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Abstract

We present a secure and efficient string-matching platform leveraging zk-SNARKs
(Zero-Knowledge Succinct Non-Interactive Arguments of Knowledge) to address
the challenge of detecting sensitive information leakage while preserving data
privacy. Our solution enables organizations to verify whether private strings appear
on public platforms without disclosing the strings themselves. To achieve compu-
tational efficiency, we integrate a sliding window technique with the Rabin–Karp
algorithm and Rabin Fingerprint, enabling hash-based rolling comparisons to detect
string matches. This approach significantly reduces time complexity compared
to traditional character-by-character comparisons. We implement the proposed
system using gnark, a high-performance zk-SNARK library, which generates suc-
cinct and verifiable proofs for privacy-preserving string matching. Experimental
results demonstrate that our solution achieves strong privacy guarantees while
maintaining computational efficiency and scalability. This work highlights the
practical applications of zero-knowledge proofs in secure data verification and
contributes a scalable method for privacy-preserving string matching.

1 Introduction

The rapid proliferation of digital communication and data sharing has led to increased concerns
about private information leakage. Companies and organizations face significant risks when sensitive
data, such as personal information or confidential records, appears on public platforms without
authorization. Traditional string-matching methods allow for detection of such leaks but require
access to the private data itself, which creates additional privacy risks during the verification process.
This limitation highlights the critical need for solutions that enable private information detection
without exposing the underlying sensitive content.

To address this challenge, we propose a secure string-matching platform utilizing zk-SNARKs (Zero-
Knowledge Succinct Non-Interactive Arguments of Knowledge). zk-SNARKs are cryptographic
protocols that allow one party to prove knowledge of certain information (e.g., a string match) without
revealing the information itself. By leveraging zk-SNARKs, our platform ensures that private strings
can be securely verified against public data while maintaining strong privacy guarantees.

We implement our solution using gnark, a high-performance zk-SNARK library optimized for
efficiency. To further enhance performance, we adopt a sliding window technique combined with the
Rabin–Karp algorithm and Rabin Fingerprint. The Rabin–Karp algorithm computes and compares

https://arxiv.org/abs/2505.13964v1


hashes to detect string matches efficiently, while the Rabin Fingerprint allows for quick rolling
hash computations over a sliding window. This combination significantly reduces time complexity
compared to traditional character-by-character comparisons and enables scalable processing of large
datasets.

The contributions of this work are as follows:

• We design and implement a secure string-matching platform using zk-SNARKs, ensuring
privacy-preserving verification.

• We integrate a sliding window technique, the Rabin–Karp algorithm, and Rabin Fingerprint
to optimize hash-based string matching for efficiency and scalability.

• We demonstrate the practicality of our system through an efficient implementation using the
gnark library.

2 Related Works

Transparency and Append-Only Logs. Tomescu et al. [1] introduced transparency logs based on
append-only authenticated dictionaries. Their approach ensures transparency and integrity while en-
abling efficient proofs of correct operation. Such methods are crucial for systems requiring verifiable
operations over structured data, inspiring subsequent privacy-preserving verification frameworks.

Succinct Proofs for Transparency Dictionaries. Tzialla et al. [2] proposed transparency dictionaries
with succinct proofs, which allow efficient verification of correctness without revealing sensitive data.
Their work demonstrated the importance of combining succinctness and correctness for transparency
mechanisms, which aligns with our use of zero-knowledge proofs for verifiable string matching.

Zero-Knowledge Sets. The concept of zero-knowledge proofs for set membership was formalized by
Micali et al. [3] through zero-knowledge sets. This seminal work introduced cryptographic constructs
to prove that an element belongs to a set without disclosing the set or additional information. Their
approach laid the foundation for efficient membership proofs, a principle extended in our work using
zk-SNARKs.

Optimized zk-SNARKs for Verifiable Matching. Ozdemir et al. [4] explored optimizations in
zk-SNARKs by designing algebraic interactive proofs for volatile and persistent memory. Their
contributions provide improvements in proof efficiency and memory operations, which are critical for
scaling verifiable computation systems such as our string-matching platform.

These works collectively form the basis for secure and verifiable systems, highlighting the significance
of zero-knowledge proofs and efficient data structures. Our work builds on these ideas by integrating
optimized hash-based algorithms, such as Rabin–Karp, with zk-SNARKs to achieve scalable and
privacy-preserving string matching.

3 Proposal Formulation

3.1 Rabin–Karp Algorithm

The Rabin–Karp algorithm [5] is a widely used string-matching technique that efficiently identifies
occurrences of a pattern string within a text string by employing hashing. Unlike traditional methods
that compare characters directly, Rabin–Karp leverages hash functions to compute compact numerical
representations (hashes) of strings, which are then compared to detect matches. This hash-based
approach significantly reduces time complexity, particularly for large-scale string-matching tasks.

3.1.1 Overview of the Algorithm

The Rabin–Karp algorithm works as follows:

1. Hashing the Pattern: A hash value is computed for the pattern string P using a chosen
hash function.
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2. Sliding Window over the Text: A sliding window of size equal to the pattern length is
moved across the text string T . For each window, the hash value of the current substring
(window content) is calculated.

3. Hash Comparison: The hash value of the current window is compared with the hash value
of the pattern. If the hash values match, a character-by-character verification is performed to
confirm the match, as hash collisions may occur.

4. Rolling Hash Optimization: To avoid recomputing the hash from scratch at every step, the
algorithm employs a rolling hash function that efficiently updates the hash value when the
window slides by one position.

3.1.2 Rabin Fingerprint for Rolling Hash

The Rabin Fingerprint [6] is a key component of the Rabin–Karp algorithm, enabling efficient
computation of rolling hashes. Given a string of length m, the hash value is calculated as:

Hash(S) =
m−1∑
i=0

S[i] · bm−i−1 mod q (1)

where S[i] represents the character at position i, b is a base (typically a small prime number), and q is
a large prime modulus to reduce hash collisions.

When the window slides by one character, the hash can be updated as:

Hashnew =
(
b ·

(
Hashold − Sout · bm−1

)
+ Sin

)
mod q (2)

Here, Sout is the outgoing character from the left of the window, and Sin is the incoming character
on the right. This operation avoids recalculating the hash from scratch, resulting in linear time
complexity O(n) for the algorithm, where n is the text length.

3.1.3 Advantages

• Efficiency: By using rolling hashes, Rabin–Karp avoids redundant computations and
achieves linear time complexity in the average case.

• Scalability: The algorithm is well-suited for large-scale string matching due to its hash-
based nature.

• Extensibility: The Rabin–Karp algorithm can be adapted to various applications, such
as plagiarism detection, intrusion detection systems, and, in our case, privacy-preserving
verification using zk-SNARKs.

3.1.4 Role in Our Work

In our implementation, the Rabin–Karp algorithm is combined with a sliding window technique and
Rabin Fingerprint to efficiently detect string matches. The rolling hash mechanism enables quick
updates of hash values as the window moves, minimizing computational overhead. By leveraging the
Rabin–Karp algorithm, we achieve significant performance improvements compared to traditional
character-by-character comparisons, making it suitable for secure and scalable string matching within
a zk-SNARK framework.

3.2 Merkle Tree

A Merkle Tree is a cryptographic data structure used to ensure the integrity and authenticity of data.
It is a binary tree where each leaf node represents the hash of a data block, and each non-leaf node is
the hash of the concatenation of its child nodes. This structure allows for efficient and verifiable proof
of the inclusion of a data block in the tree, making Merkle Trees an essential tool in applications like
blockchain, distributed systems, and zero-knowledge proofs.

3.2.1 Structure and Construction

A Merkle Tree is constructed as follows:
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1. Hashing Data Blocks: Each data block Di is hashed using a cryptographic hash function,
such as SHA-256, to produce a leaf node Hi = Hash(Di).

2. Building Parent Nodes: Parent nodes are created by hashing the concatenation of two child
nodes. For example, the parent node P = Hash(HL||HR), where HL and HR are the left
and right child nodes, respectively.

3. Root Node: The process continues iteratively until a single root node, called the Merkle
Root, is generated.

3.2.2 Merkle Proofs

Merkle Trees enable efficient verification of data inclusion via Merkle Proofs. Given the Merkle Root
and a data block, a proof consists of the sibling hashes along the path from the block to the root. The
verifier reconstructs the Merkle Root using the provided proof and compares it to the known root.
This process has logarithmic complexity O(log n), where n is the number of leaf nodes.

3.2.3 Advantages

• Efficiency: Verifying a Merkle Proof requires only O(log n) hash computations.

• Integrity: Any tampering with the data will invalidate the Merkle Root, ensuring the
integrity of the tree.

• Scalability: Merkle Trees are scalable for large datasets, as the size of the proof remains
small regardless of the total data size.

3.2.4 Role in Our Work

In our implementation, Merkle Trees are used to efficiently structure and verify the hash values of
substrings generated during the string-matching process. By incorporating Merkle Proofs, we enable
succinct and verifiable proofs of inclusion within the zk-SNARK framework. This integration ensures
both data integrity and scalability, complementing the Rabin–Karp algorithm for privacy-preserving
string matching.

3.3 Complexity Analysis

Our implementation addresses the problem of determining whether K short strings, each of length T ,
appear in any of M long strings, each with an average length of N . The implementation leverages
three methods: naive string matching, the Rabin–Karp algorithm, and Merkle Tree-based verification,
each providing distinct trade-offs in terms of efficiency and scalability.

3.3.1 Naive String Matching

The naive string-matching approach involves directly comparing each short string with every possible
substring of all the long strings. This exhaustive search ensures correctness by checking all potential
matches without relying on preprocessing or additional data structures.

Complexity: For M long strings of average length N , and K short strings of length T , the naive
method compares each short string with each long string, resulting in a worst-case time complexity
of:

O(M ·N ·K · T )
This quadratic complexity makes the naive method infeasible for large M , N , or K.

3.3.2 Rabin–Karp Algorithm

The Rabin–Karp algorithm optimizes the search process by using a rolling hash function to compute
hash values for substrings of length T in the long strings. The hash of each short string is computed
once, and matches are detected by comparing these hashes with the hashes of substrings in the long
strings.

Implementation: Our implementation calculates the rolling hashes for each of the M long strings,
sliding a window of size T across each string. The hashes of the K short strings are precomputed,
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and matches are determined by hash comparisons followed by a character-by-character check to
resolve hash collisions.

Complexity: The Rabin–Karp algorithm reduces the complexity by performing hash-based compar-
isons:

O(M ·N · T +K · T )
Here, O(M ·N ·T ) accounts for computing hashes for all substrings in the long strings, and O(K ·T )
accounts for hashing the K short strings.

3.3.3 Merkle Tree-Based Verification

This approach integrates Merkle trees with MiMC hashing, substring filtering, and membership
checks in a set of valid patterns to achieve efficient and secure verification of pattern existence within
a superstring. Initially, we construct a Merkle tree derived from all potential, legal substrings of
the given superstring. To ensure consistency of the hash computations both inside and outside the
zero-knowledge circuit, we adopt a MiMC-based hash function, known for its compatibility with
circuit-friendly operations.

Before inserting substrings into the Merkle tree, we apply a filtering process: any pattern containing
forbidden characters (for instance, those not permitted in a URL) is discarded. Only legal patterns
remain, and they are inserted into a set structure, facilitating O(1)-time checks for pattern membership
outside the circuit.

When a particular pattern’s existence needs to be verified, we first determine if it is present in the
precomputed set of legal patterns. If not, we immediately conclude that the pattern is not found. If
the pattern is found, we produce a Merkle proof. This proof consists of a path of MiMC hashes from
the leaf (which corresponds to the hashed pattern) up to the Merkle root. Along with this proof, we
provide the circuit with the pattern and a sequence of direction bits indicating the relative positions of
sibling nodes along the proof path.

Inside the circuit, we re-compute the Merkle root from the provided leaf and siblings using MiMC
hashing. Comparing this recomputed root to the given root (an input to the circuit) confirms the
pattern’s membership. Thus, once the Merkle tree is built, checking a pattern’s existence outside the
circuit requires only O(len(pattern)) time (to compute or retrieve its hash) and inside the circuit it
costs O(log(number of possible patterns)) time, due to the logarithmic height of the Merkle tree.

In summary, this combined approach of precomputing a Merkle tree with MiMC hashing for all legal
patterns, maintaining a set for membership checks, and using zero-knowledge proofs ensures that
once the tree is constructed, verifying a single pattern is both efficient and secure. It offloads the main
overhead to a one-time preprocessing step, greatly reducing the verification time for each subsequent
query.

3.3.4 The Product-Tree Based Approach for Fast Evaluation and Interpolation

We consider the problem of evaluating a polynomial f(x) at multiple points and performing poly-
nomial interpolation with complexity sub-quadratic in n. By constructing a product tree of linear
factors (x− ui) for i = 0, . . . , n− 1, we obtain a hierarchical structure that allows us to divide and
conquer the problem. Let

m(x) =

n−1∏
i=0

(x− ui).

At the top level, m(x) aggregates all evaluation points, and at each lower level, we have polynomials
Mj,i(x) that represent subsets of these factors. For fast evaluation, instead of directly substituting
each ui into f(x), we use polynomial division repeatedly to compute f(x) mod Mj,i(x) at each
level. By doing so, we break down the global evaluation problem into smaller subproblems until we
reach linear factors (x−ui), at which point the remainder equals f(ui) by the Polynomial Remainder
Theorem. This reduces complexity from O(n2) to about O(n log2 n) when combined with FFT-based
polynomial multiplication.

For fast interpolation, a similar approach is taken: we build product trees, evaluate derivatives through
fast evaluation, and use algorithms like linear combination (Algorithm 10.9 [7]) to assemble the
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interpolating polynomial from given values. Instead of constructing Lagrange basis polynomials
solely, we rely on product trees, FFT-based polynomial arithmetic, and inverse computations to
achieve O(n log2 n) complexity.

We employ these methods not only for polynomial operations in isolation, but also to address our
project goal. Consider that we want to verify a Bézout-like identity:

a(x) · s(x) + b(x) · t(x) = 1,

which ensures that a(x) and b(x) have a non-trivial greatest common divisor (GCD). By proving
such an identity, we confirm that a(x) and b(x) share a factor. This scenario arises in algorithms
dealing with string searching and substring verification via rolling hash techniques.

Specifically, consider we have a “superstring” S and wish to verify that certain pattern substrings Pi

are contained in S. Using a rolling hash H , we map each substring to a polynomial-like structure. If
we can show, through polynomial arithmetic, that certain patterns correspond to factors or appear as
partial evaluations of a larger polynomial derived from S, then verifying the identity a(x) ∗ s(x) +
b(x) ∗ t(x) = 1 becomes analogous to confirming that H(Pi) divides or matches the constructed
polynomial from S’ hash values. In other words, the polynomial operations and the Bézout-like
identity serve as cryptographic or algebraic witnesses that the rolling hashes of patterns are embedded
within the rolling hash polynomial structure of the superstring, confirming the substring membership.

Thus, product-tree-based fast evaluation and interpolation methods not only provide a more efficient
fundamental toolbox for polynomial operations but also translate to higher-level applications such as
verifying substring containment in a superstring using rolling hashes. Ensure that we can generate
and verify an identity similar to a(x) ∗ s(x) + b(x) ∗ t(x) = 1, we indirectly guarantee that the
rolling hash of the pattern aligns with the segments of the superstring’s rolling hash encoding, thereby
confirming the substring presence.

The complexity for building the necessary polynomial data structures (product trees, etc.) and
performing the required polynomial evaluations scales similarly to constructing Merkle Trees, but
includes an additional logarithmic factor due to FFT-based polynomial multiplication and interpolation
steps:

Preprocessing: O(M ·N · log2(N/T ))

For verification queries, since we rely on fast evaluation and interpolation techniques, each query
involves logarithmic complexity (with a squared factor due to polynomial interpolation complexity):

Verification per query: O(K · log2(N/T ))

3.3.5 Comparative Analysis

Method Preprocessing Time Query Time
Naive String Matching O(M ·N ·K ·T) O(M ·N ·K ·T)
Rabin–Karp Algorithm O(M ·N ·T+K ·T) O(M ·N+K ·T)
Merkle Tree O(M ·N · log(N/T)) O(K · log(N/T))

Polynomial O(M ·N · log2(N/T)) O(K · log2(N/T))
Table 1: Comparative Complexity of String-Matching Methods

The polynomial-based approach, while slightly more complex than Merkle Trees due to the log2

factor, still offers efficient verification in practice, especially for large values of N and M . Its strength
lies in the robust mathematical foundation of polynomial arithmetic and fast interpolation, making it
suitable for advanced verification tasks such as confirming that rolling hashes of specific substring
patterns indeed match segments of a superstring, thereby ensuring nontrivial GCD conditions and
pattern containment with sub-quadratic complexity.

For more details on the implementation and access to the code, visit https://github.com/
taobol2/CS407_Project.
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4 Experiment Results

(a) This plot shows the relationship between the length of the input string and the resulting number of constraints.
As input size increases, constraints grow nearly linearly.

(b) Increasing the number of public parame-
ters leads to a proportional rise in constraints.

(c) As public parameters grow, proving time
also increases due to greater computational
effort.

(d) A heatmap showing how polynomial de-
grees affect constraint counts. Warmer colors
represent more constraints.

(e) A 3D surface plot illustrating total time
growth with increasing polynomial degrees.

Figure 1: Results
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Figure 1 presents a series of experiment results. The first image depicts the naive string matching
method, illustrating how the number of constraints increases directly with input size. In the second
and third figures, we shift to a Rabin-Karp based approach: the second image shows how an
increase in public parameters leads to more constraints, while the third figure demonstrates that
increasing these parameters also raises the total proving time. Additionally, the Merkle tree-based
verification method that integrates MiMC hashing, substring filtering, and membership checks. Once
the Merkle tree is constructed—taking about 3m46s of the total 5m35s runtime in one observed
scenario—subsequent proofs can be generated in approximately 1m48s, and per-proof verification
remains under a millisecond. This approach leverages a one-time preprocessing step to store all
legal patterns in a Merkle structure, allowing O(1)-time membership checks outside the circuit
and O(log(number of possible patterns)) time inside it. Consequently, verifying each pattern after
preprocessing is both efficient and secure. Finally, the fourth and fifth figures examine polynomial-
based verification methods, where the heatmap reveals the growth in constraints as polynomial
degrees scale, and the 3D surface plot highlights how total proving time changes with multiple
varying degrees. Taken together, these observations provide a comprehensive understanding of
how different verification techniques, data structures, and parameters influence both complexity and
performance.

5 Future Work

5.1 Merkle-Tree non-membership proof

While Merkle trees efficiently prove membership of a pattern by reconstructing the path from a leaf
to the root, they cannot directly provide zero-knowledge proofs of non-membership. To address
this limitation, we rely on the techniques introduced in [3], where a specialized construction, often
referred to as Zero-Knowledge Sets, is employed. This construction enables a prover to demonstrate
that a given element x is not in the dataset D (or, equivalently, that D(x) =? meaning the element is
undefined in D) without revealing additional information about the size or structure of D.

In essence, the prover begins with a commitment to D represented as a carefully structured tree.
Each node stores not only a value and a commitment but also is associated with a discrete-log-based
setup to ensure that the prover can manipulate and decommit nodes as needed. When asked to prove
non-membership of x, the prover identifies the node u where x’s search path diverges from any real
element in D. Since u is tied to a “fake” commitment (initially committing to 0) and the prover
knows the discrete log representation of hu (the node’s generator), the prover can transform this fake
commitment into a “meaningful” one that proves D(x) =?. To accomplish this, the prover inserts
a carefully constructed subtree Tu below u, populating it with additional fake commitments and
intermediate hash values, ensuring that, once welded into the original structure, u and its descendants
collectively confirm the absence of x. Crucially, this subtree integration and selective decommitment
process is carried out with zero knowledge, preventing any leakage about other elements not in D.

As a result, verifying non-membership involves checking paths and commitments exactly as in a
membership proof, but now certain commitments are “transformed” to show emptiness rather than
existence. The final verification checks that at the leaf level we have mH(x) = 0 and that all internal
nodes satisfy the same Merkle-like hashing and commitment conditions. Thus, combined with the
techniques from [3], we achieve a zero-knowledge proof system for both membership and non-
membership in an efficient manner, extending the capabilities of Merkle trees or polynomial-based
data structures beyond their original limitations.

5.2 Polynomial Approach

While our polynomial approach explores the conceptual foundations and complexity considerations
of the polynomial-based approach—specifically using product trees, FFT-based arithmetic, and the
verification of a Bézout-like identity as+ bt = 1. Our current results focus on assessing the potential
computational costs and complexity improvements that such an approach offers, rather than providing
a complete, integrated implementation. In future work, we plan to implement and benchmark this
polynomial scheme fully, including the integration of FFT-based polynomial operations within
the zero-knowledge environment, verifying the Bézout identity concretely, and comparing its real-
world performance against other methods. This additional effort will provide practical insights into
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the feasibility, overheads, and speedups attainable, as well as guide optimizations for integrating
polynomial-based substring verification with our existing infrastructure.

6 Conclusion

In this report, we proposed and implemented a privacy-preserving string-matching protocol using zk-
SNARKs to address the critical challenge of detecting sensitive data leakage without compromising
privacy. Our solution integrates the Rabin–Karp algorithm with rolling hash optimizations and
Merkle Trees for efficient and secure verification. By leveraging the strengths of these techniques,
we developed a system capable of handling large-scale string-matching tasks while ensuring robust
privacy guarantees and computational efficiency.

The Rabin–Karp algorithm provides an effective mechanism for detecting patterns in large datasets,
reducing time complexity compared to naive approaches. Meanwhile, the Merkle Tree structure
enhances scalability by enabling succinct and verifiable proofs of data inclusion, which are crucial
in the zk-SNARK framework. Together, these methods form a comprehensive solution for secure
string matching, demonstrating significant performance improvements and scalability in experimental
evaluations.

Our work not only highlights the practical applications of zero-knowledge proofs in enhancing data
security but also contributes to the growing field of privacy-preserving verification. The proposed
system serves as a foundational framework that can be extended to various real-world applications,
such as intrusion detection, secure data sharing, and privacy-aware compliance verification.

Despite its strengths, the implementation presents opportunities for further improvement. Future
work could explore optimizing zk-SNARK circuit designs to reduce proof generation and verification
times. Additionally, expanding the system to support more complex string-matching scenarios and
integrating user-friendly interfaces could make the protocol more accessible to a broader range of
use cases. Another avenue for research lies in addressing non-membership proofs in Merkle Trees to
enhance their versatility in privacy-preserving systems.

In conclusion, our work demonstrates the feasibility and effectiveness of combining cryptographic
techniques with advanced data structures to achieve scalable and privacy-preserving solutions. This
approach opens the door to further innovations in zero-knowledge proof systems and their applications
in secure computation.
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