
ar
X

iv
:2

50
5.

14
46

1v
1 

 [
qu

an
t-

ph
] 

 2
0 

M
ay

 2
02

5

MicroCrypt Assumptions with Quantum Input
Sampling and Pseudodeterminism:

Constructions and Separations

Mohammed Barhoush1⋆, Ryo Nishimaki2, and Takashi Yamakawa2

1 Université de Montréal (DIRO), Montréal, Canada
mohammed.barhoush@umontreal.ca

2 NTT Social Informatics Laboratories
ryo.nishimaki@ntt.com, takashi.yamakawa@ntt.com

Abstract. We investigate two natural relaxations of quantum crypto-
graphic primitives. The first involves quantum input sampling, where
inputs are generated by a quantum algorithm rather than sampled uni-
formly at random. Applying this to pseudorandom generators (PRGs)
and pseudorandom states (PRSs), leads to the notions denoted as PRGqs

and PRSqs, respectively. The second relaxation, ⊥-pseudodeterminism,
relaxes the determinism requirement by allowing the output to be a spe-
cial symbol ⊥ on an inverse-polynomial fraction of inputs.
We demonstrate an equivalence between bounded-query logarithmic-size
PRSqs, logarithmic-size PRSqs, and PRGqs. Moreover, we establish that
PRGqs can be constructed from ⊥-PRGs, which in turn were built from
logarithmic-size PRS. Interestingly, these relations remain unknown in
the uniform key setting.
To further justify these relaxed models, we present black-box separa-
tions. Our results suggest that ⊥-pseudodeterministic primitives may be
weaker than their deterministic counterparts, and that primitives based
on quantum input sampling may be inherently weaker than those using
uniform sampling.
Together, these results provide numerous new insights into the structure
and hierarchy of primitives within MicroCrypt.

Keywords: Quantum Cryptography · Pseudorandom States · Pseudodetermin-
ism · Black-Box Separation

⋆ Part of this work was done while visiting NTT Social Informatics Laboratories as
an internship.

https://arxiv.org/abs/2505.14461v1


Table of Contents

MicroCrypt Assumptions with Quantum Input Sampling and
Pseudodeterminism: Constructions and Separations . . . . . . . . . . . . . . . . . . . 1

Mohammed Barhoush, Ryo Nishimaki, and Takashi Yamakawa
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1 Our Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.1 Quantum Input Sampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.2 Separations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.3 Discussion of Separations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Relation to Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Technical Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.1 Quantum Input Sampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.2 Separation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Black-Box Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 MicroCrypt Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Pseudodeterministic Pseudorandom Strings from

Pseudorandom States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Pseudodeterministic Primitives in MicroCrypt . . . . . . . . . . . . . . . . 19

3 Definitions: Cryptography with Quantum Input Sampling . . . . . . . . . . . 20
4 Relations among Primitives with Quantum Input Sampling . . . . . . . . . . 22

4.1 PRGqs from ⊥-PRG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 PRGqs from BC-SPRSqs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3 SPRSqs from PRGqs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Separations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1 Separating PRG from PRFqs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1.1 Separation Proof. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Separating OWSG from ⊥-PRG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2.1 Separation Proof. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3 Separating ⊥-PRG from PRFqs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.3.1 Separation Proof. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
A BQ-PRUqs from PRGqs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

A.1 Definitions: PRPqs and BQ-PRUqs . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
A.2 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58



1 Introduction

The search for the minimal assumptions required for quantum cryptography
was triggered with the astonishing discovery that pseudorandom states (PRSs)
[23] may exist even when quantumly-evaluable 1 one-way functions (OWF) do
not, relative to an oracle 2 [25]. PRSs serve as the quantum analog to PRGs, out-
putting a state instead of a classical string. Critically, this difference does not pre-
vent PRSs supporting some applications similar to those enabled by PRGs, such
as commitments, one-time signatures, and one-way state generators (OWSG)s
[31, 3].

This separation naturally raised questions on the minimal assumptions
required to build quantum cryptographic primitives. Addressing this question
has fueled significant research, leading to a variety of quantum assumptions.
Different assumptions provide a different balance between how well they replicate
OWFs in cryptography and how strong of an assumption they constitute. The
resulting assumptions are intricately related in what has now came to be known
asMicroCrypt. This field comprises various assumptions derived from OWFs, but
where the other direction is not known. Despite substantial progress, numerous
questions remain unanswered. What is clear, however, is that MicroCrypt is
significantly more intricate than its classical counterpart.

Several of the MicroCrypt assumptions introduced parallel their classical
counterparts but incorporate quantum elements. For instance, quantum unpre-
dictable state generators [29] and one-way state generators [31] yield quantum
outputs, similar to PRSs. Additionally, assumptions such as ⊥-PRG [4] and one-
way puzzles [24] involve only classical communication but rely on quantum com-
putation. These quantum elements are believed to make the assumptions weaker.

Despite advances, using general PRSs as a complete replacement for PRGs
in cryptographic applications has been challenging. Some progress has been made
in the specific case of logarithmic-size pseudorandom states, which we denote by
short PRS (SPRS) as in [2], where tomography can transform the state into a
classical pseudorandom string [2]. However, tomography is not deterministic, re-
sulting in what has been termed pseudodeterministic PRG. This roughly means
that on 1 − 1/poly(n) fraction of inputs, the output is the same except with
negligible probability 3. While these generators proved useful in various appli-
cations, the pseudodeterminism is sometimes problematic when using them in
place of traditional PRGs. This obstacle motivated a follow-up work [4], that
introduced an intermediate notion called ⊥-PRG, which is built from pseudode-
terministic PRGs. With ⊥-PRGs, the non-deterministic outcomes can be detected
and replaced with ⊥, allowing many PRG applications to proceed by handling ⊥
cases separately. This approach enabled significant applications, such as many-

1 In this work, all primitives including OWFs and PRG, refer to the quantum-evaluable
versions, unless stated otherwise.

2 Note that one-way functions and pseudorandom generators are equivalent.
3 “Pseudodeterminism” is sometimes defined differently in other works [6, 5, 7]. We
follow the definition given in [2].

3



time digital signatures and quantum public-key encryption with tamper-resilient
keys, which had eluded MicroCrypt.

While these applications are powerful, ⊥-PRGs and SPRSs have not been
black-box separated from OWFs 4, which somewhat limits the significance of
these results. In fact, most MicroCrypt assumptions, such as pseudorandom
function-like states with proofs of destruction [8] and efficiently verifiable one-
way puzzles (Ev-OWPuzzs) [24, 15], have been conjectured to be weaker than
(quantum-evaluable) OWFs, but their separability has not been established. Un-
derstanding which assumptions are separated from OWFs and, more generally,
the relations among different MicroCrypt primitives is an important goal in the
field.

1.1 Our Work

Traditionally, many cryptographic primitives such as PRGs and PRSs rely on
inputs sampled uniformly at random. The main idea of our work is that sampling
inputs with a quantum procedure, instead of at random, yields fundamentally
different primitives. We denote the resulting primitives with a superscript such
as PRGqss and PRSqss.

To clarify, a pair of QPT algorithms (QSamp, G) is a PRGqs if QSamp(1λ)
samples a λ-bit input, which is then mapped by G to an output of length ℓ > λ,
and the following security condition is satisfied: For any QPT adversary A,∣∣∣∣ Pr

k←QSamp(1λ)
[A(G(k)) = 1]− Pr

y←{0,1}ℓ
[A(y) = 1]

∣∣∣∣ ≤ negl(λ).

Naturally, we also require that G is almost-deterministic, meaning that it returns
the same output on a fixed input except with negligible probability. Notice that
this notion differs from a traditional PRG, where the above security condition is
guaranteed if the input k is sampled uniformly at random. Similarly, a PRSqs con-
sists of a pair of algorithms (QSamp′, G′) such that for an input k ← QSamp′(1λ),
polynomial copies of |ψk⟩ ← G′(k) are indistinguishable from polynomial copies
of a Haar random state.

While variants of MicroCrypt primitives based on quantum input sampling
have been considered before for notions such as OWSGs and PRSs [30, 24, 12], the
fundamental distinction between primitives based on quantum versus uniform
input sampling has not been previously recognized.

Note that any classical input sampling algorithm can be derandomized and
replaced with uniform key sampling. Therefore, using a classical input sampling
algorithm is unnecessary. However, a quantum procedure cannot be derandom-
ized and might include non-deterministic quantum computations. Postponing
such computations to the evaluation or state-generation phase can result in dif-
ferent outcomes across executions, which is problematic for deterministic prim-
itives such as PRSs and PRGs.

4 Notably, the separation between PRS and OWFs [25] only applies to linear-sized
PRSs and not to SPRS.

4



Before moving to a detailed explanation, we first list a brief high-level
description of the main contributions of this paper. For the sake of simplicity,
this summary is somewhat weaker than what we actually accomplish. We show
the following:

– The pseudodeterminism error in ⊥-PRGs can be eliminated if quantum in-
put sampling is allowed. In particular, ⊥-PRG imply PRGqs. This stands in
contrast to the fact that ⊥-PRG are not known to imply PRG.

– Primitives with quantum input sampling behave differently from their uni-
form input sampling counterparts. In particular, we realize that PRGqs,
bounded-copy SPRSqs, and SPRSqs are all equivalent under a certain pa-
rameter regime. Such an equivalence is not known to exist in the uniform
input sampling setting.

– While PRGs trivially imply PRGqss, we show that the reverse implication is
unlikely by showing that there is no black-box construction of PRGs from
a PRFqss, even with unitary and inverse access to the PRFqs. In addition,
we provide more fine-grained black-box separations: separating PRG from
⊥-PRG, and ⊥-PRG from PRGqs, albeit within a weaker oracle access model.
Thus, we establish a hierarchy among uniform input sampling, pseudodeter-
ministic, and quantum input sampling primitives within MicroCrypt.

1.1.1 Quantum Input Sampling. In the first part of this work, we intro-
duce natural variants of MicroCrypt primitives that incorporate quantum input
sampling, and demonstrate how this framework helps address the issue of pseu-
dodeterminism.

Recall that [4] extended the applicability of SPRS by converting them into
⊥-PRGs, which inherit many of the useful properties of PRGs. However, ⊥-PRGs
still exhibit a form of non-determinism due to the possibility of outputting ⊥,
which may be problematic in certain applications. Specifically, for a ⊥-PRG,
there exists a set of “good” inputs, that produce deterministic outputs, and an
inverse-polynomial fraction of inputs termed “bad” inputs, that may yield ⊥.
To address this non-determinism, a natural solution is to test inputs during the
sampling process to ensure that only good inputs are selected. We show that
this technique can be used to construct a PRGqs from a ⊥-PRG, thus resolving
the pseudodeterminism issue. Note that this approach necessitates a quantum
input sampling procedure instead of traditional uniform input sampling, since
the ⊥-PRG itself may be a quantum algorithm.

We utilize this result, along with other key insights, to establish the follow-
ing relationships among primitives with quantum input sampling. Specifically,
we show fully black-box constructions for the following:

1. PRGqs from bounded-copy SPRSqs (BC-SPRSqs).
2. SPRSqs from PRGqs.
3. BQ-PRUqs 5 from PRGqs.

5 This stands for bounded-query pseudorandom unitaries with quantum key sampling
(see Definition 16).

5



4. PRUqs from PRFqs.

These findings mean that PRGqs, BC-SPRSqs, and SPRSqs can all be built
from one another under a certain parameter regime. This relationship is surpris-
ing, as it is not known to hold in the uniform input sampling setting. Specifically,
it is not known how to construct a PRG from a SPRS, nor how to build a SPRS
from a bounded-copy SPRS.

Furthermore, as a direct consequence of these results, we obtain both a
method to reduce the output length of a SPRSqs and a way to transform a SPRS
into a SPRSqs with a longer output length.

1.1.2 Separations. In the second part of our work, we extend our analysis
with separation results that highlight the distinctions between quantum input
sampling and uniform input sampling and between ⊥-pseudodeterminism and
determinism.

Our separation results demonstrate the impossibilities of certain types of
black-box constructions. There are different variants of black-box constructions
in quantum cryptography (see [16] for an exposition). We informally define the
two variants considered in this work.

Definition 1 (Informal version of Definition 5). A QPT algorithm G(·) is
a fully black-box construction of a primitive Q from a primitive P with inverse
access if there is a QPT algorithm S(·) such that for every unitary implementa-
tion U of P :

– GU,U
−1

is an implementation of Q.
– Every attack A that breaks the security of GU,U

−1

, and every unitary imple-

mentation Ã of A, it holds that SÃ,Ã
−1

breaks the security of U .

We also consider a less general notion limited to completely-positive-trace-
preserving (CPTP) maps. These are quantum channels that are not necessarily
unitary.

Definition 2 (Informal version of Definition 6). A QPT algorithm G(·) is
a fully black-box construction of Q from CPTP access to P if there is a QPT
algorithm S(·) such that for every CPTP implementation C of P :

– GC is an implementation of Q.
– Every attack A that breaks the security of GC, it holds that SA breaks the

security of U .

Since CPTP maps are not necessarily unitary and cannot be purified or
inverted, Definition 2 only includes constructions that do not assume purified/in-
verse/unitary access. On the other hand, Definition 1 includes constructions that
use such access, thus covering a broader range of constructions. We discuss these
distinctions more thoroughly in Section 1.1.3, but for now, we state the results.

Our first and main separation is between PRGs and PRFqss, with inverse
access.

6



Theorem 1 (Informal version of Theorem 9). There does not exist a fully
black-box construction of a PRG from a (quantum-query-secure) PRFqss with
inverse access.

Given that PRFqss inherits many applications of PRFs, we obtain other
new separations as a corollary.

Corollary 1. There is no fully black-box construction of a PRG from the fol-
lowing primitives with inverse access:

1. PRGqs, SPRSqs, linear-sized PRSqs, and PRUqs.
2. Statistically-binding, computationally hiding bit commitments with classical

communication (BC-CC).
3. Existentially unforgeable message authentication codes of classical messages

with classical communication (EUF-MAC).
4. CCA2-secure symmetric encryption with classical keys and ciphertexts (CCA2-

SKE).
5. EV-OWPuzzs.

Our second separation is between ⊥-pseudodeterministic notions and de-
terministic ones, but with CPTP access.

Theorem 2 (Informal version of Theorem 12). There does not exist a
fully black-box construction of a OWSG from CPTP access to a ⊥-PRG.

Note that the OWSGs considered in this paper are those with pure-state
outputs and with uniform key generation. Our separation is further emphasized
by the fact that a OWSG is considered weaker than a PRG, since PRSs imply
OWSGs and PRGs are separated from PRSs [25]. As ⊥-PRGs have broad appli-
cability [4], this result yields additional separations as corollaries.

Corollary 2 (Informal version of Corollary 7). There does not exist a
fully black-box construction of a OWSGs from CPTP access to:

1. ⊥-PRFs.
2. (Many-time) existentially unforgeable digital signatures of classical messages

with classical keys and signatures (EUF-DS).
3. CPA-secure quantum public-key encryption of classical messages with tamper-

resilient keys and classical ciphertexts (CPA-QPKE).

Our third separation shows that CPTP access to PRFqss is insufficient
for constructing ⊥-PRGs. Recall that our second separation establishes a gap
between PRGs and ⊥-PRGs. Taken together, this means the third separation
strengthens the first by demonstrating a separation between PRFqs and ⊥-PRG.
However, this result is more limited in scope, as it only applies to CPTP access.

Theorem 3 (Informal version of Theorem 14). There does not exist a
fully black-box construction of a ⊥-PRG from CPTP access to a (quantum-query-
secure) PRFqss.

7



We obtain other new separations as a corollary.

Corollary 3 (Informal version of Corollary 8). There does not exist fully
black-box constructions of ⊥-PRGs or SPRSs from CPTP access to:

1. PRGqs, SPRSqs, linear-sized PRSqs, and PRUqs.
2. BC-CC.
3. EUF-MAC and CCA2-SKE.
4. EV-OWPuzzs.

Note that separations listed in Corollaries 1 to 3 were not known prior
to this work. This highlights how ⊥-PRGs and PRGqs not only aid in building
applications for SPRS, but also in establishing separations among well-studied
MicroCrypt assumptions that may be difficult to separate otherwise. For in-
stance, EV-OWPuzzs have been studied and introduced as a potentially weaker
replacement to (quantum-evaluable) OWFs, but no separation existed prior to
our work.

Our results give a natural hierarchy in MicroCrypt as depicted in Fig. 1.

Fig. 1. The black straight arrows indicate implications that are trivial or from previous
works [31, 2, 4]. The black dotted arrow indicates a separation from previous work
[25]. The blue straight arrows are implications from this work. The red dotted arrow
is a separation under inverse access from this work. The orange dotted arrows are
separations under CPTP access from this work.

8



1.1.3 Discussion of Separations. Separation results make use of the fact
that fully black-box constructions relativize [22, 16]. In particular, to establish
the non-existence of black-box constructions granting unitary/inverse access in
the plain model (Definition 5), it is sufficient to show that there does not exist
such constructions relative to a unitary oracle with inverse access. Similarly, to
rule out black-box constructions with CPTP access (Definition 6), it is sufficient
to show that no such constructions exist relative to a CPTP oracle.

In particular, our first separation (Theorem 1), separating PRG from in-
verse access to PRFqss, is achieved by demonstrating the unattainability of such
constructions relative to a unitary oracle with inverse access. Advantageously,
this separation precludes black-box constructions that use purified/inverse/uni-
tary versions of the adversary. Certain reductions, such as in quantum proofs of
knowledge [35, 34] and quantum traitor tracing [39], rely on inverse access to
the adversary.

On the other hand, the second and third separations (Theorems 2 and 3)
are proven by demonstrating the impossibility relative to CPTP oracles, which
are not unitary and cannot be purified or inverted. As a result, these separations
are weaker as they only preclude black-box constructions that do not assume
access to purified/inverse/unitary versions of the adversary.

However, in many black-box constructions, such strong forms of access
(e.g., purification, unitarization, or inversion of the adversary) are unnecessary.
Indeed, many known black-box constructions in this domain, such as PRG →
⊥-PRG, ⊥-PRG→ PRGqs, and PRG→ OWSG do not require such strong access.
Hence, we believe that separations based on CPTP oracles still yields mean-
ingful results. Notably, prior works [19, 20] have also considered CPTP oracle
separations.

That said, we also investigated whether the second and third separations
could be based on unitary oracles. For the separation between deterministic and
psuedodeterministic primitives, specifically OWSGs and⊥-PRG, doing so appears
particularly challenging: our separation strategy relies on inherent randomness
in the oracle to achieve a level of pseudodeterminism, which is critical to ensur-
ing that the oracle cannot be leveraged to build deterministic primitives such
as OWSGs, while still being useful in building ⊥-PRGs. Yet, another difficulty
emerged when attempting to separate ⊥-PRG from PRFqs using a unitary oracle,
due to the pseudodeterminism of ⊥-PRG, as we shall discuss in Section 1.3. An
interesting avenue for future work is to strengthen the second or third separation
by basing them on unitary oracles.

1.2 Relation to Previous Work

We discuss relation to previous work.

– Prior research has typically defined PRSs and OWSGs with uniform input
sampling. However, some works have defined them with quantum input sam-
pling, such as [30, 24]. Nevertheless, the relations among certain MicroCrypt
primitives with quantum sampling and the advantage of quantum sampling

9



in yielding potentially weaker assumptions have not been previously recog-
nized. The latter insight is crucial for known MicroCrypt primitives as well,
enabling us to identify multiple new separations, as outlined in the previous
section (Corollaries 1 to 3). None of the separations mentioned were known
prior to this work.

– Previous research did not establish a connection between quantum input
sampling and ⊥-pseudodeterminism. This connection enabled us to address
the pseudodeterminism inherent in ⊥-PRGs (built in [4] from SPRS) by con-
verting them to PRGqss.

– It may seem that EV-OWPuzzs can be viewed as a one-way function with a
quantum input sampler. However, critically, these puzzles are non-deterministic.
In fact, [15] use this property to show that uniform and quantum sampling
versions of these puzzles are equivalent. Hence, quantum input sampling
seems more interesting to study in deterministic notions such as PRGs.

– All definitions in this work consider quantum-evaluable algorithms, and we
never require any algorithm to be classically-evaluable. This is noteworthy
since, very recently, [26] used a classical oracle to show a separation between
classically-evaluable OWFs and quantumly-evaluable OWFs. Our separations
are not comparable with theirs. However, as a direct result, they find that
classically-evaluable OWFs are black-box separated from many cryptographic
applications of quantum-evaluable OWFs, such as EUF-MAC and CCA2-SKE.
Given that many of these applications can be built from PRFqs in the same
way, our separations imply that even OWSGs are separated from these appli-
cations under CPTP access, and (quantum-evaluable) OWFs are separated
from these applications under inverse access.

1.3 Technical Overview

We now describe our results in more detail.

1.3.1 Quantum Input Sampling. Our study reveals surprising equivalences
among several variants of MicroCrypt primitives utilizing quantum input sam-
pling.

BC-SPRSqss imply PRGqss. Our first result is that bounded-copy SPRSqs imply
PRGqss. Prior works [2, 4] demonstrated that SPRSs enable ⊥-PRGs. We first
extend this result by showing that bounded-copy SPRSs (BC-SPRS) suffice for
this construction.

At first glance, using BC-SPRS appears infeasible because each evaluation
of the ⊥-PRG exhausts several copies of the SPRS and the adversary has access
to arbitrarily many evaluations in the security experiment. However, the ⊥-PRG
only uses these copies to perform tomography and extract a classical string. Cru-
cially, the extracted strings remain largely consistent across evaluations. Thus,
the information gained through multiple evaluations can be simulated with only
a limited number of SPRS copies. By formalizing this observation, we construct
a ⊥-PRG from a BC-SPRS.

10



Our next idea is to show that⊥-PRGs imply (deterministic) PRGqss, thereby
showing that quantum input sampling resolves the pseudodeterminism problem.
The idea is simple: to construct a PRGqs from a ⊥-PRG, we search for a good
input for the ⊥-PRG during the input sampling phase and use this input dur-
ing evaluation. However, this approach sacrifices uniform input sampling, which
compromises the security reduction given in [2, 4], thereby only giving a weak
PRGqs. Standard amplification techniques are then applied to achieve strong
security. Hence, we obtain PRGqs from BC-SPRS.

Finally, since we are allowed to use a quantum input sampler for a PRGqs,
we can perform the same conversion starting instead with a BC-SPRSqs. There-
fore, we obtain PRGqss from BC-SPRSqs.

PRGqss imply SPRSqss. We also establish the converse: SPRSqss can be built
from PRGqss. This follows in the same way as the construction of PRSs from
PRFs given in [23], but instantiated with a polynomial-domain PRF. Note that
PRFqs with polynomial domain can be trivially derived from PRGqss 6.

Modifying the Size of SPRS. By leveraging the above equivalence, we obtain
a way to decrease the output length of a SPRSqs. Simply convert a SPRSqs

into a PRGqs, and then convert this back into a SPRSqs. Due to the change
in parameters during this conversion, the resulting SPRSqs is smaller in size.
Interestingly, a similar result is not known for SPRS.

Furthermore, these equivalences can also be leveraged to increase the out-
put length of a SPRS. Note that it is trivial to extend the output length of
a ⊥-PRG by composition. For instance, if Gλ is a ⊥-PRG mapping {0, 1}λ to
{0, 1}2λ, i.e. with expansion factor of 2, then the compositionG2λ◦Gλ is a ⊥-PRG
with expansion factor 4. Hence, starting with a SPRS, building a ⊥-PRG, extend-
ing the output length of the ⊥-PRG sufficiently through composition, building a
PRGqs, and finally converting this to a SPRSqs, we obtain a method to convert
a SPRS into a SPRSqs with larger output length.

Other Constructions. On the downside, we face an obstacle in the quantum input
sampling regime when attempting to build a PRFqss from PRGqss. While a PRGqs

with sufficient expansion easily implies a PRFqs with polynomial domain, it is
not clear if a PRGqs can be used to build full-fledged PRFqs with exponential
domain. Note that the standard conversion of a PRG to a PRF [21], and its
quantum adaption [38], both implicitly use the uniform input sampling property
of PRGs. Hence, adapting this conversion to the quantum input sampling setting
is an interesting open question.

Fortunately, PRFqs with polynomial domain can still be useful. Using do-
main extension techniques [18], we convert them into bounded-query PRFqss with
exponential domain. These, in turn, enable the construction of bounded-copy
linear-length PRSqs and bounded-query PRUqs, following a similar approach out-
lined in [23, 27] for the uniform sampling setting.

6 The output of the PRGqs can be interpreted as the complete description of a PRFqs

with polynomial domain.

11



1.3.2 Separation Results We present three separation results in this work
that complement the positive results discussed above. We only provide a simpli-
fied overview of the core ideas of the separations and many technical considera-
tions are not discussed here to maintain clarity.

Separating PRGs from PRFqss. Our first and main separation is between PRGs
and PRFqss. This separation is established using a unitary oracle with access to
the inverse. As discussed in Section 1.1.3, this precludes a wide class of black-box
constructions.

We define three oracles based on a pair of random functions (O,P ):

– C: An oracle for membership in a PSPACE-complete language.
– σ: A unitary “flip” oracle that swaps the state |02n⟩ with the state |ψn⟩ =∑

x∈{0,1}n |x⟩|O(x)⟩ and acts as the identity on all other orthogonal states
7.

– O: Unitary of the classical function that maps (x, y, z) to P (x, z) if O(x) = y
and to ⊥ otherwise.

It is straightforward to construct a PRFqs relative to these oracles. The
quantum key generation algorithm of the PRFqs queries σ(|02n⟩) and measures
the response in the computational basis to obtain a pair (x∗, O(x∗)), which serves
as the secret key. On input z, the evaluation algorithm computesO(x∗, O(x∗), z) =
P (x∗, z) and outputs the result P (x∗, z). Since the same key is reused across eval-
uations, this yields deterministic outputs. Furthermore, given that a quantum-
accessible random oracle acts as a (quantum-query-secure) PRF [33], it is not
difficult to show that this construction constitutes a PRFqs.

The more difficult part is showing that PRGs cannot exist relative to these
oracles. Our strategy is to show that any candidate generator must be indepen-
dent of the oracles (σ,O) in order to establish that it can be broken using C. In
particular, measuring σ(|02n⟩) returns a different pair (x,O(x)) each time, and
O then evaluates a different function P (x, ·) depending on the value of x. On the
other hand, a PRG should produce almost-deterministic outputs, meaning that
it cannot depend on this inconsistent randomness.

To make this rigorous, we make small modifications to the oracle and argue
that the generator’s output should remain stable under such perturbations. The
main idea is that a PRG cannot distinguish between oracles that differ only
negligibly in the states they produce. Given that a PRG produces deterministic
classical values, this implies that its output must remain invariant under such
small perturbations. By applying this reasoning inductively, we conclude that the
generator’s output must remain stable even if the oracles are replaced entirely.

This, in turn, implies that the oracles can be simulated using internal
randomness, effectively yielding a PRG that does not require oracle access. In
other words, since the PRG’s output is the same regardless of the oracle, we
can simulate its computation by sampling random strings directly, rather than

7 Similar “flip” oracles were used in recent works: [14, 11, 9].

12



querying the oracles. But a PRG that does not use oracle access to (σ,O) can
easily be broken with a PSPACE oracle. Thus, we establish that relative to the
unitary oracles (σ,O, C), there is no fully black-box construction of a PRG from
a PRFqs with inverse access. Given that fully black-box constructions relativize,
we obtain the impossibility of such constructions in the plain model.

Separating OWSGs from ⊥-PRGs. We show that there does not exist a fully
black-box construction of a OWSG from CPTP access to a ⊥-PRG. We prove this
by demonstrating the separation relative to a CPTP oracle. This result is some-
what surprising, since OWSGs are considered weaker than PRGs, as evidenced by
existing separations between them [25]. Instead, our separation emphasizes the
distinction in determinism to separate OWSGs from ⊥-PRGs. Recall, a ⊥-PRG is
the same as a PRG except on a 1/poly(n) fraction of inputs, the algorithm may
return ⊥ sometimes.

Our separation leverages two oracles. The first oracle is for membership
in a PSPACE-complete language, used to break any OWSG. The second oracle,
denoted O, is a modified quantum random oracle with an abort mechanism.
This oracle exhibits inherent ⊥-pseudodeterminism, making it well-suited for
constructing ⊥-PRGs but unsuitable for deterministic primitives like OWSGs.
One downside of this design is that it complicates lifting the oracle to a unitary
map.

The oracleO operates as follows: on input x ∈ {0, 1}n, it computes (ax, bx, cx)←
O(x), where O is a random function mapping n-bits to 3n-bits. The first com-
ponent, ax, determines whether x is a “good” (deterministic) or “bad” (may
evaluate to ⊥) input. If x is deemed bad, which occurs with 1/poly(n) probabil-
ity, then O outputs cx with probability 1− bx

2n and ⊥ with bx
2n probability, where

bx is interpreted as an integer. Otherwise, if x is deemed good, O outputs cx
with probability 1. It is easy to verify that O behaves as a valid ⊥-PRG.

The challenge lies in showing that O cannot be used for constructing
OWSGs. Formalizing this requires some effort, but the main idea is that a gen-
erator, relying on O(x) for some x, cannot infer whether x is good or bad with
certainty, given that the error probability (i.e., the chance of receiving ⊥) can be
very small. When x is bad, small changes in the error probability cannot be dis-
tinguished in polynomial time. As a result, the generator’s output must remain
stable under such small variations. Extending this reasoning, we show that the
output must remain unchanged even when O(x) always returns ⊥. Informally,
this implies that the generator’s output is independent of O. This independence
allows us to construct an OWSG that does not use O. But since OWSGs cannot
exist relative to a PSPACE oracle [13], we reach a contradiction. Hence, no fully
black-box construction of an OWSG from a ⊥-PRG is possible in this setting.

Separating ⊥-PRGs from PRFqss. Our third result separates ⊥-PRGs from CPTP
access to a PRFqss. We prove this result by demonstrating a separation relative
to a CPTP oracle. This separation, like our first, hinges on the distinction be-
tween quantum and classical input sampling procedures. We use a similar oracle

13



setup—(σ,O, C)—but in this case, σ is defined as a CPTP map that samples x
uniformly at random and outputs the pair (x,O(x)).

Constructing a PRFqs relative to these oracles proceeds analogously to
the first separation and is relatively straightforward. The more involved part
is proving that ⊥-PRGs cannot exist relative to this oracle setup. Intuitively,
since σ outputs fresh, random pairs (x,O(x)) with each call, every evaluation of
the ⊥-PRG interacts with an essentially independent instantiation of O. Because
⊥-PRGs are expected to exhibit some degree of determinism, they cannot depend
on these inconsistent oracle outputs. More precisely, we show that the behavior
of the ⊥-PRG can be simulated by replacing oracle access with sampling random
strings directly.

Consequently, there would exist a ⊥-PRG that operates without oracle
access yet remains secure against adversaries with access to a PSPACE oracle,
which is a contradiction.

Importantly, this argument breaks down if σ were defined as in the first
separation. In that setting, σ is a unitary map, so its outputs are no longer
distinct. Furthermore, unlike in the first separation, we cannot argue that the
⊥-PRG output remains invariant under small perturbations to the oracle re-
sponses: slight variations in σ could induce slight differences in the probability
of returning ⊥. Consequently, the set of “bad” inputs as well as the evaluations
on this set can change across different oracles. To avoid this issue, we require that
σ yield classical outputs, ensuring that different evaluations receive completely
independent query results.

2 Preliminaries

2.1 Notations

We let [n] = {1, 2, . . . , n}, [n : n + k] = {n, n + 1, . . . , n + k}, and y[n:n+k] =
ynyn+1 . . . yn+k for every n, k ∈ N and string y of length at least n+ k. Further-
more, we let negl(x) denote any function that is asymptotically smaller than the
inverse of any polynomial.

We let x← X denote that x is chosen from the values in X, according to
the distribution X. If X is a set, then x← X simply means x is chosen uniformly
at random from the set. We say (a, ·) ∈ X if there exists an element b such that
(a, b) ∈ X. We let Πn,m = ({0, 1}m){0,1}

n

denote the set of functions mapping
n-bits to m-bits, and Πn denote the set of permutations on n-bits.

We refer the reader to [32] for a detailed exposition to preliminary quantum
information. We let S(H) and U(H) denote the set of unit vectors and unitary
operators, respectively, on the Hilbert space H and let Haar(Cd) denote the
Haar measure over Cd which is the uniform measure over all d-dimensional unit
vectors. We let dTD denote the total trace distance between two density matrices
or two distributions.

We follow the standard notations to define quantum algorithms. We say
that a quantum algorithm A is QPT if it consists of a family of quantum algo-
rithms {Aλ}λ such that the run-time of each algorithm Aλ is bounded by some

14



polynomial p(λ). Furthermore, we say that a quantum algorithm A = {Aλ}λ is
almost-deterministic if there exists a negligible function ϵ, such that for every
λ ∈ N and every input x in the domain of Aλ, there exists an (possibly quantum)
output y satisfying Pr[Aλ(x) = y] ≥ 1−ϵ(λ). We also avoid using the λ subscript
in algorithms to avoid excessive notation.

We say A has quantum-query access to a classical function P to mean that
it is given polynomial quantum queries to the unitary map UP : |x⟩ → |x⟩|P (x)⟩.

2.2 Black-Box Separation

The notion of oracle black-box separations was first considered in [22] and later
formalized in the quantum setting in [16]. We just recall the definitions relevant
for this work from [16].

Definition 3. A primitive P is a pair P = (FP ,RP ) 8 where FP is a set of
quantum channels, and RP is a relation over pairs (G,A) of quantum channels,
where G ∈ FP .

A quantum channel G is an implementation of P if G ∈ FP . If G is
additionally a QPT channel, then we say that G is an efficient implementation
of P . A quantum channel A P -breaks G ∈ FP if (G,A) ∈ RP . We say that G
is a secure implementation of P if G is an implementation of P such that no
QPT channel P -breaks it. The primitive P exists if there exists an efficient and
secure implementation of P .

We now formalize the notion of constructions relative to an oracle.

Definition 4. We say that a primitive P exists relative to an oracle O if:

– There exists QPT oracle-access algorithm G(·) such that GO ∈ FP .
– The security of GO holds against all QPT adversaries with access to O i.e.

for all QPT A, (GO,AO) /∈ RP .

We are now ready to define the notion of fully black-box construction. We
define two versions: under unitary/inverse access and under CPTP access.

Definition 5. A QPT algorithm G(·) is a fully black-box construction of Q from
P with inverse access if the following two conditions hold:

1. For every unitary implementation U of P , GU,U
−1 ∈ FQ.

2. There is a QPT algorithm S(·) such that, for every unitary implementation
U of P , every adversary A that Q-breaks GU,U

−1

, and every unitary imple-

mentation Ã of A, it holds that SÃ,Ã
−1

P -breaks U .

The following result from [16] shows the relation between fully black-box
constructions and oracle separations.

8 We can think of FP to mean the “correctness” conditions of P and RP to mean the
“security” conditions of P .

15



Theorem 4 (Theorem 4.2 in [16]). Assume there exists a fully black-box
construction of a primitive Q from a primitive P with inverse access. Then,
for any unitary O, if P exists relative to (O,O−1), then Q exists relative to
(O,O−1).

We now consider the setting of CPTP oracles.

Definition 6. A QPT algorithm G(·) is a fully black-box construction of Q from
CPTP access to P if the following two conditions hold:

1. For every CPTP implementation C of P , GC is an implementation of Q.
2. There is a QPT algorithm S(·) such that, for every CPTP implementation
C of P , every adversary A that Q-breaks GC, it holds that SA P -breaks C.

We also obtain a relationship between fully black-box constructions and
oracle separations in the CPTP setting.

Theorem 5. Assume there exists a fully black-box construction of a primitive
Q from CPTP access to P . Then, for any CPTP oracle O, if P exists relative
to O, then Q exists relative to O.

The proof of the above result follows in the same way as the proof of
Theorem 4.2 in [16].

2.3 MicroCrypt Primitives

We recall several MicroCrypt assumptions relevant to this work.
First, we recall the notion of one-way state generators (OWSGs). In this

work, we only consider pure OWSGs meaning that the output is always a pure
state.

Note that different works define correctness of a OWSG slightly differently.
Our notion requires that on any input, the generator produces a fixed pure-state
except with negligible probability. This encompasses some earlier definitions,
such as in [13], but is less general than other variants, such as in [31]. We note,
however, that our separation can be adapted to a slightly more general notion
which only requires that the generator produce a fixed pure-state except with
negligible probability on all but a negligible fraction of inputs.

However, our separation does not apply to certain more general notions
such as in [31]. Specifically, our separation result uses our correctness condition
and the result does not hold for the more generalized notion of [31]. We do not
believe this to be a major issue since, to our knowledge, all known constructions
of OWSGs satisfy our correctness condition.

Definition 7 (One-Way State Generator). Let λ ∈ N be the security pa-
rameter and let n = n(λ) be polynomial in λ. An almost-deterministic 9 QPT

9 Recall, G is almost-deterministic if on any input, G outputs the same value except
with negligible probability. See Section 2.1 for the formal definition.

16



algorithm G is called a n-one-way state generator (OWSG), if it generates n-
qubit pure-states and for any polynomial t = t(λ) and QPT distinguisher A,
there exists a function ϵ(·) such that:

AdtgOWSG
A,G (1λ, 1t) := Pr

[
ExpOWSG
A,G (1λ, 1t) = 1

]
≤ ϵ(λ).

We say that G is a OWSG if for every QPT A, ϵ is a negligible function. We
say that G is a weak OWSG if for every QPT A, ϵ ≤ 1

p for some polynomial p.

ExpOWSG
A,G (1λ, 1t):

1. Sample k ← {0, 1}λ.
2. For each i ∈ [t+ 1] generate |ψi⟩ ← G(k).
3. k′ ← A(⊗i∈[t]|ψi⟩). Let |ϕk′⟩ ← G(k′).
4. Measure |ψt+1⟩ with {|ϕk′⟩⟨ϕk′ |, I−|ϕk′⟩⟨ϕk′ |} and if the result is |ϕk′⟩⟨ϕk′ |,

then output b = 1, and output b = 0 otherwise.

[13] show that if PSPACE = BQP, then OWSGs do not exist. In fact, the
attack presented succeeds with probability at least 1

2 .

Lemma 1 ([13]). For any OWSG G, there exists a PSPACE algorithm A and
a polynomial t = t(λ) such that

AdtgOWSG
A,G (1λ, 1t) ≥ 1

2
.

We define pseudorandom states (PRSs), first introduced in [23].

Definition 8 (Pseudorandom State Generator). Let λ ∈ N be the security
parameter and let n = n(λ) be polynomial in λ. An almost-deterministic QPT
algorithm PRS is called a n-pseudorandom state generator (PRS), if it generates
n-qubit pure-states and the following holds:

For any polynomial t(·) and QPT distinguisher A:∣∣∣∣ Pr
k←{0,1}λ

[
A
(
PRS(k)⊗t(λ)

)
= 1

]
− Pr
|ϕ⟩←Haar(Cn)

[
A
(
|ϕ⟩⊗t(λ)

)
= 1

]∣∣∣∣ ≤ negl(λ).

We divide PRS into three regimes, based on the state size n:

1. n = c · log(λ) with c≪ 1.
2. n = c · log(λ) with c ≥ 1, which we call short pseudorandom states (SPRSs).
3. n = Ω(λ), which we call long pseudorandom states (LPRSs).

We will also recall the standard definition for PRGs.

Definition 9 (Pseudorandom Generator). Let λ ∈ N be the security pa-
rameter and let n = n(λ) be polynomial in λ. An almost-deterministic QPT
algorithm G mapping {0, 1}λ to {0, 1}n is called a n-pseudorandom generator
(PRG), if n > λ for all λ ∈ N and for any QPT distinguisher A:∣∣∣∣ Pr

k←{0,1}λ
[A(G(k)) = 1]− Pr

y←{0,1}n
[A(y) = 1]

∣∣∣∣ ≤ negl(λ).

17



2.4 Pseudodeterministic Pseudorandom Strings from
Pseudorandom States

We describe the procedure given in [2] to extract classical pseudorandom strings
from pseudorandom states. The original procedure is, for some states, pseudo-
deterministic meaning that running this procedure on the same state may yield
different outcomes each time. However, it was shown that there exists a good
set of states such that the extraction procedure is deterministic.

We first recall the notion of tomography, which is used to extract a classical
approximate description of a quantum state.

Lemma 2 (Corollary 7.6 [1]). For any error tolerance δ = δ(λ) ∈ (0, 1] and
any dimension d = d(λ) ∈ N using at least t = t(λ) := 36λd3/δ copies of a d-
dimensional density matrix ρ, the process Tomography(ρ⊗t) runs in polynomial
time with respect to λ, d, 1/δ and outputs a matrix M ∈ Cd×d such that

Pr
[
∥ρ−M∥ ≤ δ :M ← Tomography(ρ⊗t)

]
≥ 1− negl(λ).

We now recall how Tomography is used to extract pseudorandom strings in
[2].

Construction 1 (Extract [2]). Let λ ∈ N be the security parameter. The algo-
rithm Extract is defined as follows:

– Input: t := 144λd8 copies of a d-dimensional quantum state ρ.
– Perform Tomography(ρ⊗t) with error tolerance δ := d−5/6 to obtain a clas-

sical matrix M ∈ Cd×d.
– Run Round(M) to get y ∈ {0, 1}ℓ. Output y.

Round(M): Input: Matrix M ∈ Cd×d.

– Define k := d5/6, r := d2/3, and ℓ := d1/6.
– Let p1, . . . , pd be the diagonal entries of M .
– For i ∈ [ℓ]:

1. Let qi :=
∑r
j=1 p(i−1)r+j .

2. Define bi :=

{
1 if qi > r/d

0 if qi ≤ r/d.
– Output b1∥ . . . ∥bℓ.

This extraction procedure was shown to satisfy the following two lemmas.

Lemma 3 (Lemma 3.6 in [2]). If Extract is run on a Haar random state, then
dTD((q1, . . . , qℓ), Z/(2d)) ≤ O(k/d) + O(ℓ/

√
r) where Z is a random variable in

Rℓ with i.i.d. N (2r, 4r) entries. In other words, Z/(2d) has an i.i.d. N (r/d, r/d2)
entries.

18



Lemma 4 (Claim 3.7 in [2]). Define

Gd :=
{
|ψ⟩ ∈ S(Cd) : ∀i ∈ [ℓ],

∣∣∣qi − r

d

∣∣∣ > 2/d
}
.

Then,

1. Pr
[
|ψ⟩ ∈ Gd : |ψ⟩ ← Haar(Cd)

]
≥ 1−O(d−1/6).

2. There exists a negligible function negl(n) such that for any |ψ⟩ ∈ Gd, there
exists a string y such that Pr

[
y ← Extract

(
|ψ⟩⊗t

)]
≥ 1− negl(λ).

2.5 Pseudodeterministic Primitives in MicroCrypt

The Extract procedure described in the previous section was used to construct
a QPT algorithm termed pseudodeterministic PRGs from a SPRS. The non-
determinism in these algorithms make their use in cryptography difficult. Hence,
the follow-up work [4] converted pseudodeterministic PRGs into a notion known
as ⊥-PRGs.

We introduce ⊥-PRGs now. Note that it is easy to distinguish ⊥ evaluations
from random. However, it is sufficient to only require indistinguishability for non-
⊥ evaluations. This is incorporated in the security game by providing ⊥ in the
truly random case as well. See [4] for a more in-depth discussion.

Definition 10 (Is-⊥). We define the operator

Is-⊥(a, b) :=

{
⊥ if a = ⊥
b otherwise.

Definition 11 (⊥-Pseudorandom Generator). Let λ ∈ N be the security
parameter and let m = m(λ) be polynomial in λ. A QPT algorithm G map-
ping {0, 1}λ to {0, 1}m ∪{⊥}, is a (µ,m)-⊥-pseudodeterministic pseudorandom
generator (⊥-PRG) if:

1. (Expansion) m(λ) > λ for all λ ∈ N.
2. (Pseudodeterminism) There exist a constant c > 0 such that µ(λ) = O(λ−c)

and for sufficiently large λ ∈ N there exists a set Gλ ⊆ {0, 1}λ such that the
following holds:
(a)

Pr
x←{0,1}λ

[x ∈ Gλ] ≥ 1− µ(λ).

(b) For every x ∈ Gλ there exists a non-⊥ value y ∈ {0, 1}m such that:

Pr [G(x) = y] ≥ 1− negl(λ). (1)

(c) For every x ∈ {0, 1}λ, there exists a non-⊥ value y ∈ {0, 1}m such that:

Pr [G(x) ∈ {y,⊥}] ≥ 1− negl(λ). (2)

19



3. (Security) For every polynomial q = q(λ) and QPT distinguisher A, there
exists a negligible function ϵ such that:∣∣∣∣∣∣∣∣∣∣∣
Pr


k ← {0, 1}λ
y1 ← G(k)

...
yq ← G(k)

: A(y1, ..., yq) = 1

− Pr


k ← {0, 1}λ
y ← {0, 1}m

y1 ← Is-⊥(G(k), y)
...

yq ← Is-⊥(G(k), y)

: A(y1, . . . , yq) = 1



∣∣∣∣∣∣∣∣∣∣∣
≤ ϵ(λ)

⊥-PRGs were constructed from SPRSs in [4].

Lemma 5 (Corollary 1 [4]). If there exists (c log λ)-SPRS for some constant
c > 12, then there exists a (O(λ−c/12+1), λc/12) - ⊥-PRG.

3 Definitions: Cryptography with Quantum Input
Sampling

We present definitions for various known cryptographic primitives but with quan-
tum input sampling algorithms. First of all, we define PRS with quantum input
sampling.

Definition 12 (Pseudorandom State Generator with Quantum Input
Sampling). Let λ ∈ N be the security parameter and let n = n(λ) and m =
m(λ) be polynomials in λ. A pair of QPT algorithms (QSamp,StateGen) is called
a (m,n)-PRS with quantum input sampling (PRSqs), if the following conditions
hold:

– QSamp(1λ) : Outputs a string k ∈ {0, 1}m.
– StateGen(k) : Takes a m-bit string k and outputs a n-qubit pure-state.
– (Determinism) For every k ∈ {0, 1}m, there exists a n-qubit state |ψk⟩, such

that the following condition is satisfied over the distribution of inputs:

Pr
k←QSamp(1λ)

[StateGen(k) = |ψk⟩] ≥ 1− negl(λ).

– (Security) For any polynomial t(·) and QPT distinguisher A:∣∣∣∣ Pr
k←QSamp(1λ)

[
A
(
StateGen(k)⊗t(λ)

)
= 1

]
− Pr
|ϕ⟩←Haar(Cn)

[
A
(
|ϕ⟩⊗t(λ)

)
= 1

]∣∣∣∣ ≤ negl(λ).

In the case where security only holds for t ≤ q for some polynomial q = q(λ),
then we call this (q,m, n)-bounded-copy PRSqs (BC-PRSqs). If n = c · log(λ)
with c > 1, then we call this SPRSqs and if n = Ω(λ), then we call this
LPRSqs.

We now introduce PRG with quantum input sampling and PRF with quan-
tum key generation. As far as we know, these notions has not been defined
previously.

20



Definition 13 (Pseudorandom Generator with Quantum Input Sam-
pling). Let λ ∈ N be the security parameter and let n = n(λ) and m = m(λ) be
polynomials in λ. A pair of QPT algorithms (QSamp, G) is a (m,n)-PRG with
quantum input sampling (PRGqs) if:

1. QSamp(1λ) : Outputs a string k ∈ {0, 1}m.
2. G(k): Takes an input k ∈ {0, 1}m and outputs y ∈ {0, 1}n
3. (Expansion) m(λ) < n(λ) for all λ ∈ N.
4. (Determinism) For every k ∈ {0, 1}m, there exists a string yk ∈ {0, 1}n, such

that the following condition is satisfied over the distribution of inputs:

Pr
k←QSamp(1λ)

[G(k) = yk] ≥ 1− negl(λ).

5. (Security) For any QPT distinguisher A, there exists a negligible function ϵ
such that:∣∣∣∣ Pr

k←QSamp(1λ)
[A(G(k)) = 1]− Pr

y←{0,1}n
[A(y) = 1]

∣∣∣∣ ≤ ϵ(λ).
We say that G is a PRGqs if for every QPT A, ϵ is a negligible function. We
say that G is a weak PRGqs if for every QPT A, ϵ ≤ 1

p for some polynomial
p.

Definition 14 (Pseudorandom Function with Quantum Key Genera-
tion). Let λ ∈ N be the security parameter and let n = n(λ) and m = m(λ) be
polynomials in λ. A pair of QPT algorithms (QSamp, F ) is called a (m,n)-PRF
with quantum key generation (PRFqs), if:

1. QSamp(1λ) : Outputs a key k ∈ {0, 1}m.
2. Fk(x): Takes a key k ∈ {0, 1}m and an input x ∈ {0, 1}n and outputs a

string y ∈ {0, 1}n 10.
3. (Determinism) For every k ∈ {0, 1}m and x ∈ {0, 1}n, there exists a string

yk,x ∈ {0, 1}n such that for all x ∈ {0, 1}n, the following is satisfied over the
distribution of keys:

Pr
k←QSamp(1λ)

[Fk(x) = yk,x] ≥ 1− negl(λ).

4. (Security) For any QPT distinguisher A:∣∣∣∣ Pr
k←QSamp(1λ)

[
AFk(1λ) = 1

]
− Pr
O←Πn,n

[
AO(1λ) = 1

]∣∣∣∣ ≤ negl(λ).

We say a PRFqs is quantum-query-secure if the above holds even if A is
given quantum-query access to Fk and O. Furthermore, in the case where
security only holds for t ≤ q queries for some polynomial q = q(λ), then we
call this a q-query PRFqs.

10 For simplicity, we only consider PRFqss with the same input and output lengths. All
our results easily generalize to PRFqss with different input and output lengths.

21



4 Relations among Primitives with Quantum Input
Sampling

In this section, we explore relations among MicroCrypt primitives with quantum
input sampling algorithms. In summary, we find that there exists black-box
constructions for the following:

1. PRGqs from ⊥-PRG.
2. PRGqs from BC-SPRSqs.
3. SPRSqs from PRGqs.
4. BQ-PRUqs from PRGqs 11.

We also discuss how these results can be used to modify the output size of
a SPRS in Section 4.3.

4.1 PRGqs from ⊥-PRG

We show how to build PRGqss from ⊥-PRGs. First, we build a weak PRGqs, and
then amplify security to achieve a standard PRGqs.

Construction 2. Let m be a polynomial on the security parameter λ ∈ N such
that m > λ. Let µ = O(λ−c) for some constant c > 0. Let G be a (µ,m)-⊥-PRG.
The construction for a weak (λ,m)-PRGqs is as follows:

– QSamp(1λ) : For i ∈ [λ] :
1. Sample ki ← {0, 1}λ.
2. For each j ∈ [λ], compute yi,j ← G(ki).
3. If voteλ(yi,1, . . . , yi,λ) ̸=⊥ 12, then output ki.
Otherwise, output ⊥.

– PRG(k) :
1. If k = ⊥, output 0m.
2. For each j ∈ [λ], compute yj ← G(k).
3. If yj = ⊥ for all j ∈ [λ], then output ⊥.
4. Otherwise, output the first most common non-⊥ value in (y1, . . . , yλ).

Lemma 6. Construction 2 is a weak (λ,m)-PRGqs assuming the existence of a
(µ,m)-⊥-PRG.

Proof. We first show that the algorithms (QSamp,PRG) satisfy the determinism
condition of PRGqss. By the pseudodeterminism condition of G, it is clear that
there is negligible probability that QSamp(1λ) outputs ⊥.

For any k ∈ {0, 1}λ, if Pr [G(k) = ⊥] ≥ 2
3 , then there is negligible proba-

bility that voteλ(y1, . . . , yλ) ̸=⊥, where yj ← G(k) for all j ∈ [λ]. By the union
bound, there is negligible probability that QSamp(1λ) outputs a string k such

11 This part is shown in Appendix A. See Definition 16 for the definition of BQ-PRUqss.
12 vote(a1, . . . , aλ) outputs the first most common element in the tuple (a1, . . . , aλ).

22



that Pr [G(k) = ⊥] ≥ 2
3 . Therefore, except with negligible probability, the output

of QSamp(1λ) is a non-⊥ string k such that Pr [G(k) = ⊥] < 2
3 .

By the pseudodeterminism of G, for any k ∈ {0, 1}λ, there exists an out-
put yk ∈ {0, 1}m such that Pr[G(k) ∈ {yk,⊥}] ≥ 1 − negl(λ). Therefore, if
Pr [G(k) = ⊥] < 2

3 , then Pr [G(k) = yk] >
1
3 − negl(λ). Hence, it is clear that for

k ← QSamp(1λ), PRG(k) outputs yk, except with negligible probability. To sum
up,

Pr
k←QSamp(1λ)

[PRG(k) = yk] ≥ 1− negl(λ).

Next, we need to show that the security condition is satisfied. In other
words, we need to show that for any QPT distinguisher A∣∣∣∣ Pr

k←QSamp(1λ)
[A(PRG(k)) = 1]− Pr

y←{0,1}m
[A(y) = 1]

∣∣∣∣ ≤ 1/poly(λ).

We commence with a hybrid argument.

– Hybrid H0: This is the output distribution of the generator.
• k ← QSamp(1λ).
• For each j ∈ [λ], compute yj ← G(k).
• If yj = ⊥ for all j ∈ [λ], then output ⊥.
• Otherwise, output the first most common non-⊥ value in (y1, . . . , yλ).

– Hybrid H1: The same as hybrid H0 except the input is sampled from the
good set Gλ of G.
• k ← Gλ.
• For each j ∈ [λ], compute yj ← G(k).
• If yj = ⊥ for all j ∈ [λ], then output ⊥.
• Otherwise, output the first most common non-⊥ value in (y1, . . . , yλ).

– Hybrid H2: The same as hybrid H1 except the output is computed using a
single evaluation of G(k).
• k ← Gλ.
• Output G(k).

– Hybrid H3: The same as hybrid H2 except output is a ⊥ random string.
• k ← Gλ.
• y ← {0, 1}m.
• Output Is-⊥(G(k), y).

– Hybrid H4: The output is a random string.
• y ← {0, 1}m.
• Output y.

We now show that no QPT adversary can distinguish these hybrids, except
with inverse polynomial advantage.

Claim 1. For any QPT adversary A:∣∣∣∣ Pr
y←H0

[A(y) = 1]− Pr
y←H1

[A(y) = 1]

∣∣∣∣ ≤ µ+ negl(λ).

23



Proof. Recall the algorithm of QSamp(1λ) is as follows:

QSamp(1λ): For i ∈ [λ] :

1. Sample ki ← {0, 1}λ.
2. For each j ∈ [λ], compute yi,j ← G(ki)
3. If voteλ(yi,1, . . . , yi,λ) ̸=⊥, then output ki.

Otherwise, output ⊥.
Note that if k1 ∈ Gλ in the algorithm of QSamp, then the output is k1, ex-

cept with negligible probability, by the correctness condition of ⊥-PRG. In other
words, if k1 ∈ Gλ, then the output of QSamp is statistically indistinguishable
from sampling a random element from Gλ. Note that Prk←{0,1}λ [k ∈ Gλ] ≥ 1−µ,
hence the probability k1 /∈ Gλ is at most µ. Therefore, we have:∣∣∣∣ Pr

y←H0

[A(y) = 1]− Pr
y←H1

[A(y) = 1]

∣∣∣∣ ≤ µ+ negl(λ).

⊓⊔

Claim 2. Hybrids H1 and H2 are statistically indistinguishable.

Proof. In both hybrids, the first step is to sample a input from the good set.
By the pseudodeterminism of ⊥-PRGs, for any input k ∈ Gλ, there is a string
y satisfying Pr [y ← G(k)] ≥ 1 − negl(λ). In this case, the probability that
voteλ(y1, . . . , yλ) = y, where yi ← G(k) for i ∈ [λ], is at least 1 − negl(λ).
Hence, both hybrids are statistically indistinguishable. ⊓⊔

Claim 3. For any QPT adversary A:∣∣∣∣ Pr
y←H2

[A(y) = 1]− Pr
y←H3

[A(y) = 1]

∣∣∣∣ ≤ 2µ+ negl(λ).

Proof. By the pseudodeterminism property of G, Prk←{0,1}λ [k ∈ Gλ] ≥ 1− µ so∣∣∣∣ Pr
y←H2

[A(y) = 1]− Pr
k←{0,1}λ

[A(G(k)) = 1]

∣∣∣∣ ≤ µ+ negl(λ).

Furthermore, by the security of G, there is negligible function such that∣∣∣∣∣∣∣ Pr
k←{0,1}λ

[A(G(k)) = 1]− Pr
k←{0,1}λ
y←{0,1}m

[A(Is-⊥(y,G(k))) = 1]

∣∣∣∣∣∣∣ ≤ negl(λ).

Finally, by the pseudodeterminism property of G,∣∣∣∣∣∣∣ Pr
k←{0,1}λ
y←{0,1}m

[A(Is-⊥(y,G(k))) = 1]− Pr
k←Gλ

y←{0,1}m
[A(Is-⊥(y,G(k))) = 1]

∣∣∣∣∣∣∣ ≤ µ+ negl(λ).

24



The second term on the left hand side of the equation above is hybrid H3.
All in all, the triangle inequality gives:∣∣∣∣ Pr

y←H2

[A(y) = 1]− Pr
y←H3

[A(y) = 1]

∣∣∣∣ ≤ 2µ+ negl(λ).

⊓⊔

Claim 4. Hybrid H3 is statistically indistinguishable from H4.

Proof. This follows directly from the pseudodeterminism property of ⊥-PRGs.
⊓⊔

By the triangle inequality, we get that for any QPT adversary A such that,∣∣∣∣ Pr
k←QSamp(1λ)

[A(PRG(k)) = 1]− Pr
y←{0,1}m

[A(y) = 1]

∣∣∣∣ =∣∣∣∣ Pr
y←H0

[A(y) = 1]− Pr
y←H4

[A(y) = 1]

∣∣∣∣ ≤ 3µ+ negl(λ).

Hence, Construction 2 is a weak PRGqs. ⊓⊔

Next, it was shown in [17] that a weak PRG can be upgraded to a strong
PRG through a standard amplification argument, increasing the input length
from λ to λ2. This argument applies to PRGqss, giving the following result.

Theorem 6. If there exists (µ,m)-⊥-PRG where m > λ2 and µ = O(λ−c) for
some constant c > 0, then there exists a (λ2,m)-PRGqs satisfying strong security.

4.2 PRGqs from BC-SPRSqs

In this part, we show that BC-SPRSqs can be used to construct PRGqss using
properties of pseudorandom states described in Section 2.4.

Construction 3. Let λ ∈ N be the security parameter and let n = c · log λ,
d = ⌈λc⌉, and m := ⌈λc/12⌉, where c > 24 is a constant. Let (QS,PRS) be
a (500λd8, λ, n)-BC-SPRSqs. The construction for a weak (λ,m)-PRGqs is as
follows:

– QSamp(1λ) : For each i ∈ [λ] :
1. Sample si ← QS(1λ).
2. Extract t := 144λd8 copies of pseudorandom state ρ⊗ti using PRS(si).
3. Run Mi ← Tomography(ρ⊗ti ).
4. If Mi ∈ Gλ (as defined in Lemma 4), then output k := si.
Otherwise, output ⊥.

– G(k) :
1. If k = ⊥, then output ⊥.
2. Extract t := 144λd8 copies of pseudorandom state ρ⊗t using PRS(k).
3. Compute y ← Extract(ρ⊗t).

25



4. Output y.

Lemma 7. Construction 3 is a weak (λ,m)-PRGqs assuming the existence of a
(500λd8, λ, n)-BC-SPRSqs.

Proof. We first show that the determinism condition of a PRGqs is satisfied (see
Definition 13).

Assume for contradiction that the determinism condition is not satisfied.
Then, there is a non-negligible probability such that sampling a key k ← QSamp(1λ)
and evaluating G(k) twice yields distinct values. We obtain a contradiction as
follows.

By Lemma 4, there is negligible probability that QSamp(1λ) outputs ⊥.
The other possibility is that QSamp(1λ) outputs a key k = s satisfying Ms ∈ Gλ
where Ms ← Tomography(ρ⊗t) and ρ ← PRS(s). Therefore, with non-negligible
probability, k = s satisfies Ms ∈ Gλ but two evaluations of G(k) yield distinct
values.

Then, we construct a distinguisher D that breaks the security of BC-SPRSqs

as follows. D receives 500λd8 > 3t copies of a state ρ and needs to distinguish
whether ρ← PRS(k) for k ← QS(1λ) or ρ← Haar(Cn) is a Haar-random state.
D computes M ← Tomography(ρ⊗t) with the first t copies, y1 ← Extract(ρ⊗t)
with the second t copies, and y2 ← Extract(ρ⊗t) with the last t copies. If y1 ̸= y2
and M ∈ Gλ, then D guesses that ρ is a BC-SPRSqs i.e. outputs 1. Otherwise, D
outputs 0. By our assumption, y1 ̸= y2 and M ∈ Gλ occurs with non-negligible
probability if ρ is generated using (QS,PRS). On the other hand, Lemma 4 states
that this occurs with negligible probability when ρ is a Haar-random state. It
is clear that D has non-negligible advantage in distinguishing BC-SPRSqs from
Haar-random states using only 3t copies of the state, which contradicts the
security condition of BC-SPRSqs. Therefore, (QSamp, G) satisfies the correctness
condition of a PRGqs.

Next, we need to show security. Specifically, we need to show that for any
QPT distinguisher A:∣∣∣∣ Pr

k←QSamp(1λ)
[A(G(k)) = 1]− Pr

y←{0,1}m
[A(y) = 1]

∣∣∣∣ ≤ O(1/d1/6).

The proof is through a hybrid argument:

– H0:
1. Sample k ← QSamp(1λ).
2. Compute y ← G(k).
3. Run A(y) and output the result.

– H1: The same as H0, except we modify the PRGqs algorithms by extracting a
classical string from the pseudorandom states during input sampling instead
of during evaluation.
• QSampH1

(1λ) : For each i ∈ [λ] :
1. Sample si ← QS(1λ).
2. Extract t := 144λd8 copies of pseudorandom state ρ⊗ti using PRS(si).

26



3. Run Mi ← Tomography(ρ⊗ti ).
4. If Mi ∈ Gλ, then compute yi ← Round(Mi).
5. Output k := yi.
Otherwise, output ⊥.

• GH1
(k) : Output k.

– H2: Same as H1, except we modify the PRGqs algorithms by using random
Haar states instead of pseudorandom states.
• QSampH2

(1λ) : For each i ∈ [λ] :

1. Sample t := 144λd8 copies of a random Haar state ρ⊗ti from Haar(Cd).
2. Run Mi ← Tomography(ρ⊗ti ).
3. If Mi ∈ Gλ, then compute yi ← Round(Mi).
4. Output k := yi.
Otherwise, output ⊥.

• GH2
(k) : Output k.

– H3: Same as H2, except we modify the PRGqs algorithms by removing the
condition on the random Haar states.
• QSampH3

(1λ) :
1. Sample t := 144λd8 copies of a random Haar state ρ⊗t from Haar(Cd).
2. Run M ← Tomography(ρ⊗t).
3. Compute y ← Round(M).
4. Output k := y.

• GH3
(k) : Output k.

– H4: Same as H3, except we sample a random string instead of extracting
randomness from the Haar random states.
• QSampH4

(1λ) : Sample a random string y ← {0, 1}m. Set k = y.
• GH4(k) : Output k.

First of all, hybrid H0 is statistically indistinguishable from hybrid H1, since
we just move a step from the evaluation phase to the input sampling phase.

H1 is computationally indistinguishable from hybrid H2 because any QPT
adversary that can distinguish between these hybrids can be used to break
BC-SPRSqs security.

Next, if M ∈ Gλ in QSampH3
in hybrid H3 and M1 ∈ Gλ in QSampH2

(1λ)
in H2, then it is clear that H2 and H3 are statistically indistinguishable. This
scenario occurs with O(d−1/6) probability by Lemma 4.

Finally, the variational distance between hybrids H3 and H4 is at most
O(d−1/6) by Lemma 3.

All in all, by the triangle inequality:∣∣∣∣ Pr
k←QSamp(1λ)

[A(G(k)) = 1]− Pr
y←{0,1}m

[A(y) = 1]

∣∣∣∣
=

∣∣∣∣ Pr
y←H0

[A(y) = 1]− Pr
y←H4

[A(y) = 1]

∣∣∣∣
≤ O(d−1/6).

⊓⊔

27



Recall that weak PRGqs can be upgraded to a strong PRGqs following the
same argument in [17]. Hence, we obtain the following result.

Theorem 7. If there exists (500λd, λ, n)-BC-SPRSqs, then there exists a (λ2,m)-
PRGqs satisfying strong security.

4.3 SPRSqs from PRGqs

In this section, we show that PRGqss can be used to build SPRSqs.

Construction 4. Let λ ∈ N be the security parameter and let c > 12 be a
constant. Let m = m(λ) be polynomial on λ such that m > λ2c+1. Let (QS, G)
be a (λ,m)-PRGqs. Let N = ⌈λc⌉ and X = {1, . . . , N}. The construction for a
(λ, c · log λ)-SPRSqs is as follows:

– QSamp(1λ) : Sample s← QS(1λ). Output k = s.
– StateGen(k) :

1. Compute y ← G(k).
2. Interpret y as a function fy : X → X 13.
3. Output

|ψk⟩ :=
1√
N

∑
x∈X

ω
fy(x)
N |x⟩.

Theorem 8. Construction 4 is a (λ, c · log λ)-SPRSqs assuming the existence of
a (λ,m)-PRGqs where m > λ2c+1.

Theorem 8 follows directly from [23]. Specifically, [23] shows that a n-
PRS can be built from a PRF with domain size 2n. This conversion applies
to the quantum input sampling regime as well. Then, Theorem 8 follows by
setting n := c · log λ and noting that fy in Construction 4 is computationally
indistinguishable from a random function by the security of PRGqss.

Theorem 7 states that we can construct a PRGqs from any SPRSqs. On
the other hand, Theorem 8 state that we can construct a SPRSqs from a PRGqs.
Applying these two results consecutively, we get a method to shrink the size of
a SPRSqs.

Corollary 4. For any constant c > 36, and any constant 0 < m < c/36,
(λ, c log λ)-SPRSqs implies (λ,m log λ)-SPRSqs.

Furthermore, by starting with a SPRS, building a ⊥-PRG (Lemma 5), am-
plifying the output length sufficiently 14, building a PRGqs (Theorem 6), and
finally a SPRSqs (Theorem 8), we obtain a SPRSqs of larger size.

Corollary 5. For any constant c > 36, and any constant m > c, (λ, c log λ)-
SPRS implies (λ,m log λ)-SPRSqs.

We also show how to build bounded-query PRUqs from PRGqs in Ap-
pendix A.

13 For i ∈ X , fz(i) := z[it : (i+ 1)t] where t := ⌈logN⌉.
14 It is easy to amplify the output length of a ⊥-PRG by re-applying the algorithm on

the output, at the cost of increasing the pseudodeterminism error.

28



5 Separations

5.1 Separating PRG from PRFqs

We show a distinction between uniform input sampling and quantum input sam-
pling by demonstrating that there do not exist fully black-box constructions of
a PRG from a PRFqs with inverse access.

We only state the result here and give the proof in Section 5.1.1.

Theorem 9. There does not exist a fully black-box construction of a PRG from
a (quantum-query-secure) PRFqs with inverse access.

The following lemma generalizes the applications of PRFs in cryptogra-
phy [23, 2, 4] to PRFqss. These follow in the same way as using quantum key
generation rather than uniform key generation does not affect the proofs.

Lemma 8. There exists fully black-box constructions of the following primitives
from (quantum-query-secure) PRFqss:

1. PRGqs, SPRSqs, LPRSqs, and PRUqs.
2. Statistically-binding computationally hiding bit commitments with classical

communication.
3. Message authentication codes of classical messages with classical communi-

cation.
4. CCA2-secure symmetric encryption for classical messages with classical keys

and ciphertexts.
5. EV-OWPuzzs.

As a result, of the applications of PRFqs, we obtain the following corollary.

Corollary 6. There is no fully black-box construction for a PRG from the fol-
lowing primitives with inverse access:

1. PRGqs, SPRSqs, LPRSqs, and PRUqs.
2. Statistically-binding computationally hiding bit commitments with classical

communication.
3. Message authentication codes of classical messages with classical communi-

cation.
4. CCA2-secure symmetric encryption of classical messages with classical keys

and ciphertexts.
5. EV-OWPuzzs.

5.1.1 Separation Proof. The idea of the separation proof is to consider three
oracles. The first is a PSPACE oracle. The second is a restricted-access random
oracle O, that can only be accessed with a key as input. This oracle will acts as
a PRFqs. The third oracle σ produces random keys such that each distinct key
gives access to a different function in O. Note that this is not an issue for the

29



PRFqs, as a key from σ can be sampled during key generation and, then, reused
during evaluation to obtain deterministic outputs from O.

On the other hand, a uniform key generation algorithm is incapable of
accessing σ during key generation. Consequently, a PRG is incapable of obtaining
deterministic evaluations from O. This informally means that any PRG cannot
depend on (σ,O) and, thus, cannot exist in the presence of a PSPACE oracle.
This implies that there does not exist a fully black-box construction of a PRG
from a PRFqs.

We first introduce some preliminary information. We present s-PRG secu-
rity relative to an oracle T in the form of an experiment to simplify notation
later on.

ExpPRGAT ,GT (1λ):

1. Sample k ← {0, 1}λ and b← {0, 1}.
2. If b = 0, generate y ← GT (k). Else, sample y ← {0, 1}s.
3. b′ ← AT (y).
4. If b′ = b, output 1. Otherwise, output 0.

We define the advantage of the adversary in this experiment as follows. It
is clear that PRG security implies that this advantage should be negligible.

AdtgPRGAT ,GT (1λ) := Pr
[
ExpPRGAT ,GT (1λ) = 1

]
− 1

2
.

Let U|ψ⟩ be a unitary that flips |0n⟩ with |ψ⟩ and acts as the identity on
all other orthogonal states. We will use the following result from [14] regarding
the simulation of this oracle with polynomial copies of |ψ⟩.

Theorem 10 (Theorem 2.6 in [14]). Let T, n ∈ N, ϵ > 0, and |ψ⟩ be a real-
valued n-qubit state orthogonal to |0n⟩. Let U|ψ⟩ be the unitary defined above.
For any oracle algorithm A making T queries to U|ψ⟩, there exists an algorithm

Ã with access to O(T
2

ϵ2 ) copies of |ψ⟩ that outputs a state that is ϵ-close in terms
of trace distance.

Note that Theorem 2.6 in [14] is more involved than Theorem 10 since it
deals with complex-valued quantum states. Our version is limited to real-valued
states.

Also, note that [38] shows that any computationally unbounded adversaries
cannot distinguish quantum-query-access to a a randomly sampled polynomial
of degree (2r − 1) and a random function given only r quantum queries. Given
that this result holds for computationally unbounded adversaries, it holds for
adversaries with access to a PSPACE-oracle. We now describe the oracles used
in the separation.

Construction 5. For n ∈ N, let On ← Πn,8n and Pn ← Π2n,n be random
functions. Let T := (σ,O, C) be a tuple of oracles, where σ = {σn}n∈N, O :=
{On}n∈N, and C := {Cn}n∈N are defined as follows:

30



1. C is for membership in a PSPACE-complete language.
2. σn: Unitary that swaps |09n+1⟩ with the state |ψn⟩ := 1√

2n
|1⟩

∑
x∈{0,1}n |x⟩|On(x)⟩

and acts as the identity on all other orthogonal states.
3. On: Unitary of the classical function that maps (x, y, a), where x, a ∈ {0, 1}n

and y ∈ {0, 1}8n, to Pn(x, a) if On(x) = y and to ⊥ otherwise.

Notice that the unitary oracles above are self-inverse, so our separation is
relative to a unitary oracle with access to the inverse.

We introduce some notation for the proof. Let T denote the set of all
possible oracles and let T ← T denote sampling an oracle in the way described
in Construction 5. For any oracle T and integer m ∈ N, let T≤m denote the
sequence of oracles (σn,On)n≤m and let T[T≤m] denote the set

T[T≤m] := {T̃ ∈ T : T̃≤m = T≤m}.

Theorem 11. There does not exist a fully black-box construction of a PRG from
a (quantum-query-secure) PRFqs with inverse access.

Proof. For simplicity, we only prove the theorem for (9n, n)-PRFqs i.e. for PRFqss
with 9n-bit keys and n-bit inputs. However, the proof easily generalizes to other
parameters by modifying the parameters of the oracles.

Assume, for the purpose of obtaining a contradiction, that G̃F,F
−1

is a
black-box construction of a PRG, from any (9n, n)-PRFqs F . First, the following
result states that there exists a PRFqs relative to T .

Lemma 9. There exists a (quantum-query-secure) (9n, n)-PRFqs relative to T
for any O and with probability 1 over the distribution of P . Furthermore, cor-
rectness is satisfied for any oracle T .

Proof. Construction 6. The algorithms of a PRFqs with oracle access to T is
as follows:

– QSampT (1n) :
1. Query σn(|09n+1⟩) and measure the result in the computational basis to

obtain (x, y), where x ∈ {0, 1}n and y ∈ {0, 1}8n.
2. Output k := (x, y).

– F Tk (a) : Interpret k as (x, y). Output On(x, y, a) 15.

It is clear that (QSampT , F T ) satisfies the correctness condition of PRFqs

for any oracle T .
For security, note that for any (x, y) ← QSampT (1n), F T(x,y)(·) = Pn(x, ·),

where Pn(x, ·) is a random function independent of σ. Lemma 2.2 from [33] states
that a random oracle acts as a PRF i.e. for any QPT adversary A that makes
p(n) oracle queries:

E
Pn←Π2n,n

[∣∣∣∣∣ Pr
x←{0,1}n

[
APn,Pn(x,·)(1n) = 1

]
− Pr
P̃n←Πn,n

[
APn,P̃n(1n) = 1

]∣∣∣∣∣
]
≤ 2p(n)

2n
<

1

2n/4
.

15 This is a slight abuse of notation, as O is a unitary but we interpret it as a classical
function here.

31



Note that this result even holds against unbounded-time adversaries as
long as the number of queries to the oracle is polynomial. Hence, this result also
holds against QPT adversaries with access to a PSPACE-oracle:

E
Pn←Π2n,n

[∣∣∣∣∣ Pr
x←{0,1}n

[
APn,Pn(x,·),C(1n) = 1

]
− Pr
P̃n←Πn,n

[
APn,P̃n,C(1n) = 1

]∣∣∣∣∣
]
≤ 1

2n/4
.

By Markov inequality, we get that

Pr
Pn←Π2n,n

[∣∣∣∣ Pr
x←{0,1}n

[
APn,Pn(x,·),C(1n) = 1

]
−

Pr
P̃n←Πn,n

[
APn,P̃n,C(1n) = 1

]∣∣∣∣∣ ≥ 2−n/8

]
≤ 2−n/8

By Borel-Cantelli Lemma, since
∑
n 2
−n/8 converges, with probability 1

over the distribution of P , it holds that∣∣∣∣∣ Pr
x←{0,1}n

[
APn,Pn(x,·),C(1n) = 1

]
− Pr
P̃n←Πn,n

[
APn,P̃n,C(1n) = 1

]∣∣∣∣∣ ≤ 2−n/8,

except for finitely many n ∈ N. There are countable number of quantum
algorithms A making polynomial queries to T , so this bound holds for every
such adversary. ⊓⊔

By Lemma 9 and the assumed existence of a black-box construction G̃,
there exists an algorithm GT that is a PRG with probability 1 over the oracles
T and satisfies correctness for any oracle T ∈ T. Let s = s(λ) be a polynomial
denoting the output length of G.

Claim 5. For any QPT adversary A:

Pr
T←T

[
AdtgPRGAT ,GT (1λ) ≤ O

(
1

λ4

)]
≥ 3

4
.

Proof. If this does not hold, then there exists a QPT adversary A such that

Pr
T←T

[
AdtgPRGAT ,GT (1λ) >

1

λ5

]
>

1

4

for infinitely many λ ∈ N.
By a variant of Borel-Cantelli Lemma (Lemma 2.9 in [28]), this means A

is successful in breaking the security of GT with probability 1
4 over the oracle

distribution. Therefore, GT is not a PRG with probability 1
4 over the oracle

distribution, giving a contradiction. ⊓⊔

Let r = r(λ) denote the maximum run-time of G and m = m(λ) :=
10(rλ)4 + λ. Hence, G makes at most r queries to the oracles.

Fix an oracle T . We will need to show the following lemma.

32



Lemma 10. For large enough λ and any k ∈ {0, 1}λ,

Pr
T ′,T ′′←T[T≤log(2m)]

[
GT

′
(k) = GT

′′
(k)

]
≥ 1− r

m
.

Proof. Let T ′ := (σ′,O′, C) and T ′′ := (σ′′,O′′, C) be two oracles sampled from
T[T≤log(2m)] and determined by the functions (P ′, O′) and (P ′′, O′′), respectively,

as described in Construction 5. Fix k ∈ {0, 1}λ.
We will now describe how to construct a sequence of oracles T i = (σi,Oi, C),

starting with T ′ and ending with T ′′, such that GT
i

(k) is invariant (to some
degree) as we move along the sequence. Note that T ′n and T ′′n only differ for
log(2m) < n < r. For such a value of n, let x∗ ∈ {0, 1}n be an arbitrary string.

– T 1: This is the same as T ′. Define∣∣ψ1
n

〉
:=

1√
2n
|1⟩

∑
x∈{0,1}n

|x⟩|O′n(x)⟩.

– T 2 : Same as T 1, except we change σ2
n to be the unitary that swaps |09n+1⟩

with ∣∣ψ2
n

〉
:=

1√
2n − 1

|1⟩
∑

x∈{0,1}n\{x∗}

|x⟩|O′n(x)⟩.

– T 3 : Same as T 2, except for any a ∈ {0, 1}n, we set O3
n(x
∗, O′n(x

∗), a) to ⊥
and, then, we set O3

n(x
∗, O′′n(x

∗), a) to P ′′n (x
∗, a).

– T 4 : Same as T 3, except σ4
n is the unitary that swaps |09n+1⟩ with

∣∣ψ4
n

〉
:=

1√
2n

|1⟩ ∑
x∈{0,1}n\{x∗}

|x⟩|On(x)⟩+ |1⟩|x∗⟩|O′′n(x∗)⟩

 .

We perform these modifications for every input x∗ of length n for every
log(2m) < n < r, one input at a time, until the oracle T ′ is completely replaced
with T ′′ on inputs of length less than r. What remains to show is that G is
invariant to some degree under these modifications.

Claim 6. For large enough λ,

dTD

(
GT

1

(k), GT
2

(k)
)
≤ 3

λ
.

Proof. In the oracles T 1 and T 2, only σ1
n and σ2

n differ. Both these oracles are
unitaries that swap two states and, thus, have the structure required to apply
Theorem 10. Specifically, setting T = r and ϵ = λ in Theorem 10, we get
that there exists an algorithm G̃T

1\σ1
n(k, |ψ1

n⟩
⊗q

) that simulates GT
1

(k) without

oracle access to σ1
n, given q := O(T

2

ϵ2 ) = O(r2λ2) copies of |ψ1
n⟩, yielding an

output that is ( 1λ )-close in trace distance. Similarly, G̃T
2\σ2

n(k, |ψ2
n⟩
⊗q

) simulates

33



GT
2

(k) without oracle access to σ2
n, given q copies of |ψ2

n⟩, yielding an output
that is ( 1λ )-close in trace distance.

Given that, for large enough λ,

dTD

(∣∣ψ2
n

〉⊗q
,
∣∣ψ1
n

〉⊗q) ≤ q

m
<

1

λ
,

and noting that T 1 \ σ1
n is equivalent to T 2 \ σ2

n, we get

dTD

(
G̃T

1\σ1
n

(
k,
∣∣ψ1
n

〉⊗q)
, G̃T

2\σ2
n

(
k,
∣∣ψ2
n

〉⊗q)) ≤ 1

λ
.

Therefore, by the triangle inequality, we have that for large enough λ,

dTD

(
GT

1

(k), GT
2

(k)
)
≤ 3

λ
.

⊓⊔

Claim 7. For large enough λ,

Pr
T ′,T ′′←T[T≤log(2m)]

[
dTD

(
GT

2

(k), GT
3

(k)
)
≥ 1

22n

]
≤ 1/22n.

Proof. Notice σ2 = σ3 and O2 only differs from O3 on inputs starting with
(x∗, O′(x∗)) or (x∗, O′′(x∗)). Crucially, O′(x∗) and O′′(x∗) are distributed uni-
formly at random and are of length 8n. Therefore, to distinguish these two
oracles, G needs to do unstructured search for an input starting with x∗ that
maps to a non-⊥ element.

The lower bound for unstructured search [36, 10] states that G cannot

distinguish these two oracles with better than O( r
2

28n ) ≤
1

24n probability for
large enough λ. This probability is over the oracle distributions of T ′, T ′′ as
well. The Markov inequality then gives for large enough λ:

Pr
T ′,T ′′←T[T≤log(2m)]

[
dTD

(
GT

2

(k), GT
3

(k)
)
≥ 1

22n

]
≤ 1/22n.

⊓⊔

Claim 8. For large enough λ,

dTD

(
GT

3

(k), GT
4

(k)
)
≤ 3

λ
.

Proof. This follows in the same way as Claim 6. ⊓⊔

As a result of the past three claims and the triangle inequality, with prob-
ability 1− 1

22n over the distributions T ′, T ′′, we have for large enough λ,

Pr
[
GT

1

(k) = GT
4

(k)
]
≥ 1− 7

λ
. (3)

34



We now argue that this inverse-polynomial difference must in fact be negli-
gible. Notice that T 4 ∈ T so by Lemma 9, GT

4

satisfies the correctness condition
of a PRG. In other words, it is almost-deterministic, meaning it must output a
fixed value except with negligible probability. Combining this with Eq. (3), we

get that, with probability 1 − 1
22n over the oracle distributions, GT

1

(k) and

GT
4

(k) agree except with negligible probability.
Performing the same changes on every log(2m) < n < r and x∗ ∈ {0, 1}n,

we reach T ′′. The union bound gives us that with probability

1−
∑

log(2m)<n<r

 ∑
x∗∈{0,1}n

1

22n

 > 1−
∑

log(2m)<n<r

1

2n
> 1− r

2m
.

over the distribution of oracles T ′, T ′′, GT ′
(k) and GT

′′
(k) agree except with

negligible probability. More formally,

Pr
T ′,T ′′←T[T≤log(2m)]

[
GT

′
(k) = GT

′′
(k)

]
≥

(
1− r

2m

)
(1− negl(λ)) ≥ 1− r

m
.

Remark 1. It may seem problematic that our argument involves exponentially
many hybrids, where each differs from its neighbor with some negligible error.
Why don’t the errors accumulate and become non-negligible? This issue is mit-
igated by the almost-determinism property of PRGs, which guarantees that the
most likely output must be produced with 1 − negl(λ) probability. As a result,
the output cannot be gradually altered across the hybrids. ⊓⊔

By Lemma 10, for any k ∈ {0, 1}λ, there exists a string y
T≤log(2m)

k , such
that

Pr
T̃ ←T[T≤log(2m)]

[
GT̃ (k) = y

T≤log(2m)

k

]
≥ 1− r

m
≥ 1− 1

λ4
. (4)

Furthermore, note that G should not depend on C, since the PRFqs given
in Lemma 9 does not rely on C (only on O and σ) and G is based on a black-box
construction from this PRFqs.

We now consider a generator G that does not depend on the oracles, and
is defined as follows on inputs of length λ+ 16m3:

35



G(k):

– Parse k as (k1, k2) where k1 ∈ {0, 1}λ and k2 ∈ {0, 1}16m
3

.
– Construct functions (σk2n ,Ok2n )n≤log(2m) in the same way as Construction 5

but with the randomness determined by k2.
– For j ∈ [λ] :

1. For each log(2m) ≤ i ≤ r, sample uniformly at random two 2r-degree
polynomials Õi : F2i → F28i and P̃i : F22i → F2i . Let (σ̃i, Õi) be the
resulting oracles.

2. Run G(k1) and answer the queries as follows:
(a) For a query x of length n ≤ log(2m), respond using (σk2n ,Ok2n ).
(b) For a query x of length n > log(2m), respond using (σ̃n, Õn).

3. Let yj be the result of G(k1).
– Set y = voteλ(y1, . . . , yλ).
– Output (y, k2).

Now consider the following variants of PRG security experiment.

– ExpA1 (λ):
1. Sample oracle T as in Construction 5.
2. b← ExpPRGAT ,GT (1λ).
3. Output b.

– ExpA2 (λ):
1. Sample oracle T as in Construction 5.
2. b ← ExpPRGAT≤log(2m),C,GT (1

λ). Notice that A only has access to T≤log(2m)

in this experiment.
3. Output b.

– ExpA3 (λ):
1. b← ExpPRGAC,G

(1λ).
2. Output b.

By Claim 5, for any QPT adversary A,

Pr
T←T

[
AdtgPRGAT ,GT (1λ) ≤ O

(
1

λ4

)]
≥ 3

4
.

Therefore, for large enough λ,

Pr
[
ExpA1 (λ) = 1

]
− 1

2
≤ 1

4
· 1
2
+

3

4
· 1

λ3
≤ 1

4
+

1

λ2
.

Next, the only difference between ExpA1 (λ) and ExpA2 (λ) is that A’s oracle
access to T is restricted. Hence, for any QPT adversary A, there exists a QPT

B such that Pr
[
ExpA2 (λ) = 1

]
≤ Pr

[
ExpB1 (λ) = 1

]
.

Finally, we need to relate the success probabilities of ExpA2 and ExpA3 .

36



Claim 9. For any QPT adversary A and large enough λ, there exists a QPT
algorithm B such that

Pr
[
ExpA3 (λ) = 1

]
≤ Pr

[
ExpB2 (λ) = 1

]
+

1

λ4
.

Proof. Fix an adversary A in ExpA3 (λ). We construct an algorithm B in ExpB2 (λ)
as follows.

In ExpB2 (λ), a random input k1 ← {0, 1}λ and a random bit b← {0, 1} are
sampled. Then, let y0 ← GT (k1) and y1 ← {0, 1}s. BT≤log(2m),C receives yb and
must guess b.

BT≤log(2m),C commences as follows. For every n ≤ log(2m), it queries σn(|09n+1⟩)
4m2 times and measures the result in the computational basis. This allows B
to obtain all the evaluations of On and learn the function entirely, except with
negligible probability. Next, for each n ≤ log(2m), B uses On and the oracle On
to learn Pn entirely, which requires at most 2m queries.

B encodes (Pn, On)n≤log(2m) into a string, say k2, of length less than 16m3.
B runs AC on (yb, k2) and receives a response b′. B outputs b′.

As long as B encodes (Pn, On)n≤log(2m) correctly (which occurs with 1 −
negl(λ) probability) and G(k1, k2) = y0 (which occurs with probability 1−2r/m

by Eq. (4)), then it is clear that Pr
[
ExpB2 (λ) = 1

]
is at least Pr

[
ExpA3 (λ) = 1

]
.

Therefore,

Pr
[
ExpB2 (λ) = 1

]
≥ Pr

[
ExpA3 (λ) = 1

]
(1− negl(λ))

(
1− 2r

m

)
,

which implies, for large enough λ,

Pr
[
ExpA3 (λ) = 1

]
≤ Pr

[
ExpB2 (λ) = 1

]
+

1

λ4
.

⊓⊔

To sum up, for any QPT adversary A, there exists a QPT algorithm B and large
enough λ such that

Pr
[
ExpA3 (λ) = 1

]
≤ Pr

[
ExpB2 (λ) = 1

]
+

1

λ4
≤ 3

4
+

1

λ2
+

1

λ4
≤ 3

4
+

1

λ
(5)

Notice that ExpA3 (λ) is just the PRG security experiment for G against AC .
On the other hand, there exists a trivial search attack, using a PSPACE oracle,
against PRG security, given that any polynomial-space quantum computations
with classical inputs can be simulated using a PSPACE oracle. In particular,
there exists an adversary A such that

Pr
[
ExpA3 (λ) = 1

]
≥ 1− negl(λ).

contradicting Eq. (5) above.
Therefore, there does not exist a fully black-box construction of a PRG

from a PRFqs. ⊓⊔

37



5.2 Separating OWSG from ⊥-PRG

We show that there does not exist a fully black-box construction of a OWSGs
from a ⊥-PRG with CPTP access. The proof is given in Section 5.2.1, but the
result and implications are discussed below.

Theorem 12. Let λ ∈ N be the security parameter. For any polynomial m(λ) >
λ and pseudodeterminism error µ(λ) = O(λ−c) for c > 0, there does not exist a
fully black-box construction of a OWSG from CPTP access to a (µ,m)-⊥-PRG.

This separation is significant because there are multiple MicroCrypt prim-
itives that can be built from ⊥-PRGs, thus yielding new separations in Micro-
Crypt.

First of all, we note that ⊥-PRGs can be used to build the following prim-
itives [4].

Lemma 11. There exists black-box constructions of the following primitives
from ⊥-PRGs:
1. ⊥-PRFs.
2. (Many-time) digital signatures of classical messages with classical keys and

signatures.
3. Quantum public-key encryption of classical messages with tamper-resilient

keys and classical ciphertexts.

As a result of Theorem 12 and Lemma 11, we obtain a separation between
OWSGs and some cryptographic applications.

Corollary 7. There does not exist a fully black-box construction of a OWSG
from CPTP access to:

1. ⊥-PRFs.
2. (Many-time) digital signatures of classical messages with classical keys and

signatures.
3. Quantum public-key encryption of classical messages with tamper-resilient

keys and classical ciphertexts.

5.2.1 Separation Proof. To demonstrate the separation between OWSGs
and ⊥-PRGs, we will use two independent oracles: an oracle for a PSPACE-
complete language and a ⊥-pseudodeterministic random oracle. We show that
the random oracle already acts as a⊥-PRG, noting that the⊥-pseudodeterminism
is not a problem given the nature of ⊥-PRGs. On the other hand, the unpre-
dictability of the ⊥-pseudodeterminism in the random oracle prevents its use in
the construction of almost-deterministic primitives such as a OWSG. Specifically,
through a careful argument, we show that any OWSG must exist independently
of the random oracle and, thus, cannot exist in the presence of a PSPACE ora-
cle. Given this distinction, there cannot exist a fully black-box construction of a
OWSG from a ⊥-PRG.

Let λ, n ∈ N be security parameters. Let c > 0 be a constant. We define a
sequence of CPTP oracles O := {On}n∈N as follows.

38



Construction 7. Fix a pseudodeterminism error µ(n) = n−c. Let w = w(n)
be any function such that 2−w ∈ [µ/16, µ/4] and let m be polynomial such that
m(n) > n. Sample a random permutation Pn ← Πn and random functions
Qn ← Πn,n and On ← Πn,m. The quantum channel On := O[Pn, Qn, On] on
n-qubit input ρ does as follows:

– Measure ρ in the computational basis and let x denote the result.
– Compute y = On(x).
– Compute q = Qn(x) and let px := q/2n, where q is interpreted as an integer

in [0 : 2n].
– Compute z = Pn(x). If the first w-bits of z are 0w, then let |ϕx⟩ :=

√
px|⊥⟩+√

1− px|y⟩.
– Otherwise, let |ϕx⟩ := |y⟩.
– Measure |ϕx⟩ in the computational basis and output the result.

We define the “good” set GOn for On as follows:

GOn := {x ∈ {0, 1}n : Pn(x)[1:w] ̸= 0w},

where Pn(x)[1:w] denotes the first w-bits of Pn(x).
The following lemma follows directly from the definition of O.

Lemma 12. On has the following properties:

– Prx←{0,1}n
[
x ∈ GOn

]
≥ 1− µ

4 .
– For every x ∈ GOn , there exists a non-⊥ value y ∈ {0, 1}m such that:

Pr [On(x) = y] = 1.

– For every x /∈ GOn , there exists a probability px ∈ [0, 1] and non-⊥ value
y ∈ {0, 1}m such that:
1. Pr [y ← On(x)] = 1− px.
2. Pr [⊥ ← On(x)] = px.

Theorem 13. Let λ ∈ N be the security parameter. For any polynomial m(λ) >
λ and pseudodeterminism error µ(λ) = O(λ−c) for c > 0, there does not exist a
fully black-box construction of a OWSG from CPTP access to a (µ,m)-⊥-PRG.

Proof. Assume for contradiction that there exists a black-box construction of a
OWSG G̃F from CPTP access to a (µ,m)-⊥-PRG F . First, we show that there
exists a (µ,m)-⊥-PRG relative to the oracles (O, C).

Claim 10. Under security parameter n ∈ N, the sequence of functions {On[Pn, Qn, On]}n∈N
is a (µ(n),m(n))-⊥-PRG for all possible sequences P and Q and with probability
1 over the distribution of O. Furthermore, correctness is satisfied for all possible
oracles.

39



Proof. By Lemma 12, O satisfies the correctness/pseudodeterminism condition
of a (µ,m)-⊥-PRG.

For security, we need to show that for any P,Q and with probability 1 over
the distribution ofO: for every non-uniform QPT distinguisherA and polynomial
q = q(n):∣∣∣∣∣∣∣∣∣∣∣
Pr


k ← {0, 1}n
y1 ← On(k)

...
yq ← On(k)

: AO,C(y1, ..., yq) = 1

− Pr


k ← {0, 1}n
y ← {0, 1}m

y1 ← Is-⊥(On(k), y)
...

yq ← Is-⊥(On(k), y)

: AO,C(y1, . . . , yq) = 1



∣∣∣∣∣∣∣∣∣∣∣
≤ negl(n)

Let Zn be the function that outputs 0m on any input and let Zn :=
O[Pn, Qn, Zn]. Note that

– Zn is independent of On,
– On(k) = Is-⊥(On(k), On(k)) = Is-⊥(Zn(k), On(k)),
– Is-⊥(On(k), y) = Is-⊥(Zn(k), y).

Therefore, AO,C needs to distinguish between evaluations of Is-⊥(Zn(k), y)
and Is-⊥(Zn(k), On(k)).

Lemma 2.2 from [33] states that a random oracle acts as a PRG i.e.:

E
O←Πn,m

[∣∣∣∣ Pr
k←{0,1}n

[
AO(O(k)) = 1

]
− Pr
y←{0,1}m

[
AO(y) = 1

]∣∣∣∣] ≤ 1

2n/4
.

Note that this result even holds against unbounded-time adversaries as
long as the number of queries to the oracle is polynomial. Hence, this result also
holds against adversaries with access to a PSPACE-oracle:

E
O←Πn,m

[∣∣∣∣ Pr
k←{0,1}n

[
AO,C(O(k)) = 1

]
− Pr
y←{0,1}m

[
AO,C(y) = 1

]∣∣∣∣] ≤ 1

2n/4
.

Next, notice that for any functions P,Q, distinguishing between evaluations
of Is-⊥(Zn(k), y) and Is-⊥(Zn(k), On(k)) is just as hard as distinguishing the two
scenarios in the equation above, given that Zn is independent of On. Therefore,

E
O←Πn,m

[∣∣∣∣∣ Pr
(y1,...,yq)←D0

Z,O

[
AO,C(y1, ..., yq) = 1

]
− Pr

(y1,...,yq)←D1
Z

[
AO,C(y1, . . . , yq) = 1

]∣∣∣∣∣
]
≤ 2−n/4

where,

D0
Z,O :=


k ← {0, 1}n

y1 ← Is-⊥(Zn(k), On(k))
...

yq ← Is-⊥(Zn(k), On(k))

 D1
Z :=


k ← {0, 1}n
y ← {0, 1}m

y1 ← Is-⊥(Zn(k), y)
...

yq ← Is-⊥(Zn(k), y)



40



By Markov inequality, we get that

Pr
O←Πn,m

[∣∣∣∣∣ Pr
(y1,...,yq←D0

Z,O

[
AO,C(y1, ..., yq) = 1

]
−

Pr
(y1,...,yq)←D1

Z

[
AO,C(y1, . . . , yq) = 1

]∣∣∣∣ ≥ 2−n/8
]
≤ 2−n/8

By Borel-Cantelli Lemma, since
∑
n 2
−n/8 converges, with probability 1

over the distribution of O, it holds that∣∣∣∣∣ Pr
(y1,...,yq)←D0

Z,O

[
AO,C(y1, ..., yq) = 1

]
− Pr

(y1,...,yq)←D1
Z

[
AO,C(y1, . . . , yq) = 1

]∣∣∣∣∣ ≤ 2−n/8,

except for finitely many n ∈ N. There are countable number of quantum
algorithms A making polynomial queries to (O, C), so this bound holds for every
such adversary. Therefore, O is a ⊥-PRG for any P,Q and with probability 1
over the distribution of O. ⊓⊔

By our assumption, the above claim implies the existence of a OWSG
GO[P,Q,O], by the assumed existence of the black-box construction G̃, for any
P,Q and with probability 1 over the distribution of O.

Claim 11. For any QPT adversary A and polynomial t = t(λ):

Pr
O

[
AdtgOWSG

AO,C,GO (1λ, 1t) ≤ O
(

1

λ4

)]
≥ 3

4
.

where the probability is taken over the oracle distribution.

Proof. Same as the proof of Claim 5. ⊓⊔

Let r = r(λ) be a polynomial denoting the maximum run-time of G on any
input and let m = r4 + λ.

Intuitively, we will argue that G cannot depend on On for large n, due to
the deterministic nature of G, and thus cannot exist in the presence of a PSPACE
oracle.

We use the notation G ≃ G′ to mean that there exists negligible function
ϵ = ϵ(λ) such that for every k ∈ {0, 1}λ, there exists a pure-state |ψk⟩, such that
Pr [G(k) = |ψk⟩] and Pr [G′(k) = |ψk⟩] are both at least 1− ϵ.

Claim 12. Let O′ := O[P ′, Q′, O′] and O′′ := O[P ′′, Q′′, O′′] be two oracles
such that (P ′n, Q

′
n, O

′
n) = (P ′′n , Q

′′
n, O

′′
n) for all n ≤ log(2m) and n ≥ r. Then,

GO
′ ≃ GO′′

.

Proof. We will first show that there exists a function ℓ = ℓ(λ) and sequences
P 1, P 2, . . . , P ℓ, Q1, Q2, . . . , Qℓ, and O1, O2, . . . , Oℓ, where P i := {P in}n∈N, Qi :=
{Qin}n∈N, and Oi := {Oin}n∈N, such that:

41



1. P in ∈ Πn, Q
i
n ∈ Πn,n, and O

i
n ∈ Πn,m for any i ∈ [ℓ] and n ∈ N.

2. P ′ = P 1 and P ′′ = P ℓ.
3. Q′ = Q1 and Q′′ = Qℓ.
4. O′ = O1 and O′′ = Oℓ.
5. For any i ∈ [ℓ],

dTD(Oi,Oi+1) :=
∑
n∈N

∑
x∈{0,1}n

dTD(Oin(x),Oi+1
n (x)) ≤ 1

m
,

where Oi := O[P i, Qi, Oi].

We will now describe how to construct such a sequence. Note that O′n and
O′′n only differ for log(2m) < n < r. For such values of n, if we set Q2

n(x) to
Q1
n(x) + 1 or Q1

n(x) − 1, while keeping the other functions fixed, the resulting
oracles satisfy:

dTD(O1,O2) ≤ 1

2log(2m)
≤ 1

m

It is not difficult to see that this allows constructing the sequence of func-
tions described. Specifically, for any log(2m) < n < r, we perform small changes
to Q′n until we reach a function, say Qjn, that sends all values to 1n, while keep-
ing all other functions fixed. Then, we set Oj+1

n (x) = O′′n(x) for all x such that
Pn(x)[1:w] = 0w and keep Oj+1

n (x) = Ojn(x) otherwise. This step does not change
the oracle, i.e. Oj = Oj+1, because Qjn and Qj+1

n return 1n on these inputs so
both oracles return ⊥.

Next, we perform small changes to Qj+1
n until we reach a function, say Qtn

for some t > j, that sends all values to 0n. Then, we set P t+1
n to any function in

Πn. Again, this step does not change the oracle, i.e. Ot = Ot+1, because Qtn and
Qt+1
n return 0n on any input. The new function P t+1

n allows us to perform the
first step on a new set of inputs i.e. we can modify Ot+1

n on all inputs such that
P t+1
n (x)[1:w] = 0w. Iteratively applying these modifications allows us to reach the

required functions O′′n and P ′′n . Finally, we perform small changes to Qn while
keeping the other functions fixed to obtain Q′′n. These steps are performed for
all n ∈ [log(2m) : r] to build the sequence described.

Since P in ∈ Πn, Q
i
n ∈ Πn,n, and O

i
n ∈ Πn,m for any n ∈ N, by Claim 10,

GO
i

is almost-deterministic for any i ∈ [ℓ].
Note that for any i ∈ [ℓ],Oi is an oracle with classical output and dTD(Oi,Oi+1) ≤

1
m . Therefore, with probability at least (1 − 1

m )r ≥ 1 − r
m , the responses that

G receives from Oi and Oi+1 are indistinguishable. This means that for any

k ∈ {0, 1}λ, with probability at least 1 − r
m − negl(λ), GO

i+1

(k) outputs the

same state generated by GO
i

(k). In order to satisfy the determinism property

of OWSGs, this must mean that GO
i ≃ GO

i+1

for all i ∈ [ℓ]. By induction, we
obtain GO

′ ≃ GO′′
. ⊓⊔

For any oracle O = O[P,Q,O], G is independent of (Pn, Qn, On)n≥r. So,
by the above claim, for any (Pn, Qn, On)n≤log(2m) and k ∈ {0, 1}λ, there exists a

42



state |ψO≤log(2m)

k ⟩, such that for any (P̃ , Q̃, Õ) satisfying (P̃n, Q̃n, Õn)n≤log(2m) =
(Pn, Qn, On)n≤log(2m),

Pr
[
GO[P̃ ,Q̃,Õ](k) =

∣∣∣ψO≤log(2m)

k

〉]
≥ 1− negl(λ). (6)

We now consider a generator G that does not depend on the oracle and is
defined as follows on inputs of length λ+ 16m3:

G(k):

– Parse k as (k1, k2) where k1 ∈ {0, 1}λ and k2 ∈ {0, 1}16m
3

.
– Construct functions (Ok2n )n≤log(2m) in the same way as Construction 7 but

with the randomness determined by k2.
– Initiate an empty memory M.
– Run G(k1) and answer the queries as follows:

1. For a query x of length n ≤ log(2m), respond with Ok2n (x).
2. For a query x of length n > log(2m), if (x, y) ∈M for some y, respond

with y. Otherwise, sample y ← {0, 1}m, store (x, y) in M, and respond
with y.

– Let |ψ⟩ be the result of G(k1).
– Output |ψ⟩ ⊗ |k2⟩.

Consider the following experiment variants of OWSG security with some
polynomial t = t(λ).

– ExpA1 (λ):
1. Sample oracle O as in Construction 7.
2. b← ExpOWSG

AO,C,GO (1λ, 1t).
3. Output b.

– ExpA2 (λ):
1. Sample oracle O as in Construction 7.
2. b← ExpOWSG

AO≤log(2m),C,GO (1
λ, 1t).Notice that A only has access to O≤log(2m)

in this experiment.
3. Output b.

– ExpA3 (λ):
1. b← ExpOWSG

AC,G
(1λ, 1t).

2. Output b.

By Claim 11, for any QPT adversary A,

Pr
O

[
AdtgOWSG

AO,C,GO (1λ, 1t) ≤ O
(

1

λ4

)]
≥ 3

4
.

Therefore, for large enough λ

Pr
[
ExpA1 (λ) = 1

]
≤ 1

4
+

3

4
· 1

λ3
.

43



Next, the only difference between ExpA1 (λ) and ExpA2 (λ) is that A’s oracle
access to O is restricted. Hence, for any QPT adversary A, there exists a QPT

B such that Pr
[
ExpA2 (λ) = 1

]
≤ Pr

[
ExpB1 (λ) = 1

]
.

Finally, we need to relate ExpA2 and ExpA3 .

Claim 13. For any QPT adversary A, there exists a QPT algorithm B such
that

Pr
[
ExpA3 (λ) = 1

]
≤ Pr

[
ExpB2 (λ) = 1

]
+ negl(λ).

Proof. Fix an adversary A in ExpA3 (λ). We construct an algorithm B in ExpB2 (λ)
as follows.

In ExpB2 (λ), a random input k1 ← {0, 1}λ is sampled and t + 1 evalua-
tions are generated |ψi⟩ ← GO(k1) for i ∈ [t + 1]. Then, BO≤log(2m),C receives⊗

i∈[t] |ψi⟩.
B commences as follows. It queries the oracle O≤log(2m) 4m2 times on

every input of length less than log(2m). This allows B to describe O≤log(2m) in
a string, say k2, of length less than 16m3. Specifically, k2 is used to describe the
randomness used in constructingO≤log(2m) (see Construction 7). It is not difficult
to see that B can learn O≤log(2m) exactly, except with negligible probability.

BO≤log(2m),C runs AC on
⊗

i∈[t](|ψi⟩ ⊗ |k2⟩) and receives a response (k′1, k
′
2). B

outputs k′1.
Next, the experiment in ExpB2 (λ) computes |ψk′1⟩ ← GO(k′1) and measures

|ψt+1⟩ with {|ψk′1⟩⟨ψk′1 |, I−|ψk′1⟩⟨ψk′1 |}. If the result is |ψk′⟩⟨ψk′ |, then the output
is b = 1, and the output is b = 0 otherwise.

Notice that the input A receives and needs to invert from B has the same
distribution as the input it receives and needs to invert in ExpA3 . Moreover, as
long as B encodes O≤log(2m) correctly (which occurs with 1−negl(λ) probability),
it is clear that Pr

[
ExpA3 (λ) = 1

]
is at most Pr

[
ExpB2 (λ) = 1

]
, since the inversion

task in the former is at least as hard as in the latter. Therefore,

Pr
[
ExpA3 (λ) = 1

]
≤ Pr

[
ExpB2 (λ) = 1

]
+ negl(λ).

⊓⊔

To sum up, for large enough λ, for any QPT adversary A, there exists a
QPT algorithm B such that

Pr
[
ExpA3 (λ) = 1

]
≤ Pr

[
ExpB2 (λ) = 1

]
+ negl(λ) (7)

≤ 1

4
+

3

4λ3
+ negl(λ) (8)

Notice that ExpA3 (λ) is just the OWSG security experiment for G against
AC . On the other hand, by Lemma 1, there exists an attack against any OWSG

44



using a PSPACE oracle. In particular, there exists an adversary A such that

Pr
[
ExpA3 (λ) = 1

]
≥ 1

2
.

contradicting Eq. (8) above.
Therefore, there does not exist a fully black-box construction of a OWSG

from a (µ,m)-⊥-PRG. ⊓⊔

5.3 Separating ⊥-PRG from PRFqs

We strengthen the first separation (Theorem 9) but in the more restricted setting
of CPTP access. Specifically, we show that there does not exist a fully black-box
construction of a ⊥-PRG from CPTP access to a PRFqs.

The proof is given in Section 5.3.1, but the result and its implications are
discussed below.

Theorem 14. Let λ, n ∈ N be security parameters and let s = s(λ) > 3λ and
µ = µ(λ) ≤ λ−c be functions where c > 0 is a constant. There does not exist a
fully black-box construction of a (µ, s)-⊥-PRG from CPTP access to a PRFqs.

As a result of Theorem 14, we obtain a separation between ⊥-PRGs and
many other MicroCrypt primitives since PRFqs inherit many of the same appli-
cations as PRFs. We note that this separation extends to SPRSs since they imply
⊥-PRGs [4, 31].
Corollary 8. There does not exist a fully black-box construction of a ⊥-PRGs
or a SPRSs from CPTP access to:

1. PRGqs, SPRSqs, LPRSqs, and PRUqs.
2. Statistically-binding computationally hiding bit commitments with classical

communication.
3. Message authentication codes of classical messages with classical communi-

cation.
4. CCA2-secure symmetric encryption of classical messages with classical keys

and ciphertexts.
5. EV-OWPuzzs.

5.3.1 Separation Proof. We prove that there does not exist a fully black-box
construction of a ⊥-PRG from a PRFqs.

We present (µ, s)-⊥-PRG security relative to an oracle T in the form of an
experiment to simplify notation later on.

Exp⊥-PRGAT ,GT (1λ, 1q):

1. Sample k ← {0, 1}λ, b← {0, 1}, and y ← {0, 1}s.
2. If b = 0, for each i ∈ [q], generate yi ← GT (k).
3. If b = 1, for each i ∈ [q], generate yi ← Is-⊥(GT (k), y).
4. b′ ← AT (y1, . . . , yq).
5. If b′ = b, output 1. Otherwise, output 0.

45



We define the advantage of the adversary in this experiment as follows.

Adtg⊥-PRGAT ,GT (1λ) := Pr
[
Exp⊥-PRGAT ,GT (1λ) = 1

]
− 1

2
.

We now describe the oracles used in the separation. These are similar to
the oracles given in Construction 5, which were used to separate PRG and PRFqs.
However, in this case, σ is no longer a unitary, which aids in preventing its use
in a wider variety of primitives, including ⊥-PRGs.

Construction 8. For n ∈ N, let On ← Πn,n and Pn ← Π2n,n be random
functions. Let T := (σ,O, C) be a tuple of oracles, where σ = {σn}n∈N, O :=
{On}n∈N, and C := {Cn}n∈N are defined as follows:

1. C is for membership in a PSPACE-complete language.
2. σn(1

n):
(a) Sample x← {0, 1}n.
(b) Output |x,On(x)⟩.

3. On : Unitary of the classical function that maps (x, y, a), where x, y, a ∈
{0, 1}n, to Pn(x, a) if On(x) = y and to ⊥ otherwise.

We first introduce some notation for the proof, similar to Section 5.1. Let
T denote the set of all possible oracles and let T ← T denote sampling an oracle
in the way given in Construction 8. For any oracle T and integer m ∈ N, let
T≤m denote the sequence of oracles (σn,On)n≤m and let T[T≤m] denote the set

T[T≤m] := {T̃ ∈ T : T̃≤m = T≤m}.

Theorem 15. Let λ, n ∈ N be security parameters and let s = s(λ) > 3λ and
µ = µ(λ) ≤ λ−c be functions, where c > 0 is a constant. There does not exist a
fully black-box construction of a (µ, s)-⊥-PRG from CPTP access to a PRFqs.

Proof. For simplicity, we only prove the theorem for (9n, n)-PRFqs, but the proof
easily generalizes to other parameters by modifying the parameters of the oracles.

Assume, for the purpose of obtaining a contradiction, that G̃F is a fully
black-box construction of a (µ, s)-⊥-PRG, from CPTP access to a (9n, n)-PRFqs

F . We first show that there exists a PRFqs relative to T .

Claim 14. There exists a (quantum-query-secure) (9n, n)-PRFqs relative to T
for any O and with probability 1 over the distribution of P . Furthermore, cor-
rectness is satisfied for any oracle T .

Proof. Similar to proof of Lemma 9. ⊓⊔

Given that there exists a PRFqs relative to T with probability 1 over the or-
acle distribution and correctness is satisfied for all oracles, there exists a ⊥-PRG
GT , from the assumed existence of the black-box construction G̃, with prob-
ability 1 over the distribution of P and correctness is satisfied for any oracle
T ∈ T.

46



Claim 15. For any QPT adversary A:

Pr
T←T

[
Adtg⊥-PRGAT ,GT (1λ) ≤ O

(
1

λ4

)]
≥ 3

4
.

Proof. Same as the proof of Claim 5. ⊓⊔

Let r = r(λ) denote the maximum run-time of G and m := 10( rλµ )4 + λ.
Hence, G makes at most r queries to the oracles.

Fix an oracle T . We will need to show the following lemma.

Lemma 13. There exists a set GT≤log(2m)

λ ⊆ {0, 1}λ such that:

1. Prk←{0,1}λ
[
k ∈ GT≤log(2m)

λ

]
≥ 1−√µ.

2. If k ∈ GT≤log(2m)

λ , then there exists a string y
T≤log(2m)

k such that:

Pr
[
GT̃λ (k) = y

T≤log(2m)

k : T̃ ← T
[
T≤log(2m)

]]
≥ 1− 3

√
µ,

where the probability is taken over the distribution of oracles T̃ satisfying

T̃≤log(2m) = T≤log(2m) and the resulting distribution of GT̃λ (k).

Proof. Define GT≤log(2m)

λ ⊆ {0, 1}λ as the set of inputs that are in the good set

GT̃λ with at least 1−√µ probability over the distribution T̃ ← T
[
T≤log(2m)

]
.

We first show that at least 1 − √µ fraction of inputs are in this set i.e.

Prk←{0,1}λ
[
k ∈ GT≤log(2m)

λ

]
≥ 1 − √µ. Otherwise, we have that at least

√
µ

fraction of inputs are in the good set with probability less than 1−√µ over the
oracle distribution. In this case, even if the rest of the inputs are in the good
set for any oracle, the average size of the good set is smaller than 1 − µ. More
explicitly, we get

E
T←T

[
|GTλ |

]
< (1−√µ) · 1 +√µ · (1−√µ) = 1− µ.

This gives a contradiction since E
T←T

[
|GTλ |

]
≥ 1 − µ by the pseudodeterminism

of ⊥-PRGs. Hence, we must have Prk←{0,1}λ
[
k ∈ GT≤log(2m)

λ

]
≥ 1−√µ.

Now let k ∈ GT≤log(2m)

λ . By the definition of this set,

Pr
[
GT̃λ (k) ̸= ⊥ : T̃ ← T[T≤log(2m)]

]
≥ 1− 2

√
µ. (9)

It is sufficient to show that

Pr

⊥ ≠ y1 ̸= y2 ̸= ⊥
T ′, T ′′ ← T

[
T≤log(2m)

]
y1 ← GT

′
(k)

y2 ← GT
′′
(k)

 ≤ √µ. (10)

47



If this holds, then combining this with Eq. (9) implies that there exists a unique

output y
T≤log(2m)

k such that

Pr
[
GT̃λ (k) = y

T≤log(2m)

k : T̃ ← T
[
T≤log(2m)

]]
≥ 1− 3

√
µ

which is the result we need to show. Assume that Eq. (10) does not hold. To
show a contradiction, we commence with a hybrid argument.

– Hybrid H0:
1. Sample an oracle T ′ ← T

[
T≤log(2m)

]
and let O′ and P ′ denote the

functions encoded in T ′.
2. Sample k ← {0, 1}λ.
3. Compute y1 ← GT

′
(k).

4. Compute y2 ← GT
′
(k).

5. Output (y1, y2).
– Hybrid H1:

1. Sample oracle T ′ ← T
[
T≤log(2m)

]
.

2. Sample k ← {0, 1}λ.
3. Initiate empty memory M.
4. Compute y1 ← GT

′
M(k).

5. Reset M to empty.
6. Compute y2 ← GT

′
M(k).

7. Output (y1, y2).
Here, T ′M := (σ′M,O′M) is defined as follows.
• σ′M(1n):

1. If n ≤ log(2m), then output σ(1n).
2. Otherwise, sample x← {0, 1}n.
3. Store x in memory M.
4. Output |x,O′n(x)⟩.

• O′M:
1. If the input is of size 3n and n ≤ log(2m), then apply On.
2. Otherwise, apply the unitary of the classical function which on input

(x, y, a), outputs P ′n(x, a) if x ∈ M and y = O′n(x), and outputs ⊥
otherwise.

– Hybrid H2:
1. Sample oracles T ′, T ′′ ← T

[
T≤log(2m)

]
.

2. Sample k ← {0, 1}λ.
3. Initiate empty memory M.
4. Compute y1 ← GT

′
M(k).

5. Reset M to empty.
6. Compute y2 ← GT

′′
M(k).

7. Output (y1, y2).
where T ′M and T ′′M are defined in the same way as in H1.

– Hybrid H3:
1. Sample T ′, T ′′ ← T

[
T≤log(2m)

]
.

2. Sample k ← {0, 1}λ.

48



3. Compute y1 ← GT
′
(k).

4. Compute y2 ← GT
′′
(k).

5. Output (y1, y2).

Claim 16. With probability at least 1 − µ/8, hybrids H0 and H1 are indistin-
guishable.

Proof. The oracles in these two hybrids only differ on inputs starting with
(x,O′(x)) such that (x,O′(x)) was not the response of a query to σ by G in
the same evaluation. Crucially, O′ is a random function. Therefore, to distin-
guish these two oracles, G needs to do unstructured search for an input starting
with x /∈M that maps to a non-⊥ element.

The lower bound for unstructured search [36, 10] states that G cannot

distinguish these two hybrids with better than O( r
2

2n ) ≤ µ/8 probability. ⊓⊔

Claim 17. With probability at least 1 − µ/8, hybrids H1 and H2 are indistin-
guishable.

Proof. Consider the two evaluations in H1. Let (x
1
i , O

′(x1i ))i∈[r] and (x2j , O
′(x2j ))j∈[r]

denote the responses of oracles (σ′n)n>log(2m) to the queries of G in the first and
second evaluation, respectively.

If {x1i }i∈[r] ∩ {x2j}j∈[r] = ∅, then these two hybrids are indistinguishable,
since O′, O′′, P ′, P ′′ are random functions. This scenario occurs with at least

1− (2r)2

m ≥ 1− µ/8 probability by the birthday problem. ⊓⊔

Claim 18. With probability at least 1 − µ/8, hybrids H2 and H3 are indistin-
guishable.

Proof. This follows in the same way as Claim 16. ⊓⊔

By the above three claims and the triangle inequality, we have that with
probability at least 1− µ/2, hybrids H0 and H3 are indistinguishable.

Notice that in H3, by our assumption, the probability that (y1, y2) are
non-⊥ distinct strings is at least

√
µ. Therefore, the probability that the two

strings generated in hybrid H0 also are non-⊥ distinct strings is
√
µ−µ/2 > µ/2.

However, this contradicts the pseudodeterminism condition of G, since for a fixed
oracle, two evaluations should yield the same string or ⊥ except with negligible
probability. ⊓⊔

We are now ready to prove the main result (Theorem 14) using a hybrid
argument. But first, we consider a generator G̃ that only depends on T≤log(2m)

and is defined as follows.

49



G̃T≤log(2m)(k):

– For j ∈ [λ] :
1. For each log(2m) ≤ i ≤ r, sample uniformly at random two 2r-degree

polynomials Õi : F2i → F2i and P̃i : F22i → F2i . Let (σ̃i, Õi) be the
resulting oracles.

2. Run G(k) and answer the queries as follows:
(a) For a query x of length n ≤ log(2m), respond using (σn,On).
(b) For a query x of length n > log(2m), respond using (σ̃n, Õn).

3. Let yj be the result of G(k1).
– Set y = voteλ(y1, . . . , yλ).
– Output y.

We also consider a generator G that does not depend on the oracles, and
is defined as follows on inputs of length λ+ 16m3:

G(k):

– Parse k as (k1, k2) where k1 ∈ {0, 1}λ and k2 ∈ {0, 1}16m
3

.
– Construct functions (σk2n ,Ok2n )n≤log(2m) in the same way as Construction 8

but with the randomness determined by k2.
– For j ∈ [λ] :

1. For each log(2m) ≤ i ≤ r, sample uniformly at random two 2r-degree
polynomials Õi : F2i → F2i and P̃i : F22i → F2i . Let (σ̃i, Õi) be the
resulting oracles.

2. Run G(k1) and answer the queries as follows:
(a) For a query x of length n ≤ log(2m), respond using (σk2n ,Ok2n ).
(b) For a query x of length n > log(2m), respond using (σ̃n, Õn).

3. Let yj be the result of G(k1).
– Set y = voteλ(y1, . . . , yλ).
– Output (y, k2).

Now consider the following variants of ⊥-PRG security experiment, where
we set q(λ) = 1 (see Definition 11).

– ExpA1 (λ):
1. Sample oracle T as in Construction 7.
2. b← Exp⊥-PRGAT ,GT (1λ, 1q).
3. Output b.

– ExpA2 (λ):
1. Sample oracle T as in Construction 8.
2. b← Exp⊥-PRGAT≤log(2m),C,GT (1

λ, 1q). Notice that A only has access to T≤log(2m)

and C in this experiment.
3. Output b.

– ExpA3 (λ):
1. Sample oracle T as in Construction 8.

50



2. b← Exp⊥-PRGAT≤log(2m),C,G̃
T≤log(2m)

(1λ, 1q).

3. Output b.
– ExpA4 (λ):

1. b← Exp⊥-PRGAC,G
(1λ, 1q).

2. Output b.

Remark 2. Technically, G and G̃ do not satisfy the pseudodeterminism condi-
tions of a ⊥-PRG, but we can still run the ⊥-PRG security experiment on them.

Claim 19. For any QPT adversary A, there exists a QPT adversary B such
that

Pr
[
ExpA2 (λ) = 1

]
≤ Pr

[
ExpB1 (λ) = 1

]
.

Proof. This is clear because the only difference between theses experiments is
that the adversary’s access to the oracle in Exp2 is restricted. ⊓⊔

Claim 20. For any QPT adversary A and large enough λ,

dTD(Exp
A
2 (λ),Exp

A
3 (λ)) ≤ 1/λ4.

Proof. By Lemma 13, for any oracle T , there exists a set GT≤log(2m)

λ such that:

1. Prk←{0,1}λ
[
k ∈ GT≤log(2m)

λ

]
≥ 1−√µ.

2. If k ∈ GT≤log(2m)

λ , then there exists a string y
T≤log(2m)

k such that:

Pr
[
GT̃λ (k) = y

T≤log(2m)

k : T̃ ← T
[
T≤log(2m)

]]
≥ 1− 3

√
µ. (11)

By definition of ⊥-PRGs, for an input k ∈ {0, 1}λ, there exists a string yTk
such that Pr

[
GTλ (k) ∈ {yTk ,⊥}

]
≥ 1 − negl(λ). As usual, GTλ denotes the good

set of inputs for GTλ (see Definition 11).

Let B denote the event that the key k and oracle T sampled in ExpA2 (λ) or

ExpA3 (λ) satisfy the following conditions: k ∈ GT≤log(2m)

λ ∩GTλ and y
T≤log(2m)

k = yTk ,

where y
T≤log(2m)

k is the string that satisfies Eq. (11).
We now show that event B occurs with probability at least 1− 6

√
µ. Note

that

Pr

[
k ∈ GTλ :

k ← {0, 1}λ
T ← T

]
≥ 1− µ

Pr

[
k ∈ GT≤log(2m)

λ :
k ← {0, 1}λ
T ← T

]
≥ 1−√µ.

Therefore, Pr
[
k ∈ GTλ ∩GT≤log(2m)

λ : k ← {0, 1}λ, T ← T
]
≥ 1−2√µ. Given this,

to show that event B occurs with at least 1 − 6
√
µ probability, it is sufficient

to show that y
T≤log(2m)

k = yTk occurs with at least 1 − 4
√
µ probability when

51



k ← GTλ ∩ GT≤log(2m)

λ and T ← T. If this does not hold, then by an averaging
argument, we obtain

Pr

GT̃λ (k) = y
T≤log(2m)

k :

T ← T
T̃ ← T

[
T≤log(2m)

]
k ← GT≤log(2m)

λ

 =

Pr

[
GTλ (k) = y

T≤log(2m)

k :
T ← T

k ← GT≤log(2m)

λ

]
≤

(1− 2
√
µ) Pr

[
GTλ (k) = y

T≤log(2m)

k :
T ← T

k ← GT≤log(2m)

λ ∩ GTλ

]
+ 2
√
µ ≤

(1− 2
√
µ) (1− 4

√
µ) + 2

√
µ < 1− 3

√
µ

which contradicts Eq. (11), as this equation states that the first probability
should be at least 1 − 3

√
µ. Therefore, event B occurs with at least 1 − 6

√
µ

probability.

If event B occurs, then in ExpA2 (λ), the generator GTλ (k) returns y
T≤log(2m)

k

with probability 1 − negl(λ) for every query. While, in ExpA3 (λ), Gλ(k) returns

y
T≤log(2m)

k with probability 1− negl(λ).
Overall, if event B occurs, then the two experiments can only be distin-

guished with at most negligible probability. Given that event B occurs with
probability at least 1 − 6

√
µ, for large enough λ these two experiments can be

distinguished with at most 6
√
µ+ negl(λ) < 1

λ4 probability. ⊓⊔

Claim 21. For any QPT adversary A, there exists a QPT algorithm B such
that

Pr
[
ExpA4 (λ) = 1

]
≤ Pr

[
ExpB3 (λ) = 1

]
+ 3
√
µ.

Proof. Fix an adversary A in ExpA4 (λ). We construct an algorithm B in ExpB3 (λ)
as follows.

In ExpB3 (λ), an input k1 ← {0, 1}λ, a bit b ← {0, 1}, and a string y ←
{0, 1}s are sampled. Then, let y0 ← G̃T≤log(2m)(k1) and y1 ← Is-⊥(G̃T≤log(2m)(k1), y).
BT≤log(2m),C receives yb and must guess b.

BT≤log(2m),C commences as follows. For every n ≤ log(2m), it queries σn(1
n)

4m2 times. This allows B to obtain all the evaluations of On and learn the
function entirely, except with negligible probability. Next, for each n ≤ log(2m),
B uses On and the oracle On to learn Pn entirely, which requires at most 2m
queries.

B encodes (Pn, On)n≤log(2m) into a string, say k2, of length less than 16m3.
B runs AC on (yb, k2) and receives a response b′. B outputs b′.

As long as B encodes (Pn, On)n≤log(2m) correctly (which occurs with 1 −
negl(λ) probability) and Pr[G(k1, k2) = (y0, k2)] ≥ 1 − negl(λ), then it is clear

that Pr
[
ExpB3 (λ) = 1

]
is at least Pr

[
ExpA4 (λ) = 1

]
− negl(λ). If k1 ∈ GT≤log(2m)

λ ,

52



then these conditions occur with 1 − negl(λ) probability. Recall k1 ∈ GT≤log(2m)

λ

occurs with probability at least 1−√µ by Lemma 13. All together, this means

Pr
[
ExpB3 (λ) = 1

]
≥ Pr

[
ExpA4 (λ) = 1

]
(1− negl(λ)) (1− 2

√
µ) ,

which implies, for large enough λ,

Pr
[
ExpA3 (λ) = 1

]
≤ Pr

[
ExpB2 (λ) = 1

]
+ 3
√
µ.

⊓⊔

By the triangle inequality, for any QPT adversary A and large enough λ,
there exists a QPT adversary B such that∣∣∣Pr [ExpA4 (λ) = 1

]
− Pr

[
ExpB0 (λ) = 1

]∣∣∣ ≤ 1

λ4
+ 3
√
µ+ negl(λ). (12)

By Claim 15, for any QPT adversary A, there exists a negligible function
δ such that:

Pr
T←T

[
Adtg⊥-PRGAT ,GT (1λ) ≤ O

(
1

λ4

)]
≥ 3

4
.

Therefore, for any QPT adversary A and large enough λ,

Pr
[
ExpA0 (λ) = 1

]
− 1

2
≤ 3

4
· 1

λ3
+

1

4
· 1
2
.

By Eq. (12), for any QPT adversary A and large enough λ,

Pr
[
ExpA4 (λ) = 1

]
≤ 3

4
+ 3
√
µ+

1

λ2
. (13)

Notice that G does not use any oracle access.
On the other hand, we will show that there exists an adversary that con-

tradicts Eq. (13).

Claim. There exists a QPT algorithm A such that

Pr
[
ExpA4 (λ) = 1

]
≥ 1− 2

√
µ.

Proof. In the security experiment, ExpA4 (λ), an input k ← {0, 1}λ+16m3

, a bit
b ← {0, 1} and string y ← {0, 1}ℓ are sampled, where ℓ := s + 16m3. Then,
sample y0 ← G(k) and y1 ← Is-⊥(G(k), y). A receives yb and needs to guess b.

Interpret yb as (y
′
b, k2), where y

′
b ∈ {0, 1}s and k2 ∈ {0, 1}16m

3

.
A uses oracle access to C to run the algorithm which computes G(k, k2) on

every input k ∈ {0, 1}λ and if any computation yields yb, then it outputs 0 and
otherwise outputs 1. A returns the output of this algorithm.

53



Let Iλ := {y : ∃k ∈ {0, 1}λ s.t Pr[G(k, k2) = y] ≥ 1
23λ/2 }. Notice that

|Iλ| ≤ 25λ/2.

In the case b = 1, note that Pr[y1 ∈ Iλ] ≤ 25λ/2

2s ≤ 1
2λ/2 is negligible. This

implies that there is a negligible probability that AC(y1) outputs 0 by the union
bound. Therefore, A guesses b′ = b correctly except with negligible probability
when b = 1.

Meanwhile, if b = 0, then y0 ← G(k). Since k is sampled uniformly at
random, by Lemma 13,

Pr[G(k) = y0] ≥ (1− negl(λ))(1−√µ) ≥ 1− 2
√
µ

In other words, AC outputs b′ = b with probability 1− 2
√
µ when b = 0.

All in all,

Pr
[
Exp⊥-PRGAC

,G
(1λ) = 1

]
≥ (1− negl(λ)) · 1

2
+ (1− 2

√
µ) · 1

2
≥ 1− 2

√
µ.

⊓⊔

The claim above contradicts Eq. (13). So there does not exist a fully black-
box construction of a (µ, s)-⊥-PRG from a PRFqs. ⊓⊔

References

[1] Prabhanjan Ananth, Aditya Gulati, Luowen Qian, and Henry Yuen. “Pseu-
dorandom (Function-Like) Quantum State Generators: New Definitions
and Applications”. In: Theory of Cryptography: 20th International Con-
ference, TCC 2022, Chicago, IL, USA, November 7–10, 2022, Proceedings,
Part I. Springer. 2022, pp. 237–265.

[2] Prabhanjan Ananth, Yao-Ting Lin, and Henry Yuen. “Pseudorandom Strings
from Pseudorandom Quantum States”. In: arXiv preprint arXiv:2306.05613
(2023).

[3] Prabhanjan Ananth, Luowen Qian, and Henry Yuen. “Cryptography from
pseudorandom quantum states”. In: Advances in Cryptology–CRYPTO
2022: 42nd Annual International Cryptology Conference, CRYPTO 2022,
Santa Barbara, CA, USA, August 15–18, 2022, Proceedings, Part I. Springer.
2022, pp. 208–236.

[4] Mohammed Barhoush, Amit Behera, Lior Ozer, Louis Salvail, and Or Sat-
tath. Signatures From Pseudorandom States via ⊥-PRFs. 2024. arXiv:
2311.00847 [cs.CR]. url: https://arxiv.org/abs/2311.00847.

[5] James Bartusek. Secure Quantum Computation with Classical Communi-
cation. Cryptology ePrint Archive, Paper 2021/964. 2021. url: https:
//eprint.iacr.org/2021/964.

[6] James Bartusek, Zvika Brakerski, and Vinod Vaikuntanathan. “Quantum
state obfuscation from classical oracles”. In: Proceedings of the 56th Annual
ACM Symposium on Theory of Computing. 2024, pp. 1009–1017.

54

https://arxiv.org/abs/2311.00847
https://arxiv.org/abs/2311.00847
https://eprint.iacr.org/2021/964
https://eprint.iacr.org/2021/964


[7] James Bartusek, Fuyuki Kitagawa, Ryo Nishimaki, and Takashi Yamakawa.
“Obfuscation of pseudo-deterministic quantum circuits”. In: Proceedings of
the 55th Annual ACM Symposium on Theory of Computing. 2023, pp. 1567–
1578.

[8] Amit Behera, Zvika Brakerski, Or Sattath, and Omri Shmueli. “Pseudo-
randomness with proof of destruction and applications”. In: Cryptology
ePrint Archive (2023).

[9] Amit Behera, Giulio Malavolta, Tomoyuki Morimae, Tamer Mour, and
Takashi Yamakawa. “A new world in the depths of microcrypt: Separat-
ing OWSGs and quantum money from QEFID”. In: Annual International
Conference on the Theory and Applications of Cryptographic Techniques.
Springer. 2025, pp. 23–52.

[10] Charles H Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani.
“Strengths and weaknesses of quantum computing”. In: SIAM journal on
Computing 26.5 (1997), pp. 1510–1523.

[11] John Bostanci, Boyang Chen, and Barak Nehoran. “Oracle separation be-
tween quantum commitments and quantum one-wayness”. In: Annual In-
ternational Conference on the Theory and Applications of Cryptographic
Techniques. Springer. 2025, pp. 3–22.

[12] Zvika Brakerski and Omri Shmueli. “Scalable pseudorandom quantum
states”. In: Annual International Cryptology Conference. Springer. 2020,
pp. 417–440.

[13] Bruno Cavalar, Eli Goldin, Matthew Gray, Peter Hall, Yanyi Liu, and An-
gelos Pelecanos. “On the computational hardness of quantum one-wayness”.
In: arXiv preprint arXiv:2312.08363 (2023).

[14] Boyang Chen, Andrea Coladangelo, and Or Sattath. “The power of a single
Haar random state: constructing and separating quantum pseudorandom-
ness”. In: arXiv preprint arXiv:2404.03295 (2024).

[15] Kai-Min Chung, Eli Goldin, and Matthew Gray. “On central primitives
for quantum cryptography with classical communication”. In: Annual In-
ternational Cryptology Conference. Springer. 2024, pp. 215–248.

[16] Andrea Coladangelo and Saachi Mutreja. “On black-box separations of
quantum digital signatures from pseudorandom states”. In: arXiv preprint
arXiv:2402.08194 (2024).

[17] Yevgeniy Dodis, Russell Impagliazzo, Ragesh Jaiswal, and Valentine Ka-
banets. “Security amplification for interactive cryptographic primitives”.
In: Theory of Cryptography: 6th Theory of Cryptography Conference, TCC
2009, San Francisco, CA, USA, March 15-17, 2009. Proceedings 6. Springer.
2009, pp. 128–145.

[18] Nico Döttling, Giulio Malavolta, and Sihang Pu. “A combinatorial ap-
proach to quantum random functions”. In:Advances in Cryptology–ASIACRYPT
2020: 26th International Conference on the Theory and Application of
Cryptology and Information Security, Daejeon, South Korea, December 7–
11, 2020, Proceedings, Part II 26. Springer. 2020, pp. 614–632.

55



[19] Bill Fefferman and Shelby Kimmel. “Quantum vs classical proofs and sub-
set verification”. In: arXiv preprint arXiv:1510.06750 (2015).

[20] Eli Goldin, Tomoyuki Morimae, Saachi Mutreja, and Takashi Yamakawa.
“CountCrypt: Quantum Cryptography between QCMA and PP”. In: arXiv
preprint arXiv:2410.14792 (2024).

[21] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. “How to construct
random functions”. In: J. ACM 33.4 (1986), pp. 792–807. doi: 10.1145/
6490.6503. url: https://doi.org/10.1145/6490.6503.

[22] Russell Impagliazzo and Steven Rudich. “Limits on the provable conse-
quences of one-way permutations”. In: Proceedings of the twenty-first an-
nual ACM symposium on Theory of computing. 1989, pp. 44–61.

[23] Zhengfeng Ji, Yi-Kai Liu, and Fang Song. “Pseudorandom quantum states”.
In: Advances in Cryptology–CRYPTO 2018: 38th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 19–23, 2018,
Proceedings, Part III 38. Springer. 2018, pp. 126–152.

[24] Dakshita Khurana and Kabir Tomer. “Commitments from quantum one-
wayness”. In: Proceedings of the 56th Annual ACM Symposium on Theory
of Computing. 2024, pp. 968–978.

[25] William Kretschmer. “Quantum Pseudorandomness and Classical Com-
plexity”. In: 16th Conference on the Theory of Quantum Computation,
Communication and Cryptography. 2021.

[26] William Kretschmer, Luowen Qian, and Avishay Tal. “Quantum-Computable
One-Way Functions without One-Way Functions”. In: arXiv preprint arXiv:2411.02554
(2024).

[27] Fermi Ma and Hsin-Yuan Huang. “How to construct random unitaries”.
In: arXiv preprint arXiv:2410.10116 (2024).

[28] Mohammad Mahmoody, Ameer Mohammed, Soheil Nematihaji, Rafael
Pass, et al. “A note on black-box separations for indistinguishability ob-
fuscation”. In: Cryptology ePrint Archive (2016).

[29] Tomoyuki Morimae, Shogo Yamada, and Takashi Yamakawa. Quantum
Unpredictability. Cryptology ePrint Archive, Paper 2024/701. 2024. url:
https://eprint.iacr.org/2024/701.

[30] Tomoyuki Morimae and Takashi Yamakawa. “One-wayness in quantum
cryptography”. In: arXiv preprint arXiv:2210.03394 (2022).

[31] Tomoyuki Morimae and Takashi Yamakawa. “Quantum commitments and
signatures without one-way functions”. In:Advances in Cryptology–CRYPTO
2022: 42nd Annual International Cryptology Conference, CRYPTO 2022,
Santa Barbara, CA, USA, August 15–18, 2022, Proceedings, Part I. Springer.
2022, pp. 269–295.

[32] Michael A. Nielsen and Isaac L. Chuang. Quantum computation and quan-
tum information. New York, NY, USA: Cambridge University Press, 2000.
isbn: 0-521-63503-9. doi: 10.1017/CBO9780511976667.

[33] Tsunekazu Saito, Keita Xagawa, and Takashi Yamakawa. “Tightly-secure
key-encapsulation mechanism in the quantum random oracle model”. In:
Advances in Cryptology–EUROCRYPT 2018: 37th Annual International

56

https://doi.org/10.1145/6490.6503
https://doi.org/10.1145/6490.6503
https://doi.org/10.1145/6490.6503
https://eprint.iacr.org/2024/701
https://doi.org/10.1017/CBO9780511976667


Conference on the Theory and Applications of Cryptographic Techniques,
Tel Aviv, Israel, April 29-May 3, 2018 Proceedings, Part III 37. Springer.
2018, pp. 520–551.

[34] Dominique Unruh. “Computationally binding quantum commitments”. In:
Advances in Cryptology–EUROCRYPT 2016: 35th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Vienna, Austria, May 8-12, 2016, Proceedings, Part II 35. Springer. 2016,
pp. 497–527.

[35] Dominique Unruh. “Quantum proofs of knowledge”. In: Annual interna-
tional conference on the theory and applications of cryptographic tech-
niques. Springer. 2012, pp. 135–152.

[36] Christof Zalka. “Grover’s quantum searching algorithm is optimal”. In:
Physical Review A 60.4 (1999), p. 2746.

[37] Mark Zhandry. “A note on quantum-secure PRPs”. In: arXiv preprint
arXiv:1611.05564 (2016).

[38] Mark Zhandry. “How to construct quantum random functions”. In: 2012
IEEE 53rd Annual Symposium on Foundations of Computer Science. IEEE.
2012, pp. 679–687.

[39] Mark Zhandry. “Schrödinger’s pirate: How to trace a quantum decoder”.
In: Theory of Cryptography: 18th International Conference, TCC 2020,
Durham, NC, USA, November 16–19, 2020, Proceedings, Part III 18. Springer.
2020, pp. 61–91.

A BQ-PRUqs from PRGqs

In this section, we show to build BQ-PRUqss from PRGqss. We first introduce
some further definitions in the quantum input sampling regime.

A.1 Definitions: PRPqs and BQ-PRUqs

We introduce pseudorandom permutations with quantum input sampling.

Definition 15 (Pseudorandom Permutation with Quantum Key Gen-
eration). Let λ ∈ N be the security parameter and let n = n(λ) and m = m(λ)
be polynomials in λ. A tuple of QPT algorithms (QSamp, F, F−1) is called a
(m,n)-pseudorandom permutation with quantum key generation (PRPqs), if:

1. QSamp(1λ) : Outputs a string k ∈ {0, 1}m.
2. Fk(x): Takes a key k ∈ {0, 1}m and an input x ∈ {0, 1}n and outputs a

string y ∈ {0, 1}n.
3. F−1k (y): Takes a key k ∈ {0, 1}m and an input y ∈ {0, 1}n and outputs a

string x ∈ {0, 1}n.
4. ( Inverse Relation) For every k ∈ {0, 1}m, there exists a permutation πk over
{0, 1}n such that for all x, y ∈ {0, 1}n, the following conditions are satisfied:

Pr
k←QSamp(1λ)

[Fk(x) = πk(x)] ≥ 1− negl(λ).

57



and
Pr

k←QSamp(1λ)

[
F−1k (y) = π−1k (y)

]
≥ 1− negl(λ).

5. (Security) For any QPT distinguisher A:∣∣∣∣ Pr
k←QSamp(1λ)

[
AFk,F

−1
k (1λ) = 1

]
− Pr
O←Πn

[
AO,O

−1

(1λ) = 1
]∣∣∣∣ ≤ negl(λ).

where Πn is the set of permutations on {0, 1}n. We say a PRPqs is quantum-
query-secure if the above holds even if A is given quantum-query-access.
Furthermore, in the case where security only holds for t ≤ q queries for
some polynomial q = q(λ), then we call this q-query PRPqs.

We also define pseudorandom unitaries with quantum input sampling.

Definition 16 (Pseudorandom Unitaries with Quantum Input Sam-
pling). Let m = m(λ) and n = n(λ) be polynomials in the security parameter
λ ∈ N. A pair of QPT algorithms (QSamp, U) is a (m,n)-pseudorandom unitary
with quantum input sampling (PRUqs) if the following holds:

1. QSamp(1λ): Outputs a m-bit key k.
2. Uk: Quantum channel that takes an m-bit key k and acts on n-qubit states.
3. For any QPT adversary A,∣∣∣∣ Pr

k←QSamp(1λ)

[
AUk(1λ) = 1

]
− Pr
U←µ

[
AU (1λ) = 1

]∣∣∣∣ ≤ negl(λ).

where µ denotes the Haar measure on the unitary group U(Cn). If A is
restricted to only q = q(λ) queries to the unitary, then this is denoted as
(q,m, n)-BQ-PRUqs.

Note that our definition of is weaker than earlier definitions of PRU [23], as
we do not require that the pseudorandom unitary to be a unitary map. We only
require that it is indistinguishable from a Haar random unitary. Unfortunately,
due to the negligible error inherent in PRPqs and PRFqs, our construction of a
PRUqs from these primitives is not guaranteed to be a unitary map.

A.2 Result

Note that a PRGqs with sufficient expansion easily implies a PRFqs with polyno-
mial domain through interpreting the output string as a function. However, it
is not clear if a PRGqs can be used to build full-fledged PRFqs with exponential
domain since the standard construction converting a PRG to a PRF [21] and its
quantum adaption [38] both implicitly use the uniform input sampling property
of PRGs. Hence, adapting this conversion to the quantum input sampling setting
is an interesting open question.

Fortunately, PRFqs with polynomial domain can still be useful for applica-
tions by converting them to bound-query PRFqss with exponential domain using
Lemma 14. Specifically, the paper [18] shows how to expand the domain size of
a PRF, and the same construction and result apply to PRFqss as well.

58



Lemma 14 (Theorem 7 [18]). Let λ ∈ N be the security parameter and q
and m be polynomials in λ. Let (QSamp,F) be a (quantum-query-secure) PRFqs

with key space Kq, domain X : {0, 1}ℓ where ℓ = O(log(λ)), and co-domain Z :
{0, 1}m. Then, there exists a q-query (quantum-query-secure) PRFqs (QSamp, F ′q)
with the same key sampling algorithm and key space Kq, and with domain and
co-domain Z.

We will use this result to build BQ-PRUqs and BC-LPRSqs from PRGqss.
First, [37] shows how to build quantum-query-secure pseudorandom permuta-
tions from quantum-query-secure PRFs. This conversion queries the PRF a poly-
nomial number of times with respect to the security parameter λ and input
length n. Hence, the same proof can be used to show that for any q′ ∈ poly(λ),
there exists a q ∈ poly(λ, n) such that q-query pseudorandom functions imply
q′-query pseudorandom permutations.

Corollary 9. Let λ ∈ N be the security parameter and q = q(λ) and n = n(λ)
be polynomials in λ. There exists a polynomial ℓ = ℓ(λ), such that (λ, ℓ)-PRGqss
imply (q, λ, n)-BQ-PRPqss.

Recently, [27] showed how to build a PRU from PRPs and PRFs. Notably,
each unitary evaluation uses a single quantum query to the PRP and to the
PRF. Therefore, we obtain bounded-copy PRUqss from bounded-query PRFqss
and bounded-query PRPqss. Furthermore, BQ-PRUqs imply BC-LPRSqs given
that LPRS can be viewed as a special case of PRUs, where the unitary can only
be queried on the state |0n⟩.

Theorem 16. Let λ ∈ N be the security parameter and q and n be polynomials
in λ. There exists a polynomial ℓ in λ such that (λ, ℓ)-PRGqss imply (q, λ, n)-
BQ-PRUqss and (q, λ, n)-BC-LPRSqs.

59


	MicroCrypt Assumptions with Quantum Input Sampling and Pseudodeterminism: Constructions and Separations
	Introduction
	Our Work
	Quantum Input Sampling.
	Separations.
	Discussion of Separations.

	Relation to Previous Work
	Technical Overview
	Quantum Input Sampling.
	Separation Results


	Preliminaries
	Notations
	Black-Box Separation
	MicroCrypt Primitives
	Pseudodeterministic Pseudorandom Strings from Pseudorandom States
	Pseudodeterministic Primitives in MicroCrypt

	Definitions: Cryptography with Quantum Input Sampling
	Relations among Primitives with Quantum Input Sampling
	PRGqs from bot-PRG
	PRGqs from BC-SPRSqs
	SPRSqs from PRGqs

	Separations
	Separating PRG from PRFqs
	Separation Proof.

	Separating OWSG from bot-PRG
	Separation Proof.

	Separating bot-PRG from PRFqs
	Separation Proof.


	BQ-PRUqs from PRGqs
	Definitions: PRPqs and BQ-PRUqs
	Result



