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Abstract—Embedded devices are increasingly ubiquitous and
vital, often supporting safety-critical functions. However, due
to strict cost and energy constraints, they are typically im-
plemented with Micro-Controller Units (MCUs) that lack
advanced architectural security features. Within this space,
recent efforts have created low-cost architectures capable of
generating Proofs of Execution (PoX) of software on potentially
compromised MCUs. This capability can ensure the integrity
of sensor data from the outset, by binding sensed results
to an unforgeable cryptographic proof of execution on edge
sensor MCUs. However, the security of existing PoX requires
the proven execution to occur atomically (i.e., uninterrupted).
This requirement precludes the application of PoX to (1) time-
shared systems, and (2) applications with real-time constraints,
creating a direct conflict between execution integrity and the
real-time availability needs of several embedded system uses.

In this paper, we formulate a new security goal called
Real-Time Proof of Execution (RT-PoX) that retains the
integrity guarantees of classic PoX while enabling its ap-
plication to existing real-time systems. This is achieved by
relaxing the atomicity requirement of PoX while dispatching
interference attempts from other potentially malicious tasks (or
compromised operating systems) executing on the same device.
To realize the RT-PoX goal, we develop Provable Execution
Architecture for Real-Time Systems (PEARTS). To the best of
our knowledge, PEARTS is the first PoX system that can
be directly deployed alongside a commodity embedded real-
time operating system (FreeRTOS). This enables both real-time
scheduling and execution integrity guarantees on commodity
MCUs. To showcase this capability, we develop a PEARTS
open-source prototype atop FreeRTOS on a single-core ARM
Cortex-M33 processor. Based on this prototype, we evaluate
and report on PEARTS security and (modest) overheads.

1. Introduction

The integration of embedded devices across various
sectors, including home automation, agricultural technol-
ogy, wearable gadgets, and smart appliances, has ushered
in a multitude of security considerations. While playing a
crucial role in enhancing the convenience and connectivity
of modern living, embedded devices are characterized by
their inherent limitations, which can complicate security
efforts. This stems from rudimentary or entirely lacking
architectural security features, making them vulnerable to

a diverse range of potential threats and vulnerabilities. The
importance of addressing security concerns in embedded
devices cannot be overstated, especially when deployed in
safety-critical environments. In such scenarios, even minor
security oversights can yield severe consequences. For in-
stance, the manipulation of sensor data or the disregard
of control commands can lead to catastrophic outcomes,
ranging from damage to infrastructure to human safety.

To address some of these security concerns, the concept
of embedded Remote Attestation (RA) [1], [2], [3], [4], [5],
[6], [7], [8], [9], [10], [11], [12], [13], [14] was proposed to
enable remote verification of the integrity and authenticity
of embedded device’s software. RA is a (typically hardware-
assisted) challenge-response protocol wherein a Prover (Prv)
generates cryptographic proof of its internal state to a remote
Verifier (Vrf) for examination. Based on the proof, Vrf can
decide on the trustworthiness of Prv. Proof of Execution
(PoX) [15], [16], [17], [18] extends RA to bind the data
produced by Prv to the correct execution of an intended
software routine (e.g., a sensing function), thereby assuring
to Vrf integrity of received data from the point when it is first
digitized, i.e., the moment physical measurements are first
converted into digital data by edge Micro-Controller Units
(MCUs). We revisit details of RA and PoX in Section 2

1.1. Motivation: On the Conflict Between PoX In-
tegrity & Real-Time Availability

Despite its potential to ascertain integrity “from birth”
of sensor data (even if MCU software is compromised or
illegally modified), current PoX methods require the PoX
task (here denoted F) to execute atomically. This ensures
that the context (data memory in use by F), resources (e.g.,
peripherals in use by F and their configurations), and timing
requirements of F cannot be tampered with by concurrent
applications on Prv. However, atomic execution hinders the
application of PoX to real-time systems, which often rely on
Real-Time Operating Systems (RTOS) to ensure strict time-
based availability guarantees for various tasks executing on
the same MCU. This incompatibility follows naturally from
the fact that PoX must run continuously irrespective of
deadlines of other time-critical tasks on the same Prv.

We argue that the reliability of real-time systems simul-
taneously depends on strong runtime integrity and real-time
availability guarantees. While PoX and RTOSs may achieve
each goal separately, their integration is non-trivial. First,
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the RTOS should be able to maintain its task scheduling
role even when a PoX instance is active. On the other hand,
the authenticity and integrity of the execution being proven
must be preserved, despite attempts from other applications
or a compromised RTOS to tamper with the PoX state. To
make matters more challenging, MCU-based RTOSs (such
as FreeRTOS [19]) often operate on single-privilege mode,
where all running processes have the same level of access
to resources as the RTOS itself.

1.2. Intended Contributions

We define Real-Time Proof of Execution (RT-PoX), an
advancement over classic PoX to enable preemptive real-
time multitasking to securely coexist with PoX. To realize
this concept in practice we design Provable Execution Ar-
chitecture for Real-Time Systems (PEARTS) by leveraging
commodity MCU hardware support from the TrustZone-
M [20] security extension. To the best of our knowledge,
this is the first architecture for remotely verifiable execution
integrity able to coexist with an unmodified RTOS while
retaining both real-time and execution integrity guarantees.
In sum, our contributions are:
• We define the notion of RT-PoX as well as the neces-

sary requirements to achieve RT-PoX in real-time em-
bedded systems. RT-PoX trades PoX original requirement
of atomic execution for the assurance that interrupting
tasks can not tamper with the timing, state, or resources
belonging to the interrupted task without Vrf detection.

• We design PEARTS to realize RT-PoX goals. PEARTS
leverages TrustZone-M on single-core ARM MCUs and
does not rely on trust assumptions about applications or
underlying RTOSs (which typically lack isolation and
privilege level separation). PEARTS respects real-time
requirements, as scheduled by the RTOS, even during a
PoX. Meanwhile, it also monitors for any actions that
could violate the integrity of the PoX task across interrupt
cycles. Importantly, PEARTS is designed not to require
changes to the underlying RTOS.

• To demonstrate PEARTS practicality, we develop and
evaluate a fully functional open-source prototype [21]
that runs alongside a well-known and unmodified com-
modity RTOS (FreeRTOS) deployed on a STM32L552ZE
MCU [22] featuring a single-core ARM Cortex-M33 pro-
cessor. Our results show that RT-PoX is obtainable at a
relatively small overhead.

As discussed in the rest of this paper, achieving these
goals requires addressing several conceptual and technical
challenges. First, the single-privilege RTOS model implies
a strong adversary (Adv) who may alter both F and RTOS
behaviors. At the same time, we strive for an approach
that does not require modifying the underlying RTOS im-
plementation, enabling seamless integration with existing
settings and use cases. To that end, PEARTS leverages ARM
TrustZone-M to create an Elastic Secure Region (ESR)
used to monitor F’s context, control flow, and resources
and detect interference attempts during a PoX instance (see
Section 5). However, as the RTOS resides in the Non-Secure

World (see Section 2 for TrustZone background), it cannot
directly interoperate (e.g., act upon scheduling decisions)
with a TrustZone-protected task. Compatibility thus requires
the creation of a mechanism (that we name “shadow” task)
to emulate the (unmodified) RTOS’ view of F as a normal
task while dispatching RTOS decisions related to F into
actions to be performed by TrustZone’s Secure World.

2. Background

2.1. RA and PoX

RA is a challenge-response protocol in which Vrf aims
to check the software image currently installed on Prv, i.e.,
the content of Prv’s program memory (PMEM). As shown
in Figure 1, a typical RA protocol is performed as follows:

1) Vrf requests RA from Prv by sending a unique crypto-
graphic challenge (Chal).

2) An RA root of trust (RoT) within Prv computes an
authenticated integrity-ensuring function over PMEM
and Chal to produce an authenticated report (H).

3) Prv sends H to Vrf.
4) Vrf compares H to its expected value.

Step (2) can be implemented using a Message Authen-
tication Code (MAC) or digital signature. The secret key
used in this operation must be securely stored and used by
the RoT on Prv to ensure it is inaccessible to any untrusted
software. As a result, RA protocols usually rely on hardware
support to implement this RoT on Prv, e.g., from Trusted
Execution Environments (TEEs), as in the case of this work.

PoX augments RA with evidence that a particular soft-
ware function within PMEM has been correctly executed
and that any claimed outputs were direct outcomes of this
timely and authentic execution. This is achieved by modi-
fying step (2) in the RA interaction with the capability to
compute a different report Hexec if and only if a function
F , chosen by Vrf and specified along with the request
(step 1), is executed in between Prv receiving Chal and
computing/sending the authenticated report to Vrf (step 3).

To ensure that the execution of F is not tampered
with by untrusted software on Prv other than F , the RoT
suspends all other applications before calling F’s execution.
As F executes, it produces output Θ. The PoX report is then
computed by signing (or MAC-ing) F’s binary, Θ, and Chal.
The RoT aborts the process (thus failing to produce Hexec)
if any attempt to interrupt or tamper with F’s execution is
made, as interrupting software could tamper with F ongoing
state. As noted in Section 1, this atomic execution require-
ment limits PoX practicality due to its direct conflict with
real-time requirements of several embedded applications.

2.2. TrustZone for ARM Cortex-M

TrustZone-M is a security extension for ARMv8 Cortex-
M MCUs, establishing a TEE by partitioning CPU resources
into two domains known as the “Secure” and “Non-Secure”



Figure 1: Transcript of RA/PoX interactions

Worlds. Each of these domains receives dedicated and phys-
ically isolated resources, including memory and peripherals.

Memory Protection. To enforce memory isolation,
TrustZone-M implements two hardware controllers: the
Secure Attribution Unit (SAU) and the Implementation-
Defined Attribution Unit (IDAU). SAU grants the system
the ability to define security designations (Secure or Non-
Secure) to memory segments and allows for dynamic con-
figuration of these designations at runtime. Conversely, the
IDAU allows the establishment of security levels for pre-
determined memory blocks that are defined by the device
manufacturer and unmodifiable thereafter.

As Cortex-M devices do not feature virtual memo-
ry/Memory Management Units (MMUs), a Memory Protec-
tion Unit (MPU) is used to implement access control policies
directly – in physical memory. When TrustZone is present,
the MPU is divided into two segments: the Secure MPU
(S-MPU) for the Secure World and the Non-Secure MPU
(NS-MPU) for the Non-Secure World. Access to the S-MPU
configuration registers is only allowed to the Secure World,
while the NS-MPU registers are accessible to both worlds.

Peripherals Isolation. Peripherals in Trustzone-M can
be categorized into three distinct types based on their secu-
rity capabilities: non-securable, securable, and TrustZone-
aware peripherals. Non-securable peripherals are those that
do not support any security features; they are always ac-
cessible from both Secure and Non-Secure worlds and
cannot be protected by TrustZone mechanisms. Securable
peripherals, on the other hand, support basic security fea-
tures that allow them to be designated as either Secure
or Non-Secure. TrustZone-aware peripherals are equipped
with intrinsic mechanisms that not only allow them to be
designated as Secure or Non-Secure but also enable them
to react dynamically to security states or conditions.

Interrupt Isolation. To handle interrupts, the Cortex-M
architecture includes a Nested Vectored Interrupt Controller
(NVIC). When TrustZone-M is enabled, it supports two In-
terrupt Vector Tables (IVTs): one for the Secure and one for
the Non-Secure World. Thus, each interrupt is individually
configured as Secure or Non-Secure. The NVIC includes a
register called Interrupt Target Non-Secure (NVIC ITNS)
used to designate interrupts as belonging to the Secure and
Non-Secure Worlds. This register can only be configured by
the Secure World.

Secure interrupts can be configured to have higher prior-
ity than Non-Secure interrupts. When a high-priority Secure
interrupt occurs, the CPU pauses Non-Secure operations
and redirects execution to the respective Interrupt Service

Routine (ISR), implemented in the Secure World. During
this process, hardware stores the register context of the
Non-Secure World automatically in the Non-Secure stack
and changes the processor state to Secure. After handling
the interrupt, the ISR updates the program counter (PC) to
trigger the Exception Return routine, restoring the previous
state and resuming Non-Secure task execution.

2.3. Embedded Real-Time Operating Systems and
ARM Cortex-M

RTOSs are widely used specialized operating systems
designed for resource-constrained embedded systems with
real-time response requirements [23]. Their core attribute
is deterministic behavior, achieved through task prioriti-
zation based on predefined deadlines, ensuring the timely
and predictable execution of critical tasks. However, their
focus on real-time constraints and simplicity often leaves
security practices (e.g., isolation) as a secondary priority.
For instance, widely used RTOSs such as FreeRTOS, are
typically used in a single-privileged setup, having user-level
and kernel-level code to coexist at the same privilege level
without isolation [24].

Systick and PendSV. Typically, embedded RTOSs use
a timer to switch active tasks. The timer triggers periodic
interrupts, known as “systicks”. When these interrupts occur,
the RTOS scheduler checks the priorities assigned to current
tasks. If needed, it switches to execute a different task. In
ARM Cortex-M systems, instead of immediately switching
tasks during the systick, it is common for the systick ISR to
set up another interrupt called PendSV to happen afterward.
When no higher priority interrupts are pending, PendSV is
activated to perform the task context switch. This ensures
precedence to critical interrupt handling over task switching.

Stack Pointers. In bare-metal RTOSs, two distinct stack
pointer registers are available: the Process Stack Pointer
(PSP) and the Main Stack Pointer (MSP). PSP is primarily
used by application threads (tasks) for regular stack opera-
tions. MSP is used by the RTOS during boot, initialization,
and by ISRs. When TrustZone is present, PSP and MSP
are banked across the Secure and Non-Secure worlds. This
means that each world maintains its own PSP and MSP
registers, allowing for secure and non-secure task stacks to
be managed independently

OS Services. RTOSs typically offer a variety of services
for tasks. In single-privilege environments, where conven-
tional system calls for privilege elevation are inexistent,
these services are often accessed through direct method-
/function calls, instead of system call exceptions. Typical
RTOS services include dynamic task management for cre-
ating and adjusting tasks; scheduling algorithms for task
prioritization and timing; synchronization mechanisms such
as semaphores and mutexes for coordination; precise timing
services using timers; interrupt handling for responding to
external stimuli; memory management for optimal resource
allocation; inter-task communication for data transfer; and
error handling mechanisms to ensure system stability and
reliability.



ISR = Interrupt Service Routine

Figure 2: RTOS and software modules on Prv

3. RT-PoX Definition

3.1. Scope & Notation

RT-PoX targets settings that (contrary to classic PoX)
depend on an RTOS to schedule multiple tasks on Prv. Vrf
wants to assess if an output Θ was produced by the timely
execution of a Vrf-defined function F on a specific Prv,
checking that Θ was not corrupted by any other (potentially
malicious) software simultaneously installed and running on
the same Prv.

As illustrated in Figure 2, the RTOS manages and
preemptively schedules N software tasks, denoted as a
set S = {S1, ...,SN−1,SApp}. Along with tasks, Prv im-
plements K Interrupt Service Routines (ISRs), denoted
I = {ISR1, ..., ISRM+1, ..., ISRK}. Among tasks running on
Prv, Vrf wants to receive a PoX of SApp. SApp behavior
may depend on inputs obtained through the asynchronous
(i.e., upon interrupt triggers) execution of one or more ISRs
{ISRM+1, ..., ISRK} ⊂ I. A valid execution of SApp must
start from entry point instruction (sentry) and conclude at
an exit point (send). We refer to SApp and the code of all
ISRs it depends upon as a self-contained functionality F .
We define untrusted code (FAdv) to encompass the RTOS
and other tasks and ISRs that are not in F . This separation
is also depicted in Figure 2.

According to the constraints discussed in Section 1, we
consider Prv as low-power single-core MCU with limited
program (PMEM) and data (DMEM) memory in the order
of dozens of kilobytes. Prv runs software at “bare-metal”,
executing instructions in place (physically from PMEM),
and with no MMU to support virtual memory or inter-
process isolation.

Furthermore, we define F’s execution context Ctx(F)
as all physical memory addresses written and read by F
during its execution, including input arguments given to F ,
any global variables used by F , and any physical peripheral
addresses/peripheral configuration addresses F may use/de-
pend upon (e.g., General Purpose Input/Output (GPIO) and
associated configuration registers).

3.2. RT-PoX Requirements

Removal of atomic execution introduces significant se-
curity challenges as it opens the door to illegal modifications

to Ctx(F) during F execution. Such incidents can stem
from interrupts that result in FAdv controlling Prv state while
F execution is paused (but not completed). The same applies
when F demands RTOS services and issues system calls.

It follows that F execution integrity depends on FAdv

non-interference with Ctx(F) while F executes, i.e:

Ctx(F) ∩ Ctx(FAdv) = ∅, (1)

where ∩ denotes interference, i.e., Equation 1 asserts that no
physical memory address accessed by F during its execution
is modified by FAdv.

Despite non-interference stipulated in Equation 1, timing
attacks [25], [26], [27] may still affect critically timed
behavior in F . Therefore, Vrf must be able to assess any
timing requirements that pertain to the correctness of F .
The root of the timing issue lies in the ability of FAdv to
artificially delay the resumption of F . Therefore, F interrupt
locations (i.e., at which instruction F is paused) and periods
(for how many clock cycles) must be observable by Vrf in
the PoX result.

Aside from timing, Vrf must be informed of the nature
of transitions between the F and FAdv to define what
constitutes a valid interrupt delay. This is because differ-
ent interrupts/system calls or the same system calls with
different arguments have varied timing constraints, e.g., a
task “delay” system call (namely vTaskDelay in FreeRTOS)
with argument “10 seconds” should take 10 seconds before
resuming the caller task. Earlier resumption may cause the
caller to access a resource that is not yet ready. Late re-
sumption may result in missed sensing/actuation deadlines.

Finally, execution control flow path attacks can be
leveraged by FAdv to divert the correct order in which
instructions of F should execute. This is possible without
changing memory in use by F or its timing, by simply
jumping back to the incorrect instruction address of F when
resuming from an interrupt or a system call.

Given the aforementioned challenges, we stipulate that a
secure RT-PoX must guarantee the following Properties 1-5
to support F integrity irrespective of FAdv’s control of Prv
state through interrupt periods within F execution.

Property 1 - Ephemeral Immutability.

The binary of F (in Prv’s PMEM) must be immutable
while F executes and in between its execution and mea-
surement (i.e, the latter part of the PoX procedure – recall
Section 2).

Without Property 1, FAdv could change the binary of F
(which by definition also includes the code implementing
ISRs F depends upon). Clearly, this would modify F’s
behavior. Note that simply disabling all runtime modifi-
cations to PMEM in a single privilege system impedes
remote software updates [7], which is impractical in many
settings. Instead, RT-PoX must ensure that F binary remains
consistent (with the hash value reported to Vrf) during its
execution, allowing PMEM modifications otherwise.



Property 2 - Execution Flow Integrity.

Interrupts, system calls, or execution of FAdv must not
affect the integrity of F’s control flow. Additionally, F
must start from its valid entry point (sentry) and terminate
at its valid exit (sexit).

Per Property 2, RT-PoX requires that untrusted code exe-
cution due to transfers from F to FAdv — such as interrupts,
system calls, or task switches — must not affect the integrity
of F’s execution flow when F execution resumes.

Property 3 - Context Integrity.

Data in use by F must not be subject to influence from
FAdv. This includes physical memory used by F in
DMEM, register contents, and data inputs obtained from
I/O peripherals.

Property 3 ensures that F does not rely on data provided
or modified by FAdv, including any changes to peripheral
configurations (e.g., timer or GPIO resolution) that could
indirectly affect F’s I/O values obtained by F . We note,
however, that data inputs used by F can be influenced by
external temporal/physical factors (which are independent
of Prv’s internal software state). For example, a physical
temperature change could (and should) affect the data inputs
of F if F is for instance a temperature-based application
performing a temperature read.

Property 4 - Timing Integrity.

RT-PoX should provide Vrf with information about any
delays to F caused by FAdv execution periods (due to
interrupts and system calls).

Property 4 allows Vrf to decide if any delays caused are
still acceptable for the functionality implemented by F .

Property 5 - RTOS Availability.

RT-PoX must co-exist and not interfere with RTOS du-
ties, e.g., task scheduling, timing, and resource allocation.

Property 5 is the raison d’être of real-time systems,
where the predictability and reliability of task execution time
are vital. It is also the main motivation of RT-PoX over
classic PoX. RT-PoX enables the co-existence of PoX and
a Non-Secure World RTOS responsible for scheduling. This
maintains the RTOS outside the PoX trusted computing base
(TCB). We highlight that RT-PoX focus is not to guarantee
proper scheduling/availability despite a compromised RTOS.
The latter is the focus of mechanisms supporting trusted
scheduling (e.g., [28], [29], [30], [31]). Appendix C further
elaborates on this difference.

4. PEARTS Overview
PEARTS realizes RT-PoX on an off-the-shelf embedded

RTOS (FreeRTOS) running on commodity MCUs (ARM

Cortex-M) and does not require RTOS modifications. To-
ward this goal, it leverages ARM TrustZone-M to establish a
secure environment that monitors the execution of F during
a PoX, enforcing RT-PoX properties.

4.1. System Assumptions

Device. Prv consists of a resource-constrained single-core,
bare-metal MCU (as described in Section 3.1) equipped with
TrustZone-M (recall Section 2 for TrustZone-M details).

RTOS. We model the RTOS after the default structure
of FreeRTOS, given its widespread adoption in practical
settings [32]. It employs systick-based interrupts for time
tracking and to decide when a context switch is needed.
The PendSV ISR implements context switches. Tasks and
the RTOS run within the same privilege level (no privilege
separation/isolation) [24].

Software Architecture. The RTOS and tasks it oversees (in-
cluding F) are housed in Prv’s Non-Secure World. PEARTS
RoT implementation, denoted FRoT, resides in the Secure
World and has exclusive access to a secret key (sk). The
corresponding public key (pk) is securely provisioned to
Vrf before Prv’s deployment.

Remark. We note that the trivial approach of imple-
menting F within the Secure World (thus isolated from
the Non-Secure World) does not achieve RT-PoX. Such an
approach does not allow RT-PoX of multiple, arbitrary (Vrf-
configurable) applications, as it would fix F to code shipped
as part of the Secure World, at device deployment time.
Furthermore, it would mix the TCB of PEARTS’s RoT with
the untrusted code of multiple applications that Vrf may
want to execute provably (within the Secure World, in this
hypothetical case).

4.2. Adversary Model

The Adversary (Adv) is assumed to have full control
over Prv’s Non-Secure World and can alter its code (e.g., via
code injection attacks) and exploit vulnerabilities to cause
control flow hijacks and code reuse attacks. The RTOS in the
Non-Secure World is not considered intently malicious, but
rather untrustworthy (i.e., could contain exploitable bugs).
Adv can also attempt to manipulate F (such an attempt
should be detected by a secure RT-PoX– recall Property 1).
Adv can change Non-Secure World interrupt configurations
to trigger ISRs at will and can alter or corrupt ISR imple-
mentations. However, given TrustZone-M protections, Adv
cannot access or tamper with code or data in the Secure
World. Similarly, it cannot deactivate or circumvent the
TrustZone-M hardware-enforced access control rules and
assurances. Physical and hardware-modifying attacks are
out-of-scope, as they require orthogonal tamper resistance
measures [33].



Figure 3: RT-PoX steps with PEARTS.

4.3. Workflow

At F compilation time, F binary is generated with a
custom linker to make its code self-contained/independent
from FAdv. PEARTS supports but does not mandate the as-
signment of ISRs as a part of F . If F functionality relies on
ISRs, relevant ISRs (and their dependencies) must be linked
within F’s binary as a part of F implementation itself;
otherwise, they can be excluded from F . F system calls
are also instrumented, as depicted in 0 from Figure 3. The
instrumentation of F system calls is used to ensure that they
are intercepted and adequately dispatched by PEARTS’s
RoT. PEARTS system call dispatching ensures that system
call timing requirements can be verified irrespective of FAdv

behavior.
A PEARTS instance begins when Vrf sends an RT-PoX

request (containing challenge Chal) to Prv, requesting a
timely execution of F , as shown in 1 . Upon receiving the
request, Prv must call FRoT to start the PEARTS Initializa-
tion Routine 2 . This routine sets up the initial transition
from FAdv to F . This includes configuring a so-called
Elastic Secure Region (ESR). ESR is a memory region in
the Non-Secure world used to isolate F memory from FAdv.
Additionally, the initialization routine sets up all interrupts
that do not belong to F , to be trapped in the Secure World.
This ensures that any eventual illegal memory accesses and
control flow transitions between F and FAdv are observable
by FRoT. Furthermore, all peripherals are initially configured
to be inaccessible to the Non-Secure World (including both
FAdv and F). This traps F attempts to access peripherals to
FRoT, allowing FRoT to mark them as “in use” by F and
detect subsequent interfering accesses by FAdv.

Once the setup is complete, FRoT launches F execution
in ESR by switching the CPU mode to Non-Secure and
jumping to sentry (step 3 ). To support other real-time

operations on Prv, F execution may be sporadically paused
to execute FAdv (e.g., due to F-issued system calls or FAdv

interrupts/context switches). Nonetheless, due to the traps
created in the Initialization Routine, FRoT can monitor these
transitions (step 4 ) to detect control/data-flow violations
as well as to record the duration of each transition. Once
F concludes at send, producing the output Θ, it returns to
FRoT, as shown in 5 .

During FAdv execution, any resources not exclusively
used by F are still freely accessible, allowing FAdv to
operate normally without being blocked by PEARTS. The
access to resources in use by F is monitored by FRoT to
ensure non-interference by FAdv. A so-called interference
exception is triggered if FAdv attempts to: (i) access one of
F’s exclusive resources (F code/data or peripherals) or (ii)
execute code within ESR (e.g., directly jump to ESR without
going through FRoT). To preserve the RTOS availability,
FRoT records the exception and releases the resource to
FAdv. The recorded exception is later included in the RT-
PoX report (R) along with Θ and F measurement, which are
all signed by FRoT and sent to Vrf (in 6 ). Upon receiving R,
in 7 , Vrf considers Θ trustworthy only if: (i) the signature
is valid; (ii) no interference exceptions are reported1; (iii)
all reported transitions between F ↔ FAdv occur within
acceptable duration (according to F requirements).

4.4. PEARTS Guarantees at a High Level

Before delving into PEARTS details in Section 5, we
here discuss the high-level rationale behind the workflow
discussed in Section 4.3 in guaranteeing the properties in-
troduced in Section 3.2.

1. Optionally, Vrf may choose to analyze the context of specific inter-
ferences to judge if they could have affected F outcome.



Property 1 (F immutability) is attained by having F
code in ESR. Whenever a transition to FAdv occurs during F
execution, FRoT takes over the control to configure ESR (via
the SAU TrustZone controller, recall Section 2) as a Secure
Region before switching to FAdv. With this configuration,
any FAdv attempts to access ESR will cause a fault; this fault
redirects the control to FRoT, which saves such attempts to
include them in R that will later be sent to Vrf. FRoT reverts
ESR back to a Non-Secure Region when transitioning back
to F execution. This approach also ensures that F TCB
and FRoT TCB are isolated from each other (as F does not
execute in the Secure World). Since FAdv cannot modify F
code (located inside ESR) without FRoT detection, Property
1 is fulfilled.

For Property 2 (execution flow integrity), FRoT stores
the proper return address before dispatching interrupts/sys-
tem calls to FAdv and resumes F at this address after
FAdv execution concludes. Since the return address is stored
in the Secure World, it cannot be manipulated by FAdv.
FAdv may also attempt to cause execution flow attacks by
directly jumping to the middle of F . However, as F code
resides in ESR (inaccessible to FAdv) such attempts lead to
an interference exception which is therefore detected and
included on the report to Vrf by FRoT.

Recall that Ctx(F) consists of all memory regions
allocated or used during F execution, including its DMEM,
peripheral addresses, and peripheral configuration addresses.
PEARTS achieves Property 3 (Data Integrity) using three
methods. First, in addition to F’s code, FRoT makes F’s
DMEM part of ESR. Doing so prevents illegal access to
F’s runtime data during FAdv execution. Second, FRoT

configures the peripherals used by F to be inaccessible
by the Non-secure World while FAdv executes. This pre-
vents FAdv code from altering peripheral configurations or
stealing peripheral data meant for F without detection and
logging by FRoT. Third, F system calls are instrumented
with trampolines to the System Call Dispatcher in FRoT.
This causes FRoT to intercept them before redirection to
the RTOS, allowing PEARTS to monitor RTOS’s response
times and log timing manipulations.

Property 4 (Timing Integrity) is satisfied in PEARTS
by FRoT’s implementation always recording each operation
(i.e., system calls, returns, interrupts, or returns from in-
terrupts) that triggers a transition during F execution. Also,
FRoT logs the timestamp of each transition using a dedicated
secure clock that is only accessible/configurable to/by FRoT

within the Secure World.
By design, F provable execution is interruptible while

leveraging aforementioned interference exceptions to detect
and log (but not block) any external interference. Therefore,
an RTOS can still fulfill its duties according to any under-
lying real-time requirements, realizing Property 5 (RTOS
Availability).

5. PEARTS Design in Detail

5.1. Interference Exceptions

This section explains the resource isolation scheme to
enable exception-based monitoring (Section 5.1.1) and de-

tails how each type of interference exception is handled
and reported in PEARTS reports (Section 5.1.2). Interfer-
ence exceptions are active whenever an RT-PoX instance
exists in the system, i.e., in between PEARTS Initialization
(Section 5.2) and Finalization (Section 5.6) routines.

5.1.1. Resource Isolation Scheme.

Code & Data Isolation. The Non-Secure memory (includ-
ing PMEM and DMEM) is partitioned into two regions,
ESR and the rest of the system memory, each containing
its own code and data sections. ESR is used for storing
F and the rest is for FAdv. During a PEARTS protocol
instance, whenever a transition happens from F to FAdv,
FRoT marks the ESR as a Secure Region by modifying the
SAU controller configuration. As a result, any subsequent
attempts by FAdv to access (read, write, or execute) ESR
will trigger an interference exception, notifying FRoT about
these attempts. Conversely, when FAdv returns the control
to F , FRoT sets ESR as a Non-Secure Region, re-enabling
execution and access to F in the Normal World.

Peripheral Isolation. At the beginning of PEARTS proto-
col, FRoT configures all peripherals to the Secure state. This
restricts direct access to all peripherals from Non-Secure
World (including F) during F execution. When F needs to
access a certain peripheral, it must request access to FRoT.
Upon receiving it, FRoT switches the peripheral to the Non-
Secure state and associates it with F . Whenever a transition
F → FAdv occurs, FRoT configures peripherals in use by
F as belonging to Secure-World and other peripherals as
belonging to Normal World. As a result, FAdv attempts to
access F peripherals lead to interference exceptions, thereby
notifying FRoT of the attempted access.

Remark. The secure configuration of peripherals does
not prevent FAdv from accessing these resources. Instead, it
is leveraged to trigger FRoT to quickly log the peripheral
access before allowing it (see details below). This ensures
that the RT-PoX report informs Vrf of any potential inter-
ference of FAdv on peripherals that F may depend upon
during execution.

5.1.2. Interference Exception Handling.

When an interference exception is triggered, FRoT ex-
amines the source address that caused the fault to determine
its origin. A flag corresponding to the type of fault cause
is added to the RT-PoX exception log (Elog). Elog is
subsequently included in the RT-PoX report. If the fault
was caused by an access to ESR, PEARTS deactivates the
ESR, re-configuring it as a Non-Secure region to allow the
access (as this could be a time-critical access to a resource
in use by F). If the fault resulted from peripheral access,
PEARTS re-configures the peripheral to be part of the Non-
Secure world after logging the access. By allowing FAdv to
continue operation after a fault, PEARTS avoids disrupting



other potentially critical tasks in Prv and allows F to resume
its execution afterward. At the same time, it ensures that any
interference is logged in the RT-PoX report that is sent to
Vrf after F execution.

To track time delays that FAdv interrupts might introduce
to F’s execution we define a tuple to be measured for
each transition FAdv ↔ F (in both directions). This tuple
captures the execution timestamp t of the context switch and
is structured as

e = [Op, Src,Dst, Args, t] (2)

where:
• Op is the operation initiating the transition between F

and FAdv (a particular interrupt or system call);
• Src is the last instruction address executed before the

transition;
• Dst is the jump-to destination address of the transition;

and
• Args contains relevant arguments in the transition (e.g.,

system calls parameters, if applicable).
The sequence Tlog = [e0, ..., ee] (where each ei has the
form defined in Equation 2) contains information of all
transitions during F execution and is also included in the
RT-PoX report sent to Vrf.

5.2. Initialization Routine

Upon receiving an RT-PoX request from Vrf, RTOS
creates a task, associated with the RT-PoX execution, that
triggers the FRoT to start PEARTS Initialization Routine,
performing the following:
• Memory Allocation. FRoT reserves memory segments

within ESR for F data allocation. This includes moving
F stack pointers (PSP and MSP, recall from 2.3) and heap
structures to fall within that range.

• Peripheral Configurations. All the peripherals are set
to be accessible only by the Secure World. This enables
the exception-based interference monitoring described in
Section 5.1.

• DMA Configuration. FRoT checks if any DMA channel
is configured to write within ESR. If so, a record is added
to Elog detailing the address range and peripheral(s)
involved in DMA writing.

• F Binary Measurement. FRoT hashes ESR PMEM and
the NS-IVT (which contains code pointers to the ISRs
called upon each possible interrupt trigger, including the
ISRs belonging to F). This result – H(F) – is later
included in the RT-PoX report.

• Interrupt Dispatchers. FRoT configures all interrupts that
are not associated with F to be trapped by the Secure
World. This setup intercepts any transitions between F
and FAdv triggered by interrupts to ensure that they are
securely dispatched back to their original ISRs in the Non-
Secure World (see dispatching details in Section 5.3).

• Secure Timer. FRoT reserves a hardware timer to times-
tamp transitions between F and FAdv, monitoring the time
taken by FAdv to resume F .

5.3. Interrupt Dispatcher

Recall that PEARTS redirect interrupts to the Secure
World so that FRoT can configure the system to enforce
non-interference with F before allowing Non-Secure ISR
handling. To redirect interrupts, PEARTS configures them
as Secure. This implies that the S-IVT is used to locate the
ISR responsible for handling each trigger (instead of NS-
IVT). This is accomplished by setting the corresponding
bits in the NVIC ITNS registers (recall Section 2.2) to 0
for all interrupts. PEARTS maintains two versions of the
NVIC ITNS: one for when F is active and another for when
FAdv is active. When F is active, the interrupts not related
to F are marked as Secure in the NVIC ITNS while the F-
related ones are marked as Non-Secure. Conversely, when
FAdv is active, all interrupts from F are set as Secure and all
others return to the original security state. This dynamically
adjusts the security settings based on the active application
to maintain operational integrity.

Note that the assignment of interrupts to F should be
based on whether F’s functionality depends on the ISR
execution. If F does not rely on any interrupts, all interrupts
should be assigned to FAdv.

5.4. RTOS System Calls Within F

F should be self-contained to include all code its func-
tionality depends upon. However, to maximize Prv utiliza-
tion by other simultaneous tasks, F must still use RTOS
system calls related to scheduling and time management.
For instance, if F must “sleep” for 10 seconds, it should
be able to use the RTOS system calls to sleep. In that way,
the RTOS would be notified of the 10-second slot made
available by F and potentially allocate it to other tasks,
increasing system utilization. However, reliance on system
calls implemented by the potentially compromised RTOS
may result in violations to F’s execution integrity, e.g., if
instead of waking up F after the expected 10 seconds, FAdv

were to hold control for a shorter or longer period.
PEARTS allows F to make RTOS system calls for

functions that involve time management, scheduling, and
synchronization. However, instead of directly handing con-
trol to the RTOS, PEARTS instruments the aforementioned
system calls to trigger FRoT to start its own measurement of
the time taken to resume F . This is achieved using the FRoT-
dedicated Secure Timer discussed in Section 5.2. The secure
time measurements are used to construct Tlog = [e0, ..., ee]
(as discussed in Section 5.1). At the same time, this enables
the use of the default RTOS system calls for time manage-
ment and scheduling of F together with other tasks in the
system. Appendix B lists system calls supported in PEARTS
prototype (along with related security considerations).

5.5. Auxiliary FRoT Services

Heap Memory Allocation. In real-time embedded sys-
tems, dynamic memory allocation is often avoided due to



overhead and, in some cases, unpredictability. In situations
where dynamic allocation is required, the memory allocation
process is handled by an RTOS service. In our scenario,
however, F cannot yield control over its memory to FAdv.
Thus, when F uses dynamic allocation, a separate instance
of the memory allocator is implemented within the ESR.
When dynamic memory allocation is required by F , FRoT

assigns space in ESR designated as the heap during the
Initialization Routine.

DMA Management. CPU-independent writes by DMA
might attempt to modify ESR. To mitigate this, PEARTS
revokes DMA permissions from the Non-Secure World and
provides an API that allows the Non-Secure World to request
DMA operation configuration to FRoT. This allows FRoT to
log DMA attempts that interfere with Ctx(F) to Elog.

Self-Timing. F can perform secure time measurements
during its execution through a request to a time function
implemented by FRoT. This is implemented using the same
reserved secure timer discussed in Section 5.2, also used to
time FAdv execution periods when F is interrupted.

5.6. Finalization Routine and Verification

After F execution concludes, the Finalization Routine
is triggered. This routine restores the system’s configuration
to its state prior to the RT-PoX process. It frees DMA
and peripherals for the Non-Secure World, sets ESR as
Non-Secure, clears runtime memory, and restores interrupt
configurations. Finally, it generates the attestation report R.

The RT-PoX report R = {σF ,Elog,Tlog,Θ} contains
information needed by Vrf to assess the integrity of F’s
execution on Prv. Elog contains all external (FAdv) accesses
that interfered with F’s context during its execution. Tlog
contains the times and context switch information of all
interrupts and system calls during F’s execution. Θ is the
output of F execution. σF is the signature

σF = Signsk(H(F)||Chal||Elog||Tlog||Θ)

computed using the Secure World’s secret key sk. Therefore,
it authenticates F’s binary, Elog, Tlog and Θ, and proves the
freshness of R through Chal. Importantly, H(F) and Chal
are committed to an RT-PoX instance by the Initialization
Routine before F execution. F (in ESR) is immutable
thereafter. On every RT-PoX instance, σF is computed on
the same H(F) and Chal committed during initialization
and only after F execution reaches its last instruction (sexit),
indicating F’s execution has completed.

After authenticating σF , checking H(F), and checking
Chal, Vrf can examine Tlog for adherence to application-
specific timing constraints. Similarly, it can inspect Elog to
verify that F context was not tampered with.

6. Security Analysis

Adv’s goal is to convince Vrf that F executed correctly
on Prv (optionally producing some Θ output) when no such
execution occurred, when its context or timing constraints

were tampered with, or when Θ is not a direct result of said
execution. Towards this goal Adv might attempt to perform:
• F binary modifications. Adv might change F binary

prior to the initiation of RT-PoX process. However, as
H(F) is computed during initiation, any such modifi-
cation would result in a mismatch with the code hash
expected by Vrf. Adv could also attempt to alter the F
binary during the RT-PoX process (after H(F) computa-
tion). However, due to SAU-enforced protection to ESR,
this attempt is detected by FRoT and thus by Vrf.

• F execution flow manipulation. To manipulate the ex-
ecution flow of F during an RT-PoX process, Adv must
return from FAdv to an incorrect instruction in F . Directly
jumping to an arbitrary address within F is infeasible
because during FAdv execution ESR is set as a Secure
Region by SAU (hence not executable from the Non-
Secure World). Alternatively, Adv might attempt to change
intermediate control flow-related data in F’s stack. This
also fails because F’s data is also within ESR. Finally,
Adv could try to modify the interrupt vector tables to
change the address executed upon interrupts during F exe-
cution. However, PEARTS checks the integrity of the IVT
addresses related to F before F execution and maintains
a copy of the IVT in the ESR (which is always checked
upon resuming F execution).

• F data corruption. As previously discussed, Adv is
unable to directly modify the data within F due to SAU
memory protections to ESR. Consequently, Adv may at-
tempt alternative strategies to modify Ctx(F). One such
strategy involves altering the configurations of peripher-
als used by F . This alteration can change the expected
behavior of the peripheral and affect the data that F
subsequently reads from it. However, when FAdv is active,
all peripherals accesses are trapped by the Secure World
and logged, preventing Adv from stealthily modifying the
peripheral registers/configurations. Alternatively, Adv can
attempt to use DMA to corrupt F data. This is not feasible
because, during the RT-PoX process, all DMA channels
are configured securely by FRoT. PEARTS also checks for
any pre-configured DMA channel targeting ESR during
the RT-PoX initialization.

• Timing attacks. Adv may alter response times of time-
sensitive operations within F by interfering with their
schedule. Adv could achieve this by either delaying or
prematurely advancing the schedule of operations within
F when the schedule is handled by the RTOS. However,
PEARTS independently logs times and associated context
of all F ↔ FAdv transitions using a dedicated timer only
accessible in the Secure World. Therefore, timing attacks
are detectable by Vrf.

• RT-PoX report forgery. Given Adv’s inability to perform
the aforementioned actions, its last resort is to forge the
RT-PoX report. This in turn requires forging signature
σF which is computationally infeasible as long as sk is
unknown to Adv and the underlying signature primitive
is existentially unforgeable. In turn, sk is stored in the
Secure World and only accessible to FRoT.



7. Implementation Details

7.1. Interfacing the RTOS and PEARTS

Housing F in ESR prevents the RTOS from directly
managing it as a normal task in the Non-Secure World.
Doing so would raise a security exception (due to Trust-
Zone’s world separation) during context switches or sys-
tem calls. To allow PEARTS to run on an unmodified
RTOS, a “shadow task” is created to mimic F’s presence
as a standard RTOS-managed task. The RTOS creates the
Shadow Task in the Non-Secure World normally, using its
standard task creation API (e.g., xTaskCreate in FreeRTOS).
Shadow tasks have fixed behavior and interface the un-
modified RTOS with FRoT. Once the Shadow Task starts
executing (as scheduled by the RTOS) it calls FRoT to
initiate/switch/resume F .

The Shadow Task also mediates system calls originating
from F . F system calls are instrumented to yield control to
FRoT. FRoT then changes the context to FAdv and directs the
execution to the Shadow Task which triggers the respective
system call in the RTOS, in the Non-Secure World. See
Appendix A for implementation details on Shadow Tasks.

7.2. Context Switches

Switching F → FAdv: During this context switch, ESR
is configured as a Secure Region, and the peripherals used
by F are set as Secure while all other peripherals are set as
Non-Secure. Register context (including MSP and PSP) is
saved to the Secure World, and MSP and PSP are replaced
with those belonging to FAdv to prepare FAdv context and
stack. The NS-IVT is configured as described in Section 5.3.
A new entry is recorded in Tlog to log the transition,
interrupts are re-enabled, and control is passed to FAdv.

Switching FAdv → F : Per PEARTS enforced properties,
FRoT receives control to initiate this switch. FRoT marks
ESR as Non-Secure. Next, F peripherals are reconfigured
as Non-Secure, while the remaining peripherals are set to
Secure. The register context of FAdv is saved and the F’s
register context and the NS-IVT are restored. This transition
is logged in Tlog. Finally, the switch concludes by re-
enabling interrupts and resuming F .

7.3. Dispatching Banked Interrupts

When TrustZone is active, certain interrupts (such as
systick) are banked between Secure and Non-Secure modes.
Thus, they are signaled separately for each world. This
separation prevents the direct configuration of a banked
Non-Secure interrupt to be handled by PEARTS dispatcher
in the Secure World. To address this, PEARTS keeps a copy
of the NS-IVT within ESR, where the addresses of the ISRs
for these banked interrupts are replaced with fixed reserved
Secure World addresses. When the NS-IVT copy is accessed
as part of the Non-Secure World interrupt handling process,
any trigger of the banked interrupt will also trigger a Secure
World exception. The exception implementation allows the

Secure World to verify if the fault originated from a systick
exception attempting to access the associated secure address.
If so, the fault is redirected to the interrupt dispatcher and
then redirected by the dispatcher to the original systick ISR
in the Non-Secure World.

8. Prototype & Evaluation

We developed a proof-of-concept prototype of PEARTS
on a NUCLEO-L552ZE-Q development board, which fea-
tures an STM32L552ZE MCU. This MCU is built on
the ARM Cortex-M33 (v8) architecture, operates at 110
MHz, and supports Arm TrustZone-M. PEARTS functions
in the Secure World are implemented in C. SHA224 and
HMAC cryptographic operations leverage MCU built-in
hardware accelerators and are only accessible by the Secure
World. The Non-Secure World runs a standard version of
FreeRTOS, with its API interfaces specified in CMSIS-
RTOS2 [34]. Vrf is implemented in Python to communicate
with Prv, initiate RT-PoX requests, and verify responses.
PEARTS prototype implementation is publicly available in
[21]. We evaluate PEARTS prototype regarding its latency,
memory, and runtime overheads. We also analyze PEARTS’s
impact on real applications.

8.1. Runtime Overhead

8.1.1. Interrupt Dispatcher Latency.

We start by examining the latency overhead of
PEARTS’s Interrupt Dispatcher on Prv. Recall that when
F is active, FRoT dispatches FAdv interrupts and returns
from interrupts, increasing the latency of interrupt handling.
This increase in latency can impact the application’s time
budget. The degree of this impact depends linearly on the
interrupt frequency in FAdv.

We assess the latency associated with both types of tran-
sitions in PEARTS: F → FAdv (interrupt) and FAdv → F
(return from interrupt, a.k.a. interrupt backtrip). We consider
the following metrics:
• Interrupt Latency: The time elapsed from the triggering

of an interrupt to the start of its respective ISR execution.
• Interrupt Latency Back-trip: The time from the com-

pletion of the ISR execution to the resumption of the
interrupted task.

Results are summarized in Table 1. In all cases, the
time unit reported is the number of CPU cycles taken
(at 110 MHz, one CPU cycle is ≈ 9 nanoseconds). Each
measurement was conducted 1000 times, covering all pos-
sible execution paths of the interrupt dispatcher, to ensure
consistency. During tests, we ensured that no other interrupts
occurred between the start and end of the measurements. For
comparative analysis, we also measured these components
with PEARTS deactivated, thus establishing a baseline to
quantify the overhead introduced by the dispatcher.

The analysis of interrupts for F → FAdv shows that the
maximum interrupt latency was 102 CPU cycles. Similarly,



TABLE 1: Context Switch Latency Introduced by PEARTS

CPU CyclesEvent Max Min
F → FAdv Interrupt 119 117
F → FAdv Interrupt Backtrip 85 85
FAdv → F Interrupt 102 101
FAdv → F Interrupt Backtrip 84 83

the maximum interrupt backtrip latency was 85 CPU cycles.
For FAdv → F , the observed maximum interrupt latency
was about 102 CPU cycles, and the maximum interrupt
backtrip latency recorded was 84 CPU cycles. While tran-
sitions from F to FAdv will always frequently occur due
to the scheduler interrupt associated with FAdv, transitions
from FAdv to F depends more on specific application needs.

8.1.2. Per-Module Runtime Breakdown.

Table 2 shows the runtimes of various operations in
PEARTS that could impact the performance of Prv.

To quantify PEARTS Initialization Routine’s impact, we
measured the time taken between RTOS’ call to F’s shadow
task until F’s RT-PoX execution starting. The maximum
initialization latency observed was around 8.5K CPU cy-
cles (≈ 0.08 milliseconds). The runtime introduced during
the initialization routine is attributed to both the required
configuration of hardware controls and the computation of
H(F) (using SHA224). Additionally, we measure the Final-
ization Routine latency, which involves generating report R
(implemented with HMAC) and reverting Prv to its pre-PoX
configuration. The maximum finalization routine runtime
recorded was 14.3K CPU cycles (≈ 0.14 milliseconds)
when R size was around 2KBytes due to a large number
of T log entries. As a lower bound, when T log is empty, the
runtime measured was around 3.2K CPU cycles (≈ 0.03
milliseconds). Note that the initialization and finalization
routines are executed once per RT-PoX instance, before
and after F execution, respectively. Therefore, they do not
influence timings within F’s execution.

The latency introduced by the System Call Dispatcher to
the system calls in F should also be considered. The mea-
sured maximum latency for the system call dispatching was
77 CPU cycles vs. 1 CPU cycle in the baseline FreeRTOS
without dispatching. This introduces an overhead of up to
76 cycles for system call dispatching. There is no overhead
for system calls originating from FAdv, since they are not
dispatched.

Another potential overhead, although likely infrequent,
is from PEARTS interference exception handling. If FAdv

tries to access resources in use by F , an exception is
triggered. PEARTS then logs the interference attempt to the
RT-PoX report and releases the resource for FAdv to use.
Regarding interference exception handling, the maximum
time measured from when triggered to when control is
returned to the interfering task is 92 CPU cycles.

To evaluate the effects of PEARTS on RTOS context
switches, we measure the time from the completion of the
RTOS context switch function to the resumption of the ac-

tive task. When analyzing the RTOS context switch latency,
we focus exclusively on transitions from FAdv to F . We
observe the overhead of this transition to be at most 98 CPU
cycles. We do not consider the RTOS context switch from
F to FAdv because, when it happens, the context initially
changes to FAdv due to the systick interrupt used by the
RTOS scheduler. Consequently, when the PendSV interrupt
occurs to switch to a FAdv task, the context is already in
FAdv. Hence, there is no overhead in the measured time.

TABLE 2: Overhead Introduced by PEARTS modules

CPU CyclesEvent Max Min
System Call Dispatching 77 74
Initialization Routine 8512 8436
Finalization Routine 14332 3252
Interference Exception 92 91
RTOS Context Switch FAdv → F 98 93

8.2. Memory Footprint

Table 3 presents (i) the number of lines of C+Assembly
code, measured using ”cloc v1.90”; (ii) the corresponding
compiled binary size compiled using the ”-O0” optimization
flag (measured with the STM32CubeIDE build analyzer
tool); and (iii) the maximum RAM usage at runtime (mea-
sured using the STM32CubeIDE static stack analyzer tool)
for each of PEARTS’s modules. FRoT implementation in
the Secure World (TCB) comprises 569 lines of code. The
Initialization and Finalization Routines, excluding the cryp-
tographic libraries, occupy 0.3KBytes and 0.4KBytes of bi-
nary size, respectively. Their maximum runtime RAM usage
is 272 Bytes and 256 Bytes, respectively. The cryptographic
library is striped to include only the code necessary for
HMAC and SHA224 usage of built-in cryptographic acceler-
ator hardware in the MCU. This code occupies 2.7KBytes in
the binary and allocates 256 Bytes of RAM at runtime. The
Interrupt Dispatcher, System Call Dispatcher, and Interfer-
ence Handler together occupy around 0.9KBytes of PMEM
and do not use any RAM, as all memory operations are done
at the register level. In the Non-Secure World, the Shadow
Task code occupies 0.2KBytes of FAdv PMEM and allocates
16 Bytes of RAM at runtime.

TABLE 3: PEARTS Memory Footprint

Module Binary Size
(KBytes)

Lines of
Code

Max RAM
Usage (Bytes)

Secure World
System Call Dispatcher 0.1 28 0
Interrupt Dispatcher 0.5 86 0
Interference Handler 0.3 65 0
Finalization Routine 0.3 84 272
Initialization Routine 0.3 74 256
Cryptography Library 2.7 232 256

Non-Secure World
Shadow Task 0.2 30 16

PEARTS default implementation reserves 2.4Kbytes of
RAM to store logs generated during the RT-PoX instances
and all metadata contained in the report. This memory was



sufficient for all applications considered in our tests (see
Section 8.3 for log sizes required by each tested application
as a function of interrupt frequencies).

8.3. End-To-End Run-Time Evaluation

We assess the performance of PEARTS on real embed-
ded applications through a series of experiments involving
a selection of open-source MCU applications and MCU
programs from the BEEBS benchmark [35]. Initially, we
focus on a case where only one task is being scheduled by
the RTOS using a systick interrupt configured to trigger at 1
kHz, running without interference from other tasks. In this
setup, we aim to assess the execution delay experienced by
the task both with and without PEARTS. We evaluate eight
different algorithms under conditions where no additional
interrupts are set up for the task.

The results of the experiment is illustrated in the first
row of Table 4. When PEARTS is activated, the task expe-
riences a runtime increase that varies from 10.6% to 19.8%,
reflecting the overhead introduced by the additional secu-
rity processes. This increase is relatively modest across all
eight algorithms tested, suggesting that PEARTS efficiently
integrates security without significantly compromising the
system’s performance.

Next, we expand our evaluation to include scenarios
where the RTOS schedules multiple tasks simultaneously.
In this configuration, all tasks are assigned the same pri-
ority, ensuring the RTOS allocates the same time budget
to each. We vary the number of tasks within FAdv from
1 to 8, focusing on assessing the overhead generated by
the task operating within F , while maintaining the FAdv

interrupt frequency fixed at 1 kHz. By analyzing the results
in Table 4, we observe that overhead increases across all
applications, indicating an approximately linear increase in
overhead relative to the number of tasks.

Next, we evaluate how PEARTS performs when a task
running in F is subjected to interrupts at frequencies ranging
from 1kHz to 8kHz in FAdv. This test aims to assess the
scalability of PEARTS under varying levels of interrupt-
driven stress. The results of this experiment are presented in
Table 5. We observe a linear increase of approximately 0.1%
overhead increase for each 1kHz increment in the interrupt
frequency.

We also evaluate the overhead of a task in FAdv when
there is an active RT-PoX instance on Prv. We consider a
single task running in FAdv and another in F . We vary the
interrupt frequency within F from 2kHz to 8kHz, while
FAdv maintains a fixed systick frequency of 1kHz. The
results of these experiments are presented in Table 6. By
comparing Table 5 with Table 6, we observe that for the
same interrupt frequency, the runtime overhead for tasks in
FAdv is lower than the overhead generated by tasks in F .
However, in both cases, we note that the increase in over-
head is proportional to the increase in interrupt frequency.
Both present similar growth rates.

Finally, Table 7 presents PEARTS report sizes across
different applications, with varying FAdv interrupt frequency.

Higher interrupt frequencies lead to more context switches
F ↔ FAdv, resulting in a higher number of FAdv timings
logged and thus a larger log size. Log sizes across tested
applications ranged from 84 to 244 bytes.

9. Related Work

Remote Attestation (RA): RA architectures are gener-
ally classified in three types: software-based (or keyless),
hardware-based, and hybrid. Software-Based RA Architec-
tures [36], [37], [38], [39], [11], [5], [40], [10] do not
rely on any specialized hardware. The main advantage of
software-based RA is its flexibility and ease of implemen-
tation since it does not require additional hardware. How-
ever, this model places significant demands on the security
of the software itself. It operates under strict assumptions
about the capabilities of Adv capabilities and the flawless
implementation of the RA mechanism. This can be a lim-
iting factor as it may not provide robust security against
sophisticated hardware-level attacks. Hardware-Based RA
Architectures [41], [42], [43], [14], [9] incorporate dedicated
hardware to support security features, such as Trusted Plat-
form Modules (TPMs) [44] or uses specific CPU instruction
sets like Intel SGX [45]. The use of hardware provides a
stronger security foundation, as the RA processes are less
vulnerable to software attacks and can leverage the physical
security properties of the hardware. The primary drawback is
the increased cost and complexity of integrating specialized
hardware components, which might not be feasible for all
devices or contexts. Hybrid RA Architectures [2], [1], [3],
[4], [6], [46] aim to bridge the gap between software and
hardware solutions. This type of design seeks to combine
the lower cost and flexibility of software-based RA with
the robust security features of hardware-based RA. This is
often achieved through hardware/software co-designs that
smartly integrate both approaches to fit specific use cases.
For example, hybrid RA might use minimal hardware to bol-
ster a primarily software-based RA process, thus providing
enhanced security without the full cost of hardware-based
systems.

Proof of Execution (PoX): On high-end devices (ap-
plication computers and servers), Flicker [15] was the first
to utilize hardware support for a dynamic root of trust for
measurement in TPMs (along with AMD’s SVM support
in commodity AMD processors) to prove execution of code
in isolation. A Flicker session sets an isolated and unin-
terruptable environment (protected mode) for the execution
to be proven in order to prevent interference from other
software on the same machine. Also in high-end devices,
Sanctum [47] employs a similar approach by instrumenting
Intel SGX’s enclave code to convey information about its
execution to a remote party. APEX [16] introduces the
notion of PoX on low-end single-core devices running bare-
metal software. It implements a verified hardware monitor
to check for violations to the atomic execution of the ap-
plication being attested, disallowing interrupts during the
execution being proven. ASAP [48] extends APEX to allow



TABLE 4: PEARTS runtime overhead on F for different number of tasks in FAdv with same priviledge

Number
of Tasks

Interrupt
Frequency

Sensor Applications BEEBS Programs
Ultrasonic Geiger Syringe Temperature GPS prime crc32 sglib-arraybinsearch

1 1 kHz 15.1% 19.8% 12.8% 11.5% 18.7% 16.6% 10.6% 15.2%
2 1 kHz 15.3% 20.2% 14.4% 11.7% 18.9% 17.0% 10.8% 15.7%
4 1 kHz 15.9% 22.7% 15.2% 12.9% 19.4% 17.5% 11.1% 16.3%
8 1 kHz 17.5% 26.8% 17.9% 14.0% 20.8% 18.3% 11.6% 16.7%

TABLE 5: PEARTS runtime overhead on F task for different interrupt frequency in FAdv

Number
of Tasks

Interrupt
Frequency

Sensor Applications BEEBS Applications
Ultrasonic Geiger Syringe Temperature GPS prime crc32 sglib-arraybinsearch

1 2 kHz 15.2% 19.8% 12.9% 11.5% 18.8% 16.6% 10.6% 15.2%
1 4 kHz 15.4% 19.9% 13.0% 11.5% 18.9% 16.7% 10.6% 15.3%
1 6 kHz 15.7% 20.2% 13.3% 11.6% 19.0% 16.7% 10.6% 15.5%
1 8 kHz 16.0% 20.5% 13.7% 11.8% 19.2% 16.9% 10.7% 15.9%

TABLE 6: PEARTS runtime overhead on FAdv task for different interrupt frequency in F

Number
of Tasks

Interrupt
Frequency

Sensor Applications BEEBS Applications
Ultrasonic Geiger Syringe Temperature GPS prime crc32 sglib-arraybinsearch

1 2 kHz 13.5% 15.2% 10.8% 10.5% 14.2% 13.3% 10.7% 12.7%
1 4 kHz 13.5% 15.3% 10.8% 10.5% 14.3% 13.4% 10.7% 12.8%
1 6 kHz 13.7% 15.5% 11.0% 10.6% 14.6% 13.4% 10.8% 13.1%
1 8 kHz 13.7% 16.1% 11.3% 10.7% 15.2% 13.6% 10.8% 13.5%

TABLE 7: PEARTS Log Size (bytes) for varying interrupt frequencies in FAdv

Number
of Tasks

Interrupt
Frequency

Sensor Applications BEEBS Applications
Ultrasonic Geiger Syringe Temperature GPS prime crc32 sglib-arraybinsearch

1 2 kHz 104 B 84 B 84 B 84 B 84 B 124 B 104 B 104 B
1 4 kHz 124 B 104 B 104 B 84 B 104 B 164 B 124 B 124 B
1 6 kHz 144 B 144 B 144 B 104 B 144 B 204 B 144 B 144 B
1 8 kHz 184 B 184 B 184 B 144 B 184 B 244 B 184 B 184 B

the proven task to implement its own interrupts but still
disallows interrupts external to the task being proven.

Control Flow Attestation (CFA): CFA generates re-
motely verifiable evidence for the control flow path taken
by an application running on Prv [49]. This is achieved
by instrumenting the application code [50], [51], [52], [53],
[54], [55] with instructions to track the control flow path
during a PoX. This process generates a measurement that
verifies the execution of each node in the control flow
graph. Alternatively, hardware-based techniques [56], [57],
[58] leverage custom hardware to track the control flow
path. In the context of real-time systems, ISC-FLAT [51]
safeguards CFA logged control flow transfers by allowing
interrupts while blocking critical resources during the in-
terruptions. However, this approach conflicts with RT-PoX
because blocked resources cannot be managed or accessed
by the RTOS, impeding co-existence. ARI [55] offers a
CFA mechanism that includes timing information in CFA
reports. However, it does not address coexistence between
an unmodified (Non-Secure World-resident) RTOS and PoX.

Control Flow Integrity (CFI): In contrast to CFA, CFI
techniques implement measures to detect control flow path
violations in place, locally on Prv. Different from CFA (and
PoX), CFI is not concerned with the generation of remotely
verifiable execution evidence. Static CFI uses static analysis

at compilation time to create a control flow graph (CFG) and
insert runtime checks to ensure that control transfers match
the CFG [59], [60], [61]. For instance, Microsoft’s Control
Flow Guard [62] adds runtime checks to validate indirect
function calls for forward-edge protection. Dynamic CFI
[63], [64], monitors the control flow at runtime beyond static
CFG, often using hardware support [65]. Return Address
Validation and Shadow Call Stacks protect return addresses
on the program’s stack from tampering [66], [67], [68].

Security in Real-Time Systems. Various prior works
enhance the security of real-time systems in aspects other
than proving code or execution integrity. Scheduler-based
methods leverage the scheduler to monitor task execution
and impose security restrictions [69], [70], [71] or to de-
crease system predictability, thereby mitigating side-channel
attacks [72], [73], [74]. Some techniques use time reserva-
tion from conservative systems to enforce data flow integrity
[75] or implement runtime monitors [76]. Task memory
isolation to reduce the attack surface is also studied in [77].

Availability in Real-time Systems. Recent efforts have
focused on providing availability guarantees in real-time
systems. [29] and [30] propose architectural mechanisms to
fuse interrupts (including time-based) with isolated execu-
tion of trusted software despite full software compromise
of MCUs. [28] proposes the concept of trusted scheduling,



i.e., leveraging trusted computing to ensure real-time guar-
antees. More recently, [31] leverages hardware primitives
on commodity platforms to ensure the availability of system
resources (e.g., CPU and I/O) for real-time tasks, along with
trusted scheduling of these tasks. RT-PoX goal differs from
previous work as it aims to enable the coexistence of off-
the-shelf RTOS functions with PoX rather than enforcing
trusted scheduling or guaranteed availability (see Appendix
C for additional discussion).

10. Conclusion

We formulated the RT-PoX concept to address the limita-
tions of classic PoX definitions and make them compatible
with real-time systems. To realize RT-PoX, we developed
PEARTS as the first PoX architecture compatible with an
off-the-shelf RTOS (FreeRTOS). This enables both real-time
availability offered by the RTOS and PoX verifiable integrity
guarantees to co-exist securely on off-the-shelf MCUs. We
also evaluate PEARTS’s security and performance overheads
and make its prototype publicly available [21]. RT-PoX
formulation and its instantiation in PEARTS open several
avenues for future work. Among them, we highlight the
following.

Mitigating vulnerabilities within F: RT-PoX is de-
signed to protect an application in F from external adver-
saries in FAdv. However, when F is itself potentially vulner-
able (e.g., F has a memory safety bug) Adv can manipulate
its control flow path within the PoX. To effectively enforce
or remotely verify the control flow of F , PEARTS can be
used alongside other techniques such as CFI and CFA. See
Section 9 for an overview of CFI and CFA.

F Confidentiality: PoX focuses on providing integrity
while RT-PoX augments PoX not to violate the availability
needs of RTOS-based environments. Our treatment does not
consider systems in which confidentiality of data is also a
pressing concern. For a discussion of the data confidentiality
aspect of potentially compromised embedded/sensing sys-
tems see [78]. Incorporating confidentiality into RT-PoX is
an interesting avenue for future work.

Report Scalability. PEARTS logs timing events to de-
tect interferences, as detailed in Section 5.1. This implies
that extended executions could generate a large log size.
To mitigate this, optimizations can be implemented, e.g.,
sending a partial report to Vrf when Prv’s memory fraction
budgeted for storing logs is full. Another alternative is Vrf
to implicitly specify acceptable pause times for F and have
PEARTS check if Vrf policy is met during the RT-PoX,
reporting a yes/no result to Vrf.
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Appendix A.
Shadow Task Details

A shadow task is created by the RTOS in the Non-Secure
World to serve as a user-space handle used by the RTOS to
interact with F , since F is isolated from FAdv. It has three
main functionalities: (1) starting and terminating an RT-PoX
process, (2) handling system calls, and (3) intermediating
task switching by the RTOS. Figure 4 illustrates the interplay
between the shadow task and other components in PEARTS.

Starting/Terminating RT-PoX. When Vrf requests RT-
PoX of F , the RTOS creates the shadow task in the Non-
Secure World, whose initial behavior is to trigger PEARTS
to start the PEARTS Initialization Routine (see Section 5.2).
When the RT-PoX process is finished, PEARTS sends the
report to the shadow task. The shadow task then forwards
the report either directly to Vrf or to another task responsible
for the report transmission. After that, the shadow task asks
the RTOS to terminate the task of F .

Handling System Calls. Since FAdv is untrusted,
PEARTS must prohibit the use of system calls that return
data from FAdv to F , as this could affect F’s behavior
(recall Property 3). To enforce this, during the offline phase,
all system calls made by F are replaced with virtual in-
structions that invoke the PEARTS system call dispatcher.



When F triggers a system call, the PEARTS system call
dispatcher (1) copies the arguments to the Non-Secure World
context that will later be used by the shadow task; (2) logs
the event in the RT-PoX report (including the system call
type and arguments); and (3) resumes the shadow task in
the Non-Secure World. When the CPU changes to Non-
Secure mode, the registers are loaded with the system call
context and the shadow task calls the corresponding system
call. When system calls return ‘void’, the Shadow Task
immediately triggers FRoT to resume F . If the system call
returns a status (success or failure), the Shadow Task relays
this information to PEARTS dispatcher, which logs it in
the report before sending it to F . For synchronization, tasks
using mutexes and semaphores must hold the corresponding
handles. In this case, the shadow task holds the handle
while the PEARTS system call dispatcher creates a token
representing it and gives this token to F . When F needs to
use the handle, it presents the token to the PEARTS system
call dispatcher, which subsequently signals the shadow task
to use the corresponding object on F’s behalf.

Task Switching. The shadow task acts as an interme-
diary for task switching by the RTOS. Suppose the CPU
is executing F inside the ESR during RT-PoX. When a
systick interrupt occurs, PEARTS dispatches it, switches the
context to the Non-secure World and directs execution to the
systick interrupt handler of the RTOS. Within the handler
execution, the RTOS checks if a task switch is needed.
If so, it sets the PendSV flag and then exits. After the
systick handler ends and returns the control to PEARTS,
PEARTS checks if the PendSV flag is active. If it is not,
PEARTS resumes F . When the flag is active, it means
the RTOS wants to switch tasks. In this case, PEARTS
transfers control to the Shadow Task, which is immediately
interrupted by the PendSV interrupt. The PendSV interrupt
handler then switches the context to another task. When
the RTOS decides to switch back to F , it first restores
the Shadow Task’s context and resumes its execution. The
Shadow Task then invokes PEARTS to resume F .

Appendix B.
System Calls Available to F

During an RT-PoX process, to ensure Property 2,
PEARTS does not expose all FreeRTOS system calls to
F . Specifically, any system call that fetches data (e.g.,
peripheral inputs) to F must be restricted because a ma-
licious RTOS could provide tampered data, compromising
F’s context. To cope with this, F must implement its own
data fetching functions (which is feasible and simple in bare-
metal MCUs). Other than data fetching, PEARTS supports
the use of FreeRTOS system calls in two categories.

The first category is control-yield system calls, which
allows F to yield control of its execution. An example is
“vTaskDelay()”, where the task requests the RTOS to pause
its execution for a certain amount of time. While a malicious
RTOS could misbehave and delay for an incorrect amount
of time, this behavior would be measured and subsequently

detected by Vrf in PEARTS. This is because PEARTS
measures time independently when F’s execution is paused.

The second category includes synchronization system
calls, used when F needs to synchronize with another task
in FAdv to access shared resources such as peripherals.
These calls are allowed because synchronization controls
resource access but does not involve sharing data and in-
valid access conflicts would be detected by PEARTS. For
example, if the RTOS falsely signals that a resource is
free when it’s not, and FAdv modifies it while F is using
it, an interference exception would occur and be detected
by Vrf. Conversely, if the RTOS falsely claims a resource
is never available, Vrf would detect this through timing
measurements that reveal the RTOS’s blocking behavior.

A third category of system calls (although not cur-
rently implemented in PEARTS prototype) is possible: data-
transmission system calls. These system calls could be
allowed when originating from F since sending data to a
task in FAdv does not violate Property 2. In this case, the
associated Shadow Task would manage the transfer, where
the system call dispatcher copies the data to the shadow task.
Alternatively, a shared memory region could be used to send
the data. As mentioned above, F should not blindly receive
and use data fetched/generated by FAdv, so data-receiving
system calls are not allowed.

Figure 4: Shadow Task interfacing the RTOS and PEARTS.

Appendix C.
RT-PoX vs. Trusted Scheduling

Property 5 in Section 3.2 states “RTOS availability” as
the ability for PoX to function alongside the RTOS without
disrupting its underlying duties or giving up on the system’s
timing requirements outside the context of F . PEARTS
realizes this by never blocking essential operations and
resources, not interfering with RTOS task scheduling and
resource management mechanisms, and keeping RT-PoX-
related overheads small.

The goal above is not to be confused with prior work on
mechanisms that support/leverage trusted scheduling [28],
[30], [29], [31]. The latter aims to guarantee real-time



availability despite compromised software states. RT-PoX,
on the other hand, enables remotely verifiable execution
of a specific task (F), defined and requested by Vrf. The
evidence contained in an RT-PoX report reliably informs Vrf
of interruptions (and their durations) during the execution
of F , as well as any interference in F’s context through its
provable execution. Different from the related work above,
PEARTS does not involve bringing functions that would
normally be performed by the Non-Secure World RTOS
(e.g., scheduling of Non-Secure World tasks) into the Secure
World to guarantee their occurrence. Instead, it allows the
RTOS to remain in the Non-Secure World while enabling
remote verifiability of execution integrity and associated
timing for specific tasks upon Vrf’s request.

TABLE 8: List of FreeRTOS system calls allowed by
PEARTS

FreeRTOS Services System Calls Available to F

Task Control

vTaskDelay()
vTaskDelayUntil()
xTaskDelayUntil()
vTaskPrioritySet()
vTaskSuspend()
vTaskResume()
xTaskAbortDelay()

Direct To Task Notifications

xTaskNotifyGive()
xTaskNotify()
xTaskNotifyAndQuery()
xTaskNotifyWait()
xTaskNotifyStateClear()

Semaphore / Mutexes

xSemaphoreCreateBinary()
xSemaphoreCreateBinaryStatic()
vSemaphoreCreateBinary()
xSemaphoreCreateCounting()
xSemaphoreCreateCountingStatic()
xSemaphoreCreateMutex()
xSemaphoreCreateMutexStatic()
xSemaphoreCreateRecursiveMutex ()
xSemaphoreCreateRecursiveMutexStatic()
vSemaphoreDelete()
xSemaphoreTake()
xSemaphoreTakeRecursive()
xSemaphoreGive()
xSemaphoreGiveRecursive()

Appendix D.
META-REVIEW

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

D.1. Summary

This paper develops a provable execution (PoX) system
that aims to enable interrupt, a necessary condition for real-
time availability, which was not never supported in prior
efforts.

D.2. Scientific Contributions

• Provides a Valuable Step Forward in an Established
Field

• Creates a New Tool to Enable Future Science
• Addresses a Long-Known Issue

D.3. Reasons for Acceptance

1) Real-time availability is a long standing challenge and
this paper provides a value step in harmonizing real-
time availability with the existing line of work on proof
of execution

2) The solution is implemented and evaluated on actual
hardware.


