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Abstract

Training data reconstruction attacks enable adversaries to recover portions of a
released model’s training data. We consider the attacks where a reconstructor
neural network learns to invert the (random) mapping between training data and
model weights. Prior work has shown that an informed adversary with access
to released model’s weights and all but one training data point can achieve high-
quality reconstructions in this way. However, differential privacy can defend against
such an attack with little to no loss in model’s utility when the amount of training
data is sufficiently large. In this work we consider a more realistic adversary who
only knows the distribution from which a small training dataset has been sampled
and who attacks a transfer-learned neural network classifier that has been trained
on this dataset. We exhibit an attack that works in this realistic threat model and
demonstrate that in the small-data regime it cannot be defended against by DP-SGD
without severely damaging the classifier accuracy. This raises significant concerns
about the use of such transfer-learned classifiers when protection of training-data is
paramount. We demonstrate the effectiveness and robustness of our attack on VGG,
EfficientNet and ResNet image classifiers transfer-learned on MNIST, CIFAR-10
and CelebA respectively. Additionally, we point out that the commonly used
(true-positive) reconstruction success rate metric fails to reliably quantify the actual
reconstruction effectiveness. Instead, we make use of the Neyman-Pearson lemma
to construct the receiver operating characteristic curve and consider the associated
true-positive reconstruction rate at a fixed level of the false-positive reconstruction
rate.

1 Introduction

Machine Learning (ML) models are known to carry certain imprints of their training data [3, 44, 10,
46, 27]. If the training data contains sensitive information, it is important to train the corresponding
ML model in a privacy-preserving way. Governments have recognised training data privacy risks
as a crucial issue in the development of ML/AI systems and mention membership inference [44]
and model inversion [20, 19] attacks explicitly in their official documents [15, 50]. Intuitively, the
capacity of an ML model to memorise its training data grows with the complexity of the model and
with the number of its parameters. In particular, neural networks have been shown to memorise
global properties of their training data [21, 4], single datapoints [6] or even entire training datasets
[24, 8, 35]. In this work we study training data reconstruction attacks that exploit this memorisation
effect in neural networks.

One can order different types of attacks according to the amount of information they can extract from
the attacked model. A membership inference attack (MIA) [44, 9] aims to predict whether a given
data point was in the model’s training set. If successful, it extracts only a single bit of information
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about the training data. On the other end of the spectrum we have reconstruction attacks that extract
an entire single datapoint [6] or large chunks of the training dataset [24, 8, 35]. Thus, a successful
training data reconstruction attack requires leakage of many bits of information. In this paper we are
concerned with the task of reconstructing several examples from the training dataset. We consider
situations where one does not necessarily want to go as far as protecting against MIA but do want to
protect against training data reconstruction.

Differential privacy (DP) [41] has become a popular tool for training ML models in a way that
protects the individual records of a dataset (as opposed to the global information about the data
which is not protected by DP [21]). It allows one to state formal privacy guarantees quantified in
terms of the privacy budget denoted by ϵ ≥ 0. One of the most popular algorithms for DP-training
of neural networks is the differentially private stochastic gradient descent DP-SGD [1]. In order
to decide what value of ϵ is sufficient to defend against a given threat model, one needs to know
how the DP-SGD guarantees translate to the success probability of the attack at hand. This can be
formulated in terms of suitable tight upper bounds (called the reconstruction robustness bounds)
for the success of any attack on a DP-SGD trained neural net under a given threat model. Recent
work [6, 25] has provided tremendous advancements in this area under a strong threat model of an
informed adversary. An informed adversary has access to intermediate gradients computed during
DP-SGD and knowledge of all the training data except one data point which is the target of the
reconstruction attack. Reconstruction robustness bounds have been derived in this setup [25] and
shown experimentally to be nearly saturated by a certain gradient-based inversion attack (see [25] and
references therein for mode details). In the more realistic hidden state threat model [17, 5, 54, 2, 11]
the informed adversary does not have access to the intermediate gradients. There, the appropriate
attack is the model-based attack that only uses the released weights of the model. The reconstruction
success of the model-based attack is not well reflected by theoretical reconstruction robustness bounds
derived for the threat model that assumes access to the intermediate gradients [6]. In other words,
experimental evidence suggests that much lower levels of privacy are sufficient to defend against
the model-based inversion attack in the hidden state threat model. However, derivation of suitably
tight DP-SGD privacy guarantees and thus tight reconstruction robustness bounds in the hidden state
threat model for neural networks is an open problem [2, 11]. In this work, we consider an even
more realistic threat model (specified in detail below) which assumes the knowledge of the released
model’s weights and the distribution from which the training data has been sampled (rather than
specific data points). Thus, we anticipate the existence of an even larger gap between the upper
bounds for reconstruction success that are optimal for our threat model and the theoretical analysis
from [25]. In realistic threat models theoretical analysis may not prove feasible, thus in order to draw
practical conclusions about using DP in such cases one often needs to turn to empirical estimation of
privacy leakage and robustness of DP-SGD [28, 37, 11].

A crucial practical aspect of any implementation of DP is the privacy-utility tradeoff [41]. Namely,
achieving lower ϵ requires using more noise in a given DP algorithm which in turn degrades utility.
The privacy-utility tradeoff is particularly severe when applying DP to small datasets [41]. This is also
the case in DP-SGD [1, 49]. Our work extends these observations and shows that image classifiers
transfer-learned on datasets containing few examples per class can suffer accuracy degradation of
10 − 30 percentage points when trained with DP-SGD strong enough to defend against our data
reconstruction attack. This is of particular relevance when working with data with significant class
imbalances [12, 42, 51] where applying the common downsampling and reweigthing techniques
[43, 7] can often lead to effective small training datasets containing few examples per (minority) class
or tens of examples in total.

Our Threat Model (Weak Adversary) The adversary has access to the released model and their
aim is to reconstruct some examples from the training dataset. Note that successful reconstruction of
just a single data point can already be considered a privacy breach. More specifically, we assume the
following threat model in which (only) the following hold.

(A.1) Model’s architecture and released parameters θ are known.
(A.2) Model’s training algorithm A is known.
(A.3) Prior distribution, π, from which the training data has been sampled and the size of the

training set N are known.

We call an adversary working within the framework of (A.1-3) the weak adversary in contrast to
the informed adversary that has been considered in previous works [6, 25]. In the context of this
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Original Set

Reconstruction

Success? ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔✔✔✔

✔ ✔ ✔ ✔

Original

Reconstruction

Success? ✔

Figure 1: Examples of reconstructions obtained via our attack with CIFAR-10 [32], MNIST [16]
(reconstructed in the 32× 32-resolution) and CelebA [34] (reconstructed in the 64× 64-resolution)
datasets. The reconstruction “success” is determined via the nearest-neighbour MSE threshold
criterion τ as defined in Section 2. Classifier training set size N = 10.

paper, our assumptions effectively mean that the trained model and its transfer-learning code is public.
In particular, the adversary knows all the training hyper-parameters used in the transfer-learning
process (number of epochs, learning rate, weight decay, batch size, the initialization distribution of
the weights, etc.). However, we do not assume the knowledge of the random seed that has been used
to initialize model’s weights or to sample mini-batches during training. We also do not assume the
knowledge of any gradients that were computed during the training of the model. We argue that this
is indeed a realistic setting, since it is a widespread practice to publish trained models, but the exact
random seeds used during the training or the computed intermediate gradients are often not known.
This is especially common in the transfer-learning scenarios where the base model’s architecture is
typically one of the several standard and widely used architectures that has been pre-trained on a
generic and public dataset and whose weights are publicly available. During the transfer-learning
typically only the top layers of the pre-trained model are replaced and are usually initialized in a
standardized way (e.g. using random normal, Xavier [22] or Kaiming initialization [26]). Thus, even
without access to the exact model architecture or some of the training process details the adversary
may need to explore only several likely possibilities via trial and error following generic published
methods of transfer-learning (e.g., [13]). The size of the training set and the sizes of the classes being
a global property of the data can be determined via an auxiliary property inference attack which
cannot be defended against by DP-SGD [21].

Contributions

• We design a reconstruction attack that is able to retrieve examples from the training data under a
realistic threat model of the weak adversary (see Section 3 and reconstruction examples in Fig. 1).

• In transfer-learning scenarios with small datasets we show experimentally that DP-SGD cannot
defend against our attack without significant degradation in model’s utility (see Section 4). This is
in contrast to earlier reconstruction attack methods and therefore raises new significant concerns
about the use of such models when protection of training data is paramount.

• We propose to measure the robustness against a reconstruction attack by considering true- and
false-positive reconstruction rates. We use the receiver operating characteristic (ROC) curves to
propose a test that can be used to practically evaluate a model’s security (see Section 2).

Comparison with Prior Work We study the problem of (partially) inverting the mapping between
the training set and trained model’s weights. This is different than model inversion [19, 53] which
reconstructs model’s input from its output. The work [6] studies a similar problem to the one
considered here by training a reconstructor NN. However, as explained above and specified in Section
3.2, our attack works under a more realistic threat model and under much more general conditions.
Our attack relies on a reconstructor NN giving reconstructions that are semantically close to the
original images as opposed to the recently proposed gradient-flow based attacks [24, 8, 35] which
reconstruct the training data numerically as solutions to a certain algebraic minimization problem.
Our attack is more flexible than the gradient-flow based methods which only work when the attacked
model has been trained in a very specific way. For instance, they require long training with very
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low learning rates until good (approximate) convergence to a critical/KKT point (we do not need
any of these assumptions). As such, the gradient-flow based attacks will be disrupted even by small
amounts of noise in DP-SGD. The importance of the true- and false-positive attack success rates and
ROC curves to evaluating deep learning privacy has been emphasized in the context of MIA [9, 33],
however it has not been considered in data reconstruction attacks, especially in realistic threat models
such as the weak adversary model. A hypothesis testing approach (different from ours) has been
recently used to derive tighter reconstruction robustness bounds in the informed adversary model
[29].

2 Reconstruction Robustness Measures

We argue that in order to evaluate the effectiveness of a given reconstruction attack (or a model’s
robustness against these attacks) one needs to report both true- and false-positive reconstruction rates.
The key object containing this information is the ROC curve corresponding to the attack at hand.

Notation Let Z ⊂ Rd be the domain where the training data lives. We denote by π be the prior
distribution of the training data over Z and by πN the product-prior over ZN . The reconstruction
error function will be denoted by ℓ : Z × Z → R≥0. The weights of the neural network model will
be denoted by θ ∈ Θ, where Θ is the range of a randomised training mechanism M : ZN → Θ.

Definition 1 (Reconstruction TPR and FPR). Let R : Θ → Z be a reconstruction attack. For
τ ≥ 0 define the true-positive reconstruction rate TPRτ (R) and the false-positive reconstruction
rate FPRτ (R) with respect to π and ℓ as

TPRτ (R) := P(Z1,...,ZN )∼πN ,θ∼M(Z1,...,ZN )

[
min

1≤i≤N
ℓ (Zi,R(θ)) ≤ τ

]
, (1)

FPRτ (R) := P(Z′
1,...,Z

′
N )∼πN ,(Z1,...,ZN )∼πN ,θ∼M(Z1,...,ZN )

[
min

1≤i≤N
ℓ (Z ′

i,R(θ)) ≤ τ

]
. (2)

Many prior data reconstruction attacks use incomplete evaluation methodology that only considers
TPR – see the definition of reconstruction robustness in [6, 25] (note that the definition differs from
ours due to the differences in the threat models). Unfortunately, in the context of this work such
a definition of reconstruction robustness becomes less and less meaningful when N is large – it
becomes easier and easier to devise a data reconstruction attack whose TPR approaches 1. To see this,
consider the following baseline attackR0. For a given error threshold τ > 0 let Z0 ∈ Z be such that
κτ (Z0) := PZ∼π [ℓ(Z,Z0) ≤ τ ] > 0. Assume also that the error threshold is chosen to be non-trivial
in the sense that supZ∈Z PZ′∼π [ℓ(Z

′, Z) ≤ τ ] < 1. The baseline attack is defined asR0(θ) = Z0

for any input weights θ. We immediately find that TPRτ (R0) = 1−(1−κτ (Z0))
N . Thus, when the

amount of training data is large we have TPRτ (R0)
N→∞−−−−→ 1. In other words, the baseline attack

can achieve great reconstruction TPR. However, it is not retrieving any information about the actual
training set since it is merely returning an arbitrary member of Z – its false-positive reconstruction
rate (FPR) tends to 1 as well. This shows that in order to make meaningful conclusions about
the effectiveness of a reconstruction attack we need to consider both the true-positive and the false-
positive reconstruction rates. For a general reconstruction attack, R, we define its FPR as the rate at
which we obtain coincidental successful reconstructionsR(θ) obtained from weights θ coming from
a different training set drawn from πN . One can further formalize this idea by defining a modified
version of the membership inference security game [9], see Appendix A.

Intuitively, FPR measures how good the attack R is at guessing successful reconstructions. Thus,
from the perspective of the adversary it is desirable to achieve low FPR. The ROC curve shows
how TPR changes as a function of FPR when varying τ . A relevant part of the ROC curve from
the point of view of an adversary is the one that describes low FPR values e.g., FPR < 0.01. An
adversary might reliably quantify their attack by finding the threshold τ for which FPR = 0.01
and calculate the corresponding TPR. This fact has also been emphasized in the context of MIA
[9, 33]. In Appendix A.1 we compare the so-obtained ROC curves with the ones computed via the
likelihood-ratio test according to the Neyman-Pearson hypothesis testing lemma [38] and show that
in our experiments the both methods can yield extremely similar ROC curves. Since the Neyman-
Pearson ROC curves describe the uniformly most powerful hypothesis test, results from Appendix
A.1 justify our proposed method as being effectively near-optimal. We identify the reason why this
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happens by finding a theoretical condition that, if satisfied exactly, causes the both ROC curves to be
identical. In Appendix A.1 we also compare our attack against a simple attack that just draws the
reconstructions randomly from the prior distribution π.

Selecting the nearest-neighbour threshold value τ Following other works [6, 25], we choose
the error function ℓ = ℓMSE to be the mean-squared error (MSE, averaged over the pixels and
the image channels). To calculate an illustrative threshold τ which we call the nearest-neighbour
threshold we: 1) split the entire dataset into train- and validation subsets, 2) for each element of
the validation set find its nearest neighbour in the training set w.r.t. the MSE distance and 3) τ is
the average nearest-neighbour MSE distance. Each image is normalized as X → X/127.5 − 1.
Our calculated thresholds τ were 0.0696, 0.1284 and 0.1217 for MNIST, CIFAR-10 and CelebA
respectively. Unless stated otherwise, all the FPR and TPR values reported in this work are
calculated using the nearest-neighbour threshold values. Crucially, one can lower our attack’s FPR
by varying τ and improve the TPR/FPR ratio, albeit at the expense of reducing the magnitude of
TPR – this is illustrated by Table 1 and the ROC curves reported in Appendix A.

3 Our Reconstruction Attack and its Robustness

Transfer Learning Setup In this work, we aim to attack a neural network model (image classifier)
that has been trained using the transfer learning technique [40]. More specifically, we consider the
transfer learning where: 1) a base model is pre-trained to perform a certain general classification task
on a large training dataset and 2) the pre-trained model is subsequently fine-tuned to do a different
classification task where the available training dataset is much smaller. The fine-tuning that we apply
relies on replacing the output layer of the pre-trained model with new layer(s) and training only the
new layer(s) with the weights of all the other layers being frozen. In other words, the new layers are
trained using the robust features that the model has leaned during the pre-training. We emphasize that
in the transfer-learning scenarios the assumptions (A.1-3) describing the weak adversary refer to the
transfer-learning data and training algorithm – we are not interested in reconstructing the data used in
the pre-training step. In order to emulate such a situation, we set up the following experiments.

1. MNIST We pre-train a scaled-down VGG-11 neural net [45] on the EMNIST-Letters
[14] classification task: 128K data, 26 classes, test accuracy of 94.6%. We transfer this
base model to MNIST-classification [16] (10 classes) by replacing the 26 output neurons of
the base model with 10 new neurons.

2. CIFAR We pre-train EfficientNet-B0 [47] on the CIFAR-100 [32] classification task:
50K data, 100 classes, test accuracy of 85.9%. We transfer this base model to CIFAR-10
classification by replacing the 100 output neurons of the base model with 10 new neurons.

3. CelebA We pre-train WideResNet-50 [56] on the CelebA [34] attributes classification
task: 200K data, 40 binary attributes, test accuracy of 92.0%. We transfer this base model
to a binary face recognition task (also using CelebA) by replacing the 40 output neurons of
the base model with a two-layer NN of the size 4− 1 i.e., 4 neurons connected to 1 output
neuron.

The transfer-learning dataset sizes that we consider in the above experiments range from N = 10 to
N = 40. In the MNIST and CIFAR experiments the class sizes in the training set were balanced,
while in the CelebA experiment we emulate transfer learning with unbalanced data – the positive
class constituted only 10% of the training set. We use the cross-entropy as the training loss (with
appropriate class reweighting in the unbalanced case). Care was taken to ensure that the transferred
models attained high accuracy - see Appendix D.2.

3.1 Our Reconstruction Attack

We demonstrate that in the transfer learning setup it is indeed possible to reconstruct some of the
training datapoints from the transfer-learning dataset with reconstruction TPR between 35− 65% at
FPR between 1− 10%, depending on the experiment (see Table 1 and examples in Fig. 1).

Reconstructor NN and the Shadow Training Method The reconstructor NN is trained using the
shadow training method [44] that relies on creating a large number of “shadow models” that mimic
the model to be attacked, see Algorithm 1. We split each dataset D (MNIST, CIFAR-10, CelebA)
into disjoint Dtrain and Dval subsets and apply Algorithm 1 to the two splits separately to obtain
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Table 1: True- and false-positive reconstruction rates for the MNIST, CIFAR and CelebA experiments
depending on the training set size N of the attacked model. Asterisks ∗ mark values calculated w.r.t.
the nearest-neighbour MSE threshold, see Section 2.

N = 10 N = 40

Experiment TPR∗ FPR∗ TPR@FPR = 0.01 TPR∗ FPR∗ TPR@FPR = 0.01

MNIST 0.636 0.018 0.431 0.374 0.098 0.052
CIFAR 0.388 0.063 0.217 0.580 0.383 0.045
CelebA 0.441 0.012 0.385 0.341 0.102 0.084

Algorithm 1 Shadow model training
Input: Large dataset D sampled from data prior distribution π, classifier training set size N , weight
initialization distribution πΘ, transfer-learning algorithm A, number of shadow models Nshadow.
Initialize: Dshadow ← [ ] as an empty list.

1: for k = 1 to Nshadow do
2: Sample the training dataset Dk from D, #Dk = N.
3: Initialize the weights and biases of the trainable layers θ0 ∼ πΘ.
4: Train the trainable layers (θ0,Dk)

A−→ θk.
5: Append the list Dshadow ← Dshadow + [(θk,Dk)].
6: end for

Output: Shadow dataset Dshadow.

the disjoint shadow datasets Dtrain
shadow and Dval

shadow. The reconstructor NN is trained on Dtrain
shadow

and tested on Dval
shadow. It takes as input the (flattened) trained weights and biases of the trainable

layers of the attacked model and outputs a single image. In MNIST and CIFAR experiments we use
the conditional reconstructor NN whose input consists of the trained parameters concatenated with
the one-hot encoded class vector that determines the class of the output image. This way, we can
reconstruct one image per class from the same training set.

The reconstructor NN can be viewed as an image generator if one treats the trained weights as
random vectors in a high dimensional latent space. Thus, we can successfully borrow generator
architectures that have been developed for generative adversarial networks. We have found that our
minor modification of the deep convolutional residual architecture provided by [23, 52] has worked
well for the purposes of this work. We describe this architecture in more detail in Appendix B.

In the experiments we train the image classifiers on balanced training sets i.e., N = C·M , where C
is the number of classes. In the CIFAR and MNIST experiments M is the (fixed) number of examples
per image class and C = 10. In the CelebA experiment the models are binary classifiers trained to
recognize the face of a given person. There, the training set of a classifier consists of M images of
that person and 9M images of other randomly selected people. The selected identities vary between
the shadow models. In each experiment we prepare N train

shadow = 2.56× 106 training shadow models
and Nval

shadow = 103/104 validation shadow models for the CIFAR, MNIST/CelebA experiments
respectively. We subsequently calculate the trained weights statistics

θ =
1

N train
shadow

Ntrain
shadow∑
k=1

θk, Covθ =
1

N train
shadow

Ntrain
shadow∑
k=1

(
θk − θ

)
.
(
θk − θ

)T
,

It is important to normalize the input of the reconstructor NN as θk,i → (θk,i−θi)/
√

[Covθ]i,i due to
the possible variation in the trained weights’ magnitude. In estimating FPR of the reconstructor NN
we approximate the sampling from the distribution of θ ∼M(Z1, . . . , ZN ) with (Z1, . . . , ZN ) ∼ πN

from Definition 1 by sampling from a multivariate random normal distribution. This is done by
feeding the reconstructor NN with weights sampled from N (0, C̃ovθ), where C̃ovθ is the covariance
of the normalized weights. For the precise description of TPR and FPR estimation procedures, see
Algorithm 2 and Algorithm 3 in Appendix A.

Reconstructor NN Loss Function Let (Dk, θk) ∈ Dshadow and let Dc
k = {Zc

1, . . . , Z
c
M} be the

subset of Dk consisting of images of the class c ∈ {0, . . . , C − 1}. Given a reconstruction R(θk) we
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Original

FP-rec.

Figure 2: Examples of false-positive reconstructions based on the nearest-neighbour MSE threshold
for CelebA and MNIST. Shadow model training set size N = 40.

Figure 3: a) Reconstruction attack TPR as a function of the number of shadow models. b) Influence
of weight initialization STD on reconstruction TPR, FPR and attacked classifier accuracy for the
training dataset size of N = 10. c) Training and validation loss and TPR changes at FPR = 0.01
during the reconstructor NN training in the CelebA experiment with N = 40. Note: a) and b) use the
nearest-neighbour MSE threshold values given in Section 2.

define the reconstruction loss of the conditional reconstructor (for CelebA we always take c = 1, the
class corresponding to one specific individual) via the following softmin function.

lossrec (Dc
k, R(θk)) =

∑M
i=1 ℓi exp (−α ℓi)∑M
i=1 exp (−α ℓi)

, α > 0, (3)

where ℓi = (ℓMSE (Zc
i , R(θk)) + ℓMAE (Zc

i , R(θk))) /2 with ℓMAE being the mean absolute error.
In the CIFAR and CelebA experiments we also add the LPIPS loss [58] to ℓi (also used in [6]). In
our experiments we have worked with α = 100. For the Reconstructor NN training we use Adam
optimizer [30] with the learning rate 0.0002 and batch size 32. Early stopping after about 106 gradient
steps helps prevent overfitting. This takes up to 72 hours to train on a GeForce RTX 3090 GPU.

Examples of reconstructions together with TPR and FPR are presented in Table 1 and in Fig. 1.
Examples of false-positive reconstructions are shown in Fig. 2. For more reconstruction examples
and further technical details for each of the discussed experiments see Appendix C and Appendix D.

3.2 Factors Affecting Reconstruction

Our attack remains robust in a wide range of circumstances which we describe in detail below.

1) Number of Shadow Models. To obtain high reconstruction TPR it is necessary to produce as many
shadow models as possible given the computational resources at hand – see Fig. 3a. It is relatively
easy to produce several millions of shadow models – this task is massively parallelizable and training
a single shadow model is fast.
2) Attacked Model Training Set Size. If the number of images in the classifier’s training set grows,
the reconstruction FPR of our attack becomes higher (see Table 1). Intuitively, this means that it
becomes easier for the reconstructor to “guess” a close match to one of the target images by outputting
a generic representative of the target class. We have noticed that this can be mitigated to some extent
by training the reconstructor for longer as measured by our attack’s TPR at FPR = 0.01 (see
Fig. 3c). However, training for too long may reduce TPR due to overfitting, especially when there is
not enough shadow models to train on or when the image dataset is small and there are many overlaps
between the shadow training datasets.
3) Conditional/Non-conditional Reconstructor NN. For the same reasons as in point 2) above non-
conditional reconstructor NNs have higher FPR. In the CIFAR experiment with the non-conditional
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reconstructor and N = 10 we got reconstruction TPR = 54.3% and FPR = 28.1%. As with
GANs, the non-conditional reconstructor is susceptible to the mode collapse - its output images tend
to be generated from only one or two of the classes. Thus, conditional reconstructor NNs can retrieve
much more information about the training dataset.
4) Reconstructor conditioning mismatch. We can successfully reconstruct training data when the
reconstructor is conditioned on a different set of classes than the attacked classifier is trained to
distinguish. We have attacked binary classifiers (even/odd for MNIST and animal/vehicle for CIFAR-
10) with reconstructors conditioned on ten classes. We have obtained TPR = 46.1%, FPR = 1.8%
for MNIST and TPR = 28.2%, FPR = 9.5% for CIFAR-10 with the training set size N = 10.
5) Training Algorithm A: SGD/Adam. Results from Table 1 concern attacks on classifier models
trained with SGD. We can also successfully attack models trained with Adam [30], although with
slightly lower success. We have obtained reconstruction TPR = 44.3%, FPR = 2.2% for MNIST
and TPR = 36.2%, FPR = 11.1% for CIFAR with training set size N = 10. We have not observed
significant changes in reconstruction TPR and FPR when comparing full-batch SGD/Adam vs.
mini-batch SGD/Adam with batch size B = N/2.
6) Attacked Model Weight Initialization. We initialize the weights of the classifier according to i.i.d.
normal distribution N (0, σ2) and initialize the biases to zero. Unless stated otherwise, we choose
σ = 0.002 for the MNIST and CIFAR experiments and σ = 0.0002 for the CelebA experiments.
Fig. 3b shows how the reconstruction TPR, FPR and classifier accuracy depend on σ for the
training dataset size of N = 10. Higher values of σ decrease reconstruction TPR and increase FPR
eventually destroying our attack. However, in order to completely prevent our reconstruction attack
one needs to use values of σ that result in suboptimal classifier training and highly reduced accuracy.
In contrast, reconstruction attacks in the threat model of the informed adversary require access to the
exact initialized weights and fail otherwise [6].
7) Attacked Model Underfitting/Overfitting. We have trained the attacked models for 1, 32/48
(optimal) and 512 epochs in the MNIST/CIFAR experiments respectively with training set size
N = 10. We have not noticed any significant differences in the corresponding reconstruction success
rates.
8) Out-of-distribution (OOD) Data. CIFAR-100 is often used for OOD benchmark tests for CIFAR-10
[18]. To study the effectiveness of the reconstructor NN trained on OOD data, we have trained the
conditional reconstructor NN on shadow models (classifiers) trained on N = 10 CIFAR-100 images
that were randomly assigned the class labels c ∈ {0, 1, . . . , 9}. We have subsequently used such
a reconstructor to attack classifiers that were trained on CIFAR-10 images (with original labels)
obtaining reconstruction TPR = 17.1% and FPR = 4.4%. This shows that our attack can be
effective even with limited information about the prior training data distribution π.

4 Our Reconstruction Attack Under DP-SGD

DP-SGD adds random noise to model’s gradients during training to provably protect the training data
against reconstruction [1]. As we explained in the Introduction, DP-SGD privacy guarantees and
the related reconstruction robustness privacy guarantees are derived under a much stronger threat
model than the one considered in this work. In this work we study situations where one aims to
defend against the (realistic) weak adversary defined in the Introduction. Thus, one can expect that a
much higher privacy budget ϵ and hence less noise will be sufficient to defend against our attack. In
this section, we show that despite these relaxed privacy requirements, successful defence against the
weak adversary in the small-data regime requires using very noisy DP-SGD training which in turn
significantly degrades trained model’s utility. This effect is known as the privacy-utility tradeoff [41].
In Fig. 4 we show the privacy-utility tradeoff and summarize the effectiveness of our reconstruction
attack in the MNIST and CIFAR experiments. The setup was the same as in Section 3, except that
the models were trained with mini-batch DP-SGD with Gaussian noise and gradients clipped to a
given maximum l2-norm, C. The trained models were (ϵ, δ)-differentially private with δ = N−1.1 as
recommended in [41]. We have made sure that the DP-SGD training hyper-parameters were chosen
to have as small an impact on trained model’s accuracy as possible. To this end, we have followed
the hyper-parameter selection procedure outlined in [41]. In particular, because of the way noise is
accumulated in DP-SGD it is beneficial to use the mini-batch size, B, which is as large as possible
[41, 1]. We have worked with B = N − 1 i.e., the sampling probability of q = (N − 1)/N , which
is the largest possible while still making use of the privacy amplification enabled by the mini-batch
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Figure 4: Privacy-utility tradeoff for the MNIST and CIFAR experiments. All models suffer severe
accuracy degradation even for relatively large values of ϵ – see discussion below.

Target

Figure 5: Reconstruction example for CIFAR-10 and (ϵ, δ)-DP models for varying values of ϵ and
training set size N = 10. Training without DP-SGD means ϵ =∞.

Poisson sampling [1]. The optimal clipping norms C were found to be 4.0 and 1.2 for the MNIST
and CIFAR experiments respectively. The other training details are specified in Appendix E.

The TPR-criterion at low FPR To find the value of ϵ which is sufficient to defend against our
reconstruction attack, we look at TPR at low FPR (the “low” value of FPR is somewhat arbitrary
– here, we take FPR = 0.01). As plots in Fig. 4 indicate, the TPR drops when ϵ grows. Thus, to
decide if our attack has been defended against, one can select a threshold γ > 0 and test the criterion
TPR ≤ γ at FPR = 0.01. Smaller γ means stricter defence criterion. In our experiments we
have found that γ = 0.015 is sufficient to remove most of the details of the original data from the
reconstructions. By interpolating data from Fig. 4, this translates to the maximal privacy budget of
ϵ ≲ 7.2 and ϵ ≲ 6.0 for MNIST with N = 10 and N = 40 respectively. For CIFAR we get ϵ ≲ 15.5
and ϵ ≲ 41.8 for N = 10 and N = 40 respectively. As can be read off from the test accuracy plots
in Fig. 4, defending a training set of the size N = 10 against our attack causes model’s accuracy to
drop by over 30 percentage points both for MNIST and CIFAR. When N = 40 the accuracy drop is
much smaller, but still notable – slightly above 10 percentage points both for MNIST and CIFAR.
Fig. 5 illustrates how different values of ϵ affect a CIFAR-10 reconstruction for N = 10. One can see
that at the threshold value (ϵ between 10 and 20) the reconstruction becomes very blurry. For more
reconstruction examples under DP-SGD see Appendix E.

5 Summary, Limitations and Future Work

We have described a data reconstruction attack against a transfer-learned classifier network built from
a small quantity of training data. The attack can be implemented by a determined adversary who
has a realistic level of knowledge about the classifier and it cannot be defended against by DP-SGD
without severely damaging classifier accuracy. This flags-up major new concerns about the use of
such transfer-learned classifiers when privacy of training-data is paramount, particularly bearing in
mind the increasing use and range of applications of transfer learning. For limitations, see Appendix
F. Since this is a newly introduced method, there remain several research avenues for developing
our findings further: firstly, there is scope for developing the attack into a more fully operational and
widely applicable one (Appendix F). Secondly it may be of interest to develop theoretical bounds for
reconstruction success under the threat model of the weak adversary. This would require finding new
DP-privacy guarantees in the hidden state threat model for non-convex functions which is known as a
hard open problem [2, 11], but our work may inform future theory in this direction. Thirdly, there
is the challenge of finding new methods of defending data privacy against these attacks. Perhaps,
for example, one could produce a more tailored version of DP or replace the original dataset with a
distilled one [39]. Defences against these attacks will be a focus of our future work.
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A Membership Inference Security Game, Reconstruction FPR, TPR and
ROC Curves

The game proceeds between a challenger and an adversary.

1) The challenger samples a training dataset Dn = (Z1, . . . , ZN ) ∼ πN and applies the training
mechanism Dn

M−→ θ.
2) The challenger randomly chooses b ∈ {0, 1}, and if b = 0, samples a new dataset D′

n ∼ πN such
that Dn ∩ D′

n = ∅ and applies the training mechanism D′
n

M−→ θ′. Otherwise, the challenger
selects θ′ = θ.

3) The challenger sends Dn and θ′ to the adversary.
4) The adversary gets query access to the distribution π and the mechanism M and outputs a bit b̂

given the knowledge of Dn and θ′.
5) Output 1 if b̂ = b, and 0 otherwise.

Note that if the training mechanism M is deterministic then the above game is trivial – the adversary
can simply compute M(Dn) and compare it with θ′. Otherwise, the adversary can apply the standard
MIA to some z0 ∈ Dn to decide whether z0 is a member of the training set that corresponds to θ′.
In this sense, a reconstruction attack can also be used as a MIA. Namely, given a reconstruction
attack R : Θ→ Z and a threshold τ ≥ 0 the adversary outputs b̂ = 1 if minZ∈Dn ℓ (Z,R(θ)) ≤ τ

and b̂ = 0 otherwise. We define the false-positive reconstruction rate as the probability of the
false-positive outcome in the above game, i.e. b̂ = 1 and b = 0. Under the assumption that the
probability of sampling two non-disjoint training sets from πN is zero this is equivalent to Definition
1. Similarly, the true-positive reconstruction rate is the probability of the true-positive outcome in the
above game, i.e. b̂ = 1 and b = 1.

Algorithm 2 and Algorithm 3 describe the TPR and FPR estimation procedures that we have used
to calculate the ROC curves. For explanation of the notation, see Section 3 and Algorithm 1 in
particular.

Algorithm 2 TPR, FPR estimation for unconditional reconstructor NN
Input: Reconstructor NN R, shadow validation dataset Dval

shadow, the covariance matrix of the
normalized weights C̃ovθ, MSE threshold τ .
Initialize: NTP ← 0 and NFP ← 0.

1: for (Dk, θk) in Dval
shadow do

2: if minZ∈Dk
ℓMSE (Z,R(θk)) ≤ τ then

3: NTP ← NTP + 1
4: end if
5: Sample θ ∼ N (0, C̃ovθ).
6: if minZ∈Dk

ℓMSE (Z,R(θ)) ≤ τ then
7: NFP ← NFP + 1
8: end if
9: end for

10: TPR← NTP /N
val
shadow

11: FPR← NFP /N
val
shadow

Output: Reconstruction TPR, FPR.

Figure 6 shows the success rates of our reconstruction attack on a log-scale receiver operating
characteristic curve (ROC curve). The ROC curve shows how TPR and FPR changes for all the
threshold values τ . In particular, the ROC curve shows how our attack performs at low FPR.

A.1 Evaluating Data Reconstruction Attacks via Hypothesis Testing

When deploying a trained reconstructor NNR : Θ→ Z , one needs to understand how reliable it is. In
Section 2 we have argued that a reconstructor NNs can make up its outputs by generating false-positive
reconstructions. In terms of the modified membership security game, given a reconstruction,R(θ),
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Algorithm 3 TPR, FPR estimation for conditional reconstructor NN
Input: Reconstructor NN R, shadow validation dataset Dval

shadow, the covariance matrix of the
normalized weights C̃ovθ, MSE threshold τ , reconstruction classes c ∈ {0, . . . , C − 1}.
Initialize: NTP ← 0 and NFP ← 0.

1: for (Dk, θk) in Dval
shadow do

2: Sample θ ∼ N (0, C̃ovθ).
3: for c = 0 to C − 1 do
4: Select Dc

k ⊂ Dk, the subset of images of the class c.
5: Set θck ← the vector θk appended with the one-hot encoded class

vector of the class c.
6: Set θc ← the random vector θ appended with the one-hot encoded

class vector of the class c.
7: if minZ∈Dc

k
ℓMSE (Z,R(θck)) ≤ τ then

8: NTP ← NTP + 1
9: end if

10: if minZ∈Dc
k
ℓMSE (Z,R(θc)) ≤ τ then

11: NFP ← NFP + 1
12: end if
13: end for
14: end for
15: TPR← NTP /

(
Nval

shadow × C
)

16: FPR← NFP /
(
Nval

shadow × C
)

Output: Reconstruction TPR, FPR.

Figure 6: The (cumulative) ROC curves of our reconstruction attack for the reconstructor NNs
obtained from the experiments described in Section 3. a) Linear scale plot showing the ROC at high
FPR and b) log-scale plot showing the ROC at low FPR.

and a training set DN this raises the problem of deciding whetherR(θ) is indeed a reconstruction of
some element of DN or not.

As presented in Section 2, one possible criterion is to select a MSE threshold τ and say thatR(θ) is
a successful reconstruction if

ℓmin-MSE (DN ,R(θ)) := min
Z∈DN

ℓMSE (Z,R(θ)) ≤ τ. (4)

Consequently, one can calculate the corresponding reconstruction TPR and FPR according to
Definition 1 and generate the ROC curves which we present in Fig. 6. We will call the ROC curves
computed in this way the cumulative ROC curves. This is because the relevant FPRτ and TPRτ

are the cumulative distribution functions of the random variable ℓmin-MSE .

In this section, we compare the cumulative ROC curves with the ROC curves obtained via the
Neyman-Pearson hypothesis test [38]. The Neyman-Pearson hypothesis test is also the base for the
powerful LiRA membership inference attack [9] which uses similar approach to the one presented
here. The Neyman-Pearson ROC curves are provably optimal in the sense that they give the best
possible TPR at each fixed FPR. To calculate them, we recast the reconstructor NN evaluation
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problem as hypothesis testing. Namely, we treat the observable ℓmin-MSE (DN ,R(θ)) as a random
variable supported on [0; 4] (recall that we normalize the images to [−1, 1]) which can come from
different distributions. More specifically, we study the following hypotheses.

• The null hypothesis H0 states that θ are the weights of a model trained on DN i.e.,
H0 : ℓmin-MSE = min

Z∈DN

ℓMSE (Z,R(θ)) with DN ∼ πN , θ ∼M(DN ),

where M is the known randomized training mechanism.
• The alternative hypothesis H1 states that θ are the weights of a model trained on another training

set D′
N i.e.,

H1 : ℓmin-MSE = min
Z∈DN

ℓMSE (Z,R(θ)) with DN ∼ πN , D′
N ∼ πN , θ ∼M(D′

N ).

• The alternative hypothesis H∗
1 states that the reconstruction was randomly drawn from the prior

distribution π i.e.,
H∗

1 : ℓmin-MSE = min
Z∈DN

ℓMSE (Z,Z ′) with DN ∼ πN , Z ′ ∼ π.

Let us denote the respective probability distributions of ℓmin-MSE as ρ0, ρ1 and ρ1∗. When deciding
between H0 and H1, the Neyman-Pearson hypothesis testing criterion accepts H0 for a given value
of ℓmin-MSE when the likelihood-ratio

log

(
ρ0(ℓmin-MSE)

ρ1(ℓmin-MSE)

)
> C (5)

for some threshold value C ∈ R. The TPR in this test is the probability of accepting H0 for
ℓmin-MSE ∼ ρ0 and the FPR the probability of accepting H0 for ℓmin-MSE ∼ ρ1. Analogous
criteria are applied when deciding between H0 and H∗

1 . The Neyman-Pearson ROC curves are
obtained by varying the threshold C. Unfortunately, in our case we do not have access to the analytic
expressions for ρ0, ρ1, ρ1∗, so we cannot calculate the likelihoods in Equation 5 exactly. In practice,
we will approximate the distributions ρ0, ρ1 and ρ1∗ by something more tractable. To this end, we
will look at the distribution of the random variable

ϕ = log

(
ℓmin-MSE/4

1− ℓmin-MSE/4

)
∈ R.

This is because our experimental evidence shows that ϕ is approximately normally distributed, as
opposed to ℓmin-MSE . The relevant histograms for the CelebA-reconstructor NN are shown in Fig. 7.
The histograms have two important properties: i) the separation between the distribution of ℓmin-MSE

corresponding to H0 and H1 or H∗
1 decreases with N making it more difficult to distinguish between

the hypotheses, ii) there is more separation between the distributions of ℓmin-MSE corresponding
to H0 and H∗

1 than between H0 and H1 showing that the reconstructor NN is better at generating
false-positive reconstructions than simple random guessing.

In Fig 8 we compare the cumulative- and the Neyman-Pearson ROC curves for the reconstructor NNs
trained in the CelebA-experiment. The plots show that both ROC curves are extremely close to each
other. Below, we prove that under certain conditions they are exactly the same and derive an analytic
formula for these ROC curves. The analytic formula is compared with our experimental ROC curves
in Fig. 9.
Theorem 1. Let ρ0 and ρ1 be the distributions of the observable ω supported on a connected domain
Ω ⊂ R under hypotheses H0 and H1 respectively. Define the cumulative- and the Neyman-Pearson
ROC via

TPRcum(τ) := Pω∼ρ0
[ω < τ ] , FPRcum(τ) := Pω∼ρ1

[ω < τ ] ,

TPRNP (C) := Pω∼ρ0
[ρ0(ω) > Cρ1(ω)] , FPRNP (C) := Pω∼ρ1

[ρ0(ω) > Cρ1(ω)] ,

Assume that there exists a strictly increasing differentiable transformation Φ : [0, 1]→ R such that

Φ(ω) ∼ N
(
µ0, σ

2
0

)
if ω ∼ ρ0, Φ(ω) ∼ N

(
µ1, σ

2
1

)
if ω ∼ ρ1.

Then, the cumulative-ROC and the Neyman-Pearson ROC are identical and given by the following
formula

TPR =
1

2
− 1

2
erf

(
µ0 − µ1√

2σ0

+
σ1

σ0
erf−1 (1− 2FPR)

)
, (6)

where erf is the error function.
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Figure 7: The histograms illustrating the approximately normal distributions of ϕ for the different
hypotheses. The sample sizes were 104, 104 and 106 for H0, H1 and H∗

1 respectively. The dashed
curves show the Gaussians fitted according the maximum likelihood.

Figure 8: The comparison between the cumulative- and Neyman-Pearson (N-P) ROC curves for
different pairs of hypotheses in the CelebA-experiment. There cumulative- and N-P ROC overlap
almost exactly.

Figure 9: The comparison between the analytic ROC described by Equation (6) and Neyman-Pearson
(N-P) ROC curves for different pairs of hypotheses in the CelebA-experiment. There is a good
agreement between the analytic expressions and the experiment, but the curves often diverge a bit at
low FPR. We suppose this may be due to insufficient sampling at this extreme of the ROCs.
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Proof. (Sketch.) Since the transformation Φ is strictly increasing, we get that ω < τ if and only if
Φ(ω) < Φ(τ). Thus,

TPRcum(τ) := Pϕ∼N(µ0,σ2
0)

[ϕ < Φ(τ)] , FPRcum(τ) := Pϕ∼N(µ1,σ2
1)

[ϕ < Φ(τ)] . (7)

The above probabilities can be calculated analytically.

TPRcum(τ) :=
1

2

(
1− erf

(
µ0 − Φ(τ)√

2σ0

))
, (8)

FPRcum(τ) :=
1

2

(
1− erf

(
µ1 − Φ(τ)√

2σ1

))
. (9)

It is a matter of a straightforward calculation to extract Φ(τ) from Equation (9) and plug it into
Equation (8) to obtain the cumulative ROC curve given by Equation (6). In the remaining part of this
proof we argue that the same ROC curve is obtained from the Neyman-Pearson criterion.

The transformation Φ is differentiable and strictly increasing, so
(
Φ−1

)′
(ϕ) > 0 for all ϕ ∈ R. Thus,

ρ0(ω) > Cρ1(ω) for some ω = Φ−1(ϕ) if and only if

ρ0
(
Φ−1(ϕ)

) (
Φ−1

)′
(ϕ) > Cρ1

(
Φ−1(ϕ)

) (
Φ−1

)′
(ϕ).

Recall that the transformation Φ is chosen so that

ρi
(
Φ−1(ϕ)

) (
Φ−1

)′
(ϕ) = ρ̃i(ϕ) :=

1√
2πσi

exp

(
− (ϕ− µi)

2

2σ2
i

)
, i = 0, 1.

Thus, using the monotonicity of the logarithm we can write equivalently that

TPRNP (C̃) := Pϕ∼ρ̃0

[
log

ρ̃0(ϕ)

ρ̃1(ϕ)
> C̃

]
, FPRNP (C̃) := Pϕ∼ρ̃1

[
log

ρ̃0(ϕ)

ρ̃1(ϕ)
> C̃

]
. (10)

Plugging in the Gaussian form of ρ̃0 and ρ̃1 we get that the log-likelihood-ratio is given by the
following quadratic equation.

log
ρ̃0(ϕ)

ρ̃1(ϕ)
= log

σ1

σ0
− (ϕ− µ0)

2

2σ2
0

+
(ϕ− µ1)

2

2σ2
1

. (11)

In what follows, we will assume that σ0 > σ1 which is the case in the CelebA experiments. The case
σ0 < σ1 can be treated fully analogously. If σ0 > σ1, then the log-likelihood-ratio is described by a
convex parabola. The Neyman-Pearson criterion leads to two roots whenever

C̃ > C̃min = log
σ1

σ0
− 1

2

(µ0 − µ1)
2

σ2
0 − σ2

1

.

The two roots are of the form r0 ± δ, where

r0 =
µ1σ

2
0 − µ0σ

2
1

σ2
0 − σ2

1

, δ
(
C̃
)
=

σ0σ1

√
(µ0 − µ1)2 + 2

(
C̃ + log σ0

σ1

)
(σ2

0 − σ2
1)

σ2
0 − σ2

1

> 0. (12)

Hence, we can compute

TPRNP

(
C̃
)
= 1− Pϕ∼ρ̃0

[
log

ρ̃0(ϕ)

ρ̃1(ϕ)
< C̃

]
= 1− 1√

2πσ0

∫ r0+δ

r0−δ

exp

(
− (ϕ− µ0)

2

2σ2
0

)
dϕ

= 1− 1

2

erf

µ0 − r0 + δ
(
C̃
)

√
2σ0

− erf

µ0 − r0 − δ
(
C̃
)

√
2σ0


Similarly, we get

FPRNP

(
C̃
)
= 1− 1

2

erf

µ1 − r0 + δ
(
C̃
)

√
2σ1

− erf

µ1 − r0 − δ
(
C̃
)

√
2σ1

 .
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Figure 10: The residual block of the reconstructor NN. The “+”-operation means element-wise
addition.

To verify that the above expressions yield the ROC curve described by Equation (6), we plug them
into the formula. After some algebra, we get that this is true if and only if the following identity
concerning the error function holds.

0 =
√
2∆µ+ 2σ1 erf

−1

(
erf

(
σ1 ∆µ√
2∆σ2

+
δ√
2σ1

)
− erf

(
σ1 ∆µ√
2∆σ2

− δ√
2σ1

)
− 1

)
− 2σ0 erf

−1

(
erf

(
σ0 ∆µ√
2∆σ2

+
δ√
2σ0

)
− erf

(
σ0 ∆µ√
2∆σ2

− δ√
2σ0

)
− 1

)
,

(13)

where δ > 0 and ∆µ := µ0 − µ1 and ∆σ2 := σ2
0 − σ2

1 > 0. We do not currently have a proof of this
identity, but we have verified it numerically for a range of the relevant parameters ∆µ < 0, σ1 > σ2

and δ > 0.

B Reconstructor NN architecture

The reconstructor is a residual network. Each residual block uses ReLU activations and consists of:
1) 2D batch norm layer followed by ReLU whose output is upsampled via the nearest-neighbours
algorithm, 2) a pre-activation (3× 3)-convolutional layer with 1-padding and stride 1 followed by
another 2D batch norm layer and ReLU, 3) another pre-activation (3× 3)-convolutional layer with
1-padding and stride 1. The bypass connection contains upsampling via the nearest-neighbours
algorithm and, if the number of output channels of the residual block is different than the number of
its input channels, then the bypass-upsampling is followed by a pre-activation (1× 1)-convolution
layer with 0-padding and stride 1. See Fig. 10. This residual block has the same architecture as the
one used in [23, 52], except for the bypass-convolution which we need to allow for the number of
channels to change. Table 2 shows the full architecture which is also slightly modified relative to
the original version from [23, 52] – the first layer is convolutional and we change the number of
channels between some of the consecutive residual blocks. For MNIST and CIFAR the output image
has 32× 32 resolution while for CelebA the output image has 64× 64 resolution. For further details,
please refer to our open-source implementation on GitHub [48].

C Further reconstruction examples

In this section, we present the following reconstruction examples.

• Figures 11 and 12 show reconstruction examples for the CelebA experiment with N =
10 and N = 40 respectively. Each training set contains N/10 images of positive class
corresponding to a given person. The bottom rows contain the reconstructions and the top
rows contain their closest match out of the N/10 images of the positive class from the
original training set. Successful reconstructions (with MSE below the nearest-neighbour
threshold) are marked by the tick-signs.

• Figure 13 shows reconstruction examples from the conditional reconstructor for the MNIST
experiment with N = 10 and N = 40. Every training set contains N/10 images of each
class. The bottom rows contain the reconstructions and the top rows contain their closest
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Table 2: Summary of the reconstructor NN architecture. DΘ is the number of trainable parameters in
the attacked model that are accessed by the reconstructor. We have DΘ equal to 2570, 12810 and
8201 for the MNIST-, CIFAR- and CelebA-experiments respectively. S is reconstructor’s internal size
parameter. In the MNIST-experiment we take S = 256 and in the CIFAR- and CelebA-experiments
we take S = 512. Chout = 1 for MNIST and Chout = 3 for CIFAR, CelebA.

Reconstructor R(θ)

Kernel Size Output Shape Notes

θ – 1× 1× (DΘ + 10) –
ConvTranspose2D 4× 4 4× 4× 4S str. = 1, pad. = 0
Residual Block 3× 3 8× 8× 2S –
Residual Block 3× 3 16× 16× S –
Residual Block 3× 3 32× 32× S –
Residual Block 3× 3 64× 64× S only for CelebA
BatchNorm2D – 32× 32× S/64× 64× S –
ReLU – 32× 32× S/64× 64× S –
Conv2D 3× 3 32× 32× Chout/64× 64× Chout str. = 1, pad. = 1
Tanh – 32× 32× Chout/64× 64× Chout –

match from the original training set. Successful reconstructions (with MSE below the
nearest-neighbour threshold) are marked by the tick-signs.

• Figure 14 shows reconstruction examples from the conditional reconstructor for the CIFAR
experiment with N = 10 and N = 40. Every training set contains N/10 images of each
class. The bottom rows contain the reconstructions and the top rows contain their closest
match from the original training set. Successful reconstructions (with MSE below the
nearest-neighbour threshold) are marked by the tick-signs. Note that the reconstructions
in Fig. 14b) are more generic and often lack details. This is due to the high reconstruction
FPR for N = 40 (see Table 1).

• Figure 15 shows examples of false-positive reconstructions for MNIST and CIFAR-10.
The bottom rows contain the random outputs of the conditional reconstructor NN and the
top rows contain their closest match from the original (random) training set of the size
N = 40. False-positive reconstructions (with MSE below the nearest-neighbour threshold)
are marked by the tick-signs.

D Technical Details of the Experimental Setups

In this section we present details of the experiments presented in Section 3. For implementation
details please refer to our code on GitHub [48].

D.1 Image Classifier Pre-training

Below, we specify the pre-training steps that we have done in each of the experiments. The goal is to
pre-train the base models on a sufficiently general task so that they develop robust features which
can be successfully transferred to other more specialized classification tasks where much smaller
amounts of data are available.

1. MNIST We pre-train a scaled-down VGG-11 neural net [45] on the EMNIST-Letters
[14] classification task: 128K data, 26 classes. Our implemented VGG-11 differs from the
original one in [45] only by the number of channels which we divide by the factor of 16 (e.g.
the first (3 × 3)-convolution has 4 output channels instead of the original 64). Similarly,
the sizes of the final three fully connected layers are 256− 256− 26 instead of the original
4096−4096−1000 that has been designed for the ImageNet-1K classification. We initialize
the weights of our VGG-11 randomly, rescale the input images to the 32× 32 resolution and
normalize them according to X → X/127.5− 1. We train for 50 epochs with the learning
rate of 10−4 and mini-batch size 256 using Adam optimizer and cross-entropy loss. We
obtain the base model test accuracy of 94.6%.
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Figure 11: Reconstruction examples for the CelebA experiment with N = 10.

Figure 12: Reconstruction examples for the CelebA experiment with N = 40.
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Figure 13: Reconstruction examples from the conditional reconstructor for the MNIST experiment
with a) N = 10 and b) N = 40.

2. CIFAR We pre-train EfficientNet-B0 [47] on the CIFAR-100 [32] classification task: 50K
data, 100 classes. We use the implementation of EfficientNet-B0 provided by Torchvision
[36]. For the weight initialization we use the weights that were pre-trained on the ImageNet-
1K classification (available in Torchvision). We subsequently remove the 1000 output
neurons from the top fully connected layer and replace them with 100 neurons that we
initialize with Pytorch’s default initialization. The input images are resized to the 224× 224
resolution using the bicubic interpolation. The pixel values are subsequently rescaled to
[0, 1] and normalized as X → (X − µ)/σ, where µ = [0.485, 0.456, 0.406] and σ =
[0.229, 0.224, 0.225] for each channel. We pre-train in two stages. In both stages we use the
Adam optimizer and the cross-entropy loss. In the first stage we freeze all the parameters
except for the parameters of the output layer and train the output layer for 20 epochs with
learning rate 10−4, weight decay 10−4 and batch size 256. In the second stage we unfreeze
all the parameters except for the batch-norm layers and train the entire network for 200
epochs with learning rate 10−6 and batch size 64. We obtain the base model test accuracy
of 85.9% which is close to some of the reported benchmarks for EfficientNet-B0, see [47].

3. CelebA We pre-train WideResNet-50 [56] on the CelebA [34] attributes classification
task: 200K data, 40 binary attributes. We use the implementation of WideResNet-50-2
provided by Torchvision [36]. For the weight initialization we use the weights that were
pre-trained on the ImageNet-1K classification (available in Torchvision). We subsequently
remove the 1000 output neurons from the top fully connected layer and replace them with
40 neurons that we initialize with Pytorch’s default initialization. The input images are
resized to the 232× 232 resolution using the bicubic interpolation and center-cropped to
the size 224× 224. The pixel values are subsequently rescaled to [0, 1] and normalized as
X → (X − µ)/σ, where µ = [0.485, 0.456, 0.406] and σ = [0.229, 0.224, 0.225] for each
channel. We pre-train in two stages. In both stages we use Adam optimizer and binary
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Figure 14: Reconstruction examples from the conditional reconstructor for the CIFAR experiment
with a) N = 10 and b) N = 40.

Figure 15: Examples of false-positive reconstructions for MNIST and CIFAR-10 (N = 40).
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Table 3: The head-NN size/architecture and training details in the transfer-learning step. FC(k)
denotes the fully-connected layer with k neurons. In each experiment the head-NNs are trained via
the standard gradient descent (full batch, no momentum) with the learning rate lr and weight decay
λWD. The initial weights of the head-NN are drawn from N (0, σ2

init) and the biases are initialized
to 0. The training loss is always the cross-entropy loss. N is the training set size of a given shadow
model.

Experiment Head-NN Architecture σinit lr λWD Epochs

MNIST Input −→ FC(10) −→ Output 0.002 0.01 10−5 26 + 3N/5
CIFAR Input −→ FC(10) −→ Output 0.002 0.01 10−4 38 +N

CelebA Input −→ FC(4)
ReLU−−−−→ FC(1) −→ Output 0.0002 0.02 10−2 100

cross-entropy loss. In the first stage we freeze all the parameters except for the parameters
of the output layer and train the output layer for 5 epochs with learning rate 10−4, weight
decay 10−4 and batch size 256. In the second stage we unfreeze all the parameters except
for the batch-norm layers and train the entire network for 30 epochs with learning rate 10−6

and batch size 128. We obtain the base model test accuracy of 92.0% in the pre-training
task.

Note that we could have skipped the above pre-training with CIFAR-100 or the attribute classification
with CelebA and just use the weights pre-trained on ImageNet-1K. However, note that our goal is
to obtain possibly highly accurate classifiers in the subsequent transfer-learning step. Thus, it is
beneficial to pre-train the base model on another public dataset which is more similar to the one used
in the ultimate transfer-learning task.

D.2 Image Classifier Transfer-learning

During the transfer-learning step we realize the following general procedure.

1. We remove the output neurons from each of the pre-trained neural nets described in the
Subsection D.1. The outputs of the neural net obtained this way are the post-activation
outputs of the penultimate layer of the original neural net.

2. For all the images coming from the datasets (MNIST, CIFAR-10 and CelebA) we pre-
compute their corresponding deep features vectors. This is done by feeding the neural nets
from point 1 above by the images from the corresponding dataset and saving the obtained
(penultimate post-activation) outputs. The input images are transformed according to the
transformations specified in the Subsection D.1. This way, we replace the image datasets
with their corresponding deep-feature datasets.

3. In each of the experiments we define a new head-NN which takes the pre-computed deep fea-
tures as inputs and outputs the predictions. Due to the different nature of each of the transfer-
learning tasks, in each experiment the head-NN has a slightly different size/architecture.
We also train the head-NNs as part of the shadow model training (both for the training
shadow model sets and the validation shadow model sets), see Algorithm 1. The head-NN
architecture and training details are summarized in Table 3.

In the MNIST- and CIFAR-10 experiments we use balanced training sets i.e., N = C ×M with
C = 10 being the number of classes and M the number of training examples per class. In the
CelebA-experiment we emulate transfer-learning with unbalanced data. There, we have M examples
of the positive class and 9M examples of the negative class. In the CelebA training loss we upweight
the positive class with the weight 10. Table 4 shows the mean and the standard deviation of the test
accuracy of the resulting transfer-learned image classifiers. Because in this work we are evaluating the
impact of DP-SGD on the classifier accuracy, it was important to optimize classifier training to obtain
reasonably good accuracies. Indeed, the accuracies obtained for transfer-learning in the CIFAR-10
experiment with the training set sizes N = 10 and N = 40 are comparable with accuracies reported
in the literature, see Figure 2 in [31]. Note, however, that work [31] uses data augmentation to
improve transfer-learning test accuracy with small datasets, so their accuracies are generally better.
We have not used data augmentation in our transfer-learning experiments to keep the setup simple.
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Table 4: The mean and the standard deviation of the test accuracy of the transfer-learned image
classifiers. Calculated over a sample of 5000 classifiers.

N = 10 N = 40

Experiment Test Accuracy Test Accuracy

MNIST 0.812± 0.041 0.920± 0.017
CIFAR-10 0.587± 0.049 0.794± 0.022

Table 5: The mean and the standard deviation of the classification test accuracy, classification true-
positive rate (TPR, correct classification of the minority class) and classification true-negative rate
(TNR, correct classification of the majority class) of the transfer-learned face-recognition classifiers
trained on unbalanced data in the CelebA-experiment. Calculated over a sample of 5000 classifiers.

N Classification Acc. Classification TPR Classification TNR

10 0.914± 0.037 0.434± 0.286 0.967± 0.035
40 0.935± 0.030 0.645± 0.216 0.967± 0.022

In the face recognition experiment with CelebA data it has been challenging to train good image
classifiers on small datasets. The true-positive rate of the classifiers (corresponding to the correct
classification of the minority class) in this experiment has varied significantly between the shadow
models, see Table 5.

D.3 Factors Affecting Reconstruction - Experimental Details

Here, we provide some more details concerning the experiments described in Section 3.2. Unless
stated otherwise, the hyper-parameter and architecture configuration in each experiment from Section
3.2 has been the same as described in Section D.2.

In point 4 of Section 3.2 (reconstructor conditioning mismatch) we have used the hyper-parameters
and head-NN architectures for the binary image classifiers as specified in Table 6.

In point 6 of Section 3.2 (attacked model weight initialization) we have varied σinit and kept all the
other hyper-parameters fixed to the values specified in Table 3. This way, we have produced the plots
presented in Fig. 3b.

E Our Reconstruction attack under DP-SGD

We have made sure that the DP-SGD training hyper-parameters were chosen to have as small an
impact on trained image classifier’s accuracy as possible. To this end, we have followed the hyper-
parameter selection procedure outlined in [41]. To keep this paper self-contained, we summarize
this procedure below. The hyper-parameters in DP-SGD are the gradient clipping norm C, noise
multiplier σnoise, poisson sampling rate q = B/N (B is the mini-batch size and N is the size of the
training set), the number of training epochs and the learning rate. We have trained the shadow models
with weight decay.

Table 6: The head-NN size/architecture and training details in the transfer-learning step in the binary
classification tasks. FC(k) denotes the fully-connected layer with k neurons. In each experiment the
head-NNs are trained via the standard gradient descent (full batch, no momentum) with the learning
rate lr and weight decay λWD. The initial weights of the head-NN are drawn from N (0, σ2

init) and
the biases are initialized to 0. The training loss is always the binary cross-entropy loss. N is the
training set size of a given shadow model.

Experiment Head-NN Architecture σinit lr λWD Epochs

MNIST Input −→ FC(8)
ReLU−−−−→ FC(1) −→ Output 0.002 0.1 10−4 26 + 3N/5

CIFAR Input −→ FC(8)
ReLU−−−−→ FC(1) −→ Output 0.002 0.05 10−4 38 +N
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Target

Figure 16: Reconstruction examples for CIFAR-10 and (ϵ, δ)-DP models for different values of ϵ.
Training without DP-SGD means ϵ =∞. Classifier training set size N = 10.

1. The batch size B should be as large as computationally feasible. We choose B = N − 1
(the largest possible allowing non-trivial mini-batch Poisson sampling). Another factor to
take into account is the fact that training for too many epochs will negatively impact model’s
accuracy due to overfitting. In line with some transfer-learning guidelines [13] we have
worked with the optimal nE (number of training epochs) specified in Table 3 in the column
“Epochs”.

2. Tune the other hyper-parameters (learning rate and weight decay) in the non-private setting
(without DP-SGD) with the chosen B and nE . The optimal learning rate and weight decay
we have found are the same as specified in 3.

3. Choose the clipping norm C by training with DP-SGD with σnoise = 0 and keeping all the
parameters selected in previous steps fixed. This can be done by one or more parameter
swipes in the log-scale. Small values of C adversely affect the accuracy of the classifier. C
should be chosen so that it is small, but at the same time has only slight effect on classifier’s
accuracy when compared to the accuracy of the non-private classifier.

4. Compute the noise multiplier σnoise that makes the model (ϵ, δ)-DP via the privacy accoun-
tant [1] with C and B found in the previous steps. In all experiments we take δ = N−1.1.

5. Do the final learning rate adjustment with C, B, σnoise and weight decay found in the
previous steps.

By performing the above hyper-parameter selection procedure we have found that the optimal training
hyper-parameters for B = N − 1 have been the same as the ones specified in Table 3. For simplicity,
in our experiments we have not performed the final adjustment of the learning rate. However, we have
found that the learning rate values specified in Table 3 have been close to optimal in all experiments
and that the model accuracy has not been very sensitive to small changes of the learning rate around
these values. The optimal clipping norms C were found to be 4.0 and 1.2 for the MNIST and CIFAR
experiments respectively. In all the DP-SGD experiments we use the same weight initialization as
specified in Table 3. For DP-SGD training we have used the Opacus library [55].

Figure 16 shows some further examples of reconstructions for models trained with DP-SGD.

F Limitations and Future Work

We claim that the prototype attack we have presented is already sufficient to demonstrate the
necessity of new protective measures for transfer-learned neural networks trained on small datasets.
Nevertheless, there is considerable scope for developing this attack capability further (and those
responsible for security should assume that a determined adversary would do so). For example,
research directions in this area include:
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• Developing automated processes for recovering information on the training set which, in the
absence of any prior knowledge, is sufficient to generate effective shadow models.

• Showing additional robustness of the attack to mismatches between the actual and the
assumed transfer learning process. This would allow for the possibility that non-published
training methods might have been applied.

• Extending the attacks to recover more substantial subsets of the training data.

One of the clear limitations of our data reconstruction attack method is the fact that it becomes less
effective when the size of the attacked model’s training set increases. More specifically, when using
the conditional reconstructor NN we can reliably reconstruct only the training data examples that
come from the classes that are represented by only a few data instances. When the class from which
we draw the reconstructions becomes larger then the reconstruction FPR increases making our
attack unreliable. Thus, we suppose that the scope of real life situations where one can apply our
attack reliably is restricted to those where the amount of training data was very small or the data
was highly imbalanced. As we argue in the Introduction, this can commonly happen in practice in
transfer-learning with imbalanced datasets.

Another limitation of our current approach concerns the architecture of the reconstructor NN and the
related amount of compute and memory required to train it. Recall that the input of the reconstructor
NN consists of the concatenated and flattened weights and biases of the image classifier layers that
have been trained during the transfer learning. This is typically only one or two final layers, however
as explained in Table 2 the resulting input dimensions DΘ can easily be of the order of 104. This
means that most of the parameters of the reconstructor NN are contained in its first convolutional
layer. The exact number of parameters in this layer is equal to 4S(16DΘ + 1) where S is the internal
size of the reconstructor NN (equal to 256 or 512). Thus, the first convolutional layer contains
∼ 108 parameters. This makes the training relatively inefficient. In future work we will work on
more efficient ways of processing reconstructor NN input. For instance, instead of concatenating
all the weights of the trainable layers one could take inspiration from Deep Sets [57] and process
each neuron separately by a sequence of convolutions and sum the result over the neurons. Similar
approach has been used to construct NNs used for property inference attacks [21].

In Appendix A we have studied ROC curves coming from considering the distributions of the
min-MSE observable (see Equation 4). However, it is possible that there exist more informative
observables that would yield better ROC curves. For instance, one could consider the components of
the loss function that has been used for training the reconstructor NN i.e., the sum of MSE, MAE
and the LPIPS-loss. It would also be interesting to use an MIA attack alongside our reconstruction
attack to decide whether the reconstruction is an element of the image classifier’s training set. This
could reduce the FPR of our attack.
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