
ar
X

iv
:2

50
5.

14
11

2v
1

 [
cs

.C
L

]
 2

0
M

ay
 2

02
5

Invisible Entropy: Towards Safe and Efficient
Low-Entropy LLM Watermarking

Tianle Gu1,2*†, Zongqi Wang 2†, Kexin Huang3, Yuanqi Yao4,
Xiangliang Zhang 5‡, Yujiu Yang2‡, Xiuying Chen1‡

1Mohamed bin Zayed University of Artificial Intelligence (MBZUAI),
2Tsinghua Shenzhen International Graduate School, Tsinghua University,

3Fudan University,
4Shanghai Artificial Intelligence Laboratory,

5University of Notre Dame

Abstract

Logit-based LLM watermarking traces and ver-
ifies AI-generated content by maintaining green
and red token lists and increasing the likelihood
of green tokens during generation. However,
it fails in low-entropy scenarios, where pre-
dictable outputs make green token selection dif-
ficult without disrupting natural text flow. Exist-
ing approaches address this by assuming access
to the original LLM to calculate entropy and se-
lectively watermark high-entropy tokens. How-
ever, these methods face two major challenges:
(1) high computational costs and detection de-
lays due to reliance on the original LLM, and
(2) potential risks of model leakage. To address
these limitations, we propose Invisible Entropy
(IE), a watermarking paradigm designed to en-
hance both safety and efficiency. Instead of
relying on the original LLM, IE introduces a
lightweight feature extractor and an entropy tag-
ger to predict whether the entropy of the next
token is high or low. Furthermore, based on the-
oretical analysis, we develop a threshold navi-
gator that adaptively sets entropy thresholds. It
identifies a threshold where the watermark ratio
decreases as the green token count increases,
enhancing the naturalness of the watermarked
text and improving detection robustness. Ex-
periments on HumanEval and MBPP datasets
demonstrate that IE reduces parameter size by
99% while achieving performance on par with
state-of-the-art methods. Our work introduces
a safe and efficient paradigm for low-entropy
watermarking. �IE-official-repo Entropy-
Tagger

1 Introduction

Textual watermarking, which aims to embed sub-
tle patterns in the generated text to make it de-
tectable by algorithms but invisible to humans, is
an important step towards trustworthy AI. It can

* Work done during internship at MBZUAI.
† Equal Contribution
‡ Corresponding Authors

Model
Owner

Release

Detection tool

Attack!

Safe
IE

LLM

Generation performance

Baseline IE

~1%

Model size

Baseline IE

99%
Detection Time

Baseline IE

Figure 1: Existing watermarking methods in low-
entropy scenarios face safety and cost challenges, while
our method addresses them efficiently and securely.

be applied at various stages, including logits gen-
eration (Kirchenbauer et al., 2023), token sam-
pling (Christ et al., 2024), and training (Sun et al.,
2022, 2023; Gu et al., 2024). Logit-based water-
marking is cost-efficient, modifying probabilities
before token selection without adding training or
sampling steps (Liu et al., 2024).

As a pioneering work in logit-based watermark-
ing, Kirchenbauer et al. (2023) introduced KGW,
the first logit-based watermarking approach. This
method partitions the vocabulary into green and red
lists based on the previous token and a hash key,
then boosts the logits of the green list to embed the
watermark and decreases the probabilities of tokens
outside this green list (red list). However, KGW
fails in low-entropy scenarios where the next token
is highly predictable, such as the prompt “import
numpy as” almost certainly leading to“np” (entropy
0.048). If this expected token is placed in the red
list, two issues may arise: (1) If the model still
selects it despite the reduced probability, the unex-
pected inclusion of a red-list token may weaken the
watermark’s detectability. (2) If the model instead
picks a green-list token due to the boosted logits, it
may disrupt text fluency. Similarly, if the expected
token is directly placed in the green list, it may lead

1

https://github.com/Carol-gutianle/IE
https://huggingface.co/datasets/Carol0110/IE-Tagger
https://huggingface.co/datasets/Carol0110/IE-Tagger
https://arxiv.org/abs/2505.14112v1

to a false inflation of green-list token frequency in
generated text, thereby increasing the likelihood
of misclassify human-written content as machine-
generated. As a result, the watermark detection
system becomes less reliable.

To address the low-entropy problem, Lee et al.
(2024) proposed SWEET, which applies water-
marks only to high-entropy tokens, preserving
text quality. Similarly, Lu et al. (2024) intro-
duced EWD, which enhances detection by assign-
ing higher weights to high-entropy tokens. How-
ever, these entropy-based watermarking methods
face a critical limitation: they assume the detec-
tor has access to the original LLM to calculate
entropy. This reliance on the original model intro-
duces several challenges, as illustrated in Fig. 1.
First, providing the original model to third parties
poses significant risks of model leakage, poten-
tially leading to unintended exposure or unautho-
rized access (Song and Raghunathan, 2020; Duc
et al., 2014). Second, using the original LLM in-
curs substantial computational costs, particularly
when processing large-scale datasets or running
multiple detections.

Using a proxy model to approximate entropy cal-
culation is potentially feasible. SWEET replaces
the original model, e.g., LLaMA2-13B (Touvron
et al., 2023), with a smaller model from the same
family, e.g., LLaMA2-7B, for entropy estimation.
Although this practice outperforms KGW, it still
suffers from significant performance degradation.
While the original EWD work does not explicitly
explore the use of proxy models, our experimental
results in Tab. 1 show a similar trend. It is also
important to note that the effectiveness of a proxy
model heavily depends on its architectural similar-
ity to the original model.

Motivated by this, we attempt to train a
lightweight proxy model to eliminate the depen-
dency on the original LLM during entropy-based
watermark detection. Our experiments in App. C
show that regressing continuous entropy using an
MLP is challenging, but reframing the task as a
classification problem – determining whether the
entropy of next token exceeds a given threshold –
is more feasible. Considering the aforementioned
issue that proxy models rely on architectural simi-
larity to the original model, we introduce a Unified
Feature Extractor that converts prefix tokens into a
unified feature representation using a token trans-
lator and an embedding model, thereby ensuring
compatibility across different LLMs and tokenizers.

When using a fixed threshold to distinguish high-
and low-entropy tokens, we observe that apply-
ing the same threshold across all samples ignores
inter-sample variability. Moreover, in practical sce-
narios, the generator and the detector cannot share
threshold, which limits the applicability of water-
marking methods. To balance the naturalness of
generated text and watermark detectability, we pro-
pose a sample-level entropy threshold optimization
method. We evaluate our method in a represen-
tative low-entropy setting, namely the code gen-
eration task, with two widely used benchmarks:
HumanEval (Chen et al., 2021) and MBPP (Austin
et al., 2021).

Our main contributions are as follows: (1) We
propose IE, a novel watermarking framework that
relies on a small MLP instead of the original LLM
to enable safe, efficient and accurate watermark de-
tection. (2) We present Threshold Navigator, a low-
high entropy threshold auto-optimization method
that enhances detection performance not only for
our framework but also for various watermarking
approaches. (3) Our proposed watermarking frame-
work, IE, which integrates the three components,
achieves a 99% reduction in parameter usage while
delivering state-of-the-art detection performance,
showcasing its efficiency and scalability.

2 Related Work

Traditional Text Watermarking typically mod-
ifies generated text to embed watermarks. Based
on the granularity of these modifications, existing
approaches can be categorized as format-based,
lexical-based, syntactic-based, and generation-
based methods. Format-based watermark-
ing (Rizzo et al., 2016; Brassil et al., 1995; Por
et al., 2012; Sato et al., 2023) originates from im-
age watermarking and focuses on altering the text
format rather than its content, such as by adjust-
ing text layout or using Unicode-based substitu-
tions. Lexical-based watermarking (Munyer et al.,
2024; Ni et al., 2023; Yang et al., 2023; Yoo et al.,
2023; Yang et al., 2022) replaces selected words
with their synonyms while preserving the original
sentence’s syntactic structure. However, this ap-
proach is susceptible to attacks involving random
synonym replacements. To address this vulnerabil-
ity, syntactic-based methods (Atallah et al., 2001;
Topkara et al., 2006; Meral et al., 2009) embed
watermarks by modifying the text’s syntactic struc-
ture, which enhances resistance to removal attacks.

2

Nevertheless, these methods often produce unnat-
ural transformations, degrading the quality of the
generated text and increasing its susceptibility to
detection and targeted attacks.
LLM-Based Watermarking embeds watermarks
in LLMs by intervening at different generation
stages, including logits generation, token sampling,
and training. Watermarking during logits genera-
tion adjusts the probability distribution over tokens
to embed identifiable patterns, while token sam-
pling (Christ et al., 2024; Kuditipudi et al., 2024;
Hou et al., 2024a,b) modifies the token selection
process to incorporate watermarks. Watermarks
can also be embedded into model weights during
training (Sun et al., 2022, 2023; Gu et al., 2024;
Xu et al., 2024b,a), encoding watermarks into the
model itself to ensure traceability and resilience
against removal or tampering.

Watermarking during logits generation is the
most cost-effective approach, avoiding the over-
head of retraining or complex dynamic sampling
while remaining flexible for post hoc application.
Kirchenbauer et al. (2023) proposed the classic
vocabulary partitioning method, dividing tokens
into "green" and "red" sets, biasing generation to-
ward "green" tokens. Building on this, studies
(Fernandez et al., 2023; Lu et al., 2024; Kirchen-
bauer et al., 2024) improved detectability, while
others (Hu et al., 2024; Wu et al., 2023; Fu et al.,
2024; Guan et al., 2024; Lee et al., 2024; Chen
et al., 2024; Liu and Bu, 2024; Wang et al., 2024;
Wouters, 2024; Wang et al., 2025) focused on pre-
serving text quality.

To handle low-entropy scenarios, Lee et al.
(2024) focused on watermarking only high-entropy
tokens, while Lu et al. (2024) applied entropy-
weighted adjustments to detection statistics. How-
ever, both approaches rely on re-querying original
LLM during detection. Our proposed method, IE,
eliminates the need for the original LLM during
detection, enhancing safety and efficiency.

3 Preliminaries

Our method builds upon the KGW watermarking
strategy (Kirchenbauer et al., 2023) for logits gener-
ation. KGW operates in two phases: the generation
phase and the detection phase.

During the generation phase, when generating
the t-th token st, a hash key is derived from the
previous token st−1. Using this hash key, the vo-
cabulary is divided into a green list and a red list,

with the proportion of green tokens determined by
γ. A bias δ is then added to the logits of tokens in
the green list, increasing their likelihood of being
selected during sampling.

In the detection phase, for a generated sequence
{s1, s2, . . . , s|T |}, where |T | is the number of to-
kens, the count of green tokens is denoted as |S|G.
A watermark detection statistic z is calculated as:

z =
|S|G − γ|T |√
|T |γ(1− γ)

. (1)

A detection threshold ẑ is predefined. If z > ẑ, the
text is classified as watermarked; otherwise, it is
considered human-generated.

4 Methodology

In this section, we introduce our IE model in detail.
The model consists of three modules: the Unified
Feature Extractor, Entropy Tagger, and Threshold
Navigator, as illustrated in Fig. 2.

4.1 Unified Feature Extractor
Existing works (Lee et al., 2024; Lu et al., 2024)
rely on the original LLM to compute exact entropy
for determining whether a token has low entropy.
However, this approach significantly increases com-
putational costs and the risk of model leakage. In
practical applications, knowing the exact entropy
value is often unnecessary—binary classification
(low or high entropy) is sufficient. Thus, we pro-
pose using a smaller model to perform binary en-
tropy prediction. In this subsection, we introduce a
Unified Feature Extractor that learns vector repre-
sentations of the generated text so far. In the next
subsection, we present the binary entropy tagger.

Concretely, assume that a sequence of tokens
{s0, s1, ..., st−1} has already been generated, and
the model is currently generating token st. These
tokens may originate from different tokenizers as-
sociated with various LLMs. To handle this, our
approach employs a tokenizer translator that con-
verts prefix tokens into a unified format. The to-
kenizer translator first converts the prefix tokens
back into raw text and then re-encodes them using
the tokenizer of an embedding model. The em-
bedding model processes the translated tokens and
generates unified token embeddings. While LLMs
typically support long input sequences, embed-
ding models—often smaller, encoder-only archi-
tectures—are limited by a maximum input length.
To address this, the embedding model focuses on
processing only the last segment of tokens, up to

3

Tokenizer Translator

0.9

watermarked text detection

0.6

0.3
stop

unified tokens

import numpy as np
def process array(arr):

indices = np.arange(len(arr))
arr = np.array(arr)
arr[indices % 3 == 0] ** = 2
arr[indices % 4 == 0] ** = 3

return np.sum(arr)

question Write a function to perform index-based transformation
and summation of a list.

𝑆𝑆 𝐺𝐺 = 7
WR = 0.12

entropy threshold (𝝉𝝉)

selected

p0.6
w0.6

= 0.11
= 0.24

p0.3
w0.3

= 2.42 > 1
= 0.86 < 1

Start from a high entropy threshold,
such as 1.5, and decrease it in intervals.

Unified Feature Extractor

Entropy Tagger Threshold Navigator

import numpy as np
def process_array(arr):

indices = np.arange(len(arr))
arr = np.array(arr)
arr[indices % 3 == 0] ** = 2

return np.sum(arr)

import numpy as np
Define a function to process the array
def process_array(arr):
indices = np.arange(len(arr))

arr = np.array(arr)

return np.sum(arr)

𝑆𝑆 𝐺𝐺 = 63
WR = 0.49

𝑆𝑆 𝐺𝐺 = 26
WR = 0.57

……

……

prefix tokens

“ import numpy as ”

……

Using the Entropy
Tagger to determine
whether the next token
exhibits low entropy.

Low entropy token

Low HighEmbedding Model
features

tokenized using
the LLM’s
tokenizer, with
each LLM having
its own unique
tokenizer

prediction

(A)

(B)

(C)

Figure 2: Overview of IE (Invisible Entropy). The model includes three components: the Unified Feature Extractor
for tokenizer compatibility and feature extraction, the Entropy Tagger to predict if the next token’s entropy exceeds
threshold τ , and the Threshold Navigator to optimize τ for effective watermarking, naturalness, and robustness.
Tokens are color-coded as red (red list), green (green list), and gray (unwatermarked). This example shows the
search stopping at τ = 0.6. At τ = 0.9, insufficient watermarking occurs, while at τ = 0.3, excessive low-entropy
classification causes token generation issues (e.g., the underscore “_”).

its maximum allowable length, ensuring that crit-
ical information is retained. The representation
of the last token, vt, is used to represent the en-
tire generated sequence. This token encapsulates
step-by-step contextual dependencies, providing
an effective summary of the preceding text for the
binary prediction task.

4.2 Entropy Tagger

Following the motivation outlined in the previous
section, we propose an Entropy Tagger that predicts
whether a token st is low-entropy by leveraging the
feature vector vt obtained from the feature extrac-
tor. The tagger outputs the probability pt that the
token’s entropy is below a threshold τ , optimized
by binary cross-entropy loss:

L = − 1
N

∑N
t=1 [yt log(pt) + (1− yt) log(1− pt)] ,

where yt denotes the truth label for the t-th sample,
computed by the original LLM (0 for high-entropy
tokens and 1 for low-entropy tokens), and N is the
total number of samples.

For the tagger implementation, we find that a
small learnable multi-layer perceptron is sufficient
to make accurate predictions. For entropy calcula-
tion, we employ Shannon entropy (Lee et al., 2024)
over the dense Spike Entropy (Kirchenbauer et al.,
2023), as its dispersed distribution offers clearer
boundaries.

4.3 Threshold Navigator

The entropy threshold τ is crucial in balancing wa-
termarked and non-watermarked tokens, directly
impacting watermark effectiveness. When τ is too
high, more tokens are classified as low-entropy,
reducing the number of tokens eligible for water-
marking, as seen in Block A of Fig. 2, where gray
(unwatermarked) tokens dominate. Conversely, if τ
is too low, fewer tokens are treated as low-entropy,
leading to excessive watermarking (e.g., colored to-
kens (watermarked) dominate in Block C of Fig. 2).
Existing entropy-based watermarking methods rely
on manually predefined or empirically determined
entropy thresholds (Lee et al., 2024), making them
less robust since they overlook sample variations
and depend heavily on the chosen parameter.

To address these limitations, we propose our
Threshold Navigator. The Threshold Navigator
automatically searches for an appropriate entropy
threshold for each sentence. Here, we define an
optimistic threshold τ as the point where the wa-
termark ratio (WR, defined as the ratio of wa-
termarked tokens to the total number of gener-
ated tokens) drops while the count of green tokens
rises. Intuitively, a lower watermark ratio indicates
lighter modifications to the original text, thereby
reducing interference from the watermarking mech-
anism. Meanwhile, an increased count of green
tokens signifies better alignment with machine-
generated text, making it easier for the watermark
to be detected. We also provide a theoretical proof

4

Method HUMANEVAL MBPP

Params ↓ PPR ↑ UES ↑ Pass@1 ↑ AUROC ↑ TPR ↑ PPR ↑ UES ↑ Pass@1 ↑ AUROC ↑ TPR ↑

Post-hoc
Log P(X) 120M 5.513 0.662 0.334 0.533 0.113 5.373 0.645 0.378 0.525 0.054
LogRank 120M 5.583 0.670 0.334 0.553 0.127 5.373 0.645 0.378 0.527 0.052
DetectGPT 1.1B 0.613 0.675 0.334 0.533 0.165 0.619 0.681 0.378 0.565 0.158
DetectGPT(T5-3B) 3B 0.220 0.660 0.334 0.549 0.092 0.214 0.643 0.378 0.531 0.040
GPTZero - - 0.661 0.334 0.521 0.122 - 0.619 0.378 0.449 0.026
OpenAI Classifier - - 0.643 0.334 0.518 0.053 - 0.634 0.378 0.500 0.036

Watermark-based
KGW - - 0.768 0.253 0.904 0.652 - 0.732 0.242 0.930 0.718

EWD 15.5B 0.056 0.872 0.295 0.943 0.780 0.051 0.790 0.293 0.930 0.678
EWD 3B 0.290 0.871 0.295 0.941 0.778 0.256 0.767 0.293 0.916 0.602
EWD 1B 0.861 0.861 0.295 0.931 0.745 0.757 0.757 0.293 0.910 0.567

SWEET 15.5B 0.057 0.884 0.301 0.944 0.789 0.051 0.785 0.322 0.901 0.536
SWEET 3B 0.264 0.792 0.253 0.933 0.722 0.245 0.737 0.293 0.896 0.500
SWEET 1B 0.764 0.764 0.253 0.925 0.615 0.732 0.732 0.293 0.891 0.487

IE 130M 6.709 0.872 0.294 0.941 0.787 5.805 0.755 0.301 0.892 0.534

Table 1: Main results on HUMANEVAL and MBPP. "-" indicates either undisclosed parameters (e.g., GPTZero,
OpenAI Classifier) or no additional models required (e.g., KGW).

on this in §6.2.
Based on the above sensitivity analysis, we in-

troduce two metrics. Watermark Ratio Change
(w) measures the change in watermark ratios be-
tween entropy thresholds τi−1 and τi: wτi =
WRτi−1/WRτi . Green Token Counts Change
(p) quantifies the variation in green token counts:
pτi = |S|Gτi−1

/|S|Gτi
. During the dynamic adjust-

ment process, the Threshold Navigator lowers the
entropy threshold and monitors changes in WR and
the number of green tokens |S|G. The optimization
process stops when p > 1 and w < 1, indicating
that increasing the entropy threshold improves the
sensitivity of the watermarked text to the green
token counts while reducing the watermark ratio,
thus achieving a balanced and robust distinction.
Alg. 4 provides the main procedure. An example
is shown in Fig. 2, and additional examples can be
found in Fig. 6 in App. A.

5 Experiments

5.1 Tasks and Metrics
We evaluate IE and baselines in two Python code
generation tasks: HumanEval (Chen et al., 2021)
and MBPP (Austin et al., 2021). We assess IE and
baselines in effectiveness and efficiency.

The evaluation of effectiveness focuses on both
code generation ability and detectability. We assess
code generation using Pass@k, and detectability
using AUROC, which measures the model’s ability
to distinguish watermarked from non-watermarked
text. We also report the True Positive Rate (TPR),
which measures the proportion of correctly identi-
fied machine-generated text when the False Posi-
tive Rate (FPR) is less than 5%. We propose the

Unified Effectiveness Score (UES), averaging the
normalized Pass@1 and detectability metrics for

overall evaluation: UES =
Pass@1

Pass@1non
+(AUROC+TPR

2)
2 ,

where Pass@1non represents the Pass@1 for text
without watermark.

From an efficiency standpoint, we highlight the
number of parameters, denoted as Params, neces-
sary for watermarking in the detection phase. The
detection time required by the watermarking meth-
ods is also reported in Tab. 8.

To combine effectiveness and efficiency, we
introduce a new metric called Performance-to-
Params Ratio (PPR), defined as: PPR = UES

Params .

5.2 Baselines

We compare IE with post-hoc detection baselines
and watermarking methods. Post-hoc detection
does not require any modification during the gen-
eration process, thus maintaining the same text
quality as non-watermarked text. LogP(x) and
LogRank (Gehrmann et al., 2019), and Detect-
GPT (Mitchell et al., 2023) are zero-shot detection
methods that do not require labeled data. In con-
trast, GPTZero and OpenAI Classifier (Solaiman
et al., 2019) are trained classifiers.

We select KGW (Kirchenbauer et al., 2023),
SWEET (Lee et al., 2024), and EWD (Lu et al.,
2024) as watermarking methods for comparison.
KGW applies watermarking to all tokens during
both the generation and detection phases. SWEET
only applies watermarking to low-entropy tokens
during both phases, resulting in higher text quality
and detectability compared to KGW (see details
in App. B). EWD improves text watermarking de-
tection by assigning higher influence weights to

5

(a) (b) (c)

Figure 3: Analysis of the Entropy Tagger. (a) Comparison of applying the Entropy Tagger at different stages:
generation-detection versus detection-only. (b) The relationship between Entropy Tagger accuracy and its effec-
tiveness in watermarking. (c) Demonstration of the superior performance of the Entropy Tagger compared to a
surrogate model and randomly set entropy.

higher-entropy tokens during detection. To explore
the performance SWEET and EWD on smaller
surrogate models, we also provide experimental
results using StarCoder-3B and StarCoder-1B to
compute entropy. In this setting, KGW serves as
the watermark generator, while SWEET and EWD
act as detectors.

5.3 Implementation
In our implementation, we use Starcoder (Li et al.,
2023) as the LLM and SimCSE (Gao et al., 2021)
as the embedding model. We use MBPP dataset to
train Entropy Tagger, where details are in App. C.
For the post-hoc methods, KGW and SWEET, we
adopt the optimal hyperparameters reported by Lee
et al., 2024. While for EWD, we follow the settings
in Lu et al. (2024). Since SWEET provides results
corresponding to specific entropy threshold, we
calculate the average of the results across these
different entropy thresholds. For IE, we use the
optimal hyperparameters γ = 0.5 and δ = 3.0
unless otherwise specified. All experiments can be
conducted on one single A100-40G. More detailed
settings are provided in App. D.

5.4 Main Results
We show the main results in Tab. 1.

From Effectiveness perspective, we can draw
the following conclusions: (1) Post-hoc meth-
ods fail to handle machine-generated text in low-
entropy scenarios. The UES of all watermark-
based methods exceeds 0.75 on the HumanEval
dataset and 0.70 on the MBPP dataset, whereas
post-hoc methods remain below 0.70 on both
datasets. (2) Our IE demonstrates strong effective-
ness, outperforming post-hoc methods and achiev-
ing comparable performance to SWEET and EWD.
(3) SWEET and EWD suffer performance degrada-
tion when applied with smaller models. When us-

ing a surrogate model, IE (130M) significantly out-
performs SWEET (1B/3B). While EWD is less sen-
sitive to the choice of surrogate model compared to
SWEET, it still underperforms IE on HumanEval.
From an Efficiency perspective, LogP(x) and Lo-
gRank use BERT with 0.12B parameters for detec-
tion. DETECTGPT relies on SantaCoder (1.1B) or
T5-3B (3B). GPTZero and OpenAI Classifier are
closed-source, with parameter counts unavailable.
KGW requires no additional model, while SWEET
and EWD depend on the original LLM (15.5B).
In contrast, our method uses an embedding model
and a lightweight MLP, totaling 0.13B parameters,
comparable to Post-hoc methods.

We finally use PPR to evaluate the combined ef-
fectiveness and efficiency of the methods. Among
all methods, IE achieves the highest PPR, signifi-
cantly outperforming other watermarking methods.
While Post-hoc methods like LogP(x) and LogRank
achieve relatively higher PPRs compared to weaker
baselines, their effectiveness remains low.

6 Analysis and Discussion

6.1 Analysis on Entropy Tagger

Generation-Detection or Detection-only? We
compare the performance of the Entropy Tagger
in two setups: Detection-only and Generation-
Detection. In the Detection-only setup, ground
truth entropy values are used to classify tokens
as high or low entropy, with a fixed threshold ap-
plied for watermark detection. In contrast, the
Generation-Detection setup incorporates the En-
tropy Tagger during the generation phase, predict-
ing entropy values to embed watermarks dynami-
cally. As shown in Fig. 3(a), experimental results
indicate that Generation-Detection consistently out-
performs Detection-only in both Pass@1 and AU-
ROC across different watermark strengths. This

6

Probability of
 Type-I Error

 2.28 %

(a) (b) (c)

Figure 4: (a) Type-I Error probability and the distribution of detection statistic z for human-written text. (b) Impact
of threshold navigator search directions. (c) Robustness of detection to paraphrasing attacks.

demonstrates that aligning entropy-aware methods
during both generation and detection is essential
for achieving robust and effective watermarking.
Relationship between Entropy Tagger Accuracy
and Watermark Detectability. We investigate
how Entropy Tagger accuracy impacts watermark
detectability by varying the tagger’s accuracy and
observing its effect on detection metrics. Under
a Detection-only setting, we calculate the exact
entropy of watermarked text and simulate tagger
inaccuracies by introducing disturbances, where
the disturbance proportion r (0.0 to 1.0) determines
the tagger’s accuracy as 1− r. Results in Fig. 3(b)
show that higher tagger accuracy leads to improved
AUROC and TPR, highlighting the importance of
precise entropy predictors for robust watermarking.
Comparison with surrogate and random en-
tropy. We also replace the Entropy Tagger in the IE
framework with a surrogate model (StarCoder-3B)
and with Random Entropy (a floating-point value
randomly selected between -5.0 and 5.0), respec-
tively. As shown in Fig. 3(c), the results demon-
strate that using the Entropy Tagger significantly
outperforms both the Surrogate Model and Ran-
dom Entropy. Furthermore, the Entropy Tagger
contains only 0.13B parameters, making it signifi-
cantly more cost-effective than the surrogate model.
These comparisons confirm the superiority of En-
tropy Tagger both effectively and efficiently.

6.2 Analysis on Threshold Navigator
Theoretical Validation The primary goal of water-
mark detection is to minimize Type-I and Type-II
errors. Thus, we analyze the impact of the Thresh-
old Navigator on both. Generally, our analysis
shows that it has no impact on Type-I Error but
significantly reduces Type-II Error.

Type-I Error measures the probability of human-
written text being misclassified as watermarked.
For human-written text T , each token is assumed

to be independent of the watermarking algorithm,
and the probability of a token being included in the
green list is denoted by γ. As a result, the number
of green tokens |S|G follows a normal distribution:
|S|G ∼ N (γ|T |, γ(1−γ)|T |). In the case of selec-
tive watermarking methods such as SWEET, where
only a portion of tokens are watermarked, the dis-
tribution becomes: |S|G ∼ N (γ|T̃ |, γ(1− γ)|T̃ |).
Here, |T̃ | = WR×|T | represents the fraction of the
text covered by the watermark. Regardless of the
value of WR, the distribution can be standardized
using: z = |S|G−γ|T̃ |√

γ(1−γ)|T̃ |
. Because |S|G follows a

normal distribution, the standardized variable z fol-
lows a standard normal distribution N (0, 1). The
probability density function p(z) describes the like-
lihood of observing a specific value of z, and the
Type-I Error corresponds to the area under the stan-
dard normal curve beyond a given threshold (e.g.,
when z = 2, the error is 2.28%, shown as the red
region in Fig. 4(a)). Since the probability of z > ẑ
for human text remains constant across τ , the se-
lection of τ does not affect the Type-I Error rate.

Type-II Error measures the probability of water-
marked text being misclassified as human-written
text, with lower Type-II Error indicating better de-
tection performance. To show how the Threshold
Navigator reduces Type-II Error, we analyze its
search criterion (p > 1 and w < 1) and its ef-
fect on the detection statistic z, as higher z val-
ues directly lower Type-II Error. Specifically, we
examine the relationship between z and two key
factors: green token count (|S|G) and watermark
ratio (WR). For selective watermarking methods
(e.g., IE or SWEET), z can be expressed as:

z =
|S|G − γ ·WR · |T |√
WR · |T | · γ(1− γ)

.

A higher z for machine-generated text indicate bet-
ter watermark detectability, as z quantifies the sta-

7

(a) (b) (c) (d)

Figure 5: Effectiveness of the Threshold Navigator. (a) Improved detectability and quality with the Navigator
across δ. (b) Improved UES with the Navigator. (c) Generalizability to SWEET: Pass@1 vs. AUROC, demonstrating
similar improvements. (d) UES comparison for SWEET, showing significant gains with the Navigator.

tistical deviation of the green token count from its
expected value in human text.

To understand how z changes with |S|G and
WR, we compute the partial derivatives of z:

∂z

∂|S|G
=

1√
WR · |T | · γ(1− γ)

> 0,

showing that z is positively correlated with |S|G.

∂z
∂WR = − |S|G√

|T |·γ(1−γ)
· 1

2·
√
WR3

−
√

γ|T |
1−γ ·

1
2
√
WR

< 0,

showing that z is negatively correlated with WR.
These results show that increasing |S|G im-

proves z under the condition p > 1, allowing green
token counts to grow as thresholds adjust. Simulta-
neously, decreasing WR enhances z under w < 1,
reducing watermarked tokens and improving de-
tectability. Therefore, our Threshold Navigator ef-
fectively reduces Type-II Error by optimizing |S|G
and WR, leading to improved watermark detection.
Impact of Search Directions Our default thresh-
old search proceeds from high to low. Since dif-
ferent search directions may impact the results,
we compare searches starting from high to low
(←) and low to high (→) to assess their effects.
The experimental results are shown in Fig. 4(c). It
can be observed that as the watermarking strength
increases, navigation towards the Right generally
achieves higher AUROC in most cases. Conversely,
when the watermarking strength is relatively low,
navigation towards the Left results in better code
quality. This is because, at higher watermarking
strengths, the impact on code quality becomes
more significant, and navigation towards the Left,
which prioritizes selecting higher entropy thresh-
olds, helps mitigate the degradation of code quality.
Effectiveness and Orthogonality. Fig. 5(a)
presents an ablation study where the Threshold
Navigator is removed, showing the Pass@1 and
AUROC of the watermark under different water-
mark strengths. Fig. 5(b) illustrates the UES across

the same range of watermark strengths. These re-
sults demonstrate that the Threshold Navigator sig-
nificantly enhances the AUROC and UES of IE, en-
abling the output to strike a balance between quality
and detectability. To further evaluate the generaliz-
ability of the Threshold Navigator across different
watermark backbones, we apply it to the SWEET
watermarking method. As shown in Fig. 5(c,d), the
Navigator significantly improves SWEET across
various watermark strengths. This highlights the
versatility of the Threshold Navigator, as it can be
seamlessly integrated with existing watermarking
methods to enhance their effectiveness.

6.3 Robustness to Paraphrasing Attacks
Malicious users may attempt to remove the wa-
termark by paraphrasing attacks (Krishna et al.,
2023; Gao et al., 2025). Here, we conduct vari-
able name paraphrasing attacks on the generated
codes at different levels. Specifically, for the gen-
erated codes from each watermarking method on
the HumanEval dataset, we replace varying propor-
tions of variable names in the watermarked text.
Fig. 4(c) shows the detectability of the attacked
code, measured by AUROC. The Attack Level de-
notes the percentage of variable names changed,
with 0% meaning none are altered and 25% indi-
cating a quarter are paraphrased. It can be seen that
as the Attack Level increases, the detectability of
all methods declines. Notably, KGW and SWEET
experience the most significant drops, with KGW’s
detectability falling below 20% and SWEET drop-
ping below 80%. Meanwhile, IE and EWD show
better robustness, maintaining around 90%.

7 Conclusion

We introduce IE (Invisible Entropy), a selective
watermarking method that overcomes two key limi-
tations: reliance on the original LLM for costly en-
tropy calculations and difficulty watermarking pre-

8

dictable, low-entropy outputs. IE uses a lightweight
feature extractor and entropy tagger to predict to-
ken entropy without the original LLM and a Thresh-
old Navigator for adaptive entropy thresholds, en-
suring balance in effectiveness, naturalness, and de-
tectability. Experiments on HumanEval and MBPP
show a 99% parameter reduction with state-of-the-
art performance. In the future, we aim to further
enhance the accuracy of the entropy tagger to im-
prove watermarking effectiveness and robustness.

Limitations

Although IE offers a safe, efficient and accurate wa-
termarking approach, we identify two limitations
and suggest potential solutions to address them.

Entropy Tagger Accuracy Calibration In the
App. C, we report the accuracy of the trained En-
tropy Tagger. Although the current Entropy Tagger
performs comparably to the precise entropy cal-
culation, there is still some slight decrease in per-
formance. Therefore, future work could focus on
training a more precise Entropy Tagger, such as by
incorporating certain specific low-entropy tokens
as analyzed in App. G.

Optimization Strategy for Threshold Navigator
In § 6.2, we analyze the impact of the two search di-
rections of the Threshold Navigator on watermark-
ing performance. However, in our experiments, the
search granularity is fixed at 0.3, which may limit
optimization flexibility. Future work could explore
adaptive search granularities that dynamically ad-
just based on context or performance feedback, as
well as alternative search directions that better align
with different watermarking scenarios to further en-
hance performance.

References
Mikhail J. Atallah, Victor Raskin, Michael Crogan,

Christian Hempelmann, Florian Kerschbaum, Dina
Mohamed, and Sanket Naik. 2001. Natural lan-
guage watermarking: Design, analysis, and a proof-
of-concept implementation. In Information Hiding,
pages 185–200, Berlin, Heidelberg. Springer Berlin
Heidelberg.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

J.T. Brassil, S. Low, N.F. Maxemchuk, and
L. O’Gorman. 1995. Electronic marking and

identification techniques to discourage document
copying. IEEE Journal on Selected Areas in
Communications, 13(8):1495–1504.

Liang Chen, Yatao Bian, Yang Deng, Deng Cai, Shuaiyi
Li, Peilin Zhao, and Kam-Fai Wong. 2024. WatME:
Towards lossless watermarking through lexical redun-
dancy. In Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 9166–9180, Bangkok,
Thailand. Association for Computational Linguistics.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. Preprint,
arXiv:2107.03374.

Miranda Christ, Sam Gunn, and Or Zamir. 2024. Un-
detectable watermarks for language models. In The
Thirty Seventh Annual Conference on Learning The-
ory, pages 1125–1139. PMLR.

Alexandre Duc, Stefan Dziembowski, and Sebastian
Faust. 2014. Unifying leakage models: from probing
attacks to noisy leakage. In Advances in Cryptology–
EUROCRYPT 2014: 33rd Annual International Con-
ference on the Theory and Applications of Crypto-
graphic Techniques, Copenhagen, Denmark, May 11-
15, 2014. Proceedings 33, pages 423–440. Springer.

Pierre Fernandez, Antoine Chaffin, Karim Tit, Vivien
Chappelier, and Teddy Furon. 2023. Three bricks to
consolidate watermarks for large language models.
In 2023 IEEE International Workshop on Information
Forensics and Security (WIFS), pages 1–6. IEEE.

Yu Fu, Deyi Xiong, and Yue Dong. 2024. Watermarking
conditional text generation for ai detection: Unveiling
challenges and a semantic-aware watermark remedy.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 18003–18011.

Lang Gao, Xiangliang Zhang, Preslav Nakov, and Xi-
uying Chen. 2025. Shaping the safety boundaries:
Understanding and defending against jailbreaks in
large language models. ACL.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
SimCSE: Simple contrastive learning of sentence

9

https://doi.org/10.1109/49.464718
https://doi.org/10.1109/49.464718
https://doi.org/10.1109/49.464718
https://doi.org/10.18653/v1/2024.acl-long.496
https://doi.org/10.18653/v1/2024.acl-long.496
https://doi.org/10.18653/v1/2024.acl-long.496
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374

embeddings. In Empirical Methods in Natural Lan-
guage Processing (EMNLP).

Sebastian Gehrmann, Hendrik Strobelt, and Alexander
Rush. 2019. GLTR: Statistical detection and visual-
ization of generated text. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 111–116,
Florence, Italy. Association for Computational Lin-
guistics.

Chenchen Gu, Xiang Lisa Li, Percy Liang, and Tat-
sunori Hashimoto. 2024. On the learnability of wa-
termarks for language models. In The Twelfth Inter-
national Conference on Learning Representations.

Batu Guan, Yao Wan, Zhangqian Bi, Zheng Wang,
Hongyu Zhang, Pan Zhou, and Lichao Sun. 2024.
CodeIP: A grammar-guided multi-bit watermark for
large language models of code. In Findings of the
Association for Computational Linguistics: EMNLP
2024, pages 9243–9258, Miami, Florida, USA. Asso-
ciation for Computational Linguistics.

Abe Hou, Jingyu Zhang, Tianxing He, Yichen Wang,
Yung-Sung Chuang, Hongwei Wang, Lingfeng Shen,
Benjamin Van Durme, Daniel Khashabi, and Yulia
Tsvetkov. 2024a. SemStamp: A semantic watermark
with paraphrastic robustness for text generation. In
Proceedings of the 2024 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(Volume 1: Long Papers), pages 4067–4082, Mexico
City, Mexico. Association for Computational Lin-
guistics.

Abe Hou, Jingyu Zhang, Yichen Wang, Daniel
Khashabi, and Tianxing He. 2024b. k-SemStamp:
A clustering-based semantic watermark for detection
of machine-generated text. In Findings of the Asso-
ciation for Computational Linguistics: ACL 2024,
pages 1706–1715, Bangkok, Thailand. Association
for Computational Linguistics.

Zhengmian Hu, Lichang Chen, Xidong Wu, Yihan Wu,
Hongyang Zhang, and Heng Huang. 2024. Unbiased
watermark for large language models. In The Twelfth
International Conference on Learning Representa-
tions.

John Kirchenbauer, Jonas Geiping, Yuxin Wen,
Jonathan Katz, Ian Miers, and Tom Goldstein. 2023.
A watermark for large language models. In Inter-
national Conference on Machine Learning, pages
17061–17084. PMLR.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Manli
Shu, Khalid Saifullah, Kezhi Kong, Kasun Fernando,
Aniruddha Saha, Micah Goldblum, and Tom Gold-
stein. 2024. On the reliability of watermarks for
large language models. In The Twelfth International
Conference on Learning Representations.

Kalpesh Krishna, Yixiao Song, Marzena Karpinska,
John Frederick Wieting, and Mohit Iyyer. 2023. Para-
phrasing evades detectors of AI-generated text, but

retrieval is an effective defense. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems.

Rohith Kuditipudi, John Thickstun, Tatsunori
Hashimoto, and Percy Liang. 2024. Robust
distortion-free watermarks for language models.
Transactions on Machine Learning Research.

Taehyun Lee, Seokhee Hong, Jaewoo Ahn, Ilgee Hong,
Hwaran Lee, Sangdoo Yun, Jamin Shin, and Gunhee
Kim. 2024. Who wrote this code? watermarking for
code generation. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 4890–4911,
Bangkok, Thailand. Association for Computational
Linguistics.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.
2023. Starcoder: may the source be with you! arXiv
preprint arXiv:2305.06161.

Aiwei Liu, Leyi Pan, Yijian Lu, Jingjing Li, Xuming
Hu, Xi Zhang, Lijie Wen, Irwin King, Hui Xiong,
and Philip Yu. 2024. A survey of text watermarking
in the era of large language models. ACM Computing
Surveys, 57(2):1–36.

Yepeng Liu and Yuheng Bu. 2024. Adaptive text wa-
termark for large language models. In Forty-first
International Conference on Machine Learning.

I Loshchilov. 2017. Decoupled weight decay regulariza-
tion. arXiv preprint arXiv:1711.05101.

Yijian Lu, Aiwei Liu, Dianzhi Yu, Jingjing Li, and Ir-
win King. 2024. An entropy-based text watermarking
detection method. In Proceedings of the 62nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 11724–
11735, Bangkok, Thailand. Association for Compu-
tational Linguistics.

Hasan Mesut Meral, Bülent Sankur, A. Sumru Özsoy,
Tunga Güngör, and Emre Sevinç. 2009. Natural lan-
guage watermarking via morphosyntactic alterations.
Computer Speech & Language, 23(1):107–125.

Eric Mitchell, Yoonho Lee, Alexander Khazatsky,
Christopher D Manning, and Chelsea Finn. 2023.
DetectGPT: Zero-shot machine-generated text detec-
tion using probability curvature. In Proceedings of
the 40th International Conference on Machine Learn-
ing, volume 202 of Proceedings of Machine Learning
Research, pages 24950–24962. PMLR.

Travis Munyer, Abdullah Tanvir, Arjon Das, and Xin
Zhong. 2024. Deeptextmark: A deep learning-
driven text watermarking approach for identifying
large language model generated text. Preprint,
arXiv:2305.05773.

10

https://doi.org/10.18653/v1/P19-3019
https://doi.org/10.18653/v1/P19-3019
https://openreview.net/forum?id=9k0krNzvlV
https://openreview.net/forum?id=9k0krNzvlV
https://doi.org/10.18653/v1/2024.findings-emnlp.541
https://doi.org/10.18653/v1/2024.findings-emnlp.541
https://doi.org/10.18653/v1/2024.naacl-long.226
https://doi.org/10.18653/v1/2024.naacl-long.226
https://doi.org/10.18653/v1/2024.findings-acl.98
https://doi.org/10.18653/v1/2024.findings-acl.98
https://doi.org/10.18653/v1/2024.findings-acl.98
https://openreview.net/forum?id=uWVC5FVidc
https://openreview.net/forum?id=uWVC5FVidc
https://openreview.net/forum?id=DEJIDCmWOz
https://openreview.net/forum?id=DEJIDCmWOz
https://openreview.net/forum?id=WbFhFvjjKj
https://openreview.net/forum?id=WbFhFvjjKj
https://openreview.net/forum?id=WbFhFvjjKj
https://openreview.net/forum?id=FpaCL1MO2C
https://openreview.net/forum?id=FpaCL1MO2C
https://doi.org/10.18653/v1/2024.acl-long.268
https://doi.org/10.18653/v1/2024.acl-long.268
https://openreview.net/forum?id=7emOSb5UfX
https://openreview.net/forum?id=7emOSb5UfX
https://doi.org/10.18653/v1/2024.acl-long.630
https://doi.org/10.18653/v1/2024.acl-long.630
https://doi.org/10.1016/j.csl.2008.04.001
https://doi.org/10.1016/j.csl.2008.04.001
https://proceedings.mlr.press/v202/mitchell23a.html
https://proceedings.mlr.press/v202/mitchell23a.html
https://arxiv.org/abs/2305.05773
https://arxiv.org/abs/2305.05773
https://arxiv.org/abs/2305.05773

Ansong Ni, Srini Iyer, Dragomir Radev, Veselin Stoy-
anov, Wen-Tau Yih, Sida Wang, and Xi Victoria Lin.
2023. LEVER: Learning to verify language-to-code
generation with execution. In Proceedings of the
40th International Conference on Machine Learning,
volume 202 of Proceedings of Machine Learning
Research, pages 26106–26128. PMLR.

Lip Yee Por, KokSheik Wong, and Kok Onn Chee. 2012.
Unispach: A text-based data hiding method using
unicode space characters. Journal of Systems and
Software, 85(5):1075–1082.

Stefano Giovanni Rizzo, Flavio Bertini, and Danilo
Montesi. 2016. Content-preserving text watermark-
ing through unicode homoglyph substitution. In
Proceedings of the 20th International Database En-
gineering & Applications Symposium, IDEAS ’16,
page 97–104, New York, NY, USA. Association for
Computing Machinery.

Ryoma Sato, Yuki Takezawa, Han Bao, Kenta Niwa,
and Makoto Yamada. 2023. Embarrassingly simple
text watermarks. Preprint, arXiv:2310.08920.

Irene Solaiman, Miles Brundage, Jack Clark, Amanda
Askell, Ariel Herbert-Voss, Jeff Wu, Alec Radford,
Gretchen Krueger, Jong Wook Kim, Sarah Kreps,
Miles McCain, Alex Newhouse, Jason Blazakis, Kris
McGuffie, and Jasmine Wang. 2019. Release strate-
gies and the social impacts of language models.
Preprint, arXiv:1908.09203.

Congzheng Song and Ananth Raghunathan. 2020. In-
formation leakage in embedding models. In Pro-
ceedings of the 2020 ACM SIGSAC conference on
computer and communications security, pages 377–
390.

Zhensu Sun, Xiaoning Du, Fu Song, and Li Li. 2023.
Codemark: Imperceptible watermarking for code
datasets against neural code completion models. In
Proceedings of the 31st ACM Joint European Soft-
ware Engineering Conference and Symposium on the
Foundations of Software Engineering, pages 1561–
1572.

Zhensu Sun, Xiaoning Du, Fu Song, Mingze Ni, and
Li Li. 2022. Coprotector: Protect open-source code
against unauthorized training usage with data poi-
soning. In Proceedings of the ACM Web Conference
2022, pages 652–660.

Mercan Topkara, Umut Topkara, and Mikhail J. Atallah.
2006. Words are not enough: sentence level natural
language watermarking. In Proceedings of the 4th
ACM International Workshop on Contents Protection
and Security, MCPS ’06, page 37–46, New York, NY,
USA. Association for Computing Machinery.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Lean Wang, Wenkai Yang, Deli Chen, Hao Zhou,
Yankai Lin, Fandong Meng, Jie Zhou, and Xu Sun.
2024. Towards codable watermarking for injecting
multi-bits information to LLMs. In The Twelfth Inter-
national Conference on Learning Representations.

Zongqi Wang, Tianle Gu, Baoyuan Wu, and Yujiu
Yang. 2025. Morphmark: Flexible adaptive wa-
termarking for large language models. Preprint,
arXiv:2505.11541.

Bram Wouters. 2024. Optimizing watermarks for large
language models. In Forty-first International Confer-
ence on Machine Learning.

Yihan Wu, Zhengmian Hu, Hongyang Zhang, and Heng
Huang. 2023. Dipmark: A stealthy, efficient and
resilient watermark for large language models. arXiv
preprint arXiv:2310.07710.

Hengyuan Xu, Liyao Xiang, Xingjun Ma, Borui
Yang, and Baochun Li. 2024a. Hufu: A modality-
agnositc watermarking system for pre-trained trans-
formers via permutation equivariance. arXiv preprint
arXiv:2403.05842.

Xiaojun Xu, Yuanshun Yao, and Yang Liu. 2024b.
Learning to watermark llm-generated text
via reinforcement learning. arXiv preprint
arXiv:2403.10553.

Xi Yang, Kejiang Chen, Weiming Zhang, Chang Liu,
Yuang Qi, Jie Zhang, Han Fang, and Nenghai Yu.
2023. Watermarking text generated by black-box
language models. Preprint, arXiv:2305.08883.

Xi Yang, Jie Zhang, Kejiang Chen, Weiming Zhang,
Zehua Ma, Feng Wang, and Nenghai Yu. 2022. Trac-
ing text provenance via context-aware lexical sub-
stitution. Proceedings of the AAAI Conference on
Artificial Intelligence, 36(10):11613–11621.

KiYoon Yoo, Wonhyuk Ahn, Jiho Jang, and Nojun
Kwak. 2023. Robust multi-bit natural language wa-
termarking through invariant features. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2092–2115, Toronto, Canada. Association for
Computational Linguistics.

11

https://proceedings.mlr.press/v202/ni23b.html
https://proceedings.mlr.press/v202/ni23b.html
https://doi.org/10.1016/j.jss.2011.12.023
https://doi.org/10.1016/j.jss.2011.12.023
https://doi.org/10.1145/2938503.2938510
https://doi.org/10.1145/2938503.2938510
https://arxiv.org/abs/2310.08920
https://arxiv.org/abs/2310.08920
https://arxiv.org/abs/1908.09203
https://arxiv.org/abs/1908.09203
https://doi.org/10.1145/1178766.1178777
https://doi.org/10.1145/1178766.1178777
https://openreview.net/forum?id=JYu5Flqm9D
https://openreview.net/forum?id=JYu5Flqm9D
https://arxiv.org/abs/2505.11541
https://arxiv.org/abs/2505.11541
https://openreview.net/forum?id=QGAeWRRe6e
https://openreview.net/forum?id=QGAeWRRe6e
https://arxiv.org/abs/2305.08883
https://arxiv.org/abs/2305.08883
https://doi.org/10.1609/aaai.v36i10.21415
https://doi.org/10.1609/aaai.v36i10.21415
https://doi.org/10.1609/aaai.v36i10.21415
https://doi.org/10.18653/v1/2023.acl-long.117
https://doi.org/10.18653/v1/2023.acl-long.117

A Case study for threshold navigator

In this section, we present a case study on Thresh-
old Navigator. We select different entropy thresh-
olds τ (0.3, 0.6, 0.9, and 1.2), where token below
the entropy threshold are not watermarked. The ex-
perimental results are shown in Fig. 6. In the water-
marked text, tokens are annotated in red, green, or
gray to represent red tokens, green tokens, and un-
watermarked tokens, respectively. The evaluation is
conducted from two perspectives, correct (whether
the code correctly answer the question) and de-
tected (whether the watermark is successfully de-
tected).

It is indicated that when τ is set to 0.3, the pro-
portion of watermarked token is relatively high,
which tends to result in lower code correctness.
Conversely, when τ is set to 1.2, the proportion of
watermarked tokens is relatively low. While this
helps maintain code correctness to some extent, it
also leads to a decrease in watermark detectability.
Using the Threshold Navigator algorithm, the re-
sults are shown in Tab. 2. When τ is set to 0.3, the
values of p and w satisfy the condition p > 1 and
w < 1, respectively. Therefore, a "transition" is
required for 0.3, leading to the correct selection of
0.6 as entropy threshold. This is further validated
in Fig. 6, where an entropy threshold of 0.6 ensures
both correctness and detectability.

Entropy Threshold 0.3 0.6 0.9

p 3.57 0.12 0.75

w 0.98 0.29 0.58

p > 1 and w < 1? Yes No No

Table 2: p and w under different entropy thresholds.

B Algorithms for entropy-based selective
watermark (SWEET)

In this section, we present the algorithms for
entropy-based selective watermark generation and
detection (SWEET), as shown in Alg. 1 and Alg. 2.
The core idea has already been introduced in the
§ 3, while watermarking is applied only to the to-
kens with entropy greater than τ during generation
and detection process.

The algorithm for text generation with entropy-
based selective watermarking is built on KGW, as
shown in Alg. 1. Initially, the language model pro-
cesses the preceding tokens to compute the proba-
bility distribution p(t) over the vocabulary for the

question

def sum_square(lst):
 '''
 This function will take a list of integers.
 For all entries in the list, the function shall
 square the integer entry if its index is a multiple
 of 3 and will cube the integer entry if its index is
 a multiple of 4 and not a multiple of 3. The function
 will not change the entries in the list whose indexes
 are not multiple of 3 or 4. The function will return
 the sum of all entries. Examples: For lst = [1,2,3]
 the output should be 6 For lst = [] the output
 should be 0 For lst = [-1, -5, 2, -1, -5] the
 output should be -126
 '''

canonical solution

 result = []
 for i in range(len(lst)):
 if i % 3 == 0:
 result.append(lst[i] ** 2)
 elif i % 4 == 0:
 result.append(lst[i] ** 3)
 else:
 result.append(lst[i])
 return sum(result)

entropy threshold = 0.3

 for i in range(len(lst)):
 if (i % 3 == 0):
 lst[i] = lst[i] ** 2
 elif (i % 4 == 0):
 lst[i] = lst[i] ** 3
 return sum(lst)

correct detected

entropy threshold = 0.6

 # Initialize the sum to zero and the index of the
element to zero
 sum = 0
 index = 0
 # For each element in the list lst.
 for i in lst:
 # If the index of the element is a multiple of 3.
 if index % 3 == 0:
 # Square the element
 sum += (i * i)
 # If the index of the element is a multiple of 4 and
not a multiple of 3.
 elif index % 4 == 0:
 # Cube the element
 sum += (i * i * i)
 # Otherwise just add the element to the sum.
 else:
 sum += i
 # Increment the index of the element.
 index += 1
 # Return the sum of the entries in the list after
processing the entries as specified.
 return sum

entropy threshold = 0.9

 for i in range(len(lst)):
 if (i % 3 == 0):
 lst[i] = lst[i] ** 2
 elif i % 4 == 0:
 lst[i] = lst[i] ** 3
 return sum(lst)

entropy threshold = 1.2

 new_lst = []
 for i in range(len(lst)):
 if i % 3 == 0:
 new_lst.append(lst[i] ** 2)
 elif i % 4 == 0:
 new_lst.append(lst[i] ** 3)
 else:
 new_lst.append(lst[i])
 return sum(new_lst)

correct detected

correct detected

correct detected

Figure 6: Results for various entropy thresholds.

12

next token st (Line 3). The entropy of this distribu-
tion determines whether the watermark is applied
(Line 4). If the entropy Ht exceeds a threshold
τ , the vocabulary is partitioned into a "green list"
and a "red list" using a hash function seeded by the
previous token. The size of the green list is con-
trolled by a proportion parameter γ, and its logits
are increased by a hardness parameter δ to influ-
ence token selection. The final token is sampled
from the adjusted probability distribution (Lines
5 to 9). If the entropy Ht is below the threshold,
the token is sampled from the original distribution
without modification (Line 11).

The detection phase for entropy-based selective
watermarking is similar to the generation phase, as
shown in Alg. 2. It initializes counters for green
list tokens (|S|G), scored tokens (|T̂ |), total gener-
ated tokens (|T |), and the Watermark Ratio (WR)
(Line 2). For each token, the entropy Ht is com-
puted (Line 4). If Ht exceeds the threshold τ , a
hash of the previous token seeds a random number
generator to partition the vocabulary into a green
list G and a red list R. Tokens in the green list
increment the green token count, while all scored
tokens update the scored token count (Lines 5 to 9).
After processing all tokens, a standardized score z
is calculated to measure the deviation in green to-
ken frequency and the Watermark Ratio WR (Line
13). If z exceeds a predefined threshold ẑ, the text
is classified as watermarked; otherwise, it is con-
sidered unwatermarked (Lines 14 to 18).

C Training details of entropy tagger

C.1 Preprocess

The statistics of HumanEval and MBPP datasets is
shown in Tab. 3. During the preprocessing phase,
we use the training split of the MBPP dataset to
construct the training dataset for the Entropy Tag-
ger, with the preprocessing algorithm described in
Alg. 3. Specifically, we first concatenate the prompt
with the code. (Line 4) Next, we truncate the se-
quence starting from the beginning, adding one to-
ken at a time, and compute the exact entropy using
LLM as the label. Then, we use the Unified Fea-
ture Extractor to extract features from the truncated
sequence to obtain the feature vector v. (Lines 5
to 12) Finally, we obtain the preprocessed dataset
D̂ = {(Xi, yi)}, where Xi represents the i-th fea-
ture vector v, and yi represents the corresponding
actual entropy for Xi. The dataset size for each
split is shown in Tab. 3.

Algorithm 1 Text Generation with entropy-based
selective watermark

1: Input: prompt, s−Np , . . . , s−1

entropy threshold, τ
green list size, γ ∈ (0, 1)
hardness parameter, δ > 0

2: for t = 0, 1, ... do
3: Apply the language model to prior tokens

s−Np , . . . , s−1 to get a probability vector
p(t) over the vocabulary.

4: Calculate the entropy Ht for next token st.
5: if Ht > τ then
6: Compute a hash of token st−1, and use it

to seed a random number generator.
7: Using this random number generator, ran-

domly partition the vocabulary into a
"green list" G of size γ|V |, and a "red
list" R of size (1− γ)|V |.

8: Add δ to each green list logit. Apply the
softmax operator to these modified logits
to get a probability distribution over the
vocabulary.

p̂
(t)
k =

e

(
l
(t)
k

+δ

)
∑

i∈R el
(t)
i +

∑
i∈G el

(t)
i

+δ
, k ∈ G

e
l
(t)
k∑

i∈R el
(t)
i +

∑
i∈G el

(t)
i

+δ
, k ∈ R

9: Sample the next token, st, using the
marked distribution p̂(t).

10: else
11: Sample the next token, st, using the origin

distribution p(t).
12: end if
13: end for

Dataset Split # Samples # Converted

HumanEval test 164 32,168

MBPP
train 374 29,747
validation 90 7,391
test 500 40,571

Table 3: Statistics of HumanEval and MBPP. #Sam-
ples indicates the number of samples in each split of
the dataset, while #Converted represents the number of
samples in each split after preprocessing.

13

Algorithm 2 Detection with entropy-based selec-
tive watermark

1: Input: prompt, s−Np , . . . , s−1

entropy threshold, τ
green list size, γ ∈ (0, 1)
z threshold, ẑ

2: Initialize: green token counts, |S|G ← 0
scored tokens counts, |T̂ | ← 0
generated tokens counts, |T | ← 0
watermark ratio, WR← 0

3: for t = 0, 1, ... do
4: Compute the entropy Ht of the next token

st.
5: if Ht > τ then
6: Compute a hash of st−1, and use it to seed

a random number generator.
7: Using the random number generator, ran-

domly partition the vocabulary into a
"green list" G of size γ|V |, and a "red
list" R of size (1− γ)|V |.

8: Increment |S|G if st in green list.

|S|G ←
{
|S|G + 1, if st ∈ G
|S|G, otherwise

9: Increment |T̂ | ← |T̂ |+ 1
10: end if
11: Increment |T | ← |T |+ 1
12: end for
13: Compute z and WR.

z =
|S|G − γ|T̂ |√
γ(1− γ)|T̂ |

,

WR =
|T̂ |
|T |

14: return z > ẑ,WR, |S|G

Entropy MBPP MBPP HumanEval
Threshold Validation Test Test

0.3 83.89 81.93 68.47
0.6 82.52 81.06 66.61
0.9 83.45 82.31 68.51
1.2 84.54 83.73 70.95
1.5 86.97 86.79 75.71

Table 4: Accuracy of Entropy Tagger for different en-
tropy thresholds.

Algorithm 3 Algorithm for preprocessing of En-
tropy Tagger

1: Input: Original dataset D = {Ti}, where Ti

represents a sample containing a prompt and
corresponding code.

2: Output: Preprocessed dataset D̂ =
{(Xi, yi)}, where Xi is the feature vector and
yi is the actual entropy.

3: for each sample Ti in D do
4: Concatenate the prompt and code in Ti to

form a single sequence S.
5: Initialize an empty list Ŝ = [] to store trun-

cated sequences.
6: for k = 1 to length(S) do
7: Truncate S to the first k tokens to create

Sk.
8: Append Sk to Ŝ.
9: end for

10: for each truncated sequence Sk in Ŝ do
11: Compute the exact entropy yk of Sk using

StarCoder.
12: Extract the feature vector vk for Sk using

the Unified Feature Extractor.
13: Add (vk, yk) to D̂.
14: end for
15: end for
16: Return: Preprocessed dataset D̂.

C.2 Training

Ablation study on training objective We evalu-
ate the accuracy of the Entropy Tagger under two
training objectives: classification and regression.
In the classification setting, the model is trained
as a binary classifier to directly predict whether
each token is low entropy. Accuracy is computed
by comparing the predicted class label ŷi ∈ {0, 1},
with the ground-truth label yi ∈ {0, 1}:

Acc.cls =
1

N

N∑
i=1

1[ŷi = yi] (2)

In the regression setting, the model predicts a scalar
entropy value êi ∈ R. The ground-truth entropy
value ei ∈ R is also provided. We discretize both
values into bins of width 0.3, capping the maxi-
mum bin value at 1.5, and evaluate accuracy by

14

comparing the resulting discrete labels:

Bin(x) = min
(⌊ x

0.3

⌋
× 0.3, 1.5

)
(3)

Acc.reg =
1

N

N∑
i=1

1 [Bin(êi) = Bin(ei)] (4)

Tab. 5 demonstrates that the regression-based
Entropy Tagger consistently underperforms the
classification-based version in terms of accuracy
across all three datasets. Consequently, we adopt
the classification objective for training the Entropy
Tagger.

Details on Training Entropy Tagger During the
training phase, we construct a binary classification
MLP, and then, based on the threshold τ , we map
y in D̂ to True or False. If yi < τ , it is set to True,
otherwise False. We then train using BCELoss and
optimize with AdamW (Loshchilov, 2017). The
hyperparameter settings are shown in the Tab. 6.
Finally, the epoch with the highest accuracy on the
MBPP validation split is selected as the Entropy
Tagger.

Hyperparameter Setting

epochs 100
batch_size 32
lr 1e-4
optimizer AdamW
weight_decay 2e-5

Table 6: The hyperparameter settings for training the
Entropy Tagger.

C.3 Validation

We use the MBPP test and HumanEval test as the
test sets, representing the in-domain and out-of-
domain scenarios, respectively. The test results are
shown in Tab. 4. The results show that the accuracy
of the Entropy Tagger is consistent across different
splits of the same dataset (in-domain), achieving
over 80%. When applied across datasets (out-of-
domain), using the Entropy Tagger for prediction
also achieves an accuracy of over 66.61%, with an
accuracy of 75.71% at the τ = 1.5.

D Implementation details

All methods can be implemented on a single
NVIDIA A100-SXM4-40GB. For Post-hoc methods
and KGW, we follow the implementation provided
in the Lee et al., 2024. For EWD, we adopt the rec-
ommended hyperparameters from Lu et al., 2024.

However, to ensure a fair comparison, we use the
same hash key in KGW for EWD. For SWEET, we
use the settings recommended in the original pa-
per. Since the Threshold Navigator automatically
selects a fixed threshold, we report the averaged re-
sults across all thresholds for SWEET. As SWEET
consider the trade-off between code generation abil-
ity and detectability, two results are reported for
MBPP. We select the one with the highest AUROC.
For IE, we report the result with the highest UES
under the condition that Pass@1 is allowed to drop
by up to 20%. Detailed settings for each method
on each dataset can be found in Tab. 7.

E Computational Time Used Analysis

To evaluate the computational efficiency of each
method, we measure the total runtime required to
complete evaluation on the HumanEval benchmark.
Due to the variation in generated text lengths across
different methods, all watermarking approaches are
applied exclusively during the detection phase to
ensure a fair comparison. Each method is evaluated
three times under the same hardware conditions,
and the average total runtime is reported. The re-
sults are summarized in Tab. 8.

As shown in the Tab. 8, our method achieves
the lowest total runtime, demonstrating its practical
advantage in terms of computational efficiency.

F Algorithms for Threshold Navigator

The algorithmic details of Threshold Navigator
are shown in Alg. 4. Given a prompt sequence,
green list size, and search granularity, we begin
by initializing the entropy threshold τ0 and com-
puting the corresponding Watermark Ratio (WR0)
and the number of green tokens |S|Gτ0

under this
threshold. (Lines 3-5). Then, we enumerate down-
ward from the initial entropy threshold (e.g., 1.5)
to lower values (e.g., 1.2, 0.9, 0.6, 0.3). For
each new entropy threshold, we compute the up-
dated Watermark Ratio (WRτi−1) and green token
count (|S|Gτi

). (Lines 6-8) For every pair of ad-
jacent entropy thresholds, we calculate the green
token change ration p (Line 9) and the Watermark
Ratio change ratio w (Line 10). The search stops
when the condition p > 1 and w < 1 is met for
the first time, and the previous entropy threshold is
selected as the final threshold and returned (Lines
11-13).

15

_ (. b b= nbbb 1) , :

Token

0

200

400

600

800
Co

un
t

(a) entropy threshold (τ) = 0.3

_ nbbb b= (b . : 1 nbbb
bbbb

)

Token

0

200

400

600

800

1000

1200

Co
un

t

(b) entropy threshold (τ) = 0.6

nbbb (_ b . b= 1 nbbb
bbbb

) :

Token

0

200

400

600

800

Co
un

t

(c) entropy threshold (τ) = 0.9

nbbb b _ b= (1 0 , .)

Token

0

200

400

600

800

1000

Co
un

t

(d) entropy threshold (τ) = 1.2

Figure 7: Top-K tokens most frequently classified as low entropy tokens.

Methods
MBPP MBPP HumanEval

Validation Test Test

Regression 38.16 36.90 37.94
Classification 84.27 83.16 70.05

Table 5: Accuracy of Entropy Tagger for different train-
ing objectives.

Dataset Method γ δ

HumanEval

KGW 0.25 3.0
EWD 0.5 2.0
SWEET 0.25 3.0
IE 0.5 3.0

MBPP

KGW 0.25 3.0
EWD 0.5 2.0
SWEET 0.5 2.0
IE 0.25 3.0

Table 7: Detailed settings for each watermark methods.

Algorithm 4 Threshold Navigator
1: Input: prompt, s0, . . . , st−1

green list size, γ ∈ (0, 1)
search granularity, ∆

2: Output: τ̂ (final entropy threshold)
3: Initialize τ0 (initial entropy threshold)
4: τ̂ ← τ0
5: Calculate WR0 (Watermark Ratio) and |S|Gτ0

(green to-
ken count).

6: for i = 1 to ⌊τ0/∆⌋ do
7: τi ← τi−1 −∆
8: Calculate WRτi and |S|Gτi

.
9: p← |S|Gτi−1

/|S|Gτi

10: w ← WRτi−1/WRτi

11: if p > 1 and w < 1 then
12: τ̂ ← τi−1

13: break
14: end if
15: end for
16: return τ̂

16

Table 8: Total runtime (in seconds) on the HumanEval
benchmark for each method.

Method Total Time (s)

KGW 55.86(± 10.67)
EWD 118.83(± 11.82)
SWEET 110.75(± 11.29)
IE 100.36(± 6.53)

G Analysis on low entropy tokens

We rank the frequency of tokens classified as low
entropy token under γ = 0.25 and δ = 3.0 across
different entropy thresholds and report the top 10
tokens. To enhance clarity, we use "b" to repre-
sent spaces and "n" to represent newlines. The
results are shown in Fig. 7. It can be observed that,
despite varying entropy thresholds, certain tokens
frequently appear as low entropy tokens, such as
"_", ".", ":", "1", "(", ")", spaces, newlines, and
their combinations.

17

	Introduction
	Related Work
	Preliminaries
	Methodology
	Unified Feature Extractor
	Entropy Tagger
	Threshold Navigator

	Experiments
	Tasks and Metrics
	Baselines
	Implementation
	Main Results

	Analysis and Discussion
	Analysis on Entropy Tagger
	Analysis on Threshold Navigator
	Robustness to Paraphrasing Attacks

	Conclusion
	Case study for threshold navigator
	Algorithms for entropy-based selective watermark (SWEET)
	Training details of entropy tagger
	Preprocess
	Training
	Validation

	Implementation details
	Computational Time Used Analysis
	Algorithms for Threshold Navigator
	Analysis on low entropy tokens

