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Abstract—Advancements in quantum computing pose a signif-
icant threat to most of the cryptography currently deployed. For-
tunately, cryptographic building blocks to mitigate the threat are
already available; mostly based on post-quantum and quantum
cryptography, but also on symmetric cryptography techniques.
Notably, quantum-safe building blocks must be deployed as
soon as possible due to the “harvest-now decrypt-later” attack
scenario, which is already challenging our sensitive and encrypted
data today.

Following an agile defense-in-depth approach, Hybrid Au-
thenticated Key Exchange (HAKE) protocols have recently been
gaining significant attention. Such protocols modularly com-
bine conventional, post-quantum, and quantum cryptography
to achieve confidentiality, authenticity, and integrity guarantees
for network channels. Unfortunately, only a few protocols have
yet been proposed (mainly Muckle and Muckle+) with different
flexibility guarantees.

Looking at available standards in the network domain (espe-
cially at the Media Access Control Security (MACsec) standard),
we believe that HAKE protocols could already bring strong
security benefits to MACsec today. MACsec is a standard
designed to secure communication at the data link layer in
Ethernet networks by providing security for all traffic between
adjacent entities. In addition, MACsec establishes secure channels
within a Local Area Network (LAN), ensuring that data remain
protected from eavesdropping, tampering, and unauthorized
access, while operating transparently to higher layer protocols.
Currently, MACsec does not offer enough protection in the event
of cryptographically relevant quantum computers.

In this work, we tackle the challenge and propose a new
versatile HAKE protocol, dubbed VMuckle, which is sufficiently
flexible for the use in MACsec to provide LAN participants with
hybrid key material ensuring secure communication.

Index Terms—Quantum Key Distribution, Post-Quantum
Cryptography, Transport Security Layer, Hybrid Authenticated
Key Exchange, Software-Defined Networking, Crypto-agility,
Performance evaluation

I. INTRODUCTION

Quantum computing, particularly through the implemen-
tation of Shor’s algorithm [1], poses a significant threat to
contemporary cryptography systems, such as RSA, Diffie-
Hellman Key Exchange (DHKE), and Elliptic-curve Cryp-
tography (ECC). This is because Shor’s algorithm efficiently
solves the problems of integer factorization and discrete
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logarithm, effectively breaking the mathematical foundations
underpinning the security of these cryptographic schemes in
the classical computing paradigm. To address this emerging
threat, two principal solutions have been proposed: Post-
Quantum Cryptography (PQC) and Quantum Key Distribution
(QKD).

Since 2016, NIST has been leading an initiative to identify
new public key cryptographic algorithms that are resistant to
quantum computing attacks, with the goal of replacing the
ones currently in use. This process culminated in 2022 [2] and
resulted in the standardization in 2024 of three algorithms: a
Key Encapsulation Mechanism (ML-KEM [3]) and two digital
signature schemes (ML-DSA [4] and SLH-DSA [5]). While
these algorithms demonstrate resistance to Shor’s algorithm,
their resilience against future quantum attacks remains un-
proven. By using these new algorithms, the quantum-safe PKIs
can be constructed by replacing the old public key algorithms.
This also has the advantage that all management procedures
for key revocation and certificate distribution remain the same.

QKD leverages quantum mechanics to establish shared keys
between two parties [6]. Unlike PQC or classical cryptography,
which rely on the computational difficulty of mathematical
problems, QKD’s security is rooted in the fundamental prin-
ciples of quantum physics. This inherent property ensures
its immunity to computational attacks, eliminating the need
for assumptions about the computational power of potential
adversaries. Consequently, QKD provides a more predictable
long-term security profile compared to computationally-based
cryptographic methods, whose security may degrade with
advances in computing, cryptanalysis, mathematical theory or
even the emergence of new computational paradigms, as has
been the case with quantum computing.

Hybridizing PQC and QKD is crucial for creating quantum-
safe solutions that ensure crypto-agility, a fundamental re-
quirement for future-proof security frameworks. PQC provides
cryptographic algorithms that are resistant to quantum attacks,
but its security is still based on mathematical assumptions that
could be compromised by advances in quantum algorithms or
unforeseen vulnerabilities [7]. In contrast, QKD guarantees
Information-Theoretic Security (ITS) [8], offering uncondi-
tional security. However, QKD is constrained by practical
limitations, such as transmission distance and implementation
challenges. By combining PQC with QKD, we can leverage
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the scalability of PQC and the absolute security of QKD,
creating systems that are resilient to both classical and quan-
tum threats. This hybrid approach not only enhances security,
but also facilitates crypto-agility by enabling the dynamic
integration of cryptographic techniques as technology evolves,
ensuring long-term confidentiality, integrity, and authentica-
tion.

Authenticated Key Exchange (AKE) protocols are the main
building blocks for secure communication channels to guar-
antee confidentiality, integrity, and authenticity between two
entities in a network. Hybrid AKE (HAKE) protocols extend
this concept, enabling the distribution of PQC, QKD, and
classical key material in an authenticated manner. Although
traditionally deployed at higher layers of the network stack,
this work adapts HAKE protocols for efficient use at lower
network layers.

Ensuring quantum-safe security for authentication processes
is a critical task, and it should be extended to a broad range of
services across the current telecommunication networks – not
only for MACsec, but also for other network protocols and
technologies such as IPsec [9], TLS [10], or Blockchain [11],
[12].

Media Access Control security (MACsec), defined in the
IEEE 802.1AE standard [13], provides robust point-to-point
security on Ethernet links. Operating at layer 2 of the OSI
model [14] (data link layer), MACsec ensures the integrity,
confidentiality, and authenticity of Ethernet frames. MACsec
offers device-to-device security by establishing a secure chan-
nel between the MACsec stations regardless of the number
of intervening devices or networks, allowing it to secure data
communication in Local Area Networks (LANs), Metropolitan
Area Network (MANs) or Wide Area Network (WANs).

From a performance perspective, MACsec is a highly effi-
cient protocol due to its low-latency characteristics, achieved
through hardware-based processing. MACsec provides high-
speed transparent encryption across individual network links
without affecting higher-layer protocols. Its key benefits in-
clude flexibility in supporting both unicast and multicast traf-
fic, seamless integration with existing network infrastructure,
and scalability to accommodate a wide range of network
topologies and sizes. Moreover, its transparency to network
applications allows any application to operate over a MACsec-
protected network without the need for modifications, thereby
ensuring robust security with minimal impact on network
performance and application compatibility.

Although MACsec employs AES-256 for payload encryp-
tion, which provides strong resistance to quantum attacks [15],
the initial establishment of these symmetric keys depends
on Pre-Shared Keys (PSKs) or the EAP-TLS protocol, as
described in the authentication process defined by the IEEE
802.1X standard [16]. The former does not provide scalability
in larger networks, while reliance on the latter introduces a
vulnerability, as EAP-TLS employs classical asymmetric cryp-
tography for key exchange, making it susceptible to quantum
attacks.

In recent years, there has been an increasing trend towards
integrating post-quantum authentication and key exchange
mechanisms into major security protocols used in telecommu-

nications networks. As MACsec serves as the preferred proto-
col for securing the data link layer in modern communication
infrastructures, it is of critical importance to ensure that its
operation is conducted in a quantum-resistant manner.

This work introduces a quantum-safe authenticated key
agreement protocol for MACsec network nodes. This key
can then be utilized by the MACsec Key Agreement (MKA)
protocol as the root key in its key hierarchy to derive secure
keys for the execution of MACsec sessions. To achieve this
objective, a HAKE protocol has been developed. This protocol
enables secure root key agreement using a combination of
classical, post-quantum, and quantum techniques, ensuring
crypto-agility and long-term confidentiality, mitigating vulner-
abilities arising from future cryptographic advancements, and
safeguarding the integrity of key exchanges.

To establish a shared authenticated key between any two
entities, it is tempting to use ideas from the well-established
Transport Layer Security (TLS) protocol. While there is indeed
some work on hybrid TLS 1.3 [17], no protocol with quantum-
safe provable security guarantees for TLS is yet available.
Hence, in this work, we will instead follow the HAKE
framework, which is capable of providing a proof of security
for our envisioned key exchange mechanism.

More concretely, we propose VMuckle, a new adaptation
of the Muckle+ HAKE protocol [18] tailored for small–
and large–scale quantum-safe environments. To achieve their
desired security properties, we modify the protocol flow and
proof techniques, proving its security within the HAKE frame-
work. The result is that we have (quantum-safe) security if
at least one authentication method and one key component
are (quantum-safe) secure and have not been compromised. In
particular, this is what allows for the versatility of authentica-
tion methods in VMuckle in comparison to previous HAKE
protocols.

Additionally, we demonstrate how to seamlessly replace
802.1X authentication with VMuckle to establish secure, au-
thenticated keys for MKA, without modifying the 802.1AE
or 802.1X standards. This versatile solution integrates clas-
sical, post-quantum, and quantum key distribution methods,
supporting authentication through PSKs, post-quantum digital
signatures, or both, to provide MKA with a secure root key.

This work ensures that MACsec remains a future-proof
standard, capable of addressing both classical and quantum
security threats.

II. BACKGROUND

A. MACsec

802.1AE does not specify procedures for key management
or distribution within a MACsec-secured network, leaving
the responsibility of authentication and key provisioning to
network administrators. However, 802.1X provides a robust
framework for authenticating devices and granting or denying
access to network resources, handling device authentication
through methods such as EAP-TLS or PSKs. Once device
authentication is completed, the MKA protocol, also defined in
802.1X, manages key distribution and secure communication
channel establishment. MKA automates the configuration and
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maintenance of these secure Layer 2 communication channels
between authenticated devices, facilitating key distribution,
synchronization, and association of cryptographic parameters
required for MACsec to operate effectively.

A Connectivity Association (CA) is a security relationship
that comprises a fully connected subset of the service access
points at stations attached to a single LAN, MAN, or WAN,
which is supported by MACsec. It serves as a broader security
construct that encompasses multiple unidirectional Security
Associations (SAs), thereby enabling a cohesive and secure
communication environment between devices within a network
domain. A CA is composed of one or more Secure Chan-
nels (SC), where each SC is identified by a unique Secure
Channel Identifier (SCI). These SCs are formed by pairs
of unidirectional SAs, enabling bidirectional communication.
CAs can support both unicast and multicast scenarios and are
secured using a Connectivity Association Key (CAK), which
is a shared secret known by all CA participants identified by
the Connectivity Association Key Name (CKN). The CAK
represents the root of the MKA key hierarchy and is used in
the derivation of both the Integrity Check Key (ICK) and the
Key Encryption Key (KEK).

Figure 1 illustrates the creation and management of a CA
handled by the MKA protocol. Initially, all CA participants
are authenticated using 802.1X, resulting in the generation of
a Master Session Key (MSK), which will be used to derive
the CAK and CKN. Using these keys, any node can derive
the KEK and ICK. Next, a station is elected as the key server,
responsible for generating any required Secure Association
Key (SAK). This selection is performed dynamically among
all CA participants by generating a message that includes
key server priority and a list of active nodes. The node
with the highest priority is assigned as the key server, and
retains this role until it is no longer present in the list of
active nodes. In the depicted scenario, an SA is created for
any-to-any communication, leading to the generation of six
SAKs. The MKA protocol coordinates the management and
distribution of these keys within the CA through MKA Data
Protocol Unit (MKDPU) frames to communicate their identity,
role, and availability of new SAKs to the nodes involved
(i.e., SAK1 and SAK2 for A-B communication, SAK3 and
SAK4 for A-C communication, and SAK5 and SAK6 for B-C
communication). The confidentiality of these frames is ensured
by the encryption with the KEK and the integrity by the ICK.
At this point, all nodes are ready to initiate secure MACsec
sessions with any peer in the CA. The standard allows dynamic
maintenance of the CA to adapt to changes in the network
topology or membership. If a new device joins or an existing
device leaves the CA, the MKA protocol seamlessly manages
these transitions, updating the SAs as needed.

B. Main cryptographic protocols
The main building block of secure communication between

two entities is an authenticated key exchange (AKE). Recently,
hybrid AKE (HAKE) has been receiving significant attention
due to their ability to derive a shared authenticated key from
several key-material sources (i.e., from classical and post-
quantum keys, as well as from QKD).
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Fig. 1: MACsec Key Agreement protocol operation in a 3-node
scenario with any-to-any Security Associations deployment
(see text for further explanation).

Dowling, Brandt Hansen and Paterson [19] proposed the
first work in the area and gave an instantiation which they
dubbed Muckle. For authentication, Muckle uses PSKs, but
this method does not scale for large networks. However, in
smaller quantum-safe networks, where PSKs can be distributed
readily, Muckle may be used.

In a subsequent work, Bruckner, Ramacher and Striecks
[18] addressed the gap regarding larger-scale networks and
proposed Muckle+, which utilizes post-quantum signatures for
the authentication of the entities, resulting in a very efficient
way to verify the key exchange. As it turns out, Muckle+ is
particularly interesting for large-scale quantum-safe networks
since the scheme no longer relies on PSKs. A requirement
of Muckle+ is the deployment of a Public Key Infrastructure
(PKI).

Notably, smaller networks with only a few entities may
not always require a full-blown PKI, and in such cases it
may suffice to utilize PSKs for the authentication. However,
larger networks, such as the anticipated European Quantum
Communication Infrastructure (EuroQCI) [20], would likely
benefit from also deploying a PKI due to the expected large
number of communicating entities.

Unfortunately, neither of the two HAKE protocols, Muckle
and Muckle+, is versatile in the sense that they do not allow
both authentication mechanisms (i.e., post-quantum signatures
or PSKs) to be chosen adaptively during the protocol run.
In this work, we address this gap and propose VMuckle
to overcome these limitations. Particularly, this results in
a flexible use of HAKE protocols suited for both small–
and large–scale quantum-safe networks. Our approach in this
work yields a modular integration of VMuckle into MACsec
such that both quantum-safe authentication options are now
available with provable security guarantees.
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C. Related Work

The increasing concern regarding potential quantum attacks
has intensified the emphasis on enhancing network security,
prompting various initiatives to incorporate quantum-safe so-
lutions into established network security protocols, such as
MACsec. This section provides a comprehensive overview
of these efforts, outlining the current state of post-quantum
integration and highlighting the advancements introduced by
our approach in comparison to existing methodologies.

The authors of [21] propose an authenticated post-quantum
key establishment protocol aimed at securing long-term MAC-
sec sessions by providing an ephemeral session key exchange
mechanism capable of deriving an encryption key directly
from a post-quantum public key scheme. Their approach
leverages the Classic McEliece public key cryptosystem as a
Key Encapsulation Mechanism (KEM), integrated within the
EAP-TLS authentication framework.

The same authors present an additional study that inves-
tigates the use of QKD as an alternative source of trust for
MACsec [22]. However, their proposal does not make use
of the 802.1X standard, the MKA protocol, it only uses an
extension of the SAK by mixing a QKD key with the standard
Diffie-Hellman.

Stefan-Lukas Gazdag et al. ( [9], Sect. 5.1) outline two
approaches to achieve a quantum-secure MKA. First, for
the standard hierarchical mode, they introduce EAP-TLS-PQ,
mandating post-quantum ciphersuites that use PQ certifi-
cates and a PQ key exchange. Second, for an ephemeral
mode, they design an AKE that blends a post-quantum
exchange with classical cryptography to produce a hybrid
key. Both paths rely on ciphersuites and fit cleanly into
existing MACsec workflows. They use Classic McEliece,
NTRU, CRYSTALS-Kyber and SABER alongside DHKE for
key exchange, and CRYSTALS-Dilithium and Falcon for
authentication. In this work, we follow the same approach
in the ephemeral mode, but we extend the protection of the
mechanism by using classical, post-quantum and quantum
cryptography underpinning our claims with a proof of security
(where latter is currently still absent for EAP-TLS-PQ).

Our work extends these approaches by introducing a
quantum-safe HAKE protocol, designed to provide the MKA
protocol with an authenticated root key for the key hierarchy
achieved through the combination of recently approved PQC
algorithms ( [3]–[5]) together with QKD and current classical
cryptography. This innovation enables the establishment of a
hybrid quantum-resistant MACsec session, ensuring enhanced
security against quantum attacks, and security fallback in case
any of the proposed methods is compromised in the future.

III. VMUCKLE: A VERSATILE KEY EXCHANGE PROTOCOL

In this section, we provide a Hybrid Authenticated Key
Exchange protocol, dubbed VMuckle, that is used to substitute
the 802.1X authentication in MACsec. VMuckle combines key
material from classical and post-quantum mechanisms, as well
as from QKD. Authentication can be achieved via Pre-Shared
Keys, or a post-quantum authentication mechanism.

TABLE I: Values for the contexts used in the VMuckle key
schedule. The context inputs follow the choices in the TLS
1.3 handshake [23].

Label Context Input Label Context Input

Hε “” H0 H(“”)
H1 H(m1∥m2) H2 H(m1∥ . . . ∥m3)
H3 H(m1∥ . . . ∥m4) H4 H(m1∥ . . . ∥m5)
H5 H(m1∥ . . . ∥m6) H6 H(m1∥ . . . ∥m7)

TABLE II: Values for the labels used in the VMuckle (taken
from Muckle+ [18]).

Label Label Input Label Label Input

ℓ0 “derive k c” ℓ1 “derive k pq”
ℓ2 “first ck” ℓ3 “second ck”
ℓ4 “third ck” ℓ5 “fourth ck”
ℓ6 “derived” ℓ7 “c hs traffic”
ℓ8 “s hs traffic” ℓ9 “finished”
ℓ10 “c ap traffic” ℓ11 “s ap traffic”
ℓ12 “secstate” ℓ13 “TLS 1.3, server CertificateVerify”
ℓ14 “TLS 1.3, client CertificateVerify”

As building blocks, we use a pseudo-random function
(PRF), a message authentication code (MAC), a digital signa-
ture scheme (DSS), key encapsulation mechanisms (KEMs),
and an authenticated encryption scheme with associated data
(AEAD). (These are defined in Appendix A, together with
further relevant cryptographic security aspects.)

In the following section, we describe the protocol flow of
VMuckle. In the initial stage, the initiator and the responder
possess certificates certI and certR, respectively, from a
Public Key Infrastructure (the details of which are out of the
scope of this work). The certificates contain public verification
keys pkI and pkR, and the initiator and the responder possess
the corresponding private keys skI and skR, respectively.

The initiator and the responder also possess a shared secret
state SecState (which is initially set to an empty string). They
additionally have access to the labels defined in Table II.
These labels are used to ensure separation in the key derivation
function (KDF).

The initiator chooses a random bitstring nI with bit-length
κ, where κ is at least 128, and generates ephemeral public-
secret key pairs (pkc, skc), (pkpq, skpq) via the key generation
algorithms of the classical and post-quantum KEMs, respec-
tively. (If no classical key pair (pkc, skc) is generated, then
the initiator sets pkc and skc to empty strings.)

The initiator then sends the public keys and the random
string to the responder via a public channel.

The responder chooses a random bitstring nR with bit-
length κ. The responder generates an encapsulation (cpq, sspq)
via the encapsulation algorithm of the post-quantum KEM,
using the public key pkpq . If pkc is available, the responder
also generates an encapsulation (cc, ssc) via the encapsulation
algorithm of the classical KEM, using the public key pkc. If
pkc is an empty string, then cc and ssc are set as empty strings.
The responder sends cpq , cc, and nR to the initiator via a public
channel.

The initiator now computes the decapsulation sspq via the
decapsulation algorithm of the post-quantum KEM using the
secret key skpq with the ciphertext cpq . If cc is non-empty, the
decapsulation of ssc is also computed using the decapsulation
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Initiator Responder

skI , pkR , certI , psk , SecState,
l0, . . . , l14 , Hε, H0, . . . , H6

skR, pkI , certR , psk , SecState,
l0, . . . , l14 , Hε, H0, . . . , H6

nI ← {0, 1}κ
pkc, skc ← KEMc.KGen(κ)
pkpq, skpq ← KEMpq.KGen(κ)

m1 : pkc, pkpq, nI
−−−−−−−−−−−−−→ nR ← {0, 1}κ

cc, ssc ← KEMc.Enc(pkc)
cpq, sspq ← KEMpq.Enc(pkpq)

m2 : cc, cpq, nR←−−−−−−−−−−−−−
ssc ← KEMc.Dec(skc, cc)
sspq ← KEMpq.Dec(skpq, cpq)

kc ← F(ssc, ℓ0∥H1)
kpq ← F(sspq, ℓ1∥H1)

k0 ← F(kpq, ℓ2∥H1)
k1 ← F(kc, ℓ3∥k0)

kq ← GetKeyqkd(κ) kq ← GetKeyqkd(κ)
k2 ← F(kq, ℓ4∥k1)

k3 ← F(SecState, ℓ5∥k2) ´

CHTS ← F(k3, ℓ7∥H1)
SHTS ← F(k3, ℓ8∥H1)
dHS ← F(k3, ℓ6∥H0)
tkchs ← F(CHTS)
tkshs ← F(SHTS)

fkC ← F(CHTS, ℓ9∥Hε)
fkS ← F(SHTS, ℓ9∥Hε)

Verify certR
m3 : {certR}tkshs←−−−−−−−−−−−−−

σR ← DSS.Sign(skR, ℓ13∥H2)

DSS.Ver(pkR, ℓ13∥H2, σR)
?
= 1

m4 : {σR}tkshs←−−−−−−−−−−−−−
τR ← MAC.Auth( F(psk, fkS) , H3)

MAC.Ver( F(psk, fkS) , H3, τR)
?
= 1

m5 : {τR}tkshs←−−−−−−−−−−−−−

MS ← F(dHS, 0)
CATS ← F(MS, ℓ10∥H4)
SATS ← F(MS, ℓ11∥H4)
SecState← F(MS, ℓ12∥H4)

m6 : {certI}tkchs−−−−−−−−−−−−−→ Verify certI
σI ← DSS.Sign(skI , ℓ14∥H5)

m7 : {σI}tkchs−−−−−−−−−−−−−→ DSS.Ver(pkI , ℓ14∥H5, σI)
?
= 1

τI ← MAC.Auth( F(psk, fkC) , H6)

m8 : {τI}tkchs−−−−−−−−−−−−−→ MAC.Ver( F(psk, fkC) , H6, τI)
?
= 1

end of ephemeral key exchange phase

end of authentication and key confirmation phase

Fig. 2: One stage of the VMuckle protocol with a classical KEM KEMc, a post-quantum KEM KEMpq , a MAC MAC and a PRF F , where
kq is a symmetric QKD key (provided out-of-band via the function GetKeyqkd), and psk is a pre-shared key. certI and certR are certificates
(provided out-of-band) for the public keys pkI and pkR, respectively. CATS and SATS are the client and server application traffic secrets,
respectively. Messages mi : {mi,1, . . .}k denote that mi,1, . . . are encrypted with an authenticated encryption scheme using the secret key
k. The various contexts and labels are provided in Tables I and II. In the first run, SecState is initialized as an empty string ⊥. Changes to
Muckle+ are denoted boxed .

algorithm of the classical KEM with the secret key skc and
the ciphertext cc. If cc is an empty string, then ssc is set as
an empty string.

Next, the initiator and responder invoke a series of KDF
calls as given in Section III, where kq is the symmetric
QKD key. This ensures a cryptographically sound method of
“binding” the different keys and SecState together (which will
be argued for in the security proof). Now, the protocol enters
the authentication stage, beginning with the authentication of
the responder.

The responder computes the encryption of certR using
the encryption algorithm of the Authenticated Encryption
with Associated Data (AEAD) scheme with encryption key

tkshs (and with the associated data string “Message 3”) and
sends the resulting ciphertext m3 to the initiator. Moreover,
the responder computes the signature δR using the Digital
Signature Scheme (DSS) signing algorithm with the signing
key skR and the message l13||H2, and sends δR (AEAD-
encrypted under tkshs) to the initiator. (Note that skR may
be an empty string, in which case DSS authentication is not
used. In such situations, pre-shared key authentication must
be in place, as described in the following section.)

The responder then computes the authentication tag τR
using the MAC authentication algorithms with the key
F(psk, fkS), and sends it to the initiator. Here, the pre-
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shared key is used for authenticating the responder. (Note
that psk may be an empty string. In this case, pre-shared key
authentication must not be used, and DSS authentication must
therefore be in place. If psk is an empty or known string, key
confirmation can still be achieved via fkS .)

The initiator now computes the decryptions of the received
ciphertexts m3,m4 and m5 using the AEAD decryption al-
gorithm with decryption key tkshs. The initiator verifies the
certificate certR (the exact method of which is beyond the
scope of this work), the signature δR, and the MAC tag τR.

Now, both entities can derive the same master secret MS,
and can update the secure state SecState. This is followed by
a authentication/confirmation step of the initiator, which pro-
ceeds analogously to the responder authentication described
above. If all checks pass, this stage of the protocol is com-
pleted. The secure state SecState derived during the completed
stage is given as input for the next stage.

The key schedule of the VMuckle stage is given in Figure 3.
Note that if at least one of the authentication mechanisms (DSS
or PSK) can be verified successfully on both sides, correctness
follows (under the assumptions of the correctness of the KEM
building blocks and the QKD key derivation).

k0

k1

k2

k3

kpq

kc

SecState

dHS

kq

sspq

ssc

MS

SecState

GetKeyqkd

KEMpq

KEMc

PRF

dual-PRF

Fig. 3: The key schedule of one stage of the VMuckle protocol,
illustrating how the key components are securely combined to
create the key values MS and SecState.

We provide the security analysis of VMuckle in Appendix
C.

IV. EVALUATION OF THE VMUCKLE PROTOCOL

To assess the practical performance of VMuckle, we devel-
oped a prototypical implementation of the VMuckle protocol.
This prototype was created in Python, utilizing liboqs [24]
bindings for post-quantum signature schemes and key encap-
sulation mechanisms, while also supporting conventional cryp-
tography modules1. The protocol was evaluated on a notebook
running Ubuntu 22.04.5 with an Intel(R) Core(TM) i7-8665U
CPU @ 1.90GHz and 16 GB of RAM.

Simulators were employed instead of actual QKD devices to
prevent the limited key rate from affecting the practical results.
The benchmark involved mutual authentication, meaning both
parties authenticated themselves using certificates. Similarly
to the evaluation of Muckle+ in [18] and [25], the certificates

1https://pypi.org/project/cryptography/

included both post-quantum and classical long-term public
keys. They were authenticated within a two-layer certificate
hierarchy, consisting of one root CA and one intermediate CA.
The CAs signed the certificates using both a post-quantum
signature scheme (ML-DSA-87) and a classical signature
scheme, specifically EdDSA [26].

The results are shown in Tables III and IV.

TABLE III: Bandwidth and CPU usage (part 1) in kilobytes
and giga cycles, respectively for encapsulation (NIST level
1, 3, or 5) and signature (NIST levels 1, 3, or 5) variants
in VMuckle. For QKD we have used QKD-256 bits. (2) For
ECDH we have used ECDH-P521.

KEM Signature Cycles (G) Data (KB)

ML-KEM-512
& QKD(1)

& ECDH(2)

PSK <1.5 1.0
ML-DSA-44 1.5 16.9
ML-DSA-65 1.5 18.4
ML-DSA-87 1.5 20.3
SLH-DSA-SHAKE-128f 1.6 30.3
SLH-DSA-SHAKE-192f 1.7 48.9
SLH-DSA-SHAKE-256f 1.9 63.1
Falcon-512 1.6 14.7
Falcon-1024 1.6 16.2

ML-KEM-768
& QKD(1)

& ECDH(2)

PSK <1.5 1.4
ML-DSA-44 1.5 17.3
ML-DSA-65 1.5 18.8
ML-DSA-87 1.5 20.7
SLH-DSA-SHAKE-128f 1.8 30.7
SLH-DSA-SHAKE-192f 1.8 49.3
SLH-DSA-SHAKE-256f 1.9 63.5
Falcon-512 1.5 15.1
Falcon-1024 1.6 16.6

ML-KEM-1024
& QKD(1)

& ECDH(2)

PSK <1.5 1.8
ML-DSA-44 1.5 17.7
ML-DSA-65 1.5 19.2
ML-DSA-87 1.5 21.1
SLH-DSA-SHAKE-128f 1.6 31.1
SLH-DSA-SHAKE-192f 1.7 49.7
SLH-DSA-SHAKE-256f 2.2 63.8
Falcon-512 1.7 15.5
Falcon-1024 1.7 17.0

HQC-128
& QKD(1)

& ECDH(2)

PSK <1.5 2.5
ML-DSA-44 1.5 18.4
ML-DSA-65 1.5 19.9
ML-DSA-87 1.5 21.8
SLH-DSA-SHAKE-128f 1.7 31.2
SLH-DSA-SHAKE-192f 1.9 50.3
SLH-DSA-SHAKE-256f 1.9 64.5
Falcon-512 1.6 16.2
Falcon-1024 1.7 17.7

HQC-192
& QKD(1)

& ECDH(2)

PSK <1.6 4.8
ML-DSA-44 1.6 20.6
ML-DSA-65 1.6 22.1
ML-DSA-87 1.8 24.1
SLH-DSA-SHAKE-128f 1.7 34.0
SLH-DSA-SHAKE-192f 1.9 52.6
SLH-DSA-SHAKE-256f 2.1 66.8
Falcon-512 1.8 18.4
Falcon-1024 1.8 20.0

To conclude, ML-KEM-512, ML-KEM-768 or ML-KEM-
1024 with ML-DSA-44, ML-DSA-65, or ML-DSA-87 are
notable for their efficiency in terms of both bandwidth and
CPU usage (using Falcon-512 or Falcon-1024 instead of the
ML-DSA variants could be a valid choice for bandwidth-
constrained use cases). On the other hand, FrodoKEM-1344-
SHAKE and SLH-DSA-SHAKE-806-256f provide enhanced

https://pypi.org/project/cryptography/
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TABLE IV: Continuation of table III.

KEM Signature Cycles (G) Data (KB)

HQC-256
& QKD(1)

& ECDH(2)

PSK <1.7 7.5
ML-DSA-44 1.9 23.4
ML-DSA-65 1.7 24.9
ML-DSA-87 1.8 26.8
SLH-DSA-SHAKE-128f 1.9 36.7
SLH-DSA-SHAKE-192f 1.9 55.3
SLH-DSA-SHAKE-256f 2.1 69.5
Falcon-512 1.8 21.2
Falcon-1024 2.0 22.7

FrodoKEM-640-SHAKE
& QKD(1)

& ECDH(2)

PSK <1.6 9.8
ML-DSA-44 1.6 25.7
ML-DSA-65 1.6 27.2
ML-DSA-87 1.6 29.2
SLH-DSA-SHAKE-128f 1.9 39.1
SLH-DSA-SHAKE-192f 1.9 57.7
SLH-DSA-SHAKE-256f 2.1 71.9
Falcon-512 1.8 23.5
Falcon-1024 1.9 25.1

FrodoKEM-976-SHAKE
& QKD(1)

& ECDH(2)

PSK <1.6 15.9
ML-DSA-44 1.6 31.7
ML-DSA-65 1.6 33.3
ML-DSA-87 1.6 35.2
SLH-DSA-SHAKE-128f 1.7 45.1
SLH-DSA-SHAKE-192f 1.9 63.7
SLH-DSA-SHAKE-256f 2.0 77.9
Falcon-512 1.6 29.6
Falcon-1024 1.7 31.1

FrodoKEM-1344-SHAKE
& QKD(1)

& ECDH(2)

PSK <1.6 21.8
ML-DSA-44 1.6 37.6
ML-DSA-65 1.6 39.1
ML-DSA-87 1.6 41.1
SLH-DSA-SHAKE-128f 1.7 51.0
SLH-DSA-SHAKE-192f 1.8 69.6
SLH-DSA-SHAKE-256f 2.0 83.8
Falcon-512 1.8 35.4
Falcon-1024 1.9 37.0

security but require more bandwidth and computational re-
sources. The selection of a scheme should be based on
the specific needs of the application, balancing bandwidth
efficiency against computational performance in post-quantum
cryptographic contexts.

Overall, using ML-KEM-1024 in VMuckle with ML-DSA-
87 together with conventional cryptography and QKD yields
a valuable choice for the integration into MACsec balancing
efficiency and security.

The alternative to VMuckle is the EAP-TLS protocol. To
assess the overhead introduced by VMuckle, we will compare
its performance with EAP-TLS. In both cases, we will use a
mutual authentication scenario (both ends of the connection
are authenticated). EAP-TLS requires 14 messages to operate:
4 are specific to the EAP protocol and 10 to the TLS protocol.

The first message is the EAP-Request Identity, sent from
the authenticator server to the client, which contains approxi-
mately 30 B of information. The client replies with the EAP-
Response Identity message, including its username, which
typically amounts to around 25 B depending on its length.
The server then sends the EAP-Request TLS Start (6 B) to
initiate the TLS handshake. The client continues with the
EAP-Response Client Hello message, which includes 78 B in
addition to the key size of the public key sent, assuming that
only the necessary key material for the selected asymmetric
algorithm is transmitted. The server responds with a sequence
of messages: the EAP-Request Server Hello (72 B plus the size
of the public key or ciphertext), EAP-Request Certificate (22 B
plus the certificate size), EAP-Request Encrypted Extensions

(15 B), EAP-Request CertificateRequest (24 B), EAP-Request
CertificateVerify (17 B plus the signature size), and EAP-
Request Finished (61 B, assuming SHA-384 is used). The
client then sends the EAP-Response Certificate (22 B plus
the certificate size), followed by the EAP-Request Certificat-
eVerify (17 B plus the signature size), and the EAP-Response
Finished (61 B). Finally, the server completes the handshake
by sending the EAP-Success message (4 B). Together, the base
size of the handshake is 424 B, not including the additional
data contributed by public keys, ciphertexts, certificates, and
signatures [27], [28] (i.e, for ML-KEM-1024 and ML-DSA-
87, the total data sent is 17,29 KB). In contrast, with VMuckle,
the total data sent for this ciphersuite is 42,2 KB, representing
an increase of around 144,07% (note that it is only during the
first round, so it is almost irrelevant from a performance point
of view). Although VMuckle is less efficient in terms of the
amount of data exchanged – due to its distinct protocol flow
designed to support hybrid signature and keys – this design
enables a rigorous security proof, which EAP-TLS currently
lacks.

V. QUANTUM-SAFE MACSEC

As mentioned in Background (II-A), MACsec is defined
in two different standards: 802.1AE and 802.1X. 802.1AE
defines the MACsec protocol, which describes the process of
creating a secure layer-2 level session once the transmitting
and receiving keys have been established, but the authentica-
tion and key agreement are out of the scope of this standard.

802.1X defines both authentication and key establishment
for MACsec as independent modules, where MKA is in charge
of discovering peers inside a MACsec CA, and negotiating,
deriving, and distributing keys, but authentication is out of the
scope of the MKA protocol, since MKA uses an authenticated
master key as root key for its key hierarchy. This process is
performed by establishing and maintaining a secure communi-
cation channel between the stations within an CA by deriving
the encryption (KEK) and integrity (ICK) keys from this root
key provided by the authentication. 802.1X encourages the
use of the authentication method defined in the standard for
MKA, which may be performed through EAP-TLS or PSKs,
but it allows the use of other means of authentication as
long as they have been proven to be secure. This modularity
offers greater flexibility, allowing a network to deploy 802.1X
for authentication without implementing MACsec, or to use
alternative authentication methods while still utilizing MKA
to distribute keys for secure network communications.

In this work, we leverage the modularity of 802.1X to
introduce a novel authentication method to agree on a root key
for the MKA protocol, without requiring any modifications to
existing standards. As we have detailed in the previous section,
VMuckle is proven to be a secure quantum-safe authenticated
method to obtain a symmetric key at both endpoints of
connection. This approach provides MKA with a quantum-safe
HAKE for each station within the CA, allowing the initiation
of integrity and encryption key establishment. Furthermore,
not modifying the MKA protocol defined in 802.1X means
that this implementation benefits from the proven security of
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this standard, augmented by the security of hybrid quantum-
safe authentication.

The operation of the proposed implementation is illustrated
in Figure 4. The initial phase of the unmodified MACsec-MKA
protocol flow involves authenticating connection endpoints us-
ing the authentication mechanism defined in 802.1X (depicted
in green). In this work, we propose the use of VMuckle to
authenticate the endpoints and generate a root key (MSK) that
serves as the source of the keying material for MKA. This
phase is the only one that has been modified in the MACsec
deployment operation flow.

Certificate
Authority

Internet

VMuckle VMuckle

MSK MSK

CAK, CKN CAK, CKN

HMAC-SHA-256

ICK KEK

HMAC-SHA-256

KEK ICK

RNG

SAK

AES-GCM-256AES-GCM-256

SAK

MACsec MACsec

Hybrid Authenticated
Key Exchange

PKIPKI

1. Authentication
2. Generation and
distribution of MSK

3. CAK derivation
4. Key derivation:

- ICK
- KEK

5. SAK key generation

6. SAK key distribution

7. MACsec secure
session

CA station 1 CA station 2
Key Server

MKDPU

SecTag SecData ICV MDPU

HMAC-SHA-256

GMAC
802.1AE/MACsec

802.1X/MKA

802.1X/MKA

802.1X/MKA

AUTH

PSK

HMAC-SHA-256 HMAC-SHA-256

Cipher Suite Encrypted SAK ICV

GMAC

PSK

Fig. 4: The proposed operation for employing VMuckle as
source of trust for MKA protocol in a two-node scenario.

From this point on, the operation of both the MACsec and
MKA protocols proceeds without modification, ensuring the
security guaranteed by both 802.1X and 802.1AE, using the
quantum-safe hybrid key agreed by VMuckle as the Master
Session Key. The second phase consists of the generation of
the Connectivity Association Key and its Connectivity Associ-
ation Key Name for the MACsec Key Agreement protocol. The
Connectivity Association Key Name contains the Connectivity
Association Key identifier, configured manually or defined as
a static value. The Connectivity Association Key is derived
from the Master Session Key using HMAC over SHA-256,
where the Master Session Key is used as the HMAC key and
the Connectivity Association Key Name as the input message.
Then, the Key Encryption Key and the Integrity Check Key are
generated via HMAC over SHA-256 using the Connectivity
Association Key as key and a specific derivation constraint
(different for KEK and ICK) among with the Connectivity
Association Key Name as input message.

Subsequently, a key server, located on the right side of
Figure 4, must be selected within the CA. The key server is
responsible for deriving the Secure Association Key (shown in
purple in Figure 4) using the same KDF: HMAC over SHA-
256, combining various parameters such as the Connectivity

Association Key, the Secure Channel Identifier, and a synchro-
nization value generated from an RNG.

The Secure Association Key then must be securely dis-
tributed to the other endpoint. To achieve this, the Secure
Association Key is encrypted using AES-GCM-256, with the
KEK serving as the encryption key, as specified in 802.1X.
The encrypted Secure Association Key, among the Integrity
Check Value (ICV) and the selected ciphersuite, is encap-
sulated within an MKDPU frame. This frame ensures both
data integrity and confidentiality during transmission to the
other endpoint of the Security Associations. Upon receiving
the MKDPU frame, the participant device decrypts the Secure
Association Key and validates the integrity of the frame.
This process enables the secure establishment of the MACsec
session, creating a secure communication channel between the
participating SA devices by sending MACsec data protocol
units (MDPU), as shown in the upper part of Figure 4.

The primary advantage of our approach lies in its integration
of post-quantum security through the combined use of classical
cryptography, PQC, and QKD as a trust anchor within the
802.1X key management hierarchy. This architecture enables
MACsec to establish a hybrid quantum-safe secure key agree-
ment mechanism, which can be authenticated using PSKs,
certificate-based methods, or a combination of both, providing
a secure and scalable solution. As a result, this design ensures
that MACsec benefits from post-quantum security without
requiring modifications to existing standards, resulting in a
smooth transition to quantum-safe networks with provable
security guarantees on the authentication.

VI. CONCLUSION AND FUTURE WORK

In this work, we provide a new Hybrid Authenticated Key
Exchange (HAKE) protocol dubbed VMuckle, because of its
versatility for large– and small–scale quantum-safe networks,
with features that were not available before. In addition,
VMuckle is used to obtain a secure authenticated symmetric
key for MKA use between MACsec endpoints, ensuring robust
quantum-safe security. Furthermore, integrating VMuckle as a
HAKE mechanism that can be readily used in the 802.1X
standard facilitates a smooth transition towards quantum-safe
infrastructures and ensures that MACsec remains a future-
proof standard, capable of addressing both classical and quan-
tum security threats.

Future work that we intend to tackle within this frame-
work includes multicast capabilities. This would enable the
generation of a CAK on the key server and its distribution
to all the network nodes. While feasible from an MKA per-
spective, achieving this within the VMuckle protocol presents
challenges that require further investigations. In addition, to
demonstrate the maturity of the solution, a logical next step
would be to deploy the solution in a production setting. In this
sense, the adoption of the protocol in a broader context would
be improved by requiring the inclusion of an initial negotiation
phase to check which services are available at the endpoint,
so that other quantum-safe algorithms would be used in case
QKD is unavailable. An additional line of work could be to
extend the same authentication technologies to other protocols
such as IPsec.



9

Finally, we plan a full testing and deployment on the
MadQCI network [29]. This is a large and heterogeneous
network that is currently being enlarged with connections to
final users, getting closer to a real production network, and
that will serve as an ideal testbed for the work described here.

APPENDIX A
MATHEMATICAL PRELIMINARIES

a) Notation.: Let κ ∈ N be the security parameter. For a
finite set S, we denote by s← S the process of sampling an
element s uniformly from S. For an algorithm A, we let y ←
A(κ, x) denote the process of running A on input (κ, x) with
access to uniformly random coins, and assigning the result to
y. (We may omit explicit mention of the κ-input and assume
that all algorithms take κ as input.) We say an algorithm A
is probabilistic polynomial time (PPT) if the running time of
A is polynomial in κ by a probabilistic Turing machine. An
algorithm A is called quantum polynomial time (QPT) if it is a
uniform family of quantum circuits with size polynomial in κ.
A function f is called negligible if its absolute value is smaller
than the inverse of any polynomial, for sufficiently large input
values (i.e., if ∀c ∈ N ∃k0 ∀k ≥ k0 : |f(k)| < 1/kc).

In the following, we recap standard (classical) notions of
the cryptographic building blocks needed. At the end of the
section, we note that post-quantum equivalents can also be
similarly formulated.

Definition 1 (Pseudo-Random Function). Let F : S ×D → R
be a family of functions, and let Γ be the set of all functions
D → R. For a PPT distinguisher D we define the advantage
function as AdvPRFD,F (κ) =∣∣∣Pr [s← S : DF(s,·)(κ) = 1

]
− Pr

[
f ← Γ : Df(·)(κ) = 1

]∣∣∣ .

F is called a pseudorandom function (family) if it is efficiently
computable and, for any PPT distinguisher D, there exists a
negligible function ε(·) such that

AdvprfD,F (κ) ≤ ε(κ).

A PRF F is called a dual PRF [30], if G : D×S → R defined
by G(d, s) = F(s, d) is also a PRF.

We recall the notion of message authentication codes
(MACs) as well as digital signature schemes, and the standard
unforgeability notions below.

Definition 2 (Message Authentication Codes). A message
authentication code MAC is a triple (KGen,Sign,Ver) of PPT
algorithms, which are defined as:

KGen(κ) : This algorithm takes a security parameter κ as
input, and outputs a secret key sk.

Auth(sk,m) : This algorithm takes a secret key sk ∈ K and a
message m ∈M as input, and outputs an authentication
tag τ .

Ver(sk,m, τ) : This algorithm takes a secret key sk, a mes-
sage m ∈ M and an authentication tag τ as input, and
outputs a bit b ∈ {0, 1}.

A MAC is correct if, for all κ ∈ N, for all sk ← KGen(κ)
and for all m ∈M, it holds that

Pr [Ver(sk,m,Auth(sk,m)) = 1] = 1,

where the probability is taken over the random coins of KGen
and Auth.

Definition 3 (EUF-CMA security of MAC). For a PPT ad-
versary A, we define the advantage function in the sense of
existential unforgeability under chosen message attacks (EUF-
CMA) as

Adveuf-cma
A,MAC(κ) = Pr

[
Expeuf-cma
A,MAC(κ) = 1

]
,

with the corresponding experiment depicted in Experiment 1.
If, for all PPT adversaries A, there is a negligible function
ε(·) such that Adveuf-cma

A,MAC(κ) ≤ ε(κ), we say that MAC is EUF-
CMA secure.

Expeuf-cma
A,MAC(κ):

sk← KGen(κ), Q ← ∅
(m∗, τ∗)← AAuth′,Ver′(κ)

where oracle Auth′(m):
Q ← Q∪ {m}
return Auth(sk,m)

where oracle Ver′(m, τ):
return Ver(sk,m, τ)

return 1 if Ver(sk,m∗, τ∗) = 1 ∧ m∗ /∈ Q return 0, otherwise

Experiment 1: EUF-CMA security experiment for a MAC
MAC.

Definition 4 (Signature Scheme). A signature scheme DSS
is a triple (KGen,Sign,Ver) of PPT algorithms, which are
defined as follows:

KGen(κ) : This algorithm takes a security parameter κ as
input and outputs a secret (signing) key sk and a public
(verification) key pk with associated message space M
(we may omit to make the message space M explicit).

Sign(sk,m) : This algorithm takes a secret key sk and a
message m ∈M as input, and outputs a signature σ.

Ver(pk,m, σ) : This algorithm takes a public key pk, a mes-
sage m ∈ M and a signature σ as input, and outputs a
bit b ∈ {0, 1}.

For correctness, we require that for all κ ∈ N, for all
(sk, pk)← KGen(κ) and for all m ∈M it holds that

Pr [Ver(pk,m,Sign(sk,m)) = 1] = 1,

where the probability is taken over the random coins of KGen
and Sign.

Definition 5 (EUF-CMA of DSS). For a PPT adversary A,
we define the advantage function in the sense of existential
unforgeability under chosen message attacks (EUF-CMA) as

Adveuf-cma
A,DSS (κ) = Pr

[
Expeuf-cma
A,DSS (κ) = 1

]
,
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where the corresponding experiment is depicted in Experi-
ment 2. If for all PPT adversaries A there is a negligible
function ε(·) such that Adveuf-cma

A,DSS (κ) ≤ ε(κ), we say that DSS
is EUF-CMA secure.

Expeuf-cma
A,DSS (κ):

(sk, pk)← KGen(κ), Q ← ∅
(m∗, σ∗)← ASign(pk)

where oracle Sign′(m):
Q ← Q∪ {m}
return Sign(sk,m)

return 1 if Ver(pk,m∗, σ∗) = 1 ∧ m∗ /∈ Q, return 0 otherwise

Experiment 2: EUF-CMA security experiment for a digital
signature scheme DSS.

We recall the notion of key-encapsulations mechanisms
(KEMs) and the standard chosen-plaintext notion below.

Definition 6 (Key-Encapsulation Mechanism). A key-
encapsulation mechanism scheme KEM with key space K
consists of the three PPT algorithms (KGen,Enc,Dec):
KGen(κ) : This algorithm takes a security parameter κ as

input, and outputs public and secret keys (pk, sk).
Enc(pk) : This algorithm takes a public key pk as input, and

outputs a ciphertext c and a key K.
Dec(sk, c) : This algorithm takes a secret key sk and a

ciphertext c as input, and outputs K or {⊥}.

We call a KEM correct if, for all κ ∈ N, for all (pk, sk)←
KGen(κ), and for all (c,K)← Enc(pk), we have that

Pr[Dec(sk, c) = K] = 1,

where the probability is taken over the random coins of KGen
and Enc.

Definition 7 (IND-CPA security of KEM). For a PPT ad-
versary A, we define the advantage functions in the sense of
indistinguishability under chosen-plaintext attacks (IND-CPA)
as

Advind-cpa
A,KEM(κ) =

∣∣∣∣Pr [Expind-cpa
A,KEM(κ) = 1

]
− 1

2

∣∣∣∣
where the corresponding experiment is depicted in Experi-
ment 3. If for all PPT adversaries A there is a negligible
function ε(·) such that

Advind-cpa
A,KEM(κ) ≤ ε(κ),

then we say that KEM is IND-CPA secure.

Note (Post-Quantum Security). The security notions intro-
duced above describe classical security (i.e., security against
PPT adversaries). We would also like to be able to discuss se-
curity against quantum capable adversaries. For each security
definition, we define the corresponding "post-quantum secure"
equivalent by requiring that the advantage bound also holds
against all QPT adversaries.

We further use the Authenticated Encryption with Associ-
ated Data (AEAD) scheme as defined in [31].

Expind-cpa
A,KEM(κ):

(pk, sk)← KGen(κ)

(c∗,K0)← Enc(pk),K1 ← K
b← {0, 1}κ

b∗ ← A(pk, c∗,Kb)

return 1, if b = b∗, return 0 otherwise

Experiment 3: IND-CPA security experiment for a KEM KEM.

APPENDIX B
HYBRID AUTHENTICATED KEY EXCHANGE

We recall the hybrid authenticated key exchange (HAKE)
security model [18], [19]. The HAKE security experiment
Exphake,cleanA,Π,nP ,nS ,nT

is described as in [19, Fig. 5, App. C].
Here, we only recall the execution environment, adversarial
interaction, and matching sessions.

a) Execution environment.: We consider a set of nP

parties, P1, . . . , PnP
, each of which is able to run up to nS

sessions of a key-exchange protocol Π. A session consists of
up to nT stages of the protocol. Each party Pi has access to
its long-term key pair (pki, ski) and to the public keys of all
other parties. Every session is described by a set of session
parameters:
• ρ ∈ {init, resp}: The role (initiator or responder) of the

party during the current session.
• pid ∈ nP : The communication partner of the current

session.
• stid ∈ nT : The current stage of the session.
• α ∈ {active, accept, reject,⊥}: The status of the session.

Initialized with ⊥.
• mi[stid], i ∈ {s, r}: All messages sent (i = s) or received

(i = r) by a session up to the stage stid. Initialized with
⊥.

• k[stid]: All session keys created up to stage stid. Initial-
ized with ⊥.

• exk[stid], x ∈ {q, c, s}: All ephemeral post-quantum (q),
classical (c) or symmetric (s) secret keys created up to
stage stid. Initialized with ⊥.

• pss[stid]: The per-session secret state (SecState) that is
created during the stage stid for use in the next stage.

• st[stid]: Storage for other states used by the session in
each stage.

The s-th instance of the protocol run by a given party Pi is
denoted by πs

i , and the value of a particular parameter par is
referenced using πs

i .par.
We describe the protocol as a set of algorithms (f ,

KGenXY , KGenZS):
• f(κ, pki, ski, pskidi, pski, π,m) → (m′, π′): A proba-

bilistic algorithm that represents an honest execution of
the protocol. It takes a security parameter κ, the long-term
keys (pki, ski), the session parameters π representing the
current state of the session, and a message m as input,
and outputs a response m′ and the updated session state
π′.

• KGenXY (κ) → (pk, sk): A probabilistic asymmetric
key-generation algorithm that takes a security param-
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eter κ and creates a public-secret-key pair (pk, sk).
X ∈ {E,L} determines whether the created key is an
ephemeral (E) or a long-term (L) secret key. Y ∈ {Q,C}
determines whether the key is classical (C) or post-
quantum (Q).

• KGenZS(κ) → (psk, pskid): A probabilistic symmetric
key-generation algorithm that takes a security param-
eter κ and outputs symmetric keying material (psk).
Z ∈ {E,L} determines whether the created key is an
ephemeral (E) or a long-term (L) secret key.

For each party P1, . . . , PnP
, classical as well as post-

quantum long-term keys are created using the corresponding
KGenXY algorithms. The challenger then queries a uniformly
random bit b← {0, 1}, which will determine the key returned
by the Test query. From this point on, the adversary may
interact with the challenger using the queries defined in the
next section. At some point during the execution of the
protocol, the adversaryA may issue the Test query and present
a guess for the value of b. If A guesses correctly and the
session satisfies the cleanness predicate, the adversary wins
the key-indistinguishability experiment.

b) Adversarial Interaction.: The HAKE framework de-
fines a range of queries that allow the attacker to interact with
the communication:

• Create(i, j, role) → {(s),⊥}: Initializes a new session
between the party Pi with role role and the partner Pj .
If the session already exists, then the query returns ⊥,
otherwise the session (s) is returned.

• Send(i, s,m) → {m′,⊥}: Enables A to send messages
to sessions and receive the response m′ by running f for
session πs

i . Returns ⊥ if the session is not active.
• Reveal(i, s, t): Provides A with the session keys corre-

sponding to a session πs
i if the session is in the accepted

state. Otherwise, ⊥ is returned.
• Test(i, s, t) → {kb,⊥}: Provides A with the real (if
b = 1) or random (b = 0) session key for the key-
indistinguishably experiment.

• CorruptXY (i) → {key,⊥}: Provides A with the long-
term XY ∈ {SK,QK,CK} keys for Pi. If the key has
been previously corrupted, then ⊥ is returned. Specifi-
cally:
– CorruptSK: Reveals the long-term symmetric secret,

i.e., the pre-shared key (if available).
– CorruptQK: Reveals the post-quantum long-term key

(if available).
– CorruptCK: Reveals the classical long-term key (if

available).
• CompromiseXY (i, s, t) → {key,⊥}: Provides A with

the ephemeral XY ∈ {QK,CK,SK,SS} keys created
during the session πs

i prior to stage t. If the ephemeral
key has already been compromised, then ⊥ is returned.
Specifically:
– CompromiseQK: Reveals the ephemeral post-quantum

key.
– CompromiseCK: Reveals the ephemeral classical key.
– CompromiseSK: Reveals the ephemeral quantum key.

– CompromiseSS: Reveals the ephemeral per session
state (SecState).

c) Matching sessions.: Furthermore, we recall the defini-
tions of matching sessions [32] and origin sessions [33] which
covers that the two parties involved in a session have the same
view of their conversation.

Definition 8 (Matching sessions). We consider two sessions
πs
i and πr

j in stage t to be matching if all messages sent by
the former session πs

i .ms[t] match those received by the later
πr
j .mr[t] and all messages sent by the later session πr

j .ms[t]
are received by the former πs

i .mr[t].
πs
i is considered to be prefix-matching with πr

j if πs
i .ms[t] =

πr
j .mr[t]

′ where πr
j .mr[t] is truncated to the length of πs

i .ms[t]
resulting in πr

j .mr[t]
′.

Definition 9 (Origin sessions). We consider a session πs
i to

have an origin session with πr
j if πs

i matches πr
j or if πs

i

prefix-matches πr
j .

Definition 10 (HAKE security). Let Π be a key-exchange
protocol, and nP , nS , nT ∈ N. For a predicate clean and an
adversary A, we define the advantage of A in the HAKE key-
indistinguishability game as

Advhake,cleanA,Π,nP ,nS ,nT
(κ) =

∣∣∣Pr [Exphake,cleanA,Π,nP ,nS ,nT
(κ) = 1

]∣∣∣ .

We say that Π is HAKE-secure if Advhake,cleanA,Π,nP ,nS ,nT
(κ) is

negligible in the security parameter κ for any PPT adversary
A. We say Π is post-quantum HAKE-secure if the advantage
is also negligible against any QPT adversary.

APPENDIX C
SECURITY OF VMUCKLE

We define two new cleanness predicates, cleanVM and
cleancVM, and determine the conditions under which we have
the desired security properties (post-compromise security, per-
fect forward secrecy).

Definition 11 (Cleanness Predicate). A session πs
i in stage t

is considered clean under the predicate cleanVM if:
1) Reveal(i, s, t) has not been issued for session πs

i .
2) Reveal(j, r, t) has not been issued for any session πr

j

matching πs
i in stage t.

3) If πs
i has a matching session πr

j , at least one of the
following holds:
i. No CompromiseQK(i, s, t) or CompromiseQK(j, r, t)

have been issued.
ii. No CompromiseSK(i, s, t) or CompromiseSK(j, r, t)

have been issued.
iii. No CompromiseQK(i, s, t′) or
CompromiseQK(j, r, t′) have been issued with
πs
i matching πr

j in stages u where t′ ≤ u ≤ t.
No CompromiseSS(i, s, u), CompromiseSS(j, r, u)
have been issued (except possibly in stage t′). No
Reveal(i, s, u) or Reveal(j, r, u) have been issued.

iv. No CompromiseSK(i, s, t′) or CompromiseSK(j, r, t′)
have been issued with πs

i matching πr
j in stages u

where t′ ≤ u ≤ t. No CompromiseSS(i, s, u) or
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CompromiseSS(j, r, u) have been issued (except pos-
sibly in stage t′). No Reveal(i, s, u) or Reveal(j, r, u)
have been issued.

4) Either no CorruptQK(i) or no CorruptSK queries have
been issued before πs

i .[t]← accept.
5) If πr

j is an origin session of πs
i in stage t, then either no

CorruptQK(j) or no CorruptSK queries have been issued
before πr

j .[t]← accept.
The predicate cleancVM differs from cleanVM by the inclusion
of two additional alternatives in condition 3:

v. No CompromiseCK(i, s, t) or CompromiseCK(j, r, t)
have been issued.

vi. No CompromiseCK(i, s, t′) or
CompromiseCK(j, r, t′) have been issued with
πs
i matching πr

j in stages u where t′ ≤ u ≤ t. No
CompromiseSS(i, s, u) or CompromiseSS(j, r, u)
have been issued (except possibly in stage t′). No
Reveal(i, s, u) or Reveal(j, r, u) have been issued.

The first and second conditions ensure that the session key
of the session used in the Test query has not been directly
revealed to the adversary through the use of the Reveal query.
The third condition guarantees that at least one ephemeral
secret has not been compromised, or in the multi-stage setting,
that the secret state has not been compromised. In particular,
case (i) covers the situation where the post-quantum key has
not been compromised, case (ii) applies when the quantum key
has not been compromised, and cases (iii) and (iv) cover the
scenario in which a previous stage was completed cleanly and
the session key has not been compromised for any intermediate
stage. Cases (v) and (vi) are the classical analogues of (i) and
(iii). The fourth and fifth conditions specify that at least one of
the long-term keys belonging to each of the parties involved
must remain uncorrupted until the stage is completed, to avoid
impersonation attacks which are otherwise trivial.

Theorem 1 (Post-Quantum Security of VMuckle). Let F : S×
D → R be a post-quantum dual PRF such that R ⊆ S, D. Let
DSS be a post quantum EUF-CMA secure signature scheme,
MAC be a post quantum EUF-CMA secure MAC with keyspace
KMAC ⊇ R, psk ∈ S be a uniformly random pre-shared
key, KEMpq be a post-quantum IND-CPA secure KEM with
keyspace Kpq ∈ S, and kq ∈ S be a symmetric key obtained
via QKD. Then the VMuckle key exchange protocol is post-
quantum HAKE secure with the cleanness predicate cleanVM.

Proof. The proof follows very closely to the security proof
for Muckle+. We split the proof into cases where the query
Test(i, s, t) as been issued and prove each one separately:

1) The session πs
i (where πs

i .ρ = init) has no origin session
in stage t.

2) The session πs
i (where πs

i .ρ = resp) has no origin session
in stage t.

3) The session πs
i in stage t has a matching session.

Let A be a QPT adversary. Each proof will take the form
of a series of games, where Sn denotes the probability of
A winning Game n. By summing the probabilities over all
cases, we establish an overall bound on the advantage of A
in winning the HAKE key indistinguishability experiment. We

note that the key tested in this experiment is the master secret
MS.

Case 1: Test init session without origin session.

In case 1 we assume that at least one of the long term
secrets (either psk or skI ) has not been corrupted, and show
that an adversary A has negligible advantage of guessing the
test bit in the key indistinguishability experiment. In order for
A to win the experiment, a test key must be obtained using
the Test query. As this is only possible when the session is in
the accept state, it is sufficient to show that A has negligible
chance of getting a session to reach the accept state.

Subcase 1.1: No CorruptSK query has been issued.:

Game 0: Standard HAKE-experiment with advantage

AdvHAKE,cleanVM,C1.1

A,VM,nP ,nS ,nT
(κ) = Pr[S0].

Game 1: In this game, the adversary must guess the param-
eters (i, s, t, j) corresponding to the test session πs

i in
stage t with πs

i .pid = j. If a Test(i′, s′, t′) query is ever
received for a session with parameters (i′, s′, t′, j′) ̸=
(i, s, t, j), the game aborts. The advantage is

Pr[S0] ≤ n2
PnSnT · Pr[S1].

Game 2: In Game 2, we add the rule that the game aborts
if the test session πs

i ever reaches the status reject ←
πs
i .α[t]. Since the Test query returns ⊥ whenever this

state occurs, A cannot win. Consequently there is no
difference in advantage between Game 1 and Game 2
and we have that

Pr[S1] ≤ Pr[S2].

Game 3: In Game 3, we define an event α which occurs if
the session reaches the status accept← πs

i .[t], and causes
the game to abort. Since either the game aborts before
the Test query can be issued or the Test query returns
⊥, we have Pr[S3] = 0. So we only need to consider the
advantage A has in triggering the α event, which is

Pr[S2] ≤ Pr[α].

Game 4: In Game 4, we replace the computations of the
fC ← F(psk, fkC) and fS ← F(psk, fkS) values
generated so far in the session with uniformly random
values f ′C ← R and f ′C ← R (where R is the output
space of F). This is done by initializing a PRF challenger
and querying the fkC and fkS values. The test values
returned by the challenger are used as replacements for
the fC and fS values. If the randomly generated values
are returned, then we are in Game 4, otherwise we are
in Game 3. By our initial assumption no CorruptSK
queries have been issued, so this is a valid substitution.
Any adversary that can differentiate between these two
games can be turned into a successful PRF distinguisher.
Therefore, the advantage is

Pr[α] ≤ Pr[S4] + AdvprfA,F (κ).
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Game 5: In Game 5, we define another abort event which
is triggered if the session πs

i .[t] receives a MAC authen-
tication code τI that verifies correctly. We do this by
initializing an EUF-CMA MAC challenger, and replacing
f ′C with the sk value generated by the challenger. Since
f ′C is already uniformly random by Game 4 this is a valid
substitution. We then submit any MAC code τI received
during the session to the challenger as a forgery on the
message H6. If τI is verified, then the abort event is
triggered and A does not win. If no authentication code
is received, or if τI is not verified correctly, the session
will not reach the accept stage, so Pr[S5] = 0. Thus the
adversary can only win Game 4 if they are capable of
producing a valid authentication tag on the message H6

without knowing the secret key sk. Any adversary capable
of doing this is a successful EUF-CMA adversary against
MAC. The resulting bound is

Pr[S4] ≤ Adveuf-cma
A,MAC(κ).

Hence, we obtain the following advantage

Pr[S0] ≤ n2
PnSnT ·

(
AdvprfA,F (κ) + Adveuf-cma

A,MAC(κ)
)
.

Subcase 1.2: No CorruptQK has been issued.: In this case,
we assume that the signing key skI is not corrupted, and show
that the adversary has negligible advantage in getting the test
session to reach the accept state. The proof follows along the
lines of the proof of case 1 in [18], and we do not repeat it
here. The advantage is

Pr[S0] ≤ n2
PnSnT ·

(
Adveuf-cma

A,DSS (κ)
)
.

: Summing the advantages of the two subcases, we
establish a bound on the overall advantage of A in Case 1:

Pr[S0] ≤ n2
PnSnT ·

(
AdvprfA,F (κ) + Adveuf-cma

A,MAC(κ) + Adveuf-cma
A,DSS (κ)

)
.

Case 2: Test resp session without origin session.
This case considers whether the adversary is able to win the

key indistinguishability experiment given the responder role.
The proof follows analogously to the proof for Case 1 and
results in the same advantage of

Pr[S0] ≤ n2
PnSnT ·

(
AdvprfA,F (κ) + Adveuf-cma

A,MAC(κ) + Adveuf-cma
A,DSS (κ)

)
.

Case 3: Test session with matching session.
Here we show that an adversary A has negligible advantage

in winning the key-indistinguishability experiment for a ses-
sion which has a matching session provided that at least one
of the ephemeral session keys has not been revealed. We look
at 4 cases covering each possibility, and prove each through a
series of games.

Subcase 3.1: No CompromiseQK(i, s, t) or
CompromiseQK(j, r, t) have been issued.: This case
shows that an adversary issuing a Test query has negligible
advantage in winning the key-indistinguishability game if the
post-quantum key is not compromised. We may assume that
all other ephemeral and long term secrets are known to the
adversary. The proof for this follows the proof of case 3.1 in
[18], with the advantage

Pr[S0] ≤ n2
Pn2

SnT ·
(
5 · AdvprfA,F (κ) + 3 · Advdual-prfA,F (κ) + Advind-cpa

A,KEM(κ)
)
.

Subcase 3.2: No CompromiseSK(i, s, t) or
CompromiseSK(j, r, t) have been issued.: This case shows,
that if the attacker issues a Test query to a session that is
clean due to the secrecy of the ephemeral quantum key, the
attacker has a negligible advantage in guessing the test bit. In
this scenario, all ephemeral secrets except the quantum key
as well as the long-term classical and post-quantum secrets
are known to the attacker. The proof for this case follows
along the lines of of case 3.2 in [18], and the advantage is

Pr[S0] ≤ n2
Pn

2
SnT ·

(
4 · AdvprfA,F (κ) + Advdual-prfA,F (κ)

)
.

Subcase 3.3: No CompromiseQK(i, s, t′) or
CompromiseQK(j, r, t′) have been issued with πs

i matching
πr
j in stages u where t′ ≤ u ≤ t. No CompromiseSS(i, s, u),

CompromiseSS(j, r, u) have been issued (except possibly
in stage t′). No Reveal(i, s, u) or Reveal(j, r, u) have been
issued.: This case shows, that if a previous session has been
completed cleanly under the predicate cleanVM and A has
not compromised the session state SecState since then, the
attacker has a negligible advantage in guessing the test bit of
the current session. The proof for this case follows the proof
of case 3.3 in [18] 2. The resultant advantage is

Pr[S0] ≤ n
2
Pn

2
Sn

2
T ·

(
(1 + 4nT ) · AdvprfA,F (κ) + 3 · Advdual-prfA,F (κ) + Advind-cpa

A,KEM(κ)
)
.

Subcase 3.4: No CompromiseSK(i, s, t′) or
CompromiseSK(j, r, t′) have been issued with πs

i matching
πr
j in stages u where t′ ≤ u ≤ t. No CompromiseSS(i, s, u)

or CompromiseSS(j, r, u) have been issued (except possibly
in stage t′). No Reveal(i, s, u) or Reveal(j, r, u) have been
issued.: In this case we suppose that the quantum key
generated in a previous session is not compromised, and as a
result that that session is clean under the predicate cleanVM,
and that the SecState for all sessions since then was not
compromised. Under this assumption, we show that A has
a negligible advantage in determining the current SecState,
and consequently of determining the test bit. The proof for
this case is similar to the proof of case 3.4 in [18], with the
advantage

Pr[S0] ≤ n2
Pn

2
Sn

2
T ·

(
4nT · AdvprfA,F (κ) + Advdual-prfA,F (κ)

)
.

Final Derivation

By taking the sum of the advantages in each subcase, we can
determine a bound on the overall advantage an adversary has in
winning the HAKE security experiment under the conditions
specified in the theorem. The result is the following:

AdvHAKE,cleanVM
A,VM,nP ,nS ,nT

(κ) ≤
2 · n2

PnSnT ·
(
AdvprfA,F (κ) + Adveuf-cma

A,MAC(κ) + Adveuf-cma
A,DSS (κ)

)
+

n2
Pn2

SnT ·
(
9 · AdvprfA,F (κ) + 4 · Advdual-prfA,F (κ) + Advind-cpa

A,KEM(κ)
)
+

n2
Pn2

Sn
2
T ·

(
(1 + 8nT ) · AdvprfA,F (κ) + 4 · Advdual-prfA,F (κ) + Advind-cpa

A,KEM(κ)
)
.

Since each component of this bound is negligible according
to our initial assumptions, we conclude that a QPT adversary

2In this paper we use a different definition of the cleanness predicate than
that used in the Muckle+ paper. This results in a slightly tighter bound on the
prf advantages in subcases 3.3 and 3.4.
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has negligible advantage in winning the post-quantum HAKE
indistinguishability experiment.

Corollary 1. Let F : S ×D → R, DSS, MAC, psk, and kq be
defined as in Theorem 1, replacing the post-quantum security
assumptions with their classical equivalents. In addition, let
KEMc be an IND-CPA secure KEM with keyspace Kc ⊆ S .
Then the Muckle+ key exchange protocol is HAKE secure with
the cleanness predicate cleancVM.

Proof. The proof can easily be adapted from the proof of
Theorem 1.

Remark 1. In Theorem 1 we assumed the security of all
components, and proved HAKE security according to the
cleanness predicate cleanVM. To consider the security in case
some components do not meet these assumptions, we simply
assume that all associated keys are revealed and restrict the
cleanness predicate to exclude the cases that rely on the
security of these keys. Similarly, we can adapt the classical
result from Cor. 1 by modifying the predicate cleancVM.
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