into chunks, increasing the size of the chunk
by a little bit does not increase the number of chunks but
does increase the output dimension of the data, which results
in an increased number of parameters. DAIS appears to be
highly variable in its accuracy, with some results doing well
and others doing poorly. It does tend to do better when the
pruning rate increases but is very unstable while doing so.

VI. CONCLUSION

The first conclusion we feel that we can make is that our
initial model was too large. We attempted to make a model
that was able to be reasonably pruned and achieved a high F1
score. However the number of algorithms performing better
at lower parameter counts and the long period before the
dropoff of the Hindered algorithms indicate that the initial
model may have individually done better if it was smaller
in the beginning. Additionally, the good performance of the
Recreation run also supports this conclusion. However, the
model still can be pruned, although results may be skewed to
be higher than expected.

The point where the Hindered algorithms turn downwards
is likely the point where they begin pruning critical nodes
with no backup redundancy, meaning that they begin to loose
critical information. As a minimum number of nodes must
be present for there to be enough width to distinctly identify
classes, such as a single filter would not be able to distinctly
identify the 10 classes seen here, so there must be a point
of too much pruning. This point does not seem to be set
in stone, even within a single algorithm as evidenced by the
comparatively large standard deviation for values around this
critical point. We believe this large standard deviation appears
due to some runs hitting the point earlier than the testing
percentage and others later.

The two categories we see in our results, those algorithms
that are Hindered and Helped by more pruning, the Hindered
algorithms we consider to be the default because it has the
majority of the algorithms including the two baselines we are
using. From this perspective, it is just the Helped algorithms
that are performing unexpectedly. We believe that each of
the two Helped algorithms are performing in this manner for
different reasons. The BERT-Theseus method is performing
poorly because at lower pruning rates, each module in the
model is effectively being replaced by an equal module that
is just untrained, that means the model has to train twice
the number of modules since each layer relies on the layer
before it. The extra training requirements do not help and just
create confusion, we believe that extra training could bring
the BERT-Theseus early models up to the point of Recreation
but not much further than that. Once more layers can be
removed though, there becomes far less to retrain and thus the
model gets ”Helped”. DAIS however uses a modified the loss
function which may have overtaken the normal loss applied
to retrain the model, and focus too much on pruning. Perhaps
applying gradient clipping would help DAIS work well on
more lightly pruned models. However that is just speculation.

BERT-Theseus appears to do well when pruning by a lot
and combining several layers together, however this may be
due to the model having too many layers to start with. But
even if that is the case it results in a better model overall
which is good. Our conclusion is that BERT-Thesesus makes
a good pruning method, but only if you are trying to remove
large segments of the model.

DAIS is competitive with the other algorithms at lower
weight pruning percents when it works, however it is unre-
liable for the entirety. Thus we do not feel like the algorithm
is good when applied to Network Packet datasets, or non-
residual models, which limit the amount of regularizers we
can use. This might also be caused by the training cycle not
being well described, perhaps a better training cycle would
improve the reliability of the algorithm. Our conclusion with
DAIS is that it needs to be further modified to work well on
this problem.

ADMM works better than randomly pruning the model but
appears to be more well designed for CNN models instead of
purely fully connected models. This may have decreased its
performance. Our conclusion with ADMM is that it works,
but is not the best method of pruning in this domain.

The Iterative Theseus method we devised appears to do very
well, but does not work fast. We believe that a brute force
method like Iterative Theseus needs to be countered by a more
optimal method of retraining the model over time, such that
it can be run in reasonable time frames.

The work of this paper has investigated a selection of
five existing pruning and knowledge distillation methods and
compared them on a novel dataset and model structure to
analyze suitability for use with the dataset. From those tests
we have found that the best algorithm for the ACI dataset on a
fully connected neural network is Thinet due to higher perfor-
mance and reasonable pruning time. Alternatively, completely

replacing the layers to prune and retraining them also does
well but takes much longer. We have also found that most
analyzed pruning algorithms made for CNN networks cannot
be transferred over to fully connected networks without losing
significant potency. This is concerning due to the similarities
between the structures, especially for future plans to apply the
pruning methods to other model types.

ACKNOWLEDGMENT

This work was supported by the U.S. Military Academy
(USMA) under Cooperative Agreement No. W911NF-22-2-
0160. The views and conclusions expressed in this paper are
those of the authors and do not reflect the official policy or
position of the U.S. Military Academy, or U.S. Army.

REFERENCES

[1] S. C. Fanni, M. Febi, G. Aghakhanyan, and E. Neri, “Natural language
processing,” in Introduction to Artificial Intelligence. Springer, 2023,
pp. 87–99.

[2] L. Zhang, Y. Shi, Z. Shi, K. Ma, and C. Bao, “Task-oriented feature dis-
tillation,” Advances in Neural Information Processing Systems, vol. 33,
pp. 14 759–14 771, 2020.

[3] N. Bastian, D. Bierbrauer, M. McKenzie, and E. Nack, “Aci
iot network traffic dataset 2023,” 2023. [Online]. Available: https:
//dx.doi.org/10.21227/qacj-3x32

[4] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune: An
ensemble of autoencoders for online network intrusion detection,”
2018. [Online]. Available: https://arxiv.org/abs/1802.09089

[5] C. Xu, W. Zhou, T. Ge, F. Wei, and M. Zhou, “Bert-of-theseus:
Compressing bert by progressive module replacing,” 2020. [Online].
Available: https://arxiv.org/abs/2002.02925

[6] Y. He and L. Xiao, “Structured pruning for deep convolutional neural
networks: A survey,” IEEE transactions on pattern analysis and machine
intelligence, vol. 46, pp. 2900–2919, 2023.

[7] S. Joshi, A. Thakar, and C. Patel, “Applications of machine learning
and deep learning in securing internet of battlefield things: A futuristic
perspective,” in 2023 10th International Conference on Computing for
Sustainable Global Development (INDIACom). IEEE, 2023, pp. 333–
338.

[8] J. Riem, L. Zhang, J. Chen, H. Mackay, T. Lan, N. D. Bastian, and G. C.
Adam, “Co-design of decision trees for network intrusion detection at
the edge on digital vs. analog hardware,” in MILCOM 2024 - 2024 IEEE
Military Communications Conference (MILCOM), 2024, pp. 39–44.

[9] V. Nielson, “How to forget jenny’s phone num-
ber,” 2023. [Online]. Available: https://vianielson.substack.com/p/
af66fa92-308b-4141-8ccd-f35cc01539a3

[10] R. P. Lippmann, “An introduction to computing with neural nets,” ACM
SIGARCH Computer Architecture News, vol. 16, no. 1, pp. 7–25, 1988.

[11] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both
weights and connections for efficient neural network,” in
Advances in Neural Information Processing Systems, C. Cortes,
N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, Eds.,
vol. 28. Curran Associates, Inc., 2015, pp. 1135–1143.
[Online]. Available: https://proceedings.neurips.cc/paper files/paper/
2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf

[12] G. Lee and K. Lee, “Dnn compression by admm-based joint
pruning,” Knowledge-Based Systems, vol. 239, p. 107988, 2022.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0950705121011047

[13] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” 2015. [Online]. Available: https://arxiv.org/abs/1503.02531

[14] Y. Gong, L. Liu, M. Yang, and L. Bourdev, “Compressing deep
convolutional networks using vector quantization,” 2014. [Online].
Available: https://arxiv.org/abs/1412.6115

[15] T. P. Foundation, “L1unstructured,” The PyTorch Foundation,
october 2024, documentation for pytorch v2.5. [Online].
Available: https://pytorch.org/docs/stable/generated/torch.nn.utils.prune.
L1Unstructured.html#torch.nn.utils.prune.L1Unstructured

[16] Y. Guan, N. Liu, P. Zhao, Z. Che, K. Bian, Y. Wang, and J. Tang,
“Dais: Automatic channel pruning via differentiable annealing indicator
search,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 34, no. 12, pp. 9847–9858, 2022.

[17] J.-H. Luo, J. Wu, and W. Lin, “Thinet: A filter level pruning method
for deep neural network compression,” in Proceedings of the IEEE
international conference on computer vision. IEEE, 2017, pp. 5058–
5066.

[18] J. Gou, B. Yu, S. J. Maybank, and D. Tao, “Knowledge distillation: A
survey,” International Journal of Computer Vision, vol. 129, no. 6, pp.
1789–1819, 2021.

[19] H. Liu, K. Simonyan, and Y. Yang, “Darts: Differentiable architecture
search,” 2018. [Online]. Available: https://arxiv.org/abs/1806.09055

APPENDIX

https://dx.doi.org/10.21227/qacj-3x32
https://dx.doi.org/10.21227/qacj-3x32
https://arxiv.org/abs/1802.09089
https://arxiv.org/abs/2002.02925
https://vianielson.substack.com/p/af66fa92-308b-4141-8ccd-f35cc01539a3
https://vianielson.substack.com/p/af66fa92-308b-4141-8ccd-f35cc01539a3
https://proceedings.neurips.cc/paper_files/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://www.sciencedirect.com/science/article/pii/S0950705121011047
https://www.sciencedirect.com/science/article/pii/S0950705121011047
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/1412.6115
https://pytorch.org/docs/stable/generated/torch.nn.utils.prune.L1Unstructured.html#torch.nn.utils.prune.L1Unstructured
https://pytorch.org/docs/stable/generated/torch.nn.utils.prune.L1Unstructured.html#torch.nn.utils.prune.L1Unstructured
https://arxiv.org/abs/1806.09055

small big
Parameters F1 Score Standard Time Parameters F1 Score Standard Time

PruningSelection Percent Deviation (Log) Deviation (Log)

Original Run N/A 329k 0.945 ±0.00 0.019* 1233k 0.769 ±0.04 0.015*

ADMM Joint

0.99 305k 0.951 ±0.01 0.023 1132k 0.574 ±0.09 0.020
0.87 268k 0.938 ±0.02 0.023 994k 0.703 ±0.11 0.020
0.74 230k 0.939 ±0.01 0.023 853k 0.611 ±0.01 0.020
0.62 190k 0.945 ±0.02 0.024 706k 0.629 ±0.10 0.020
0.49 152k 0.943 ±0.02 0.023 566k 0.574 ±0.04 0.020
0.37 115k 0.922 ±0.03 0.023 428k 0.559 ±0.00 0.019
0.25 78k 0.924 ±0.04 0.023 291k 0.608 ±0.09 0.019
0.12 38k 0.660 ±0.43 0.023 142k 0.481 ±0.22 0.019
0.08 25k 0.366 ±0.45 0.022 93k 0.400 ±0.31 0.018
0.04 14k 0.278 ±0.30 0.022 54k 0.250 ±0.22 0.018

BERT Theseus

0.99 329k 0.106 ±0.00 0.038 1233k 0.041 ±0.00 0.027
0.87 329k 0.106 ±0.00 0.038 1233k 0.041 ±0.00 0.027
0.74 329k 0.106 ±0.00 0.038 1233k 0.041 ±0.00 0.027
0.62 329k 0.106 ±0.00 0.038 1233k 0.041 ±0.00 0.027
0.49 220k 0.227 ±0.04 0.023 736k 0.035 ±0.00 0.016
0.37 220k 0.081 ±0.05 0.023 736k 0.035 ±0.01 0.016
0.25 192k 0.335 ±0.04 0.018 598k 0.214 ±0.00 0.013
0.12 148k 0.466 ±0.05 0.013 387k 0.400 ±0.04 0.009
0.08 153k 0.912 ±0.02 0.011 394k 0.758 ±0.02 0.009
0.04 161k 0.956 ±0.01 0.010 404k 0.828 ±0.02 0.008

DAIS

0.99 292k 0.324 ±0.39 0.883 1132k 0.087 ±0.04 0.980
0.87 265k 0.291 ±0.32 0.967 971k 0.031 ±0.02 0.871
0.74 242k 0.402 ±0.04 0.923 866k 0.013 ±0.01 0.815
0.62 205k 0.282 ±0.29 0.905 726k 0.020 ±0.01 0.910
0.49 172k 0.257 ±0.06 0.904 595k 0.073 ±0.10 0.857
0.37 148k 0.746 ±0.15 0.906 407k 0.102 ±0.07 0.848
0.25 149k 0.661 ±0.46 0.883 342k 0.345 ±0.28 0.827
0.12 101k 0.794 ±0.37 0.878 215k 0.371 ±0.26 0.845
0.08 81k 0.343 ±0.52 0.885 193k 0.159 ±0.03 0.818
0.04 40k 0.063 ±0.04 0.894 96k 0.184 ±0.13 0.774

Iterative Theseus

0.99 291k 0.968 ±0.01 0.165 1055k 0.800 ±0.03 0.114
0.87 237k 0.971 ±0.01 0.169 843k 0.749 ±0.07 0.228
0.74 187k 0.970 ±0.00 0.212 650k 0.750 ±0.03 0.285
0.62 141k 0.938 ±0.04 0.340 474k 0.722 ±0.07 0.348
0.49 101k 0.943 ±0.03 0.344 330k 0.745 ±0.03 0.463
0.37 68k 0.927 ±0.03 0.383 213k 0.687 ±0.06 0.530
0.25 41k 0.918 ±0.02 0.447 120k 0.702 ±0.11 0.589
0.12 16k 0.847 ±0.07 0.470 44k 0.618 ±0.11 0.712
0.08 10k 0.782 ±0.06 0.476 26k 0.577 ±0.03 0.786
0.04 5k 0.668 ±0.07 0.518 12k 0.529 ±0.07 0.787

Random Structured

0.99 305k 0.952 ±0.02 0.006 1132k 0.618 ±0.07 0.005
0.87 268k 0.916 ±0.02 0.006 994k 0.636 ±0.13 0.005
0.74 230k 0.934 ±0.03 0.007 853k 0.594 ±0.03 0.005
0.62 190k 0.915 ±0.04 0.007 706k 0.677 ±0.10 0.005
0.49 152k 0.946 ±0.01 0.007 566k 0.613 ±0.06 0.005
0.37 115k 0.914 ±0.03 0.007 428k 0.618 ±0.08 0.005
0.25 78k 0.345 ±0.41 0.007 291k 0.235 ±0.34 0.005
0.12 38k 0.106 ±0.00 0.007 142k 0.041 ±0.00 0.005
0.08 25k 0.106 ±0.00 0.007 93k 0.041 ±0.00 0.005
0.04 14k 0.106 ±0.00 0.007 54k 0.041 ±0.00 0.005

Recreation

0.99 291k 0.938 ±0.01 0.005 1055k 0.592 ±0.04 0.005
0.87 237k 0.931 ±0.03 0.006 843k 0.552 ±0.02 0.004
0.74 187k 0.947 ±0.00 0.005 650k 0.572 ±0.05 0.004
0.62 141k 0.935 ±0.01 0.006 474k 0.635 ±0.06 0.004
0.49 101k 0.896 ±0.02 0.006 330k 0.715 ±0.05 0.004
0.37 68k 0.925 ±0.04 0.006 213k 0.579 ±0.02 0.004
0.25 41k 0.947 ±0.01 0.006 120k 0.568 ±0.09 0.005
0.12 16k 0.748 ±0.32 0.006 44k 0.586 ±0.07 0.004
0.08 10k 0.574 ±0.41 0.006 26k 0.603 ±0.07 0.004
0.04 5k 0.106 ±0.00 0.005 12k 0.380 ±0.29 0.004

Continued on next page

small big
Parameters F1 Score Standard Time Parameters F1 Score Standard Time

PruningSelection Percent Deviation (Log) Deviation (Log)

Thinet

0.99 286k 0.963 ±0.00 0.009 1045k 0.789 ±0.03 0.027
0.87 232k 0.910 ±0.01 0.008 833k 0.700 ±0.07 0.026
0.74 182k 0.910 ±0.04 0.008 642k 0.673 ±0.14 0.025
0.62 137k 0.930 ±0.02 0.008 467k 0.750 ±0.06 0.023
0.49 98k 0.944 ±0.02 0.007 325k 0.660 ±0.10 0.020
0.37 65k 0.879 ±0.14 0.007 208k 0.733 ±0.02 0.017
0.25 38k 0.773 ±0.11 0.007 116k 0.523 ±0.18 0.013
0.12 16k 0.637 ±0.11 0.006 43k 0.233 ±0.15 0.009
0.08 10k 0.369 ±0.10 0.006 26k 0.105 ±0.05 0.007
0.04 4k 0.196 ±0.15 0.006 12k 0.067 ±0.05 0.006

TABLE III: Number of Non-zero parameters, pruning time, and the F1 score
in validation averaged over the three tests performed for each type of test, the
standard deviation of these tests is also given. The pruning time is scaled so
that the longest test took 1.00 and then averaged over the three runs. Each type
has an algorithm and a weight prune percent, here just called percent, however,
the hidden layers have a slightly lower, (10% lower) pruning percentage due
to how we set up our tests.
∗Original run time includes initial training time

	Introduction
	Pruning
	Algorithms
	ADMM-joint
	DAIS
	Bert-Theseus
	ThiNet
	Iterative-Theseus
	Baselines

	Model and Data
	Results
	Conclusion
	References
	Appendix

