
ar
X

iv
:2

50
5.

13
94

2v
1

 [
cs

.C
R

]
 2

0
M

ay
 2

02
5

D4+: Emergent Adversarial Driving Maneuvers
with Approximate Functional Optimization

Diego Ortiz Barbosa1, Luis Burbano1, Carlos Hernandez2, Zengxiang Lei3,
Younghee Park2, Satish Ukkusuri3, and Alvaro A Cardenas1

1 University of California Santa Cruz, Santa Cruz CA 95064, USA
2 San Jose State University, San Jose CA 95192, USA
3 Purdue University, West Lafayette, IN 47907, USA

Abstract. Intelligent mechanisms implemented in autonomous vehicles,
such as proactive driving assist and collision alerts, reduce traffic acci-
dents. However, verifying their correct functionality is difficult due to
complex interactions with the environment. This problem is exacerbated
in adversarial environments, where an attacker can control the environ-
ment surrounding autonomous vehicles to exploit vulnerabilities.
To preemptively identify vulnerabilities in these systems, in this paper,
we implement a scenario-based framework with a formal method to iden-
tify the impact of malicious drivers interacting with autonomous vehicles.
The formalization of the evaluation requirements utilizes metric temporal
logic (MTL) to identify a safety condition that we want to test. Our goal
is to find, through a rigorous testing approach, any trace that violates
this MTL safety specification. Our results can help designers identify the
range of safe operational behaviors that prevent malicious drivers from
exploiting the autonomous features of modern vehicles.

Keywords: Testing · Adversarial Driving · DDDAS · Dynamic Data
Driven · Applications Systems · InfoSymbiotic Systems

1 Introduction

Human drivers use skills, experience, and cognitive abilities to avoid crashing
in congested stop-and-go freeway driving. They constantly monitor their sur-
roundings and learn to anticipate the actions of other drivers and traffic flow.
Introducing autonomous features in vehicles promises increased safety and re-
duced car accidents. However, the widespread availability of autonomous vehicle
technology also introduces vulnerabilities, and errors that on a large scale could
lead to significant problems. For example, if an aggressive driver discovers that
abrupt cutting in front of an autonomous vehicle can cause it to crash, malicious
drivers could attempt to cause collisions among autonomous vehicles using the
same tactic worldwide.

Performing a systematic test of the autonomous features of vehicles will help
us identify vulnerabilities early on. To discover or anticipate vulnerabilities in
uncommon situations, we have to test autonomous and semi-autonomous vehicles

https://arxiv.org/abs/2505.13942v1

2 D. Ortiz Barbosa et al.

under many different scenarios. This large-scale testing is possible only through
simulations. In this paper, we focus on scenario testing to identify vulnerabilities
that can be exploited by a malicious driver. In particular, we use a model-based
data-driven system that can capture different potential adversarial scenarios that
may exploit the system. In particular, our work is inspired by dynamic data-
driven application systems (DDDAS) [6] by using high-fidelity digital twins to
improve decisions and control of real-time systems.

Our objective is to prevent attackers from abusing autonomous vehicles to
cause harm in the physical world. We do so by first specifying the safety prop-
erties that physical systems need to keep and testing whether an adversary can
drive the emergent system to a state that invalidates the specification. To search
for these adversary maneuvers, we use digital twins and a search procedure in-
spired by the DDDAS framework. As with other DDDAS, our method combines
data from multiple dynamic sources–results of digital twins for self-driving ve-
hicles in our case–to adapt our model (e.g., Bayesian optimization) in search for
potential driving maneuvers that will trigger a vulnerability in an autonomous
vehicle. In particular, we propose an optimization approach, where our goal is to
maximize a function that represents the attacker’s objective. As optimizing the
objective function is difficult, we generate a model to guide the search for coun-
terexamples. We then iteratively generate data from our dynamic simulation into
the model to refine the search for adversarial behavior. This updated model feeds
the simulator with behaviors that attempt to maximize the attacker’s objective
and are potentially dangerous to other vehicles in the simulation.

This paper is an extension of our preliminary work D4 [18] presented at
the DDDAS 2024 conference. In our previous work, we had given the adversary
fixed attack signatures, which prevented us from discovering more sophisticated
attack trajectories. In this extension, we also give the attacker the ability to select
arbitrary functions of acceleration and braking and find surprising new emergent
malicious driving maneuvers that we did not find in our previous work.

We make our code openly available on the following GitHub repository
https://github.com/lburbano/acc_verifai and uploaded videos of our re-
sults to help illustrate the practical results of our framework.

2 Related Work

Safety is an essential requirement for CPS, as we want to avoid harm to the
plant and its users. Given a set of safety properties ϕ and a system S, which
has a set of inputs U , we want to determine whether S satisfies ϕ for inputs
U . The intricate interactions between computing and physical systems makes it
difficult to guarantee safety. Moreover, the addition of artificial intelligence (AI)
and machine learning (ML) algorithms makes these problems more complicated.
While there are works focusing on only ML/AI algorithms [2], we need to study
the safety of closed-loop systems.

We identify at least two paths of work: verification and testing. Next,
we provide an overview of safety testing and verification. However, we refer the

D4+ 3

reader to several survey works addressing testing and verification [8,21] or testing
of black-box systems [4].

2.1 Verification

Verification uses mathematical techniques to provide a formal guarantee that
the system S satisfies the properties ϕ for all possible inputs u ∈ U and initial
states x0 ∈ X0.
Formal proofs: Formal proofs provide mathematically rigorous arguments to
show that the CPS satisfies the property ϕ. There are several techniques to
provide these proofs, such as Lyapunov functions [23,22] or control barrier func-
tions [22,30]. Developing proofs usually requires extensive human intervention.
Model checking: Model checking stands as an approach to reduce the re-
quirement of human intervention to obtain formal guarantees. Given a model
of the system and a specification, the model checker returns a certificate of the
correctness or a counterexample showing that the system does not satisfy the
specification.
Reachability: Reachability analysis uses a mathematical model of the system
to estimate the set of possible states in the future. Then, using mathematical
techniques, reachability analysis predicts the CPS’s possible future behavior,
aiming to show that the CPS will not arrive at an unsafe state [19,31], even
when the system has an ML-based controller.
Data driven or simulation guided verification: Several of the previous
techniques may benefit from using data or simulations to obtain formal guaran-
tees. Kapinski et al. [21] use simulations to obtain Lyapunov-like functions to
certify stability or safety. C2E2 [10] uses reachability analysis and simulations to
certify the properties of CPS. S. Paul et al. [27] use model checking for verifica-
tion of Aerospace Systems. Moreover, the authors use the DDDAS paradigm to
perform runtime verification. They incorporate data into the verification process
to refine the models and proofs.

2.2 Falsification

While safety verification provides formal arguments to certify that a system
satisfies a property ϕ, these methods usually do not escalate well with the system
size.

An alternative to verification is falsification, where we want to find conditions
in which the system does not satisfy (or falsifies) a property. Mathematically,
given a system S, and a set of properties ϕ, we want to find inputs u and
initial conditions x0 under which ϕ is not true. These conditions and inputs are
counterexamples sufficient to prove that a CPS does not satisfy ϕ. Therefore,
rather than proving that the system satisfies a property for all possible inputs
and initial conditions, we have to find an example that shows the system does
not satisfy ϕ. While the search for a counterexample is still not easy, it may be
easier than providing formal proof.

4 D. Ortiz Barbosa et al.

Falsification is different than testing. In falsification, we want to find a coun-
terexample to show that the system does not satisfy a property. Commonly, we
use optimization techniques to find these falsifying conditions [4,20]. In testing,
we select several inputs and initial conditions to determine (test) if the system
satisfies the property in those scenarios.
Global optimization: In optimization-based testing, we introduce a math-
ematical function that relates to the safety property we want to test; if the
objective function is negative, then we find a counterexample. We then try to
minimize this function to find inputs and initial conditions that make the system
violate the property ϕ.

Several works have proposed different objective functions [24], but the most
common function is based on temporal logic. With temporal logic, we can de-
scribe properties over the states and time. More specifically, several works use
signal temporal logic (STL) or metric temporal logic (MTL). Fainekos et al.
[14] propose a metric called robustness that we can use to create an objective
function for the optimization.

While several methods for optimization use gradient descent algorithms, we
cannot use these methods for optimizing the robustness function. Gradient-based
optimization assumes the availability of a gradient, and the robustness is not con-
vex or soft with respect to the system inputs, making the gradient not available.
To solve this problem, several works use global optimization algorithms.

Global optimization algorithms do not rely on gradients. Instead, these meth-
ods perform optimization in three steps [21]: 1) we select an input and initial
state to the system, 2) run a simulation and compute the cost function, 3) the op-
timization algorithm selects another set of inputs and states, and repeat the pro-
cess. The particular way of selecting this new input changes on the optimization
method, which includes simulation annealing [28], Bayesian optimization [26],
and cross entropy [7].

2.3 Our work

The previous subsections show the current work on safety verification and fal-
sification. Safety testing attempts to find bugs that lead to the violation of
specification ϕ that may appear during the CPS operation. In this work, how-
ever, we focus on security; rather than finding bugs that may appear in the CPS
operation, we want to find the actions an attacker can perform to exploit the
CPS and lead it to a violation of the specification.

We identify the main differences with previous works: 1) the inputs u to the
system are controlled by the attacker, which maliciously drives the system to an
unsafe state while the attacker is still safe; 2) the necessity of two objectives:
the malicious objective, where the attacker wants to make the system fail a
specification, and the attacker safety objective, where the attacker wants to be
safe while performing the attack.

This work is an evolution of our previous work, where we have attacked
Adaptive cruise controllers (ACC). In our initial study, the attacker was limited
to braking, and the objective was to determine the optimal timing and intensity

D4+ 5

of the braking action [29]. Our hypothesis was that even such a simple maneuver
could induce unsafe behavior. While we could find successful attacks, the ma-
neuvers were too restrictive. Therefore, we later introduced D4 [18], where the
attacker could brake and accelerate. In that paper, however, the attacker had to
follow a fixed pattern while attacking. In this paper, we introduce D4+, where
we extend our previous work by letting the attacker find the pattern and the
shape of the attack; the attacker freely selects the throttle or braking at each
time instant.

3 Preliminaries

We use a model of the system F to simulate environmental conditions. For ex-
ample, in autonomous vehicles, the behavior of the system includes the dynamics
of the vehicles, and the environmental conditions include elements such as the
presence of pedestrians and the behavior of other vehicles.

The variety of scenarios can be parameterized by the vector π, which defines
various elements in the simulation, such as initial conditions. Each selection of
π defines a different test case [15].

The objective is to see if there are conditions π such that the CPS violates
the safety specification. Therefore, safety testing requires two things: a formal
language to define safety for the and a method to find π that produces a vio-
lation of the specification. There are several methods in the literature for both
things [4]. In this paper, we use metric temporal logic as the formal language
and robustness as the way to change the metric temporal logic formula as an
optimization function that we can use when searching for π. We now give details
of these two concepts.

We use metric temporal logic to define the attacker’s objective. We define
metric temporal logic (MTL) inductively as [3]:

φ := ⊤ | p | ¬φ | φ1 ∧ φ2 | φ1 UI φ2

where p ∈ AP is an atomic proposition, φ,φ1, φ2 are MTL formulas, ¬,∧ and ⊤
are the negation and conjunction operators, and true from propositional logic.
U is the until operator. The operator φ1Uφ2 states that φ1 is true until φ2 is
true. For us, it is useful to define the operators eventually FIφ ≡ ⊤UIφ, and
always GIφ ≡ ¬FI¬φ. Each time operator comes with an interval I = [a, b] with
a, b ∈ R≥0. We can also use the disjunction operator φ1 ∨ φ2 ≡ ¬(¬φ1 ∧ ¬φ2).

Before presenting the quantitative semantics of MTL, we need to define a
trajectory T , and the set of trajectories T . Let us define the state of the system
as x ∈ X, where X is the set of all possible states. A trajectory is given by
(t0, x0), (t1, x1),...(tk, xk) where ti ∈ R≥0 and xi ∈ X for all i ∈ {0, ..., k − 1},
with R≥0 the set of nonnegative real numbers and X the set of states of the
vehicles, as we introduced before.

We use the quantitative semantics of MTL. The quantitative semantics have
a function ρ : T ×MTL → R that takes the trajectory T , a specification ψ in
MTL, and produces a real value called robustness. If ρ(T , ψ) > 0, the trajectory

6 D. Ortiz Barbosa et al.

satisfies the MTL formula. If ρ(T , ψ) < 0, the trajectory does not satisfy the
formula. If ρ(T , ψ) = 0, we do not know whether the trajectory satisfies the
formula. Thus, if ρ is greater than zero but close to zero, then the trajectory is
close to not satisfying the MTL formula. We refer the reader to previous works
for the algorithm to recursively compute the robustness [13].

Although researchers have applied these methods for safety validation in sev-
eral systems like autonomous vehicles, we need to apply them to find maneuvers
that an attacker can perform to compromise system safety. We face two main
problems when applying safety validation to find attacks. First, we need to define
the safety specification. While in safety validation, we may have specifications
such as the cars not crashing, in security, an attacker may have several objectives,
such as producing a crash while not being involved. Second, we need to clearly
define the capabilities the attacker has to create the attack. In this paper, we
address those two problems and show how to apply safety validation algorithms
in security to find adversarial maneuvers.

3.1 Use-Case

Attacker

123 0

Fig. 1: Experiment Setup of vehicles performing adaptive cruise control.

To make the safety problems we consider in this paper concrete, let us con-
sider a scenario with N vehicles that move longitudinally, as we present in Fig.
1. As we only consider the longitudinal axis, we can describe each vehicle i with
the position and velocity of the center of mass in one axis, xi and vi, respectively.

Each vehicle implements a switching controller that switches between a cruise
control (when it is trying to maintain a given speed) and an adaptive cruise con-
trol (when it is trying to maintain a fixed distance to the vehicle in front) [17,34].
Before presenting the switching policy, let us first explain both controllers.
Cruise Control: During the cruise control, the vehicle i uses a discrete-time
proportional-integral-derivative (PID) controller to achieve the desired velocity

v
(d)
i . Thus, the acceleration during the cruise control is a

(cc)
i ← PID(vi, v

(d)
i).

Adaptive Cruise Control: When the vehicle i switches to adaptive cruise
control (ACC), the vehicle wants to preserve a distance d(d) with respect to the
vehicle in front and travel with the same velocity. Therefore, vehicle i computes
the acceleration as,

a
(acc)
i = K

(p)
i

(
xi−1 − xi − d(d)

)
+K

(v)
i (vi−1 − vi)

where K
(p)
i and K

(d)
i are tuning parameters.

D4+ 7

Switching policy: There are several policies in the literature for adaptive cruise
control. We select a policy that uses position and velocity for the switching
decision and hysteresis. Thus, the acceleration controller becomes:

ai =

{
a
(cc)
i if (xi−1 − xi) ≥ d(d) + ϵ(x) ∨ vi ≥ v(d)i + ϵ(v)

a
(acc)
i if (xi−1 − xi) ≤ d(d) ∧ vi ≤ v(d)i

(1)

where ϵ(x) > 0, ϵ(v) > 0 are hysteresis variables close to zero. We selected this
policy because it avoids continuous switching between controllers, which may
create issues.
Low-level controller: The actual inputs u(t) to the vehicle are throttle and
braking instead of acceleration. Then, we implement a low-level controller that
computes the throttle and braking the vehicle should apply at each time-instant,
given the acceleration from Eq. (1). We constrain this controller so that the
vehicle cannot apply the throttle and brake at the same time.

3.2 Threat Model

We assume the attacker can control one car. This means that the attacker can
apply any arbitrary throttle, braking, or steering at any time instant. However,
we assume the attacker cannot move backward.

For simplicity, let us assume that the attacker is the vehicle in front of the
cars’ array. We will enumerate the attacker with the index i = 0 and the vehicles
in the rear in order from i = 1 to i = N . Let us define the distance between the
center of mass of vehicle i and vehicle j as: di,j := |xi−xj |, where xi and xj are
vehicle positions of vehicle i and j, along the straight path. Now, let us define
the atomic proposition, φi := (di,i+1 > dsafe), where dsafe is the safety distance
between two consecutive vehicles.

We define the attacker specification in two parts: 1) the attacker wants the
other vehicles to crash, and 2) the attacker does not want to be involved in a
crash. We can define those two objectives with MTL. We encode the first part
of the attacker objective as

ϱadv = F

N−1∨
i=1

¬φi.

In words, it means that at least two vehicles (other than the attacker) crash
eventually. For the attacker’s safety, we define the safety specification ϱsafe as,

ϱsafe = Gφ0

meaning that the distance between the attacker’s vehicle and vehicle 1 is always
larger than the safety distance. Then, the attacker wants to satisfy

ψ = ϱadv ∧ ϱsafe. (2)

8 D. Ortiz Barbosa et al.

4 Discovering Adversarial Maneuvers

In this Section, we present how we can identify vulnerabilities to the attacks
presented in the previous section. We summarize the approaches in Fig. 2. We
first present the method we use for finding adversarial maneuvers in our previous
work, and then show the proposed modification.

For the discussion in the next subsections, let us denote the attacker’s action
at a time instant k as mk ∈ A, where A is the set of possible actions that
the attacker can apply. Therefore, as a consequence of the actions m0, ...,mk−1,
the simulator or environment creates a trajectory T . Thus, we can model this
simulator as a function F : Ak → T . That is, a function that maps from the
attacker’s actions to a trajectory.

For our specific case, we consider that the set of possible actions is A =
[−1, 1]. This means that the attacker selects an action between −1 and 1, where
−1 is the maximum brake and 1 is the maximum throttle. This way, we also
impose the constraint that the attacker does not brake and accelerate simulta-
neously.

Simulator

Victims'
controllers

Optimizer/
sampler

Attacker's
Controller

Black-box

Throttle
Brake

(a) Parametric

Simulator

Victims'
controllers

Optimizer/
sampler

Attacker's
Controller

Black-box

Throttle
Brake

(b) Nonparametric

Fig. 2: Dynamic data-driven discovery (D4+) of adversarial maneuvers.

4.1 Parametric attacks

In our previous work, we propose parametric attacks. In this setup, the attacker
followed a fixed-attack pattern, for example, a stop-and-go maneuver. The at-

D4+ 9

tacker generates an acceleration pattern using a function s(π) parameters π and
generates the actions of k−1 actions. The attack parameters π belong to a set of
feasible parameters Π. For instance, the attacker can follow a sinusoidal signal,
where the attack parameters are the frequency and the amplitude. Formally, s
is a function s : Π → Ak. As the attacker wants to satisfy the objective in
Section 3.2, it wants to minimize the robustness ρ. Therefore, we proposed the
optimization problem,

max
π

ρ(F (s(π)), ψ)

s.t. π ∈ Π
(3)

As we mentioned in Sec. 2, we do not have the gradient when using the robustness
function. Consequently, we use global optimization to find the attack signal.

Imposing the constraint to the attack, we hoped that the optimizers could
find attacks more easily as the acceleration pattern s(t, π) as the search space was
smaller. However, this also limits the maneuvers that an attacker can perform.
In the next section, we present a new version of our attack that lets the attacker
search over a broader set of maneuvers while preserving the capacity to solve
the optimization problem.

4.2 Nonparametric attack

In this section, we extend our previous work and let the attacker follow a broader
acceleration pattern, creating a new challenge to create these new trajectories.
Instead of selecting parameters to generate an attack, we directly generate the
attacker’s actions. Therefore, the attacker solves the optimization problem,

max
m0,...,mk−1

ρ(F (m0, ...,mk−1), ψ)

s.t m0, ...,mk−1 ∈ A,
(4)

where mi is the action the attacker selects at each time step. Note that the
attacker no longer optimizes over a set of parameters but over the action set
itself. Therefore, we call this a nonparametric attack.

One option for this attack is to select a pair of acceleration and throttle
actions for each time instant. While this approach could work, the optimization
problem is not easy to solve, as we have several decision variables. To address the
dimensionality problem, we use a similar approach to previous works in safety
validation [1]. The attacker does not select an action at each time step. Instead,
the attacker takes an action separated by ∆ > 0 seconds and uses interpolation
to find the actions in between.

5 Evaluation

For our experiments, we use the CARLA simulator [9] with our initial setup
depicted in Fig. 3. CARLA is an open-source vehicle simulation platform that

10 D. Ortiz Barbosa et al.

ATTACKER

Setpoint
distance d(d)

Victims

Setpoint
distance d(d)

Setpoint
distance d(d)

Fig. 3: Attack setup in CARLA

is regularly maintained and can give accurate measures of the conditions of the
vehicles in a simulation, including precise distance measurements and positions
along the road.

We set up our testing scenario in CARLA’s map Town06main road, a straight
one-way 4-lane highway. We placed four vehicles in an array as shown in Fig.
3 (a video of an attack is available at: https://youtu.be/3gtRjZhQ1x0?si=
KGBciN4lmmf6x6eO), with the leading vehicle being the attacker; we assume a
busy highway where lane change is impossible due to traffic. As previously stated,
the attacker intends to cause its followers to crash without getting involved in
the accident.

Throttle/
brake

...

(a)

Throttle/
brake

...

Non-adversarial
control

(b)

Throttle/
brake

(c)

Fig. 4: Diagram of our three attack maneuvers: a) Persistent b) Intermittent c)
Non-Parametric

D4+ 11

5.1 Attack design

Parametrized attacks: For our parametrized attacks, we consider two attack
signals: persistent (Fig. 4a) and intermittent (Fig. 4b). The variables in red
(in the figures) are the parameters the attack needs to define to generate an
attack: for the persistent attack, πs = (c, f, ta) and for the intermittent attack,
πp = (t1, t2, t3, t4, c1, c2).

We test these strategies in setpoint distances from 2 to 9 meters bumper to
bumper, with a target speed of 20 m/s.

Nonparametrized attacks: We consider the following design for our non-
parametric attack: (Fig. 4c). The variables in red (in the figure) represent the
throttle/brake that the attacker determines to generate the attack. As we said,
we do not create a different attack signal at each time step. Instead, the attacker
selects a new attack command every ∆t = 6 s and performs interpolation to
obtain the intermediate values.

An attacker should follow a smooth behavior to avoid suspicious behavior.
Therefore, we use spline interpolators as they preserve the softness of the at-
tacker’s commands. In particular, we select PCHIP (Piecewise Cubic Hermite
Interpolated Polynomial), a spline that does not overshoot [16], to ensure that
the attacker applies actions that satisfy the objective function constraints.

An attacker can deploy the attack in different stages of the system deploy-
ment. We consider the following two stages.
Steady state attack: The adversary deploys the attack when the vehicles have
arrived at the target velocity.
Transient attack: The adversary deploys the attack when all vehicles begin from
rest (speed = 0). This scenario, for instance, emulates the vehicles using ACC
after a light.

While in our previous work, we only considered the steady state attack, in
this paper, we introduce the transient attack.

To evaluate our new attack, we change the bumper-to-bumper distances from
3 to 15 meters. Additionally, We explored how different speeds could affect the at-
tacker’s behavior and effectiveness by conducting experiments with target speeds
for the vehicle stream of 20, 25, and 30 m/s.

5.2 Falsifier

VerifAI and Scenic: VerifAI and Scenic are tools to conduct safety validation.
Scenic is a probabilistic programming language. In Scenic, we can define all the
conditions for creating the attack. In particular, we can define the set of attack
parameters as a probabilistic distribution.

In addition to Scenic, we use VerifAI. It is a scenario-testing safety validation
tool fully compatible with CARLA. Additionally, it has global optimizers that,
together with Scenic, allow us to solve the optimization problems from Eq. (3)
and Eq. (4).

12 D. Ortiz Barbosa et al.

5.3 Optimizers

To find these parameters, we need to solve the optimization problems from Eq.
4 represented in Fig. 2. We study use and study two optimization algorithms to
solve these problems: Bayesian optimization (BO) [26] and Cross entropy
(CE) [7]. We next introduce these two optimization methods. For simplicity,
we drop the parameters of the robustness function ρ. Moreover, we use the
nonparametric attack to explain these methods. However, the only modification
is the search space.
Bayesian optimization (BO) [26]: creates a surrogate model (such as a prob-
ability distribution or a Gaussian process) of the optimization function over the
attack actions m0, ...,mk−1 in Eq. 4. Initially, the surrogate model has an a
priori belief of the optimization function. In the case of Equation 4, Bayesian
Optimization samples one element m0, ...,mk−1 previously known. Afterward,
we run the simulation to obtain a new trajectory F (m0, ...,mk−1) and evalu-
ate the objective function ρ. We update this surrogate model to obtain the a
posteriori distribution; several strategies exist to make this update. We repeat
this process for both problems until a stop criteria, is not such as a maximum
number of iterations.
Cross entropy (CE) [7]: is a global optimization based on importance sam-
pling. It assumes that the failure cases distribute according to distribution q(·, θ),
where θ parametrizes the distribution. The objective is then finding the optimal
parameters θ∗. For Eq. 4, CE follows the next procedure. First, CE samples the
attack actions m0, ...,mk−1 from the distribution q(·, θ) and runs simulations to
obtain the trajectory F (m0, ...,mk−1) and objective function ρ. Second, CE uses
this value to estimate the optimal parameters θ∗ by minimizing the Kullback-
Leibler divergence between the distribution q(·, θ) and q(·, θ∗). For more details
on how to perform that minimization, please refer to [7]. Finally, CE repeats the
process until some stopping criteria.

6 Numerical results

We begin by analyzing the number of successful attacks that we can find using
our attacks. Table 1 shows a summary of all of the attacks in which the attacker
successfully creates a crash between the other vehicles while avoiding crashing
themselves. We find that persistent attacks tend to crash vehicles 1-2, while
intermittent attacks tend to crash vehicles 2-3. Intermittent attacks found with
CE tend to find a collision later in time, and the most dangerous crashes (those
with the largest speed differences) are found with persistent attacks.
Most attacks happen when distance is 5-7 meters: Fig. 5 shows that most
attacks concentrate in the 5 to 7-meter setpoint range (the distance the ACC
tries to keep from bumper to bumper with the vehicle ahead). Intuitively, the
larger the setpoint distance, the fewer attacks occur. When the setpoint distance
is 14 meters or higher, the controller can avoid any collision regardless of the
attack’s strategy, as it has enough time and distance to activate its mechanisms
correctly.

D4+ 13

Table 1: Attack results statistics

Attack name
Number of

crashes
Vehicle 1-2

crashes
Mean (Std) time
till collision (s)

Collision location
along road (m)

Speed differences in
crashes (km/h)

Persistent BO 246 155 (63%) 18.3 (3.6) 87.6 (55.6) 8.9 (4.0)
Persistent CE 185 112 (61%) 17.8 (2.9) 79.0 (40.7) 8.7 (3.3)
Intermittent BO 178 82 (46%) 17.1 (6.5) 70.6 (112.6) 6.7 (3.8)
Intermittent CE 169 83 (49%) 28.9 (10.4) 258.8 (166.2) 5.9 (4.7)

0 3 6 9 12 15 18 21 24
Speed difference (km/h)

2
3
4
5
6
7
8
9Se

tp
oi

nt
 d

ist
an

ce
 (m

) 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
14 12 22 23 17 1 2 0
4 13 24 14 9 0 1 1
4 6 14 21 22 2 0 0
0 0 1 3 1 1 0 0
1 4 2 4 1 0 0 0

Persistent BO

0 3 6 9 12 15 18 21 24
Speed difference (km/h)

1 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
6 4 18 24 10 2 0 0
4 10 25 21 3 0 1 0
2 7 8 21 8 1 0 0
0 2 1 2 0 0 0 0
1 0 0 0 0 0 0 0

Persistent CE

0 3 6 9 12 15 18 21 24
Speed difference (km/h)

7 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
12 14 3 45 15 0 0 0
9 43 18 0 0 0 0 0
1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
2 2 1 2 1 0 0 0

Intermittent BO

0 3 6 9 12 15 18 21 24
Speed difference (km/h)

16 5 1 0 0 0 0 0
25 15 0 0 0 0 0 0
10 20 1 1 0 0 0 0
2 17 11 11 20 4 3 0
1 2 1 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0

Intermittent CE

Fig. 5: Number of counter-examples (crashes) with different settings.

Attacker crashes when vehicles are close: Intuitively, the smallest distance
may lead to more crashes as vehicles have a shorter time to react to the attacker’s
maneuvers. However, when the vehicles are closer than 5m, we cannot find
several successful attacks.

In distances in the 2 to 4-meter range, the attacker collides with the vehicle
behind them. Table 2 shows how, in Intermittent and Persistent attacks, the
attacker fails by crashing most of the time with the vehicle immediately be-
hind them. Specifically, we can confirm that all the failures in setpoint 2 of the
Persistent attack are due to the attacker crashing.

Table 2: Attacker crashes in distances 2-5 meters

Attack name
Attacker

crash 2 m
No crash

2 m
Attacker

crash 3 m
No crash

3 m
Attacker

crash 4 m
No crash

4 m
Attacker

crash 5 m
No crash

5 m

Persistent BO 100 0 100 0 100 0 9 0
Persistent CE 100 0 99 1 96 3 32 4
Intermittent BO 84 9 89 11 90 8 0 11
Intermittent CE 40 38 33 27 32 36 0 32

Likewise, Fig. 5 shows that BO in the Persistent attack produces the worst
crash with a speed difference between vehicles of 25 km/h. In a practical sense,
this speed difference implies that the crash is severe as the energy increases
quadratically with the speed. Also, higher relative speed was reported to be
associated with serious injury crashes following high-order power functions [11].

To better understand the generated vehicle trajectories, we employ a time-
space diagram, a well-established tool in traffic operation analysis [5,33] to effec-
tively provide information on vehicle position, speed, and acceleration. In Fig. 6,

14 D. Ortiz Barbosa et al.

0 5 10 15 20 25 30
Time (s)

150

100

50

0

50
Di

st
an

ce
 a

lo
ng

 ro
ad

 d
ire

ct
io

n
(m

)

Ve
hi

cle
 1

-2
 c

ol
lis

io
n

8

0

8

16

24

32

40

At
ta

ck
er

 a
cc

el
er

at
io

n
(m

/s
2)

Attacker
Vehicle 1

Vehicle 2
Vehicle 3

First attack
Attacker acceleration

(a) Persistent BO

0 5 10 15 20 25 30
Time (s)

150

100

50

0

50

100

150

Di
st

an
ce

 a
lo

ng
 ro

ad
 d

ire
ct

io
n

(m
)

Ve
hi

cle
 2

-3
 c

ol
lis

io
n

8

0

8

16

24

32

40

At
ta

ck
er

 a
cc

el
er

at
io

n
(m

/s
2)

Attacker
Vehicle 1

Vehicle 2
Vehicle 3

First attack
Attacker acceleration

(b) Persistent CE

20 25 30 35 40 45
Time (s)

0

100

200

300

400

500

600

Di
st

an
ce

 a
lo

ng
 ro

ad
 d

ire
ct

io
n

(m
)

Ve
hi

cle
 1

-2
 c

ol
lis

io
n

8

0

8

16

24

32

40

At
ta

ck
er

 a
cc

el
er

at
io

n
(m

/s
2)

Attacker
Vehicle 1
Vehicle 2

Vehicle 3
First attack

Second attack
Attacker acceleration

(c) Intermittent CE

Fig. 6: Time-space diagram for large speed differences at collision (> 15km/h).

we can see some of the most dangerous attacks, with the most common attack
strategy that consists of a sudden brake (Figs 6a and 6b). However, in Fig. 6c,
we can see a pattern that only happens in the Intermittent attack when being
sampled by CE. The attacker starts in the first window, accelerating, trying to
leave behind the vehicles behind them. In the second attack window, they make
the sudden brake, generating the collision between vehicles 1 and 2. The circled
area in Fig. 7 shows more examples of this acceleration spike that CE gets in
the first interval of the attack while comparing it to the different acceleration
patterns created by BO.

0 10 20 30 40 50 60
Simulation seconds (s)

4

2

0

2

4

A
tta

ck
er

's
ac

ce
le

ra
tio

n
(m

/s
2)

CE
BO

Fig. 7: Combined Vehicle Accelerations for Intermittent attack

Table 3: Free attack results statistics

Attack Name
Number of

crashes
20 (m/s)
crashes

25 (m/s)
crashes

30 (m/s)
crashes

Interpol. BO Rest 1594 467 (29.30%) 473 (29.67%) 654 (41.03%)
Interpol. CE Rest 369 122 (33.06%) 77 (28.87%) 170 (46.07%)
Interpol. BO Stable 1840 664 (36.09%) 619 (33.64%) 557 (30.27%)
Interpol. CE Stable 869 244 (28.08%) 281 (32.33%) 344 (39.59%)

D4+ 15

7 Non-Parametric Attacks:

3 4 5 6 7 8 9 10 11 12 13 14 15
Distance (m)

30

25

20

Sp
ee

d
(m

/s
)

10 11 23 58 43 57 52 24 47 82 82 82 83

9 7 16 33 91 83 41 50 5 50 45 42 1

52 23 31 76 74 72 50 64 2 18 5 0 0

(a) Transient BO

3 4 5 6 7 8 9 10 11 12 13 14 15
Distance (m)

30

25

20

Sp
ee

d
(m

/s
) 5 17 16 13 20 18 17 17 8 14 10 11 4

9 11 14 10 18 6 5 2 1 1 0 0 0

21 30 21 17 19 4 8 0 0 0 1 1 0

(b) Transient CE

3 4 5 6 7 8 9 10 11 12 13 14 15
Distance (m)

30

25

20

Sp
ee

d
(m

/s
) 67 18 29 16 36 68 51 53 60 54 52 47 6

54 45 47 14 78 85 85 73 50 46 39 0 3

84 89 91 73 69 79 84 75 0 17 3 0 0

(c) Steady BO

3 4 5 6 7 8 9 10 11 12 13 14 15
Distance (m)

30

25

20

Sp
ee

d
(m

/s
) 3 12 14 38 53 36 49 53 37 20 5 13 11

11 50 47 33 43 37 32 8 18 2 0 0 0

43 34 46 19 58 30 8 0 4 1 1 0 0

(d) Steady CE

Fig. 8: Heatmaps of collisions by experiments

We show basic statistics of the new maneuvers in Table 3. Overall, BO shows a
significantly higher number of successes than CE, finding 4.3 times more attacks
when starting from the transient period and 2.1 more attacks after the steady
state period. Table 3 also indicates that the traffic flow is more vulnerable when
already in a steady state, we can infer this is due to the vehicles having to
perform more complicated acceleration patterns to maintain the stable state.

Fig. 8 shows that successful attacks happen in most of the conditions tested,
and the most significant number of attacks appear to occur when the vehicles
want to keep a distance between each other of between 7 and 9 meters. Speed
tends to influence most of the attacks in these ranges, whereas the minor target
speeds significantly impact the number of attacks discovered. Intuitively, we
can conclude that this range of distances allows the attacker to conduct its
throttle and brake maneuvers in a way that avoids being involved in the crash.
In contrast, the lack of success on more considerable distances can be attributed
to the ACC having enough time to react at a slower speed, which diminishes the
number of attacks further.

Furthermore, Fig. 8 also shows how increased speed helps the attacker suc-
ceed even in greater distances, especially when using BO. This shows that al-
though there are especially vulnerable setpoint distances for the ACC, the attack
works for a distance that could, in principle, be considered safe to keep in an
environment as tight as the one presented.

Another highlight is the difference in the number of attacks gathered by
both sampling methods. While BO gathers 1594 successes, CE has a significant
number of lower successes with 369 successful attacks when starting from the
transient period. We attribute this to the nature of each sampling technique:

16 D. Ortiz Barbosa et al.

BO converges faster, focusing on maximizing the values that yield more results
without exploring as much of the feature space. On the other hand, CE tends to
explore more by sampling from the distribution more evenly and being slower
to find successful attacks. With these insights we mainly focus the rest of this
section on the results of BO.

0 s 6 s 12
 s

18
 s

24
 s

30
 s

36
 s

42
 s

Time (s)

-0.89

-0.67

-0.44

-0.22

0.00

0.22

0.44

0.67

0.89

Th
ro

ttl
e/

Br
ea

k

41 0 62 16 0 14 22 16

7 0 0 0 0 0 2 1

4 0 1 1 0 5 6 5

5 0 0 13 1 8 16 7

0 0 0 12 0 13 4 3

0 0 0 6 5 5 3 6

0 0 0 3 6 0 1 3

0 0 0 0 1 0 0 1

6 63 0 12 50 18 9 21

(a) Cluster 1 Bayesian Optimiza-
tion

0 s 6 s 12
 s

18
 s

24
 s

30
 s

36
 s

42
 s

Time (s)

-0.89

-0.67

-0.44

-0.22

0.00

0.22

0.44

0.67

0.89

Th
ro

ttl
e/

Br
ea

k

25 0 28 11 28 9 13 10

0 0 0 0 0 2 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

0 0 0 2 0 0 4 0

0 0 0 0 0 0 1 0

0 0 0 2 0 1 1 0

0 0 0 0 0 0 0 0

3 28 0 13 0 16 9 16

(b) Cluster 2 Bayesian Optimiza-
tion

Fig. 9: Values of parameters in each successful attack in each cluster for Bayesian
Optimization with speed 25 and setpoint distance 7 (from rest)

7.1 Attacks during transient period:

To understand how the attacker behaves, we analyze the parameters that gener-
ate the most significant number of successful attacks by sampler. In particular,
we decided to perform a cluster analysis combining K-means [25] and DBSCAN
[12], to find the patterns in the difference in the parameter values the attacker
selects. Using the Elbow Rule to analyze the inertia as a function of the cluster,
this alongside the DBSCAN result, helped us identify that we could divide our
attack into two or, at most, three clusters, depending on the case. Fig. 9 shows
the two clusters produced for the most successful conditions using BO starting
at rest.
Attacker maneuver: At the clusters in Fig. 9, we can notice a consistent
maneuver by the attacker that we depict in Alg. 1. By activating the attack
before the vehicle is in a stable state, the attacker immediately halts and then
engages full acceleration, creating the maximum distance between it and the
previous vehicle. This allows the vehicles behind to accelerate freely and try to
reach the target speed of 25 m/s. However, the attacker takes advantage of this
situation and, in the next instance, decides to do another hard brake that causes
a collision between the other vehicles.

To ensure this maneuver was the most significant, we further describe the be-
havior of each cluster in Fig. 10. In it we depict the mean and standard deviation
of the attacks in each cluster with the overall median of all successful attacks
in those particular conditions. Fig 10a and Fig 10b show almost the exact same

D4+ 17

Algorithm 1 Transient Period Maneuver

Apply Max Brake at t = 0
Apply Full Throttle at t ≈ 6
Apply Max Brake at t ≈ 12

0 10 20 30 40
Time (s)

−1.0

−0.5

0.0

0.5

1.0

Br
ea

k/
Th

ro
ttl

e

Crash Median

(a) Cluster 1 mean and standard
deviation Bayesian Optimization

0 10 20 30 40
Time (s)

−1.0

−0.5

0.0

0.5

1.0

Br
ea

k/
Th

ro
ttl

e

Crash Median

(b) Cluster 2 mean and standard
deviation Bayesian Optimization

Fig. 10: Successful attack maneuvers for Bayesian Optimization with speed 25
and setpoint distance 7 (transient period)

values for the first three parameters, with the median indicating that most of
the attacks happen within the range of 0 to 12 seconds. Furthermore, inspecting
the cluster with the most attacks, Cluster 1, we can see a pattern emerging with
another peak of acceleration followed by a brake with a lower standard deviation
than in Cluster 2. This leads us to conclude that during a transient period, the
attacker prefers a maneuver of max brake to max acceleration.

0 10 20 30 40
Time (s)

−1.0

−0.5

0.0

0.5

1.0

Br
ea

k/
Th

ro
ttl

e

Crash Median

(a) Cluster 1 mean and standard
deviation Cross-Entropy

0 10 20 30 40
Time (s)

−1.0

−0.5

0.0

0.5

1.0

Br
ea

k/
Th

ro
ttl

e

Crash Median

(b) Cluster 2 mean and standard
deviation Cross-Entropy

Fig. 11: Successful attack maneuvers for Bayesian Optimization with speed 25
and setpoint distance 7 (transient period)

For comparison, we analyze the CE clusters, these were considerably more
ineffective in finding successful attacks. In Fig. 11 we notice that cluster two has
a more defined pattern with less variation than cluster one and aligns its brake
actions with the median of the attacks. The alignment allows us to conclude
that CE mainly focuses on finding one specific action point to brake, avoiding
BO’s oscillation pattern, which can explain why is less successful when finding
attacks.

18 D. Ortiz Barbosa et al.

0 s 6 s 12
 s

18
 s

24
 s

30
 s

36
 s

42
 s

Time (s)

-0.89

-0.67

-0.44

-0.22

0.00

0.22

0.44

0.67

0.89

Th
ro

ttl
e/

Br
ea

k

1 0 1 4 1 38 16 43

1 0 0 1 0 0 0 0

0 0 0 1 0 1 1 0

1 0 0 2 0 1 1 0

0 0 0 5 1 1 2 0

1 0 1 2 6 1 4 0

1 0 1 4 0 0 2 0

0 0 0 3 0 0 2 0

38 43 40 21 35 1 15 0

(a) Cluster 1 Bayesian Optimiza-
tion

0 s 6 s 12
 s

18
 s

24
 s

30
 s

36
 s

42
 s

Time (s)

-0.89

-0.67

-0.44

-0.22

0.00

0.22

0.44

0.67

0.89

Th
ro

ttl
e/

Br
ea

k

0 0 9 23 11 12 5 26

0 0 0 1 0 0 0 0

0 0 1 0 2 0 0 0

0 0 0 0 2 2 2 0

0 0 1 1 5 1 1 0

0 0 0 0 1 3 1 0

0 0 0 0 0 2 1 0

0 0 0 0 0 0 0 0

26 26 15 1 5 6 16 0

(b) Cluster 2 Bayesian Optimiza-
tion

0 s 6 s 12
 s

18
 s

24
 s

30
 s

36
 s

42
 s

Time (s)

-0.89

-0.67

-0.44

-0.22

0.00

0.22

0.44

0.67

0.89

Th
ro

ttl
e/

Br
ea

k

0 0 0 20 3 21 4 0

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 1 0

0 0 0 0 0 0 3 0

0 0 0 0 1 0 2 3

0 0 0 0 2 0 2 2

0 0 0 0 0 0 0 0

22 22 22 1 14 1 10 17

(c) Cluster 3 Bayesian Optimiza-
tion

Fig. 12: Values of variables in each successful attack in each cluster for Bayesian
Optimization with speed 20 and setpoint distance 5 (after 15 s)

7.2 Attacks after steady state period

We perform the same analysis for the attacks that start after the vehicles reach
a steady state speed and correspondingly perform clustering, aiming to discover
patterns selected by the attacker. In this case, we divide BO into three clusters
by combining elbow rule and DBSCAN measurements. These clusters confirm
the tendency of this sampler to focus on the extreme values to get the attacks,
and, contrary to the previous scenario, the attacker accelerates on the first three
action points instead of braking.

Attacker maneuver:Comparing clusters in Fig. 9 with the ones in Fig. 12
shows an important difference. While the transient attack focuses on instant
braking initially, in this case, after stabilization, the attacker applies maximum
acceleration most of the time for up to 20 seconds and aims to increase the
space as much as possible before performing a hard stop. Afterward, the attacker
mainly accelerates at 36 seconds, maximizing distance, and brakes again, trying
to generate an oscillation. However, cluster 2’s strategy is much more diverse
after the action point in 18 seconds, which indicates that the attacks in this
cluster do not find a clear attack signal as easily. We can extract an attack
maneuver that emerges from these clusters, particularly in the first 3 timesteps
that we illustrate in Alg. 2

D4+ 19

Algorithm 2 Steady State Maneuver

Apply Full Throttle at t ≈ 0
Apply Max Brake at t ≈ 30
Apply Full Throttle at t ≈ 36
if no crash then

Apply Max Brake at t ≈ 42
end if

0 10 20 30 40
Time (s)

−1.0

−0.5

0.0

0.5

1.0

Br
ea

k/
Th

ro
ttl

e

Crash Median

(a) Cluster 1 mean and standard
deviation Bayesian Optimization

0 10 20 30 40
Time (s)

−1.0

−0.5

0.0

0.5

1.0

Br
ea

k/
Th

ro
ttl

e

Crash Median

(b) Cluster 2 mean and standard
deviation Bayesian Optimization

0 10 20 30 40
Time (s)

−1.0

−0.5

0.0

0.5

1.0

Br
ea

k/
Th

ro
ttl

e

Crash Median

(c) Cluster 3 mean and standard
deviation Bayesian Optimization

Fig. 13: Successful attack maneuvers for Bayesian Optimization with speed 20
and setpoint distance 5 (after steady state period)

Looking further into the clusters in Fig. 13, the median line reveals that the
most significant action points are 36 and 42 seconds, as half of the attacks occur
here. This could indicate that the final braking action taken by the biggest clus-
ters, one and two, in their last action points is the most significant. In contrast,
the most consistent oscillation pattern in cluster 3 (Fig. 13c) could result from
most attacks before the median line.

In comparison, CE has considerably less success in this area. However, there
is a similarity at the beginning of the attacks in Fig. 14 with an acceleration
and then a steady brake that, contrary to BO, has a more measured approach.
In this case, the median does not provide much insight as its position closely
aligns with the center of the attack, making it challenging to infer which braking
action effectively caused the attack.

8 Conclusion

Our results can help guide vehicle designers in maintaining a minimum distance
between vehicles. We also highlight the danger that the possibility of speed dif-
ferences above 15km/h can have on a potential crash. Likewise, our results show

20 D. Ortiz Barbosa et al.

0 10 20 30 40
Time (s)

−1.0

−0.5

0.0

0.5

1.0

Br
ea

k/
Th

ro
ttl

e

Crash Median

(a) Cluster 1 mean and standard
deviation Cross-Entropy

0 10 20 30 40
Time (s)

−1.0

−0.5

0.0

0.5

1.0

Br
ea

k/
Th

ro
ttl

e

Crash Median

(b) Cluster 2 mean and standard
deviation Cross-Entropy

Fig. 14: Successful attack maneuvers for Cross-Entropy with speed 20 and set-
point distance 7 (after steady state period)

how an attacker can manufacture different patterns with diverse acceleration and
braking actions to successfully cause a crash. This indicates that a clever attacker
can develop systematic patterns that significantly increase the chance of a crash
and show that extreme changes in acceleration can cause many crashes. ACC
controllers are also vulnerable to more complex attacks with more variations.

While malicious drivers can also cause crashes with human drivers, there are
two main differences in testing these attacks with specific autonomous vehicles:
(1) If the attacker finds an attack, it can be exploited and reproduced with pre-
dictable consequences in a large-scale. (2) The attacker has the confidence that
the tested autonomous vehicle will not crash the malicious driver. In contrast,
attacking human drivers will have more unpredictable consequences and might
end in the attacker’s vehicle being rear-ended more often than not.

The experiments show that BO is consistently more effective at discovering
attacks than CE. We can attribute this to the way BO works, prioritizing the best
point based on prior knowledge, and is generally more effective when optimizing
a lower amount of variables. CE, on the other hand, works by sampling over a
distribution and requires a more significant amount of iterations to find the best
solution. As our experiments are limited to 100 samples per configuration, it is
not enough for CE to get the best solution.

However, there are disparities in how BO and CE perform in our experiments.
In our parametric attacks, the difference in the number of attacks between CE
and BO is significantly lower than in non-parametric attacks. This is driven by
the fact that our parametric attacks restrict the search space and have fewer
variables to consider which benefits CE.

It is also important to highlight our newly discovered attack maneuvers;
we find that overall attacks after the steady state are more effective, with the
attacker favoring a pattern of accelerating to gain distance and then braking
and, when failing, trying again. This pattern is followed mainly by Cluster 1 in
Fig. 12a with the most successful attacks in its configuration and most often
crashing the other vehicles in points between 36 and 42 on its second try.

To mitigate these vulnerabilities ACCs could implement setpoint distances
that show resilience in our experiments. In Fig. 8, the attacker is least successful
in cases where the setpoint distance is at least 11 meters between vehicles in both
steady and transient states. This implementation could considerably reduce the

D4+ 21

effects of an attack, particularly at slower target speeds of 20 m/s. Moreover,
ACC controllers could adopt strategies such as [32] that can handle different
distances at different speeds.

In future work, we plan to consider more sophisticated malicious drivers that
swerve in and out of traffic, as well as more sophisticated autonomous vehicle
stacks, such as Apollo and Autoware.

Acknowledgments This material is based upon work supported in part by the
Air Force Office of Scientific Research under award number FA9550-24-1-0015, by
the Google-CAHSI IRP program, and by the National Center for Transportation
Cybersecurity and Resiliency (TraCR) (a U.S. Department of Transportation
National University Transportation Center–USDOT Grant #69A3552344812)).

References

1. Akazaki, T., Liu, S., Yamagata, Y., Duan, Y., Hao, J.: Falsification of cyber-
physical systems using deep reinforcement learning. In: Formal Methods: 22nd
International Symposium, FM 2018, Held as Part of the Federated Logic Con-
ference, FloC 2018, Oxford, UK, July 15-17, 2018, Proceedings 22. pp. 456–465.
Springer (2018)

2. Blasch, E., Bin, J., Liu, Z.: Certifiable artificial intelligence through data fusion.
arXiv preprint arXiv:2111.02001 (2021)

3. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R., et al.: Handbook of model
checking, vol. 10. Springer (2018)

4. Corso, A., Moss, R., Koren, M., Lee, R., Kochenderfer, M.: A survey of algorithms
for black-box safety validation of cyber-physical systems. Journal of Artificial In-
telligence Research 72, 377–428 (2021)

5. Daganzo, C.F.: Fundamentals of transportation and traffic operations. Emerald
Group Publishing Limited (1997)

6. Darema, F., Blasch, E., Ravela, S., Aved, A.J.: Handbook of Dynamic Data Driven
Applications Systems, vol. 2. Springer (2023)

7. De Boer, P.T., Kroese, D.P., Mannor, S., Rubinstein, R.Y.: A tutorial on the cross-
entropy method. Annals of operations research 134, 19–67 (2005)

8. Deshmukh, J.V., Sankaranarayanan, S.: Formal techniques for verification and test-
ing of cyber-physical systems. Design Automation of Cyber-Physical Systems pp.
69–105 (2019)

9. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: Carla: An open
urban driving simulator (2017)

10. Duggirala, P.S., Mitra, S., Viswanathan, M., Potok, M.: C2e2: A verification tool
for stateflow models. In: Tools and Algorithms for the Construction and Analy-
sis of Systems: 21st International Conference, TACAS 2015, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2015,
London, UK, April 11-18, 2015, Proceedings 21. pp. 68–82. Springer (2015)

11. Elvik, R.: The Power Model of the relationship between speed and road safety:
update and new analyses. No. 1034/2009 (2009)

12. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In: Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining. p. 226–231.
KDD’96, AAAI Press (1996)

22 D. Ortiz Barbosa et al.

13. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications. In: In-
ternational Workshop on Formal Approaches to Software Testing. pp. 178–192.
Springer (2006)

14. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for
continuous-time signals. Theoretical Computer Science 410(42), 4262–4291 (2009)

15. Fremont, D.J., Kim, E., Pant, Y.V., Seshia, S.A., Acharya, A., Bruso, X., Wells, P.,
Lemke, S., Lu, Q., Mehta, S.: Formal scenario-based testing of autonomous vehicles:
From simulation to the real world. In: 2020 IEEE 23rd International Conference
on Intelligent Transportation Systems (ITSC). pp. 1–8. IEEE (2020)

16. Fritsch, F.N., Carlson, R.E.: Monotone piecewise cubic interpolation. SIAM Jour-
nal on Numerical Analysis 17(2), 238–246 (1980), http://www.jstor.org/stable/
2156610

17. Haspalamutgıl, K., Adali, E.: Adaptive switching method for adaptive cruise con-
trol. In: 2017 21st International Conference on System Theory, Control and Com-
puting (ICSTCC). pp. 140–145. IEEE (2017)

18. Hernandez, C., Ortiz Barbosa, D.E., Lei, Z., Burbano, L., Park, Y., Ukkusuri, S.V.,
Cardenas, A.: D4: Dynamic data-driven discovery of adversarial vehicle maneuvers.
In: Proceedings of the DDDAS 2024. New Brunswick, NJ (November 2024)

19. Ivanov, R., Weimer, J., Alur, R., Pappas, G.J., Lee, I.: Verisig: verifying safety
properties of hybrid systems with neural network controllers. In: Proceedings of
the 22nd ACM International Conference on Hybrid Systems: Computation and
Control. pp. 169–178 (2019)

20. Kapinski, J., Deshmukh, J.V., Jin, X., Ito, H., Butts, K.: Simulation-based ap-
proaches for verification of embedded control systems: An overview of traditional
and advanced modeling, testing, and verification techniques. IEEE Control Sys-
tems Magazine 36(6), 45–64 (2016)

21. Kapinski, J., Deshmukh, J.V., Sankaranarayanan, S., Arechiga, N.: Simulation-
guided lyapunov analysis for hybrid dynamical systems. In: Proceedings of the
17th international conference on Hybrid systems: computation and control. pp.
133–142 (2014)

22. Kapinski, J., Deshmukh, J.V., Sankaranarayanan, S., Arechiga, N.: Simulation-
guided lyapunov analysis for hybrid dynamical systems. In: Proceedings of
the 17th International Conference on Hybrid Systems: Computation and Con-
trol. p. 133–142. HSCC ’14, Association for Computing Machinery, New York,
NY, USA (2014). https://doi.org/10.1145/2562059.2562139, https://doi.org/

10.1145/2562059.2562139
23. Khalil, H.K.: Nonlinear systems; 3rd ed. Prentice-Hall, Upper Saddle River, NJ

(2002), https://cds.cern.ch/record/1173048, the book can be consulted by con-
tacting: PH-AID: Wallet, Lionel

24. Koren, M., Alsaif, S., Lee, R., Kochenderfer, M.J.: Adaptive stress testing for
autonomous vehicles. In: 2018 IEEE Intelligent Vehicles Symposium (IV). pp. 1–7.
IEEE (2018)

25. Lloyd, S.: Least squares quantization in pcm. IEEE Transactions on Information
Theory 28(2), 129–137 (1982). https://doi.org/10.1109/TIT.1982.1056489

26. Mockus, J.: Bayesian Approach to Global Optimization: Theory and Applications.
Kluwer Academic (1989)

27. Paul, S., Cruz, E., Dutta, A., Bhaumik, A., Blasch, E., Agha, G., Patterson, S.,
Kopsaftopoulos, F., Varela, C.: Formal verification of safety-critical aerospace sys-
tems. IEEE Aerospace and Electronic Systems Magazine 38(5), 72–88 (2023)

28. Romeijn, H.E., Smith, R.L.: Simulated annealing for constrained global optimiza-
tion. Journal of Global Optimization 5, 101–126 (1994)

D4+ 23

29. Salgado, I.F., Quijano, N., Fremont, D.J., Cardenas, A.A.: Fuzzing malicious driv-
ing behavior to find vulnerabilities in collision avoidance systems. In: 2022 IEEE
European Symposium on Security and Privacy Workshops (EuroS&PW). pp. 368–
375. IEEE (2022)

30. Sanfelice, R.G.: Hybrid Feedback Control. Princeton University Press (2021),
http://www.jstor.org/stable/j.ctv131btfx

31. Tran, H.D., Yang, X., Manzanas Lopez, D., Musau, P., Nguyen, L.V., Xiang, W.,
Bak, S., Johnson, T.T.: Nnv: the neural network verification tool for deep neural
networks and learning-enabled cyber-physical systems. In: International Confer-
ence on Computer Aided Verification. pp. 3–17. Springer (2020)

32. Wang, J., Rajamani, R.: The impact of adaptive cruise control systems on highway
safety and traffic flow. Proceedings of the Institution of Mechanical Engineers, Part
D 218(2), 111–130 (2004). https://doi.org/10.1243/095440704772913918, https:
//doi.org/10.1243/095440704772913918

33. Wang, X., Shen, S., Bezzina, D., Sayer, J.R., Liu, H.X., Feng, Y.: Data infrastruc-
ture for connected vehicle applications. Transportation Research Record 2674(5),
85–96 (2020)

34. Zhenhai, G., Jun, W., Hongyu, H., Wei, Y., Dazhi, W., Lin, W.: Multi-argument
control mode switching strategy for adaptive cruise control system. Procedia engi-
neering 137, 581–589 (2016)

