
ar
X

iv
:2

50
5.

13
89

5v
1

 [
cs

.C
R

]
 2

0
M

ay
 2

02
5

1

VulCPE: Context-Aware Cybersecurity Vulnerability
Retrieval and Management

Yuning Jiang, Feiyang Shang, Freedy Tan Wei You, Huilin Wang, Chia Ren Cong, Qiaoran Meng, Nay
Oo, Hoon Wei Lim, and Biplab Sikdar

Abstract—The dynamic landscape of cybersecurity demands
precise and scalable solutions for vulnerability management in
heterogeneous systems, where configuration-specific vulnerabili-
ties are often misidentified due to inconsistent data in databases
like the National Vulnerability Database (NVD). Inaccurate
Common Platform Enumeration (CPE) data in NVD further
leads to false positives and incomplete vulnerability retrieval.
Informed by our systematic analysis of CPE and CVEdeails
data, revealing more than 50% vendor name inconsistencies, we
propose VulCPE, a framework that standardizes data and models
configuration dependencies using a unified CPE schema (uCPE),
entity recognition, relation extraction, and graph-based modeling.
VulCPE achieves superior retrieval precision (0.766) and coverage
(0.926) over existing tools. VulCPE ensures precise, context-aware
vulnerability management, enhancing cyber resilience.

Index Terms—Data Inconsistency, Vulnerability Management.

I. INTRODUCTION

Vulnerability management is a cornerstone of effective
cyber defense, enabling organizations to prioritize and mitigate
risks before attackers can exploit them. However, false posi-
tives (FPs) in vulnerability management predominantly stem
from limitations in Common Platform Enumeration (CPE)
[25] data utilized during the correlation process. This initial
phase in vulnerability management matches deployed software
against vulnerability databases maintained by NIST’s National
Vulnerability Database (NVD) [26] and software vendors.
Vulnerability scanners either extract granular software package
data directly from vendor sources or rely on NIST’s CPE
descriptions. While CPE aims to standardize software identifi-
cation across vendors, empirical evidence suggests significant
deficiencies in data accuracy and completeness [3, 9, 17, 19,
29].

Various open-source vulnerability management tools, such
as OpenCVE, OSV, cve-search, Trivy, CVEdetails and Open-
VAS, aim to improve vulnerability detection through database
integration and search capabilities. Trivy [23] (container scan-
ner) and OpenVAS [14] (network scanner) detect vulnera-
bilities by matching system components against NVD data.
To enhance vulnerability data reliability, OSV [13], devel-
oped by Google, curates open-source vulnerability data using

Y. Jiang, F. Shang, F. Tan Wei You, H. Wang, C. Ren Cong, Q. Meng,
and B. Sikdar are with the National University of Singapore, Singapore (e-
mail: yuning j@nus.edu.sg; hester03sfy@gmail.com; freedytan@u.nus.edu;
hwang56@u.nus.edu; rencongchia@u.nus.edu; qiaoran@nus.edu.sg; bsik-
dar@nus.edu.sg).

N. Oo and H. W. Lim are with NCS Cyber Special Ops R&D, Singapore
(e-mail: nay.oo@ncs.com.sg; hoonwei.lim@ncs.com.sg).

ecosystem-based identifiers (e.g., npm, pip) instead of CPE,
improving data accuracy and validation. OpenCVE [6] syn-
chronizes CVE data from sources like NVD, MITRE, and
RedHat, while cve-search [1] imports CVE and CPE data
into a local MongoDB database, supporting fast searches
and ranking vulnerabilities by CPE names. CVEdetails [8]
supplements some missing CPE details but restricts API access
to paid users, limiting its availability for programmatic queries.
Proprietary tools like Tenable and Fortinet lack transparency,
making direct comparisons difficult.

Despite these efforts, existing tools struggle with CPE
inconsistencies, both FPs and false negatives (FNs), and in-
complete mappings, which hinder vulnerability retrieval and
integration [31]. Solutions relying on keyword searches or
static CPE-based matching fail to address system configuration
dependencies [32]. Tools such as cve-search and OpenCVE
streamline retrieval but lack capabilities to mitigate FPs or
support context-aware matching. Their reliance on manual
processes further limits scalability and practicality in large-
scale environments [24]. Meanwhile, the heterogeneous nature
of software, hardware, and operating system (OS) configu-
rations complicates the accurate mapping of vulnerabilities
to affected assets [12, 30]. These structural limitations in
CPE data representation frequently manifest as false positives
in vulnerability detection systems, reducing the efficacy of
automated security assessment protocols.

To address these challenges, we propose VulCPE, a frame-
work that addresses these gaps by leveraging advanced tech-
niques such as Named Entity Recognition (NER), Relation
Extraction (RE), and graph-based modeling. Specifically, this
work explores the following research questions:

RQ1: How do data inconsistencies in vulnerability
databases affect retrieval accuracy?

RQ2: What role do complex system configurations play in
determining vulnerability applicability?

RQ3: How can advanced techniques reduce false positives
in vulnerability management to enhance cyber resilience?

We conducted a comprehensive analysis of the NVD/CPE
and CVEdetails datasets to uncover prevalent inconsistency
patterns. Our results show that 93.55% of NVD entries contain
at least one valid CPE string. However, 81.40% of all defined
CPE strings remain unused in the NVD, indicating significant
underutilization of available configuration identifiers. Addi-
tionally, 14.56% of NVD entries rely on configuration-specific
CPEs, which require parsing of logical AND/OR groupings.
Naming inconsistencies were identified in 50.18% of vendor
names used in CPEs within the official NVD database and

https://arxiv.org/abs/2505.13895v1

2

Fig. 1. VulCPE Architecture.

in 47.07% of vendor names extracted from CVEdetails, high-
lighting the need for standardization to enhance data usability.

Figure 1 illustrates the VulCPE framework. VulCPE em-
ploys employs NER and RE models to extract structured enti-
ties (vendor, product, version) from vulnerability reports and
resolve inconsistencies in naming and formatting. Extracted
data is standardized into a unified Common Platform Enu-
meration (uCPE) schema, which provides a hierarchical and
logical representation of configurations. Logical relationships
(AND/OR) and dependency structures (e.g., application soft-
ware running on or alongside an OS) are modeled as directed
graphs, enabling context-aware matching of vulnerabilities
to system configurations. The system constructs two distinct
graphs: a hierarchical graph of vulnerable configurations de-
rived from uCPEs and a system configuration graph repre-
senting the system under investigation (SUI). Graph traversal
techniques are used to match these configurations, ensuring
precise vulnerability applicability assessments. Inconsistencies
between configurations are detected using subgraph similarity
measures, further reducing FPs.

Experimental results demonstrate the efficacy of VulCPE in
two key areas. First, NER and RE models achieve state-of-
the-art performance, with NER attaining a precision of 0.958
and recall of 0.975, and RE achieving a precision of 0.977
and recall of 0.914. Second, VulCPE significantly outperforms
existing tools like cve-search and OpenCVE by achieving high
retrieval coverage (0.926) and precision (0.766). Our manu-
ally labeled 5k ground-truth Common Platform Enumeration
(CVE) reports for NER and RE model training and testing is
released and available on IEEE DataPort [18].

The rest of this paper is organized as follows: Section
II reviews vulnerability management systems and NER/RE
applications in security. Section III analyzes NVD, CPE,
and CVEdetails data inconsistencies. Section IV describes
the VulCPE system architecture, NER/RE models, and uCPE
formation. Section V addresses distributed deployment and re-
source management challenges. Section VI evaluates NER/RE
performance and VulCPE’s effectiveness in reducing FPs.
Section VII presents conclusions and future directions.

II. BACKGROUND AND RELATED WORK

A. CPE, SCAP and SWID

The NIST Interagency Report 8085 outlines guidance for
using Software Identification (SWID) tags to create standard-
ized CPE names [33]. SWID tags, compliant with ISO/IEC
19770-2, enable accurate software identification across asset
management and cybersecurity applications [34].

CPE functions as a dictionary for vulnerable prod-
ucts within the NIST Security Content Automation Proto-
col (SCAP) 1.2 standard. Each CPE entry includes type,
vendor, product, and version information. For example,
“cpe:2.3:o:cisco xe:3.13.2as:::::::*” indicates an operating
system (o) from vendor “cisco” with product “ios xe” version
“3.13.2as”. According to NVD [28], vulnerability configura-
tions are classified as: (1) Basic Configuration with a single
node holding one or more CPE names; (2) Running On/With
Configuration containing multiple nodes with both vulnerable
and non-vulnerable CPE names (Fig. 2); and (3) Advanced
Configuration with multiple nodes and complex sets of CPE
names. In this paper, we refer to both Running On/With and
Advanced Configurations as Configuration-Specific CPEs.

Fig. 2. Example of Running On/With configuration.

B. Vulnerability Database Data Quality Analysis

Public databases like the CVE repository are commonly
used in both research and commercial products for vulner-
ability analysis [2]. Yet, numerous recent investigations have
highlighted the difficulties encountered with existing vulner-
ability databases, advocating for the creation of high-quality
datasets [7] [21] [4] [11]. For example, Dong et al. [9] found
significant inconsistencies in software version vulnerabilities
reported between CVE and NVD, with only a fraction of

3

CVE summaries matching NVD entries accurately. Hong et
al. [35] addressed the data inconsistencies and incorrectness in
software names and versions, and emphasized the importance
of identifying original vulnerable software. Li et al. [21]
further carried out a comprehensive systematic mapping study
focusing on the architecture and application of vulnerability
databases. This investigation identifies dependencies on NVD
and CVE databases, while also pointing out a significant
shortfall in the existing vulnerability databases for their lack of
detailed information and metadata, which poses a challenge to
detecting vulnerabilities. Hong et al. [16] introduced a novel
approach for database construction aimed at augmenting the
scope of security patches. Their method involves correlating
data from the NVD database with diverse sources such as
repositories (e.g., GitHub), issue trackers (e.g., Bugzilla), and
Q&A sites (e.g., Stack Overflow).

These findings emphasize the importance of developing
methodologies [3, 15, 19] to enhance data consistency and
completeness. Recent advancements in natural language pro-
cessing [19, 20], machine learning [31] and graph-based [10]
methods showed potential in extracting useful information
from unstructured vulnerability reports. However, the quality
of the trained data remains uncertain, which increases the
challenges of applying these models in practical settings.

C. NER and RE in Security Domains

Security vulnerability reports typically contain critical in-
formation such as software names, versions, and steps to
reproduce the issue. Chaparro et al. [5] employed three dis-
tinct approaches, namely regular expressions, heuristics, and
machine learning, to extract key elements from bug reports,
including observed behavior, expected behavior, and steps
to reproduce. In the context of vulnerability data, Semfuzz
[36] utilized regular expressions to extract software version
details from CVE entries, while VIEM [9] applied NER and
RE techniques to extract software names and versions from
vulnerability reports in six databases (e.g., NVD, ExploitDB
and SecurityFocus). VERNIER [31], also based on NER,
was designed to automatically extract software names from
unstructured Chinese and English vulnerability reports and
to measure inconsistencies in software names across nine
mainstream databases (e.g., CVE, NVD and CNNVD). This
method also used a reward-punishment matrix to detect incor-
rect software names, aiming to improve database accuracy.

Nevertheless, these existing solutions primarily focus on
extracting software names and versions independently, without
fully addressing the contextual relationships between ven-
dor, product and version. This results in a fragmented un-
derstanding of vulnerabilities, which can lead to inaccurate
retrieval and misidentification of relevant vulnerabilities in
critical systems. Our work addresses this gap by utilizing
CPE standards in combination with advanced NER and RE
techniques to construct a unified, contextual representation of
vendor, product, and version information. This graph-based
uCPE structure not only captures the relationships among
these entities but also allows for sophisticated traversal and
configuration matching, enabling more accurate and context-

aware vulnerability retrieval. In addition, we design a ded-
icated database schema optimized for storing and retrieving
vulnerabilities based on the uCPE structure. This schema is
tailored to efficiently support queries that involve complex
configurations, ensuring that vulnerabilities can be retrieved
accurately with minimized false positives and false negatives.

III. DATA ANALYSIS

This section examines the structure and inconsistencies in
NVD and CPE data, highlighting configuration-based CPE
patterns and naming inconsistencies in vendors and products.

A. Preliminary Data Analysis of NVD/CPE Entries

1) The Usage of CPE in NVD CVE Entries: We obtained
JSON feeds containing 259,233 vulnerability data from 2002
to 31 Aug 2024 (inclusive) from the official NVD website [27].
We then filtered these NVD entries based on their last modified
date and excluded vulnerabilities marked as “Rejected” by the
NVD, which leads to 244,819 vulnerabilities. The CPE v2.3
Dictionary was manually downloaded from CPE [25] and we
parsed in total 1,327,827 CPE strings for further analysis. We
processed all NVD entries to extract CPE-formatted strings
and their associated configuration attributes. Of these 244,819
reviewed vulnerabilities, 229,023 (93.55%) contained at least
one valid NVD-CPE string. Subsequent analyses focused on
this subset. We noticed that some NVD-CPE strings are not
recorded in the official CPE dictionary. Meanwhile, 81.40%
of the official CPE strings were never referenced in NVD,
indicating a significant portion of unused metadata.

2) Running On/With CPE Entries: Our analysis found that
14.56% of NVD entries specify configuration-specific CPEs,
exhibiting four key patterns: OS dependencies (e.g., Product A
runs on OS B), Enabled Modules (e.g., Product X is vulnerable
when Module Y is enabled), Cloud/Virtualization Environ-
ments (e.g., vulnerabilities arise when guest virtual machines
impact the host system), and Network Configurations (e.g.,
vulnerabilities caused by specific firewall rules).

Table I summarizes these configuration-specific CPE pat-
terns. We extracted the CPE type (a: applications, o: OS,
h: hardware devices) and generated all possible Running
On/With relationships using Cartesian technique to capture
each directed pair.

TABLE I
COUNTS OF DIFFERENT CONFIGURATION COMBINATIONS.

Vulnerable CPE Running On/With CPE Count
o a 3,711
o h 1,224,357
o o 4,071
a a 58,426
a h 26,350
a o 297,491
h a 436
h h 933
h o 2,158

Several patterns emerge from these results. OS-hardware
configurations are most common (1,224,357 instances), fol-
lowed by application-OS dependencies (297,491 cases). Less

4

frequent but notable configurations include OS-application
(3,711), hardware-hardware (933), and OS-OS (4,071) com-
binations, which may indicate layered systems like virtual
machines. Another common pattern is “ firmware” appearing
in vulnerable CPE product names (see Table II), with 21.20%
of all configurations (343,015 cases), with 99.92% involving
OS-hardware device relationships. The “firmware” keyword
appears across all three CPE types, with 99.6% classified
as OSs, potentially complicating vulnerability assessment.
Additionally, 80.88% of configurations share the same vendor
for both vulnerable and configuration CPEs, suggesting vul-
nerabilities often occur within vendor-controlled ecosystems.

TABLE II
EXAMPLES OF CPE NAMES CONTAINING “firmware”.

Part of Vulnerable CPE Product
a small business rv router firmware
h jetnet5628g-r firmware
o ethernet controller e810 firmware

These findings highlight the critical role of configuration-
based CPEs in vulnerability data usability by providing essen-
tial context. Delays in updating these configuration details can
significantly hinder timely vulnerability management.

B. Heuristics for Detecting Inconsistencies
In vulnerability databases such as NVD and CVEdetails,

inconsistencies in vendor and product names present sig-
nificant challenges for accurate vulnerability retrieval and
analysis. Given the large scale of vendor and product entries
in these databases, manual identification of inconsistencies is
impractical. We therefore filed a set of heuristics to detect
and group potential name discrepancies for further validation.
These heuristics address key patterns of variation observed.

Inconsistencies in vendor and product names are quantified
as a pairwise divergence metric, where sim(name1, name2)
denotes a similarity function, such as Levenshtein or Cosine
similarity, calculated using:

∆(name1, name2) = 1− sim(name1, name2). (1)

An inconsistency is detected if the discrepancy is larger than
a predefined similarity threshold τ .

Define P (V) as the product set of vendor V , with
Pnorm(V) = {norm(p) | p ∈ P (V)}. norm is short for
normalize. Shared Product Ratio (SPR) is:

Simprod(V1, V2) =
|Pnorm(V1) ∩ Pnorm(V2)|
|Pnorm(V1) ∪ Pnorm(V2)|

. (2)

Pairwise heuristics require Simprod(V1, V2) ≥ θp (e.g., 0.5).
All the heuristics apply to inconsistency detection in vendor

names. Meanwhile, the first heuristic (Format Variations) is
also applied to detect inconsistencies in product names. In
these cases, the product similarity condition (Simprod ≥ θp) is
replaced with vendor similarity (Simvendor), defined as:

Simvendor(P1, P2) =

{
1 if vendor(P1) = vendor(P2).

0 otherwise.
(3)

For example, product names like Windows 10 and windows-
10 from the same vendor (Microsoft) would be flagged as
inconsistent under the Format Variations rule.

(1) Format Variations detects character-level differences in
capitalization, punctuation, or special characters.

∆format(V1, V2) =

{
1 if norm(V1) = norm(V2).

0 otherwise.
(4)

Inconsistency: ∆format = 1 ∧ Simprod ≥ θp. E.g., “Microsoft
Corp” and “microsoft-corp”.

(2) Spelling Errors detect inconsistencies due to potential
spelling or typographical errors in vendor names using edit
distances. This is only applied to vendor names that share
the same first letter, based on the linguistic observation that
typographical errors rarely affect the initial character of a
word. Let dL(s1, s2) be the Levenshtein distance. For vendors
with |norm(V1)| ≥ m and |norm(V2)| ≥ m, where m is a
minimum length threshold (e.g., m = 5), define:

Simedit(V1, V2) = 1− dL(norm(V1), norm(V2))

max(|norm(V1)|, |norm(V2)|)
(5)

∆spelling(V1, V2) =

{
1 if Simedit(V1, V2) ≥ τ.

0 otherwise.
(6)

Inconsistency: ∆spelling = 1 ∧ Simprod ≥ θp, with τ = 0.8.
E.g., “Microsoft” and “Microsfot” have Simedit as 0.89.

(3) Substring Matches detect prefixes, suffixes, or substrings
embedded within longer names, defined as:

∆string(V1, V2) =

{
1 if norm(V1) ⊂ norm(V2) ∨ norm(V2) ⊂ norm(V1).

0 otherwise.
(7)

Inconsistency: ∆string = 1 ∧ Simprod ≥ θp. E.g., “Apache”
vs. “Apache Software Foundation”.

(4) Product Name as Vendor Name flags instances where
products are referenced instead of vendors, defined as:

∆prod(V) =

{
1 if ∃V ′ ̸= V : norm(V) = norm(P) ∧ P ∈ Pnorm(V

′).

0 otherwise.
(8)

E.g., “Windows” instead of “Microsoft”.
(5) Shared Product Names identify cases where multiple

vendors are linked to the same product, defined as:

∆shared(V1, V2) =

{
1 if Simprod(V1, V2) ≥ θhigh.

0 otherwise.
(9)

E.g., “Sun Microsystems” and “Oracle” have post-
acquisition overlap θ as 0.8. For Shared Product Names, the
SPR is defined as such:

Simprod(V1, V2) =
|Pnorm(V1) ∩ Pnorm(V2)|

min(Pnorm(V1), Pnorm(V2))
. (10)

This is to account for cases where a smaller company
has been acquired by a larger company, where the smaller
company has much fewer products.

These heuristics serve as a foundational approach to de-
tecting potential naming discrepancies that are then manually
verified. For example, names such as “heimdal” , “heimdalse-
curity” and “heimdal project” can be grouped and reviewed to
determine whether they represent the same entity. If confirmed,
they are treated as naming inconsistencies and standardized.
An additional layer of validation is integrated by analyzing

5

TABLE III
COMMON INCONSISTENCY PATTERNS IN VENDOR NAMING

Category Shared Product Ratio ≥ 0.5 Other Categories
Format Format Variations Spelling Acronym Substring Product as Shared Product Names

Variations (Exclude Capital Letter Differences) Errors Matches Vendor Name Shared Product Ratio ≥ 0.8
Possible 29664 (59424) 8838 (17606) 133 (266) 7 (14) 458 (921) 615 (1242) 1594 (3728)
Confirmed 29664 (59424) 8838 (17606) 133 (266) 6 (12) 437 (880) 615 (1242) 1594 (3728)

1 “Possible” groupings are generated by heuristics and validated as “Confirmed” inconsistencies through manual verification.
2 Numbers outside parentheses represent unique vendor groups, while those inside denote associated names.
3 Shared Product Ratio filters vendors sharing products, reducing false positives and refining heuristic groupings for manual verification.

shared product associations and cross-referencing external
sources. Manual verification remains essential to distinguish
true inconsistencies from cases where minor differences indi-
cate distinct entities, such as separate firmware versions.

C. Inconsistency Analysis

1) Inconsistencies in Vendor Data: Our analysis extended
the initial dataset of 229,023 CVEs and associated 32,773
CPEs by incorporating 35,458 vendor-product-version pairs
extracted from CVEdetails, a publicly available catalog of
vendor and product information. We identified only 153 exact
matched vendor names in CPE and CVEdetails when no
normalization applies. This leads to a large set (67,925) of
vendor names to be processed and standardized.

Our enhanced pipeline significantly extends the work of [3],
which identified 1,835 inconsistent vendor names across 871
groups. In contrast, our method uncovered 65,482 inconsistent
name instances grouped into 32,420 vendor clusters, as sum-
marized in Table III. Format variations were the most common
inconsistency, affecting 29,664 unique vendor groups and
59,424 name instances. These were primarily resolved through
case folding, special character normalization, and token re-
ordering. Such variations often arise from differing formatting
conventions between CPE and CVEdetails, particularly in the
use of capitalization, which can impair retrieval accuracy in
case-sensitive systems. Excluding case-related issues, 8838
groups (17606 instances) still exhibited format variations due
to other formatting differences. Other inconsistency patterns,
including spelling errors, acronyms, sub-string matches, and
instances where product names are mistakenly labeled as
vendors, are analyzed separately in the subset that excludes
format variations.

We observed FP pairing from acronym and substring
matches, which were flagged during manual validation. To
mitigate such errors, we integrated a Shared Product Ratio
(SPR) threshold (Equation 2) as a validation heuristic. Vendor
name pairs with an SPR ≥ 0.5 were flagged as potential
matches, and those with an SPR ≥ 0.8 exhibited strong seman-
tic coherence, often reflecting genuine aliasing. This filtering
mechanism significantly improved precision by reducing the
manual validation workload while maintaining high recall.
The resulting Shared Product Names category included 1,594
confirmed vendor groups (3,728 name instances).

An important meta-level insight is that while format-
based inconsistencies dominate quantitatively, the qualitative
complexity and verification cost of semantic inconsistencies

(spelling, acronyms, substrings) are substantially higher. These
patterns are more likely to propagate errors in downstream
tasks such as vulnerability resolution, threat attribution, or
software inventory reconciliation.

2) Inconsistencies in Product Data: In the analysis of prod-
uct naming inconsistencies, the first step involved addressing
the vendor name discrepancies identified in the previous phase.
To achieve this, we remapped vendor names to their most
consistent forms, prioritizing the name associated with the
highest number of CVEs. This approach was grounded in the
assumption that the vendor name linked to the greatest number
of CVEs is the most widely accepted representation.

Product naming inconsistency analysis focused on the for-
mat variation heuristic. This heuristic effectively addressed
inconsistencies arising from minor character formatting differ-
ences, such as underscores versus hyphens, while minimizing
the need for manual validation. By prioritizing format vari-
ations, our analysis reduced FPs caused by similar product
names across unrelated vendors. Among 225,192 unique prod-
ucts, the format variation heuristic identified 138,722 instances
consolidated into 68,746 product groups, and hence 700,26
discrepancies primarily due to minor formatting issues. These
findings emphasize the importance of standardized naming
conventions to ensure consistency. Without such conventions,
errors in vendor names propagate to product names, com-
pounding inconsistencies and undermining data integrity.

3) Impact of Data Inconsistency on Vulnerability Retrieval:
Approximately 48.67% (33,062) of the 67,925 vendor names
exhibit inconsistencies, with 65,482 entries consolidated into
32,420 standardized names. For vendor names from the CPE
dataset and CVEdetails, they each contains 16,444 (50.18%)
and 16,697 (47.07%) inconsistencies. Moreover, even just
within the consistent vendors, 70,026 product names (31.09%
of 225,192) are affected by formatting variations.

Naming inconsistencies significantly hinder vulnerability
retrieval by disrupting mappings between vulnerabilities and
affected systems. Misaligned entries lead to incomplete as-
sessments, where vulnerabilities are either overlooked or incor-
rectly associated. Such discrepancies delay patch identification
and deployment, increasing the exposure window and the
risk of exploitation. Moreover, the cumulative effect of these
inconsistencies across large datasets can compound the risks,
leading to widespread security gaps that are harder to detect
and manage, as also discussed in works [3, 17, 31].

The analysis highlights that resolving inconsistencies re-
quires scalable approaches to standardize naming conventions
and enforce consistency across datasets. Automated normal-

6

ization techniques, cross-database validation, and metadata
enrichment can improve data integrity, enabling more effective
vulnerability identification, prioritization, and mitigation.

IV. METHODOLOGY OF VULCPE

This section provides an overview of VulCPE, detailing its
architecture and key components designed for configuration-
aware vulnerability retrieval and management.

A. Overview of VulCPE

The VulCPE architecture, illustrated in Fig. 1, processes
vulnerability data to extract, standardize, and map system
configurations for precise vulnerability retrieval.

The workflow begins with the Data Pre-Processor, which
normalizes raw inputs from sources like NVD and CVEdetails,
to ensure standardized data for downstream modules.

The Named Entity Recognition (NER) Module ex-
tracts cybersecurity-specific entities, including product names,
versions, and types, from unstructured text. By leveraging
domain-specific rules and configurations, the module ensures
extracted entities reflect real-world system configurations.

The Relation Extraction (RE) Module maps relationships
between recognized NER entities, such as product-version
pairs, to enable precise configuration modeling.

Subsequently, the Post Processing Module comprises two
key steps. First, the Vendor & Product Separator resolves
vendor-product mappings using predefined heuristic rules and
string similarity metrics, ensuring consistency with our canon-
ical dictionaries. Next, with the processed vendor and product,
the Version Converter translates complex version descrip-
tors (e.g., “up to”, “before”) into normalized ranges based
on datasets such as NVD. This step ensures consistency of
vulnerable product versions across vulnerability sources.

uCPE Generator consolidates extracted product, version,
and type data into hierarchical configurations, enabling inter-
operability and precise vulnerability-configuration mapping.

The Vulnerability Database Constructor structures pro-
cessed data into a graph-based database G = (N,E), where
nodes (N) represent entities (e.g., uCPE configurations) and
edges (E) capture relationships (e.g., eAND, eOR) among
components. This database facilitates efficient querying and
supports configuration-aware vulnerability assessments.

False Positive Filter employs graph-based matching to
refine vulnerability-configuration mappings. The system con-
figuration graph (Gsys) and vulnerability graph (Gvul) are
traversed to evaluate matches based on logical dependencies.

B. Named Entity Recognition

NER module extracts structured entities, namely vendor
(vi), product (pi), version (veri), and type ti from unstructured
vulnerability reports. Let T represent the text of a report. The
extraction process is formally defined as:

NER(T) = {(vi, pi, veri, ti) | vi, pi, veri, ti ∈ T}. (11)

Our NER model is built on RoBERTa [22], chosen for
its ability to capture complex contextual relationships. Input
text is tokenized into both word-level and sub-word-level

units, ensuring compatibility with out-of-vocabulary terms and
multi-token entities. Each token is embedded into a dense
vector representation, incorporating positional and sub-word-
level embeddings. This approach effectively handles complex
version formats with alphanumeric characters and punctuation
(e.g., “v1.0.2-alpha”) and multi-token product names (e.g.,
“Google Chrome before 8.0.552.237”).

After initial embedding, tokens are further processed
through self-attention layers, enabling the model to assign
labels to tokens. The primary label set includes Product Name
(PN), Modifier (MOD), Version (V), and Others (O). For
instance, the previous is assigned “Google” (B-PN), “Chrome”
(I-PN), “before” (B-MOD) and “8.0.552.237” (V).

The model further integrates a domain-specific gazetteer de-
rived from CVEdetails [8], containing vendor names, product
names, and version ranges. This gazetteer is incorporated into
a post-processing step to validate and adjust predictions using
heuristic rules. For example, if the model labels “Internet”
and “Explorer” as separate entities, the gazetteer merges them
into “Internet Explorer” under a single PN label. This hybrid
approach combines RoBERTa’s probabilistic predictions with
deterministic rule-based corrections.

The NER module also captures product types (e.g., ap-
plication, hardware, or OS). Using the same tokenizer and
embeddings, extracted labels are concatenated with product
type annotations. For instance, the earlier example is updated
as “Google” (B-PN-APP), “Chrome” (I-PN-APP), “before”
(B-MOD) and “8.0.552.237” (V). This categorization ensures
differentiations of product roles in system configurations.

C. Relation Extraction

The RE module identifies relationships between entities
extracted by the NER module. With R represents the set
of valid relationships, the relationship extraction process is
formally defined as:

RE(vi, pi, veri, ti) = True ⇐⇒ (vi, pi, veri, ti) ∈ R. (12)

The RE model operates in two steps. It first groups mod-
ifiers and versions (e.g., “before 8.0.552.237”) together as
(MOD V). Then entities identified by the NER model are
grouped into product-modifier-version (PN-MOD V) pairs.
For each product (PN), all associated modifiers and versions
(MOD V) within the same sentence are paired. For example,
the vulnerability report results in the following four candidate
pairs: “Google Chrome” with “before 8.0.552.237”; “Google
Chrome” with “before 8.0.552.344”; “Google Chrome OS”
with “before 8.0.552.237”; and “Google Chrome OS” with
“before 8.0.552.344”. Each candidate pair is indexed based on
its entity labels and converted into tokenized numerical repre-
sentations, including token IDs, attention masks, and segment
IDs. During inference, the RE model predicts the presence
of a valid relationship (PN-MOD V) using logits generated
from RoBERTa’s classification head, with “Y” indicating a
valid relationship and “N” indicating its absence. If a valid
relationship is detected, the model returns the corresponding
(PN-MOD V) pairs.

7

D. Canonical Dictionary Creation

To standardize vendor, product, version and type data across
heterogeneous sources, we construct a canonical dictionary of
vendor-product-version-type pairs using CPE metadata utilized
in NVD and a crawled CVEdetails dataset.

To resolve inconsistencies, a standardization function
S(n∗,D) maps inconsistent names (n) to a canonical form
(n′). D is a dictionary of standardized names, using:

S(n∗) = argmax
n’∈D

d(n, n’). (13)

The similarity between an extracted name (e.g., vendor vi
or product pi) and a canonical name n′ ∈ D is computed
using similarity calculation, Levenshtein distance is used as
an example:

sim(n, n′) = 1− Lev(n, n′)

max(|n|, |n′|)
. (14)

The canonical name is selected if the similarity exceeds a
predefined threshold τ :

n∗ = arg max
n′∈D

sim(n, n′) if sim(n, n′) ≥ τ. (15)

NVD CPE strings are parsed into vendor, product, version,
and type. Crawled CVEdetails data is flattened into a similar
data frame, extracting vendor, product, and version lists. Next,
we normalize both vendor and product names through a stan-
dardization process, which lowercases text, removes special
characters, and standardizes whitespace. Inconsistency detec-
tion leverages heuristics from Section III-B: Format Variations,
Spelling Variations, Acronyms, Substring Matches, Product
Name as Vendor Name, and Shared Product Names. These
heuristics are applied to both NVD and CVEdetails data,
with consistent entries (via inner joins) forming the canonical
dictionary and inconsistent ones (via left-anti joins) mapped
to canonical names for traceability. Versions are grouped by
normalized vendor-product pairs, combining unique versions
from both sources.

In doing so, we obtain a canonical dictionary D and separate
mapping tables linking inconsistent names to canonical ones,
supporting precise vulnerability retrieval.

E. Post Processing

The post-processing module processes two input sets or
one of them: a set of extracted RE entries R = {REentryi |
i ∈ I}, where each REentryi = (vi, pi, veri, ti); and a set
of CPE match entries C = {CPEentryj | j ∈ J}, where
each CPEentryj = (vj , pj , verj , tj). We employ S(n∗,D) to
standardize each REentryi and CPEentryj to their canonical
forms, as defined in Eq. (13). For vendor standardization,
vi is compared against Vcanonical ⊂ D, our canonical dataset
of vendor names. After identifying v∗, the residual string is
matched against products associated with v∗ in D. Product
names are similarly standardized.

Version standardization converts textual version descriptions
into mathematical constraints or discrete lists. Descriptions
such as “version 1.4 and earlier” becomes “≤ 1.4”, while
“not affected before version 5.0” becomes “> 5.0”. CPE-
specific constraints, such as “versionStartIncluding”(≥) or
“versionEndExcluding”(<), are also parsed. Let vdesc be a

version description (from veri or verj) and Vreleases the set
of available versions for a standardized vendor-product pair
(v∗, p∗). The version converter maps vdesc to a discrete list:

List(vdesc) = {vk ∈ Vreleases | cond(vk)}, (16)

Unlike [9], which assumes sequential versions, our ap-
proach supports non-sequential vendor releases. For example,
“Google Chrome before 8.0.552.344” is converted to a list of
actual releases: [0.1.38.1, 0.1.38.2, ..., 8.0.552.235].

The hybrid post-process combines entries from R and C
to produce a set of normalized uCPE entries using canonical
dictionary D. If both R and C are empty, the process is
skipped. When both R and C are non-empty, entries are
aligned by computing similarity between standardized vendor-
product pairs. If the similarity exceeds τ and versions align,
the CPE entry is prioritized. Unaligned entries are processed
independently. Results are cached to avoid redundant compu-
tations.

F. Formation of uCPE

The uCPE schema addresses the challenges of complex
relationships, such as “Running On/With” dependencies and
nested configurations. A uCPE entry (uCPEentry) represents
the foundational unit of vulnerability configuration, consisting
a unique identifier, vendor name, product name, version, and
product type (e.g., Application, OS, Hardware).

Configurations are modeled as subgraphs Gconfig, where
NuCPE represents nodes corresponding to individual compo-
nents, and Econfig defines the logical dependencies between
components, using:

Gconfig = (NuCPE, Econfig). (17)

Each edge in Econfig represents either:

• AND relationships where components must coexist:

(uCPEentryi ∧ uCPEentryj)→ eAND. (18)

• OR relationships where at least one component suffices:

(uCPEentryk ∨ uCPEentryl)→ eOR. (19)

Systems and vulnerabilities are modeled as graphs to repre-
sent their configurations and relationships. Nsys and Nvul are
nodes representing uCPEentry and their associated configura-
tions. Esys and Evul are edges capturing logical relationships
between uCPE entries or configurations, defined as:

Gsys = (Nsys, Esys), Gvul = (Nvul, Evul). (20)

Nodes in Nsys and Nvul represent either individual
uCPEentry elements or logical combinations. For example:

Nsys = {uCPEentryi , (uCPEentryj ∨ uCPEentryk), . . . }. (21)

For hierarchical relationships, the vulnerability graph Gvul
for each CVE aggregates all uCPE configurations:

Gvul =

n⋃
i=1

Gconfig(uCPEentryi). (22)

8

G. Database Construction and Retrieval

The database organizes our extracted information into three
collections: uCPE, Configurations, and Vulnerabilities.

The uCPE Collection stores standardized vendor-product-
version entries for interoperable vulnerability mapping, lever-
aging the canonical dictionary.

The Configurations Collection represents sub-graphs
(Gconfig, Eq. (17)), with each entry containing a unique
identifier (config id), logical relationship type (eAND, eOR),
and references to uCPE nodes, modeling hierarchical
dependencies in the vulnerability graph Gvul (Eq. (22)).

The Vulnerabilities Collection links vulnerabilities to con-
figurations via config id, including descriptions, CVSS
scores, and exploitability metadata.

Two primary query types are implemented: one retrieves
vulnerabilities based on CVE identifiers, while the other
fetches vulnerabilities by matching specific product and ver-
sion details. These queries leverage the hierarchical structure
of Gsys and Gvul. This structure enhances VulCPE’s precision
and supports third-party scanners.

H. Graph-Based False Positive Filtering

Our graph-based FP filtering technique leverages domain-
specific cybersecurity knowledge to model relationships be-
tween vulnerabilities and assets. This approach incorporates
configuration dependencies, logical relationships, and hierar-
chical asset structures, critical for precise vulnerability appli-
cability assessments.

The applicability of a vulnerability node nv ∈ Nvul to a
system node ns ∈ Nsys is determined by evaluating their
hierarchical configurations.

For simple configurations without logical operators, the
matching function evaluates whether the configuration graph
of nv is a subgraph of that of ns:

Match(nv, ns) =

{
1, if Gconfig(nv) ⊆ Gconfig(ns),

0, otherwise.
(23)

For configurations involving logical operators, the matching
function evaluates dependencies within Econfig . Specifically:

Match(nv, ns) =

1, if ∀eAND ∈ Econfig(nv), Match(eAND, ns) = 1,

1, if ∃eOR ∈ Econfig(nv), Match(eOR, ns) = 1,

0, otherwise.
(24)

This matching process ensures that vulnerabilities are only
applied when all AND conditions or any OR condition in the
vulnerable configuration are matched by system configuration.

Further, the filtering process utilizes graph traversal to refine
vulnerability applicability. Vulnerabilities (v) and SUI are
represented as vertices in Gvul and Gsys, enriched with logical
dependencies. Algorithm 1 outlines the FP filtering procedure.
If a match is found, the vulnerability is added to the set of
applicable vulnerabilities (Vapplicable), as giving by:

Vapplicable = Vvul − {v ∈ Vvul | Match(v, ns) = 1}. (25)

Algorithm 1: Graph-Based False Positive Filtering
Input: System graph Gsys = (Nsys, Esys), Vulnerability

graph Gvul = (Nvul, Evul)
Output: Set of applicable vulnerabilities Vapplicable

1 Algorithm Graph-Based False Positive Filtering:
2 Initialize Vapplicable ← ∅
3 foreach nv ∈ Nvul do
4 foreach ns ∈ Nsys do
5 Gconfig(vul)← Traverse(nv , Evul)
6 Gconfig(sys)← Traverse(ns, Esys)
7 if Applicability(Gconfig vul,

Gconfig sys) then
8 Vapplicable ← Vapplicable ∪ {nv}
9 return Vapplicable

10 Function Applicability(Gconfig vul,
Gconfig sys):

11 if AND ∈ Econfig(vul) then
12 foreach eAND ∈ Econfig(vul) do
13 if Match(eAND, Gconfig(sys)) = 0 then
14 return False
15 return True
16 if OR ∈ Econfig(vul) then
17 foreach eOR ∈ Econfig(vul) do
18 if Match(eOR, Gconfig(sys)) = 1 then
19 return True
20 return False
21 Function Match(element,Gconfig(sys)):
22 return 1 if element ∈ Gconfig(sys); otherwise, 0.

V. IMPLEMENTATION

We leverage several optimization strategies to enable Vul-
CPE to handle large-scale vulnerability data while maintaining
accuracy and minimizing computational overhead.

A. Parallelization

Parallelization is implemented across multiple VulCPE
modules to reduce processing time by distributing workloads.
In the data pre-processing stage, text normalization and to-
kenization of vulnerability reports are executed concurrently
using multi-threading, allowing independent processing of
each report. Similarly, post-processing operations, including
string similarity computations for standardizing vendor and
product names, are parallelized across CPU cores, while
database lookups for version conversions are batched to min-
imize I/O overhead. In the FP-filtering stage, graph-based
subgraph isomorphism checks are distributed across multiple
configurations.

B. FP Handling

Our method is built upon [32] with three key improvements:
Firstly, we utilize uCPE-ID than simply relying on the ex-
tracted textual information. Secondly, we use NetworkX to
support graph implementation using Python to allow easier
integration with the whole vulnerability pipeline. Thirdly, we
enhance the efficiency of FP filtering by storing the graph

9

locally after its initial creation, and subsequently appending
nodes upon the identification of new CVEs or Assets within
the system. This approach significantly optimizes performance
in terms of execution time. Empirical evidence from our
experiments later in Section VI illustrates this improvement:
the initial processing of 232 Assets requires approximately
25 minutes and 33 seconds. However, subsequent iterations
demonstrate a marked reduction in execution time, involving
only the verification of new assets rather than the compre-
hensive regeneration of the graph. Specifically, the addition
of nodes for new assets incurs around 6.6 seconds per node,
showcasing the efficiency of our optimized model in dynami-
cally updating with minimal computational overhead.

C. Incremental Updates

The graph-based vulnerability database is designed to sup-
port incremental updates, ensuring that new data can be
integrated without requiring a full reconstruction. When new
vulnerabilities or configurations are introduced, only the af-
fected graph nodes and edges are updated, avoiding the
computational expense of rebuilding the entire structure. This
approach is also applied in the FP-filtering process, where the
graph is modified incrementally upon the addition of new
assets or vulnerabilities. Instead of reprocessing the entire
dataset, filtering operations are restricted to newly introduced
or updated nodes.

VI. EXPERIMENTAL EVALUATION

This section presents a comprehensive experimental eval-
uation, with details on dataset, baseline models, evaluation
metrics, and key implementation specifics. We focus on:

• RQ1: How effective is VulCPE in entity extraction and re-
lation extraction compared to state-of-the-art approaches?

• RQ2: Can VulCPE be effectively applied to vulnerability
retrieval in real-world settings?

A. Experiment I: NER/RE Evaluation

1) Dataset: Previous NER datasets for vulnerability con-
texts [9] utilize simplistic annotation schemes (SN, SV, O)
that inadequately capture nuanced entity boundaries and multi-
token entities common in vulnerability data. Our review iden-
tified significant labeling gaps, necessitating a more compre-
hensive dataset for structured vulnerability descriptions.

We implemented a customized BIO format to label vul-
nerability reports, generating a ground-truth dataset for NER
model training and validation. To enhance model performance,
we expanded the NER label schema to include three product
categories, replacing all B-PN/I-PN labels with categorized
labels to improve uCPE matching and vulnerability retrieval.

From our dataset (Section III), we sampled 5,000 vulnera-
bility descriptions (3,000 pre-2019 and 2,000 post-2019) for
balanced temporal representation. Each description was tok-
enized and initially labeled using GPT-4o, though we observed
relatively low accuracy, particularly for modifier (MOD) and
version labeling. Consequently, two security researchers con-
ducted manual reviews to ensure labeling accuracy.

To incorporate RE, we developed rules capturing relation-
ships between product entities and their associated versions
with modifiers. This approach identifies product-to-version
relationships where modifiers define version applicability con-
ditions (e.g., “before” a certain version or “fixed in” a partic-
ular release). We generated candidate pairs by linking product
entities with version-modifier entities within the same context,
assigning position indices for pairing. Additional contextual
validation determined logical associations between the product
and the version-modifier combination, with pairs labeled as
valid (Y) or invalid (N).

2) Evaluation Metrics: Four main metrics are utilized to
validate NER and RE models: (1) Accuracy is the fraction of
correct predictions out of all predictions, offering a measure
of overall correctness; (2) Precision is the ratio of correctly
extracted entities and relations to the total identified, which
minimizes false positives; (3) Recall is the proportion of
correctly extracted entities and relations out of all relevant
ones, which ensures true positives are included; (4) F1 Score is
a harmonic mean of precision and recall, providing a balanced
evaluation of accuracy and error rates.

3) Implementation Details: Our NER model employs the
RoBERTa architecture via Hugging Face transformers, with
labeled BIO format text split into training and testing sets
(80-20) using a fixed random seed for reproducibility.

For RE, we utilize RoBERTaForSequenceClassification to
identify entity relationships. Input sentences are preprocessed
by tagging entities with custom tokens, then tokenized into
IDs, masks, and segments to generate logits. Valid product-
version pairs are extracted based on predictions.

4) NER and RE Performance: We evaluated our NER
model, built on RoBERTa, against state-of-the-art baselines,
including VERNIER [31] and VIEM [9]. VIEM results cor-
respond to its best-performing configuration, incorporating
transfer learning and gazetteer features, while VERNIER’s
performance is reported for English-language vulnerability
reports. We also included TinyLlama [37] which is a recent
lightweight LLM that achieves competitive performance on
token-level tasks. The RE evaluation of baseline models com-
pares the set of predicted product-version relationships against
the set of ground-truth relationships per sentence, using a
greedy best-match approach with relaxed product aliasing and
version matching. Table IV shows that our RoBERTa model
with gazetteer achieved an accuracy of 98.56%, precision
of 95.77%, recall of 97.54%, and an F1 score of 96.53%,
demonstrating comparable performance to both baselines and
outperforming simpler configurations such as RoBERTa with-
out a gazetteer.

TABLE IV
PERFORMANCE COMPARISON OF NER MODELS

Model Accuracy Precision Recall F1
RoBERTa (ours) 98.15% 96.31% 96.12% 96.22%
RoBERTa (Gaze) (ours) 98.56% 95.77% 97.54% 96.53%
[31] English Reports 99.8% 96.4% 96.9% 96.6%
[9] After Transfer 99.52% 94.85% 94.69% 94.77%
Tinyllama Zero-Shot 3.30% 5.41% 3.54% 4.03%
Tinyllama Few-Shot 20.41% 39.68% 26.14% 28.03%
Tinyllama Fine-tuned 37.02% 46.45% 43.82% 43.07%

10

For NER categorization across three categories (APP, OS,
HW), we calculated both macro and weighted averages. As
presented in Table V, the model achieved high recall for
Applications (97.42%) and OSs (93.68%), while the perfor-
mance for Hardware (79.01%) was lower due to the rela-
tively smaller dataset and higher complexity in distinguishing
hardware-related entities. The weighted average across cate-
gories reached 99.38% accuracy, demonstrating strong overall
performance. The model achieved 99.38% weighted average
accuracy, demonstrating robust overall performance, while the
macro average (99.49% accuracy) confirmed balanced cross-
category capability.

TABLE V
PERFORMANCE OF NER CATEGORIZATION MODEL

Category Accuracy Precision Recall F1
Application 99.30% 96.46% 97.42% 96.94%
Operating System 99.78% 94.89% 93.68% 94.28%
Hardware 99.44% 83.97% 79.01% 81.41%
Macro Average 99.49% 91.77% 90.04% 90.88%
Weighted Average 99.38% 94.96% 95.03% 94.99%

Comparing RE model performance against VIEM [9],
VIEM achieved slightly higher performance with ground-
truth RE labels, while our model outperformed VIEM when
using NER results as input. Tinyllama model’s near-zero recall
(0.05% for zeros shot, 0.31% for few-shot, and 0.84% for
fine tuning) reflects severe under-prediction, exacerbated by
mismatches like “Oracle” vs. “oracle database”. RE model
effectiveness depends significantly on NER output quality
for entity identification and linking, with the pair generation
process substantially influencing overall performance.

TABLE VI
PERFORMANCE COMPARISON OF RE MODELS

Model Accuracy Precision Recall F1
Ours, G-truth as Input 97.41% 97.70% 91.44% 94.47%
[9] G-truth as Input 98.34% 97.81% 99.37% 99.09%
Ours, NER Result as Input 94.79% 94.71% 92.79% 93.74%
[9] NER Result as Input 90.44% 85.84% 99.64% 92.80%
Tinyllama Zero-Shot 0.05% 7.53% 0.05% 0.09%
Tinyllama Few-Shot 0.31% 20.41% 0.31% 0.60%
Tinyllama Fine-tuned 0.84% 51.59% 0.84% 1.65%

5) Error Analysis: We conducted thorough error analysis
in our models and identified three main patterns. Our NER and
RE models face challenges with complex product names and
version mismatches. For example, in “Microsoft Word 2007
SP3, Office 2010 SP2”, “2007” is mislabeled as part of the
product name (I-PN) instead of a version (B-V).

Ambiguity in platform vs. product classification is evident
when “iOS” in “Newphoria Auction Camera for iOS” is
misclassified as a product (B-PN) instead of a non-entity (O).

Product-version confusion occurs, as in date-based versions
like “2017-02-12” in “Android for MSM before 2017-02-12”
that cause boundary errors.

Heuristic post-processing rules partially mitigate these er-
rors by reclassifying year-based identifiers (e.g., “2007”) as
versions and normalizing complex version patterns, improv-
ing boundary detection. We also utilized context clues (e.g.,

prepositions like “for”) to distinguish platforms and by flag-
ging common product name suffixes like “Edition” as I-PN,
reducing misclassifications.

B. Experiment II: Vulnerability Retrieval

1) Dataset: To simulate a real-world use-case scenario for
our comparative analysis, we randomly selected and stored
commonly used software packages within our testing en-
vironment. We then generated a system configuration file
that comprised three distinct components: a network device
segment consisting of 4 components, two virtual machines,
one based on Linux OS and one based on Windows, with 46
and 22 components, respectively.

2) Steps: We queried the system’s configuration against
multiple vulnerability databases: NVD, cve-search, OpenCVE
and our proprietary database. This yields separate sets of
vulnerabilities, denoted as Vnvd, Vcvesearch, Vopencve and
Vour, respectively. A union set, Vunion, is constructed from
the individual sets to encompass all unique vulnerabilities
identified across the databases. We did not involve OSV,
Security Database and CVEdetails, due to different focus
for OSV and limited accessibility for Security Database and
CVEdetails. We further produced several sub-databases con-
sidering various query methods provided by NVD API, cve-
search and OpenCVE in terms of keyword (exact) match and
CPE match, following their official query instructions. For the
latter, we use the uCPE metadata generated in our vulnerability
pipeline as query tags.

A manual verification process is conducted on Vunion to
determine the applicability of each vulnerability to our sys-
tem, involving a detailed review of vulnerability reports and
matching identified vulnerabilities against the system configu-
ration. Through the manual verification process, we establish a
ground-truth dataset Vgt, representing the accurately identified
vulnerabilities applicable to our system. We then compare
Vgt against each database-specific vulnerability set (e.g., Vnvd,
Vcvesearch, Vopencve, Vour).

3) Evaluation Metrics: Validation of vulnerability retrieval
performance involves calculating FP (or False Positives), FN
(or False Negatives), TP (or True Positives), Retrieval Preci-
sion and Retrieval Coverage for each dataset. We then calcu-
late the average of them. Here Vn denotes a database-specific
vulnerability set and Vgt denotes a ground-truth dataset.

• FP: Vulnerabilities in Vn but not in Vgt.
• FN: Vulnerabilities in Vgt but not in Vn.
• TP: Vulnerabilities in both Vn and Vgt.
• Retrieval Precision: TP/(TP + FP), the fraction of cor-

rectly identified vulnerabilities.
• Retrieval Coverage: TP/(TP + FN), the fraction of actual

vulnerabilities correctly identified.
4) Results: The results are summarized in Table VII. The

baseline outcomes, displayed in Columns 2 to 5, illustrate the
precision and coverage of vulnerability retrieval using various
methods: exact matching of NVD keywords via the NVD API,
keyword matching with localized cve-search database, and
localized OpenCVE. Enhanced baseline results leveraging our
CPE metadata tags as queries are detailed in Columns 6 to 8.

11

TABLE VII
COMPARATIVE STUDY RESULTS OF VULNERABILITY RETRIEVAL

Metrics Baseline Solutions Improved Baseline with CPE Query OursNVD
(keyword)

NVD
(keyword exact)

cve-search
(keyword)

OpenCVE
(keyword)

NVD
(CPE)

cve-search
(product)

OpenCVE
(CPE)

Precision (LinuxVM) 0.143 0 0 0.288 0.875 0.959 0.269 0.949
Coverage (LinuxVM) 0.011 0 0 0.408 0.951 0.897 0.587 0.918
Precision (WinVM) 0.24 0.5 0 0 0.626 0.511 0.433 0.667
Coverage (WinVM) 0.015 0.005 0 0 0.932 0.624 0.237 0.879
Precision (Routers) 0.063 0.333 0 0 0.627 0.567 0.125 0.683
Coverage (Routers) 0.024 0.024 0 0 0.980 0.905 0.119 0.980
Precision (Average) 0.149 0.278 0 0.096 0.709 0.679 0.276 0.766
Coverage (Average) 0.017 0.010 0 0.136 0.954 0.809 0.314 0.926

Typically, vulnerability analyzers are limited to system con-
figuration data and lack comprehensive configuration-based
metadata for precise vulnerability identification. Incorporating
CPE query data improved precision and coverage across all
baseline databases, confirming our assumption that standard-
ized metadata enhances retrieval accuracy. Our vulnerability
pipeline achieved the highest average precision of 72.6%. In
terms of coverage, our solution provided a good result of
92.6%, close to the highest coverage of 95.4% achieved by
NVD when using our generated CPE metadata as query tags.

VII. CONCLUSION

This paper presents VulCPE, a cybersecurity-focused frame-
work that addresses critical challenges in vulnerability man-
agement, including data inconsistencies and false positives in
existing vulnerability databases. By leveraging NER and RE
techniques, VulCPE standardizes vendor, product, and version
relationships into a uCPE schema. This approach enhances
vulnerability retrieval by resolving inconsistencies, improving
context-aware mapping, and enabling accurate applicability
assessments across diverse and complex configurations.

Experimental studies demonstrated the efficacy of our pro-
posed framework, showcasing better performance in terms
of vulnerability retrieval precision and coverage compared
to open-source baseline solutions (NVD, cve-search, and
OpenCVE). Our proposed query generation mechanism ex-
pands vulnerability coverage across all baseline solutions.
Moreover, our vulnerability pipeline achieves the highest
precision (0.766) and coverage (0.926) in vulnerability re-
trieval, surpassing figures obtained using NVD, cve-search, and
OpenCVE. These outcomes show the efficacy of our automated
FP filtering mechanisms. Additionally, VulCPE’s NER and
RE models outperform baseline approaches, with the NER
model achieving 0.958 precision and 0.975 recall, and the
RE model providing more accurate vulnerability-to-version
mappings with precision of 0.977 and recall of 0.914.

Future work will focus on scaling VulCPE to enterprise
environments of varying sizes and industries, exploring inte-
grations with commercial vulnerability management systems,
and testing whether more advanced LLMs (e.g., LLama and
GPT-x) could be used as alternatives for NER and RE tasks.

ACKNOWLEDGMENTS

We also thank the contributors who helped inconsistency
analysis and pipeline development, especially Yong Zi Ren,
Seng Chin Khoo and Lee Yu Yee Dominic.

REFERENCES

[1] Cve-search. https://www.circl.lu/services/cve-search/,
2025.

[2] Sultan S Alqahtani. A study on the use of vulnerabilities
databases in software engineering domain. Computers &
Security, 116:102661, 2022.

[3] Afsah Anwar, Ahmed Abusnaina, Songqing Chen, Frank
Li, and David Mohaisen. Cleaning the nvd: Compre-
hensive quality assessment, improvements, and analyses.
2020.

[4] Guru Bhandari, Amara Naseer, and Leon Moonen. Cve-
fixes: automated collection of vulnerabilities and their
fixes from open-source software. In Proceedings of the
17th International Conference on Predictive Models and
Data Analytics in Software Engineering, pages 30–39,
2021.

[5] Oscar Chaparro, Jing Lu, Fiorella Zampetti, Laura
Moreno, Massimiliano Di Penta, Andrian Marcus,
Gabriele Bavota, and Vincent Ng. Detecting missing
information in bug descriptions. In Proceedings of
the 2017 11th joint meeting on foundations of software
engineering, pages 396–407, 2017.

[6] Nicolas Crocfer and Laurent Durnez. Opencve: A cve
alertig platform. https://github.com/opencve/opencve,
2025.

[7] Roland Croft, Yongzheng Xie, and Muhammad Ali
Babar. Data preparation for software vulnerability predic-
tion: A systematic literature review. IEEE Transactions
on Software Engineering, 49(3):1044–1063, 2022.

[8] CVEdetails. Cvedetails. https://www.cvedetails.com/,
2025.

[9] Ying Dong, Wenbo Guo, Yueqi Chen, Xinyu Xing,
Yuqing Zhang, and Gang Wang. Towards the detection
of inconsistencies in public security vulnerability reports.
In 28th USENIX security symposium (USENIX Security
19), pages 869–885. USENIX Association, August 2019.

[10] Dongdong Du, Xingzhang Ren, Yupeng Wu, Jien Chen,
Wei Ye, Jinan Sun, Xiangyu Xi, Qing Gao, and Shikun

12

Zhang. Refining traceability links between vulnerability
and software component in a vulnerability knowledge
graph. In Web Engineering: 18th International Con-
ference, ICWE 2018, Cáceres, Spain, June 5-8, 2018,
Proceedings 18, pages 33–49. Springer, 2018.

[11] Sadegh Farhang, Mehmet Bahadir Kirdan, Aron Laszka,
and Jens Grossklags. An empirical study of android
security bulletins in different vendors. In Proceedings
of The Web Conference 2020, pages 3063–3069, 2020.

[12] Rohit Gangupantulu, Tyler Cody, Abdul Rahma, Christo-
pher Redino, Ryan Clark, and Paul Park. Crown jewels
analysis using reinforcement learning with attack graphs.
In 2021 IEEE Symposium Series on Computational In-
telligence (SSCI), pages 1–6. IEEE, 2021.

[13] Google. Osv - ppen source vulnerability db and triage
service. https://google.github.io/osv.dev/, 2025.

[14] Greenbone. Greenbone openvas. https://www.openvas.
org/, 2025.

[15] Erik Hemberg, Matthew J Turner, Nick Rutar, and Una-
May O’reilly. Enhancements to threat, vulnerability, and
mitigation knowledge for cyber analytics, hunting, and
simulations. Digital Threats: Research and Practice,
5(1):1–33, 2024.

[16] Hyunji Hong, Seunghoon Woo, Eunjin Choi, Jihyun
Choi, and Heejo Lee. xvdb: A high-coverage approach
for constructing a vulnerability database. IEEE Access,
10:85050–85063, 2022.

[17] Yuning Jiang, Manfred Jeusfeld, and Jianguo Ding. Eval-
uating the data inconsistency of open-source vulnerability
repositories. In Proceedings of the 16th International
Conference on Availability, Reliability and Security,
pages 1–10, 2021.

[18] Yuning Jiang, Feiyang Shang, and Wei You (Freedy) Tan.
Labelled dataset for ner/re tasks in vulnerability reports.
https://dx.doi.org/10.21227/aggr-d448, 2025.

[19] Hyeonseong Jo, Jinwoo Kim, Phillip Porras, Vinod Yeg-
neswaran, and Seungwon Shin. Gapfinder: Finding
inconsistency of security information from unstructured
text. IEEE Transactions on Information Forensics and
Security, 16:86–99, 2020.

[20] Hyeonseong Jo, Yongjae Lee, and Seungwon Shin. Vul-
can: Automatic extraction and analysis of cyber threat
intelligence from unstructured text. Computers & Secu-
rity, 120:102763, 2022.

[21] Xiaozhou Li, Sergio Moreschini, Zheying Zhang, Fabio
Palomba, and Davide Taibi. The anatomy of a vulnera-
bility database: A systematic mapping study. Journal of
Systems and Software, 201:111679, 2023.

[22] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar
Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettle-
moyer, and Veselin Stoyanov. Roberta: A robustly opti-
mized bert pretraining approach. ArXiv, abs/1907.11692,
2019.

[23] Aqua Security Software Ltd. Trivy documentation. https:
//github.com/aquasecurity/trivy, 2025.

[24] Joshua Lubell and Timothy Zimmerman. Challenges to
automating security configuration checklists in manufac-
turing environments. In Critical Infrastructure Protec-

tion XI: 11th IFIP WG 11.10 International Conference,
ICCIP 2017, Arlington, VA, USA, March 13-15, 2017,
Revised Selected Papers 11, pages 225–241. Springer,
2017.

[25] MITRE. Common platform enumeration (cpe). https:
//cpe.mitre.org/, 2025.

[26] National Institute of Standards and Technology (NIST).
National vulnerability database (nvd). https://nvd.nist.
gov/vuln, 2025.

[27] National Institute of Standards and Technology (NIST).
Nvd vulnerability data feeds. https://nvd.nist.gov/vuln/
data-feeds#RSS, 2025.

[28] National Institute of Standards and Technology. Vul-
nerability details in nvd. https://nvd.nist.gov/vuln/
vulnerability-detail-pages, 2025.

[29] OWASP. A proposal to operationalize component iden-
tification for vulnerability management. White paper,
OWASP Foundation, 2022.

[30] Yue Qin, Yue Xiao, and Xiaojing Liao. Vulnerabil-
ity intelligence alignment via masked graph attention
networks. In Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Security,
pages 2202–2216, 2023.

[31] Hongyu Sun, Guoliang Ou, Ziqiu Zheng, Lei Liao,
He Wang, and Yuqing Zhang. Inconsistent measurement
and incorrect detection of software names in security vul-
nerability reports. Computers & Security, 135:103477,
2023.

[32] Daniel Tovarňák, Lukáš Sadlek, and Pavel Čeleda.
Graph-based cpe matching for identification of vulnera-
ble asset configurations. In 2021 IFIP/IEEE International
Symposium on Integrated Network Management (IM),
pages 986–991. IEEE, 2021.

[33] David Waltermire and Brant Cheikes. Forming common
platform enumeration (cpe) names from software identi-
fication (swid) tags. Technical report, National Institute
of Standards and Technology, 2015.

[34] David Waltermire, Brant A Cheikes, Larry Feldman,
David Waltermire, and Greg Witte. Guidelines for the
creation of interoperable software identification (SWID)
tags. US Department of Commerce, National Institute of
Standards and Technology, 2016.

[35] Seunghoon Woo, Dongwook Lee, Sunghan Park, Heejo
Lee, and Sven Dietrich. {V0Finder}: Discovering the
correct origin of publicly reported software vulnerabil-
ities. In 30th USENIX Security Symposium (USENIX
Security 21), pages 3041–3058. USENIX Association,
August 2021.

[36] Wei You, Peiyuan Zong, Kai Chen, XiaoFeng Wang,
Xiaojing Liao, Pan Bian, and Bin Liang. Sem-
fuzz: Semantics-based automatic generation of proof-
of-concept exploits. In Proceedings of the 2017 ACM
SIGSAC conference on computer and communications
security, pages 2139–2154, 2017.

[37] Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei
Lu. Tinyllama: An open-source small language model.
arXiv preprint arXiv:2401.02385, 2024.

13

APPENDIX

Fig. 3 illustrates the architecture of our NER module based
on RoBERTa. The pipeline tokenizes input text and assigns
BIO-format labels to each token, with enhanced categorization
(e.g., (B-PN-APP)) appended post-processing to reflect entity
roles such as applications, OS, or hardware.

Fig. 4 shows the RE module that identifies valid product-
version relationships using token pair classification. Candidate
(PN-MOD V) pairs are formed from NER output, tokenized
with position encodings, and passed through a RoBERTa-
based attention network to determine whether a valid rela-
tionship exists.

14

Fig. 3. Structure of Named Entity Recognition Module

Fig. 4. Structure of Relation Extraction Module

