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Abstract
Large language models (LLMs) can leak sensitive training data through memorization and membership

inference attacks. Prior work has primarily focused on strong adversarial assumptions, including attacker
access to entire samples or long, ordered prefixes, leaving open the question of how vulnerable LLMs are
when adversaries have only partial, unordered sample information. For example, if an attacker knows a
patient has “hypertension,” under what conditions can they query a model fine-tuned on patient data
to learn the patient also has “osteoarthritis?” In this paper, we introduce a more general threat model
under this weaker assumption and show that fine-tuned LLMs are susceptible to these fragment-specific
extraction attacks. To systematically investigate these attacks, we propose two data-blind methods: (1)
a likelihood ratio attack inspired by methods from membership inference, and (2) a novel approach,
PRISM, which regularizes the ratio by leveraging an external prior. Using examples from medical and legal
settings, we show that both methods are competitive with a data-aware baseline classifier that assumes
access to labeled in-distribution data, underscoring their robustness.

1 Introduction
Instruction-tuned language models (LLMs) have transformed how users interact with AI, offering personalized
assistance in domains ranging from fact-checking to postpartum care [Tang et al., 2024, Antoniak et al.,
2024, Wolfe and Mitra, 2024a,b]. This tight feedback loop between end users and developers also enables
continuous fine-tuning of LLMs on the very data collected from user interactions [Poddar et al., 2024]. Yet,
as these models grow in size and scope, they’ve become susceptible to attacks targeting private, sensitive
information [Carlini et al., 2021, 2024].

A growing body of work has studied membership inference attacks which aim to determine if a specific
example appears in the training set [Jagannatha et al., 2021, Carlini et al., 2022a, Mireshghallah et al., 2022,
Shi et al., 2023, Mattern et al., 2023, Morris et al., 2023, Duan et al., 2024] and memorization attacks which
attempt to reconstruct verbatim training examples [Carlini et al., 2021, 2022b, 2024, Lukas et al., 2023].
Membership inference often targets outlier samples, while memorization attacks focus on content that is
repeated (“inlier” samples [Dionysiou and Athanasopoulos, 2023]), and each approach typically assumes
strong adversarial knowledge: at least access to ordered prefixes, and typically access to entire training
samples (for example, in the case of copyright infringement cases [Grynbaum and Mac, 2023, Small, 2023]).
These assumptions overlook more realistic and common scenarios in which an attacker possesses only partial,
unordered information about a target.
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Memorization Attack

The patient is a 76-year-old 
white female who presents to 

the clinic today originally 
for hypertension ...

...and a med check. She has 
a history of hypertension, 

osteoarthritis, 
osteoporosis.

{osteoarthritis, 
 hypertension}

osteoporosis

Partial Information 

Fragment Inference

known

prefix

memorized

suffix

public fragments

private fragments

Figure 1: Comparing the PIFI LLM threat model to the memorization threat model in a medical scenario.
PIFI uses unordered, publicly available fragments from a sample (like a patient record) to infer private
fragments (like a sensitive medical condition). Memorization assumes access to an ordered prefix of the
sample, and checks for verbatim generation by an LLM of the suffix.

We consider a malicious adversary who seeks to acquire sensitive fragments of information from an individual’s
data. For example, consider an attacker who learns that an individual has hypertension from a social media
post, and wants to learn co-morbid conditions that apply to that individual in order to target sales, deny
insurance, or even aid in identity theft. Using this small subset of the patient’s data (i.e., a single diagnosed
condition), can the attacker extract those co-morbidities by prompting a fine-tuned language model? Though
they remain under-specified and under-studied, such attacks are increasingly plausible, especially in the case
of a clinic or hospital offering a public or internal chatbot created by fine-tuning on the organization’s own
medical data [McDuff et al., 2023, Wu et al., Zhou et al., 2024].

In this research, we propose a new partial-information fragment inference threat model that unifies insights from
membership inference and extractable memorization attack strategies under weaker adversarial assumptions.
Notably, we show that if an attacker only knows a small set of text fragments from an original training sample
(e.g., that “hypertension” and “beta blockers” are in a patient’s medical notes), they can infer additional,
potentially sensitive fragments (e.g., “osteoporosis”) that are also in the training sample.

Contributions Our findings reveal that even weak adversaries with access to only a few unordered fragments
of an individual’s sample can pose a privacy threat by comparing results between models to infer additional
fragments. Based on our results, we suggest the need for improved defenses that mitigate not just sample
memorization or membership inference, but also partial, fragment-level inference vulnerabilities, before
deployment of public-facing fine-tuned models in sensitive domains like medicine or law. More specifically, we
make the following contributions:

1 A Novel Threat Model. We formalize a threat model where an adversary only has access only to
publicly available text fragments for a target individual, as opposed to that individual’s full sample.

2 Effective Data-Blind Attacks. We show that LR-Attack, a straightforward Likelihood Ratio approach,
is surprisingly competitive, often rivaling a more powerful Classifier baseline that assumes access to labeled,
in-distribution examples. We also propose PRISM (Posterior-Refined Inference for Subset Membership), a
method that uses the LR-Attack score to update a posterior likelihood by using a prior, ultimately reducing
false positives.

3 Empirical Validation. We conduct experiments in a medical summarization context, first fine-tuning
an LLM for summarization on medical notes. We then reduce each note to a set of fragments (in this case,
medical terms), and we simulate the efficacy of our attacks in the hands of an adversary who possesses only a
small amount of information about an individual. Our experiments show that fine-tuned LLMs are vulnerable
to extraction attacks under even these limited-information conditions; we observe a 9.5% TPR on Qwen-2-7B
at 2% FPR using LR-Attack, and an 11.5% TPR on Llama-3-8B at 5% FPR using PRISM, for example.

We describe the problem setting and notation in §2, present our threat model in §3, attack approaches
in §4, and describe experimental setup on real-world scenarios in §5. We introduce the LLMs in §6, and
articulate experimental results in §8. We then discuss related work, implications, and challenges from our
work, encouraging further exploration of strengths and limitations of this new family of attacks. Code for
this project is available at github.com/BeanHam/fragments-to-facts/.
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2 Preliminaries
We provide relevant background on LLMs and data privacy attacks, and we introduce necessary notation. We
then discuss related adversarial threat models: sample membership inference and training data extraction.

Large Language Models We study generative (also known as “autoregressive” or “causal”) language
models, which are trained to predict the next word in a sequence by maximizing the negative log-likelihood
of the model over tokens (words or subwords) in a vocabulary [Radford, 2018]. We specifically examine
generative language models that have undergone the process of instruction tuning [Wei et al., 2021], meaning
our models use a chat-based format wherein the model and user take turns exchanging messages, and the
model responds in accordance with human preferences [Ouyang et al., 2022]. Examples of such models include
ChatGPT [OpenAI, 2022], Llama [Dubey et al., 2024, Touvron et al., 2023], and Mistral [Jiang et al., 2023]

— models that are particularly relevant because of their ease of use and accessibility both to lay users and
potential adversaries.

Notation We adopt several typical notational conventions when discussing language models and extraction
attacks. Consider a token sequence (x1, x2, . . . , xT ) = x ∈ X T , where X T is the space of possible input
sequences of length T . Each xi is drawn from a set of vocabulary tokens V (i.e., xi is typically a single word
or word subsequence in V). We refer to the dataset of token sequence samples as D = {xi}n

i=1; we will also let
D ∼ D, where D is a probability distribution over X T specific to some task (e.g., summarization of medical
notes).

Formally, a generative language model is fit by learning to predict the next token over X T by expanding,

Pr(x1, x2, . . . , xT ) =
T∏

i=1
Pr(xi | x1, . . . , xi−1) .

We refer to a generative language model fine-tuned on a dataset as fθ,D (read as model f with pre-trained
parameters θ, further fine-tuned on D). We then denote the probability of a sequence of tokens under a
given model as fθ,D(x) = fθ,D(xn | x1, . . . , xn−1). To denote the probability of a sequence of tokens under a
specific prompt sequence x, we write fθ,D(y | x) or fθ,D(y1, . . . , yn | x1, . . . , xm).

Threat Model Specific Notation
We also adopt several non-standard notational conventions. To help distinguish between an arbitrary
training sequence and a sequence associated with an individual, we use the shorthand (s1, . . . , sn) = s to
refer to a sequence associated with a single individual in D (e.g., s refers to John Doe’s medical note). We
refer to short, ordered sequences of tokens as fragments. Note that a fragment can be a single word (e.g.,
osteoporosis), yet consist of an ordered sequence of tokens in an LLM embedding matrix (e.g., ‘oste,’ ‘opor,’
‘osis’). Additionally,

1 We let the function A represent our adversarial public information assumption, which maps an
ordered sample sequence s = (s1, . . . , sn) to a potentially unordered set S of short fragments, typically
keywords that carry sensitive information but are discoverable through public information. For
example, an attacker might learn from social media that John Doe contracted covid and experiences
hypertension. While the fragments “covid” and “hypertension” are a subset of John Doe’s complete
medical chart, no prefix or other significant component of the chart itself is available. Formally, let,
A : Xn → P (X ∗), so that S = A(s). Usually we assume S ⊂ Frag(s), where Frag(s) denotes the
collection of all fragments contained in s, but |S| ≪ |Frag(s)| and the fragments in S are words or
short phrases.

2 We let y∗ denote a single, private candidate fragment targeted under our threat model.
3 We use the conventional term shadow model [Carlini et al., 2022a] to discuss a model fine-tuned

on data from distribution D, but where we are sure that the sample of interest s was not included.
Formally, let D′ denote a shadow dataset, where s /∈ D′; both D and D′ are drawn from D. Thus,
finetuning on D′ yields a shadow model, fθ,D′ . Finally, we introduce notation for a world model that
allows us to query k arbitrary models to estimate the probability of a sequence x under any model.
We thus denote the world model fθ,world as follows: fθ,world(x) = 1

k

∑k
i=1 f

(k)
θ,∗ (x).
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2.1 Prior Threat Models
We outline prior work that induces language models to expose specific, private information learned from
training data.

Standard Language Model Attacks Two prominent attack threat models have emerged in the literature
on LLM privacy. The first, extractable memorization (EM ) [Carlini et al., 2019, 2021, 2022b], (sometimes
called discoverable memorization [Wang et al., 2024]), asks whether prompting a model with part of a sample
from its training data will lead the model to output the rest of the sample (approximately [Yu et al., 2023] or
exactly [Lukas et al., 2023]). The second, membership inference (MI ) [Carlini et al., 2022a], asks whether
one can infer sample membership in the training data from model outputs (usually as a binary classification
task). We describe both attacks to motivate our approach.

Carlini et al. [2022b] define extractable memorization as follows: for a black-box target model fθ,D, a sample
suffix sk:n is considered extractable if there exists a length-(k − 1) prefix, s1:k−1, such that the concatenation
[s1:k−1 || sk:n] is in D and fθ,D produces sk:n when decoded greedily under prompt s1:k−1. Conversely, given
black-box access to a target model fθ,D and a complete target sequence s, a membership inference attack
produces a likelihood that s was in D, mediated by the output of fθ,D [Carlini et al., 2022a]. MI attack
performance is based on using that likelihood to make a classification (i.e., predicting 1 or 0 for included or
not included, respectively). Despite differing objectives, the threat models share an assumption: they assume
a priori access to s, a complete and ordered target sample of interest.

3 Partial-Information Fragment Inference
Assuming a priori access to a complete sample s is plausible in some settings, like measuring the likelihood of
copyright infringement of one’s own data, but not in cases where an adversary attacks a model without access
to the original training data. We thus propose the partial-information fragment inference (PIFI, pronounced
“piffy”) adversarial threat model for information extraction under a weaker assumption; namely, under PIFI,
an adversary seeks to infer specific and sensitive fragment-level information about individuals based on a
small subset of public fragments (e.g., between 4 and 30) assumed to be present in sample s.

3.1 Capabilities of the Adversary
The PIFI threat model makes the same black-box model access assumptions as most MI and EM attacks.
Specifically, PIFI assumes access to output probabilities produced by fθ,D, fθ,D′ , and arbitrary additional
models fθ,world, but not access to model weights, embeddings, or training parameters. Unlike other threat
models, PIFI does not assume access to a complete sample s associated with an individual; instead, the
adversary only has access to a fragment set S ⊂ Frag(s). The adversary can then investigate a candidate
target fragment y∗, where S is useful for investigating y∗ if S is likely to be a subset of the tokens in the
original sample. Consider the realistic scenario wherein an attacker has learned something specific about an
individual’s medical history from their social media: PIFI enables the attacker to use that limited information
as S to infer additional sensitive data y∗ about the individual from an LLM fθ,D.

3.2 Goal of the Adversary
The adversary would like to know if the candidate target fragment y∗ is in an individual’s sample s, given
that s was included in training data D. Why is it important to condition on an individual’s sample s actually
being included in D? If the adversary had reason to believe that s was not in D, then their inference might
be about individuals with samples like s, and not about the specific individual associated with s. For example,
any individual with osteoarthritis may also have increased odds of being a smoker ; however, this does not
mean that Jane Doe, who has osteoarthritis, is also a smoker, unless we have reason to believe that her sample
s (e.g., her medical note) says this is the case.

In Algorithm 1, we formalize the inputs and outputs for the PIFI threat model, and we constrain the
class of INFER functions that we consider in this paper. Specifically, we consider adversaries that use their
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Figure 2: An illustration of our threat model. An LLM is fine-tuned, e.g., with private medical notes.
Then, an adversary prompts the fine-tuned LLM with relevant fragments of information (e.g., from a target
individual’s medical records) to infer unknown fragments associated with the individual.

𝒔𝒊:The patient is a 76-year-old white female who presents to 
the clinic today originally for hypertension and a med 
check. She has a history of osteoarthritis and osteoporosis.

private samples 𝒔𝟏, … , 𝒔𝑵 to finetune 𝑓𝜃,𝐷

Adversarial Actor

Gleans a set of fragments 𝑺 = 𝑭𝒓𝒂𝒈(𝒔𝒊) via public sources

Seeks to infer facts about patient from LLM 𝑓𝜃,𝐷  trained on 𝐷

beta blockers , hypertension𝑺: { }

Use 𝑺 to infer likelihood of target fragment 𝒚∗ for patient 𝒊 

with black-box access to 𝑓𝜃,𝐷

𝒚∗ = osteoarthritis, ? ∈ 𝒔𝒊 

access to models fθ,D, fθ,D′ and fθ,world to compute quantities like, pD = fθ,D(y∗ | Prompt(S)) , where
Prompt(S) = [xi, s1, . . . , sm, xj] is a simple prompt in which the fragments possessed by the adversary
are embedded. Accordingly, using only information available in the vector of probabilities [pD, pD′ , pworld],
the attacks PRISM, LR-Attack, and Classifier each specify an INFER function to produce a likelihood ℓ
corresponding to the belief that y∗ is in s, given that s is in D, which can be converted to a binary prediction
with a decision threshold τ .

4 Approaches to PIFI

In this section, we describe the class of INFER functions for producing the likelihood ℓ. Then, we define the
three specific functions from this class that we consider in this work: Classifier, LR-Attack, and PRISM.

4.1 The Classifier Baseline
To produce a strong baseline, we train a binary classifier on the same three-dimensional vector of probabilities
[pD, pD′ , pworld] used in the computation of our LR-Attack and PRISM attacks, with the goal being to predict
whether a given y∗ was in the data D on which a target LLM was trained. For training, however, a classifier
requires labeled data. Labeled data access is an unrealistic assumption under the PIFI threat model; the

Algorithm 1 A Class of PIFI Attack Models
Input: Private fragment y∗, public fragment set A(s) = S for an individual, target language model fθ,D,

shadow and world models fθ,D′ , fθ,world, decision threshold τ ,
Output: {0,1}

1: pD = fθ,D(y∗ | Prompt(S))
2: pD′ = fθ,D′(y∗ | Prompt(S))
3: pworld = fθ,world(y∗ | Prompt(S))
4: ℓ← INFER([ pD, pD′ , pworld ]), where ℓ scores the likelihood that y∗ ∈ s given s ∈ D.
5: Return 1 [ℓ > τ ].
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attacker explicitly does not have access to any amount of the training data D for target model fθ,D, and may
not even have access to samples suitably similar to target s. Of course, if the attacker somehow did have
labeled training data, they could adjust their INFER approach using standard machine learning tools to fit
the distribution over labels, leading to a strong attack. This makes Classifier, which we call a data-aware
method, a very strong reference point for the performance of LR-Attack and PRISM, which are data-blind
methods. Generally, we expect it to upper-bound their performance, assuming the training distribution
generalizes for a particular distribution over text fragments. Note that for the empirical evaluations included
in this paper, we employ a Light Gradient Boosting Machine (“LightGBM”) model [Ke et al., 2017], a highly
performant option for binary classification with data, and do standard cross-validation when training. Overall,
Classifier is an important validation of the PIFI threat model and a target for the data-blind attacks;
Classifier validates that there is signal in the vector [pD, pD′ , pworld] for attacks under the PIFI threat
model (assuming one can specify the right data-blind INFER function to exploit it).

4.2 The LR-Attack approach
The Neyman-Pearson Lemma is a classical insight from hypothesis-testing literature that generally underpins
statistical hypothesis testing and likelihood based attacks, like the data-blind LR-Attack we propose [Neyman
and Pearson, 1933]. Intuitively, the Lemma states that, given two distributions, the optimal way to distinguish
between them at a fixed false-positive rate is to threshold their likelihood ratio. Carlini et al. [2022a] reinterpret
this in the context of membership inference: if Qin(s) is the distribution over models trained with s and
Qout(s) is that over models trained without s, then the Neyman-Pearson Lemma implies we should estimate
Λ = p(f |Qin(s))

p(f |Qout(s)) , where p(· | Qin/out(s)) denotes the probability density of models under each distribution. As
Carlini et al. [2022a] note, we never have direct access to these true distributions, so we must approximate
them empirically (e.g., using shadow models).

Unlike the membership-inference threat model, however, PIFI does not assume access to the full sample
s. Nonetheless, the Neyman-Pearson Lemma still suggests that comparing probabilities obtained from
a target model potentially fine-tuned with s against those from a model fine-tuned without s can be
informative. Concretely, for a candidate fragment y∗ and known (public) fragment set S, we measure
pD = fθ,D(y∗ | Prompt(S)) and pD′ = fθ,D′(y∗ | Prompt(S)). We then define ℓ̂ = pD/pD′ , which approximates
the ideal likelihood-ratio statistic. Large ℓ̂ indicates that the target model assigns an unusually high probability
to y∗ relative to the shadow model, in the context of the known fragments S. In the extreme case where we
already know that y∗ truly appears in s, distinguishing between {s ∈ D} and {s /∈ D} reduces to membership
inference — but in the PIFI setting, the goal is to infer whether y∗ is in s, using only our partial knowledge
S to guide that inference. Thus, while ℓ̂ does not directly compute the “true” membership-based ratio, we
can expect it to sufficiently reflect that ratio to serve as an effective attack statistic.

4.3 The PRISM approach
Recall the example of Jane Doe in Section 3.2, where the attacker could mistakenly infer that Jane is a
smoker simply because she has osteoarthritis. LR-Attack may suffer from such false positives: we cannot fully
distinguish whether y∗ is associated with S specifically because Jane’s personal record is in D, or because
individuals with S in their samples generally also include y∗.

To remedy this, we consider how to incorporate an additional “world model” probability, pworld, into our
likelihood score. We observe that one way to do this is to take a prior on sample membership, and try to
derive the probability of interest. Suppose D∗ ∼ D is an unknown dataset used to train a language model,
and let us write S short for Prompt(S) here for clarity of presentation. Then, the probability that fθ,D∗

assigns to y∗ given S, conditional on s ∈ D∗, can be expanded
Pr(fθ,D∗ (y∗ | S) | s ∈ D∗) =
Pr(fθ,D∗ (y∗ | S))− Pr(fθ,D∗ (y∗ | S) | s /∈ D∗) Pr(s /∈ D∗)

Pr(s ∈ D∗)
If D∗ = D, then Pr(fθ,D∗(y∗ | S) | s /∈ D∗) can be approximated by pD′ . Similarly, we approximate
Pr(fθ,D∗(y∗ | S)) with pworld, using queries to several “world” models that capture the general association
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between S and y∗. It remains to estimate Pr(s ∈ D∗). We connect this to our LR-Attack statistic, ℓ̂ = pD/pD′ .
We assume L is strongly correlated with Pr(s ∈ D) — an approximation that may not hold perfectly but
captures the intuition that if y∗ is in s, then pD will be higher relative to pD′ . Hence, we choose to treat
Pr(s ∈ D) as a random event M with some prior belief β = Pr(M), and then apply a function in the shape of
a standard Bayesian update using the LR-Attack statistic, estimating P̂r(M | ℓ̂) := Pr(ℓ̂ | s ∈ D) Pr(M)

Pr(ℓ̂) . We
pragmatically assume Pr(ℓ̂ | s ∈ D) ∝ ℓ̂ and Pr(ℓ̂ | s /∈ D) ∝ 1/ℓ̂. We plug in these values directly (ℓ̂ and
1/ℓ̂), and thus obtain a closed-form score that we believe to be correlated with the true Pr(M | ℓ̂).

As we make many assumptions and approximations here, and it is difficult to reason about these distributions
in the context of large language models, we investigated PRISM using a small, known language model under
the PIFI threat model. In particular, we tested PRISM against LR-Attack on a simple trigram language
model with a small, character-level vocabulary that we could fully specify (see Appendix B); this allowed
us to actually calculate the above probabilities that we can only hope to approximate with larger language
models. In this controlled setting, PRISM outperformed LR-Attack; this further motivated us to evaluate it
alongside LR-Attack on LLMs.

5 Experimental Setup & Datasets
In this section, we describe the experimental setup and datasets for the empirical evaluation of our attacks in
real-world scenarios (medical in §5.1; legal in §5.2).

5.1 Model Instantiation: Medical Summarization
Medicine is a highly sensitive domain, where language models are actively being trained on privately identifiable
information [Das et al., 2024]. Thus, we assess the efficacy of our attacks on a medical summarization task.
We use the MTS-Dialog dataset [Abacha et al., 2023, Yim et al., 2023, Han et al., 2023], which includes
1,700 doctor-patient dialogues, with corresponding summaries. To construct fragment sets for our adversarial

Extract 𝒔 using 𝑺 given black-box access to 𝑓𝜃,𝐷

𝑺 = { “hypertension”, “osteoarthritis”, “beta blockers”}

Outcomes:            Success and       Failure Modes

𝑺: {hypertension, beta blockers}
𝒚∗ : osteoarthritis

𝒔 in 𝐷
𝒚∗ in 𝒔

Prompt with sample and non-sample fragments, output likelihood

𝑺: {hypertension, beta blockers}
𝒚∗ : cancer

𝒔 in 𝐷,  

𝒚∗ not in 𝒔

𝑺: {kidney disease, fever}
𝒚∗ : osteoarthritis

𝒔 not in 𝐷, 

𝒚∗ in 𝒔

𝑺: {kidney disease, fever}
𝒚∗ : cancer

𝒔 not in 𝐷, 

𝒚∗ not in 𝒔

Figure 3: Successful and failed attack scenarios. An attack is only considered successful when the sequence s
is in the dataset D, the target fragment y∗ is in the sequence s, and we accurately infer the target fragment’s
presence in s. Any other scenario is considered as a failed attack – (1) the target fragment is NOT in the
sequence. (2) the sequence is NOT in the data D. (3) the sequence is NOT in the data D and the target
fragment is NOT in the sequence.
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Method Prob. Access TPR @ 2% FPR TPR @ 5% FPR ROC-AUC
pD pD′ pworld Llama 3 8B Qwen 2 7B Mistral 7B Llama 3 8B Qwen 2 7B Mistral 7B Llama 3 8B Qwen 2 7B Mistral 7B

Classifier 6.3% 8.2% 5.5% 14.9% 16.3% 12.8% 0.68 0.73 0.68
LR-Attack 5.3% 9.5% 2.9% 10.6% 16.2% 8.8% 0.64 0.67 0.59

PRISM 4.4% 4.3% 4.2% 11.5% 11.0% 11.3% 0.67 0.66 0.63

Table 1: Main Results Across Models (Llama, Qwen, Mistral), for LLMs fine-tuned to convergence on the
medical summarization task. Color-coding is Olympic medal standard by column (Gold is best, Silver second,
Bronze third).

public information assumption, we run a biomedical Named Entity Recognition (NER) tool from SciSpacy1

on each medical dialogue. Our fragments are then medically specific terms and phrases (e.g., “constipation”
or “acute cholecystitis”; see Appendix C for examples). We filter out dialogues without any extracted entities,
leaving us 948 train, 69 validation, and 312 test samples. This process yields a variety of types of fragments
for each sample, including medical conditions, drug names, and symptoms. Evaluating the PIFI threat model
means completely disregarding the original dialogues and focusing exclusively on the medical fragment sets for
inference.

We are careful to include a variety of false positive examples in our testing; see Figure 3 for an overview
of attack failure modes. To construct negative examples, we sample a second disjoint set of unseen frag-
ments, i.e., fragments from notes that did not appear in the fine-tuning subset and which are not part
of the samples that we test as true positives. The attacker must distinguish between true positive y∗

fragments (i.e., this y∗ co-occurred alongside fragments from S in Prompt(S), given the s from which S
was derived is in the training data D) and false positive fragments (anything else). Light experimentation
led us to believe that the attack is not particularly sensitive to the choice of Prompt(·), so long as it
describes the fine-tuning task (i.e., says something about a summary). We thus formulate a consistent, task-
appropriate Prompt(·) as follows: Consider a patient whose medical summary contains: {diabetes,
hypertension, ...}. That individual’s medical summary also includes: {y∗}. By inserting frag-
ments, we obtain output probabilities from each model which serve as inputs for our LR-Attack and PRISM
attacks, as well as our Classifier baseline.

5.2 Model Instantiation: Legal Setting
To evaluate the effectiveness of our attacks in another domain, we experiment with a legal case summarization
task. We use legal data from the Free Law project,2 filtering for sentencing / criminal possession data using the
built in Nomic topic modeling tool. We extract criminal behaviors (e.g., criminal possession of a weapon) and
personal identifiable information (e.g., five years in prison) as fragments. Ultimately, we have 748 train, 188
validation, and 235 test samples. The attack procedure is identical to the medical setting. We adopt the follow-
ing prompt for the legal task: Consider an individual whose legal document summary contains the
following criminal behaviors and identifiable information: {criminal possession of a weapon,
...}. That individual’s legal document summary then also includes: {y∗}. We expected the
legal domain to be more difficult for PIFI; legal language overlaps more with everyday language than medical,
which is a known challenge under other threat models [Lukas et al., 2023, Duan et al., 2024].

6 Models & Evaluation
Models We study our attacks using four autoregressive, decoder-only large language models [Radford,
2018], each of which is pretrained on a large text corpus and subsequently instruction-tuned to respond
to user instructions [Wei et al., 2021]. Specifically, the models used as target and shadow models in the
present work include: Llama-3.1-8B-Instruct & Llama-3.2-3B-Instruct, Qwen-2-7B-Instruct, and
Mistral-7B-Instruct-v0.2. See Appendix E for more details on these models, and a discussion of our
construction of the world model, for which we employ three LLMs not fine-tuned on either D or D′.

1We use en_ner_bc5cdr_md, an NER model trained on the BC5CDR corpus, which contains annotated chemicals and
diseases, https://allenai.github.io/scispacy/.

2https://huggingface.co/spaces/free-law/New_York_CAP

8

https://github.com/nomic-ai/nomic
https://allenai.github.io/scispacy/
https://huggingface.co/spaces/free-law/New_York_CAP


Public fragments provided to the model Inferred fragment
(record)

anxiety disorder, arthritis, Morton’s neuromas,
migraines

hypothyroidism
(train_679)

shortness of breath, Coumadin, lightheadedness, chest
pain, Cardizem, pain, vertigo

atrial
fibrillation
(train_873)

toxicity, breast cancer, Ixempra, tumor, neuropathy,
Avastin, cancer, Faslodex, Zometa, ixabepilone

Aromasin
(train_107)

swelling, rashes, vomiting, pain seizures (train_84)

weakness, headaches, stroke, sudden loss of
consciousness, seizures, tremors

epilepsy
(train_577)

Table 2: Illustrative PIFI attack successes. Each row lists the attacker’s public fragment set S (left) and the
private fragment y∗ inferred, together with the record identifier (right).

Fine-Tuning We employ two approaches to fine-tuning the target model and shadow model LLMs for
our experiments. For Llama-3.1-8B-Instruct, Llama-3.2-3B-Instruct, Qwen-2-7B-Instruct, and Mistral-7B-
Instruct-v0.2, we employ full fine-tuning, updating the weights of the model itself. To test the robustness of
our method to LoRA, we also quantize Llama-3.1-8B-Instruct to FP8 precision and fine-tune the model using
low-rank adaptation (LoRA) [Hu et al., 2022, Dettmers et al., 2023]. To further test the robustness of our
method, we consider both models that have seen the data only once (i.e., undergone 1 epoch of fine-tuning)
and models that saw the data repeatedly, until loss convergence (e.g., were fine-tuned for 10 or more epochs).

Evaluation Metrics Similarly to membership inference, attacks with high false positive rates are not
meaningful in practical settings [Carlini et al., 2022a]. Thus, we evaluate the effectiveness of our PIFI attacks
by closely examining the Receiver Operating Characteristic (ROC) curve. The ROC curve demonstrates
trade-offs between TPR and FPR for all possible choices of decision thresholds τ , while the Area Under the
Curve (AUC) metric integrates over the ROC curve to aggregate performance across FPRs. We do consider
overall AUC, but specifically focus on the true positive rate at fixed, low false-positives rates (TPR @ %FPR,
e.g., 2% and 5%). Additionally, we use a log-scale to display the ROC curve, which follows Carlini et al.
[2022a]’s example and highlights results from the low FPR regime.

Expectations for Success The PIFI threat model relies on strictly weaker adversarial assumptions (i.e.,
no complete samples) when compared to direct memorization attacks. Prior ablation results on those attacks
have suggested they are sensitive to conditioning on approximate or permuted versions of the target sample
prefix [Ippolito et al., 2022, Lukas et al., 2023]. As PIFI is analogous to strongly ablating a sample prefix,
we do not expect extremely high TPRs in most settings. Nevertheless, even a modest TPR (at a very low,
fixed FPR, like 2%) can have real impact applied at scale, as an attacker would likely query large numbers of
individuals while being conservative with their inferences.

7 Experimental Setup
We illustrate our experimental setup in Figure 3. Where a sample s is in the target dataset D and the
target fragment y∗ is in the sample s, attacks under the PIFI threat model can succeed by successfully
identifying the fragment y∗. Scenarios where an attack does not succeed under PIFI include those where a
target fragment y∗ is identified but y∗ is not in s, or s is not in D, or s is not in D and y∗ is not in s.
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7.1 Illustrative Examples
We probed 4,302 fragment instances for the medical summarization task, of which 1,034 were unique. The
empirical frequency distribution of these fragments is highly skewed: the most common fragments were common
medical terms, such as pain (124 occurrences), fever (69), shortness of breath (55), diarrhea (47), and
chest pain (44). By contrast, 75% of all fragments appeared fewer than five times, and 47% occurred exactly
once. These rare fragments include some highly specific conditions and medications, such as (selected at
random) Vincristine, colitis, daunorubicin, Naprosyn, Xalatan, and lumbar spinal stenosis. Their
rarity renders these fragments appropriate targets for the likelihood-ratio attack (Table 3). For more concrete
examples, Table 2 presents five successes obtained using LR-Attack and PRISM scores. In each case, the
adversary begins with a handful of publicly available fragments S and is able to infer an additional sensitive
fragment y∗ that indeed appears in an individual’s record.

8 Results & Discussion
We present the results of applying the attacks enabled by our partial-information fragment inference (PIFI)
threat model to the medical summarization task (mostly deferring results on the more difficult legal task
to the appendix), focusing on factors that most influence fragment-level inference. We report results for
LR-Attack, PRISM, and Classifier attacks, providing evidence for substantial privacy risk across model
families and hyperparameter settings. We structure results as takeaways, denoted T#.

8.1 (T1) Attacks Are Effective Across Diverse Models
We attack three LLMs (Llama-3.1-8B, Qwen-2-7B, and Mistral-7B-v.02) instruction-tuned for medical note
summarization with LR-Attack, PRISM, and Classifier under the PIFI threat model. As shown in Table 1,
all three attack methods exceed a random-guess baseline by a considerable margin (doubling and sometimes
quadrupling TPRs at low FPRs), indicating that the PIFI threat model is effective against three families of
LLMs.

8.2 (T2) Repeated Exposure Increases Vulnerability
Next, we examine whether increased data exposure is positively correlated with PIFI success when attacking
a model. We compare models fine-tuned for a single epoch (model updates based on a single pass on the data)
against those fine-tuned for ten or more epochs (i.e., many passes, to convergence). Figure 4 shows that
more fine-tuning consistently increases the success rates of PIFI attacks. This aligns with prior studies of
membership inference [Carlini et al., 2021, 2022a] in LLMs, which found that repeated exposure to a sample
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Figure 4: Left: single epoch fine-tuned Llama-3 8B model. Right: convergence fine-tuned Llama-3 8B
model. More fine-tuning consistently increases the success rates of PIFI attacks.
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Figure 5: Left: fully fine-tuned Llama-3 8B model. Right: LoRA fine-tuned Llama-3 8B mode. LoRA-fine-
tuned models exhibit less vulnerability than their fully fine-tuned counterparts.
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Figure 6: Left: LoRA fine-tuned Llama-3 3B model. Right: LoRA fine-tuned of the Llama-3 8B model.
Larger parameter counts confer greater capacity for memorizing training examples.

increases the chances of memorization. However, even a single epoch of fine-tuning is sufficient to achieve a
non-trivial TPR, demonstrating privacy risks posed by even lightly fine-tuned LLMs.

8.3 (T3) LoRA Fine-Tuning Still Leaks Information
We also investigate whether parameter-efficient methods like LoRA [Hu et al., 2022] mitigate fragment-level
leakage. In keeping with prior work [Jiang et al., 2024], Figure 5 demonstrates that LoRA-fine-tuned models
exhibit less vulnerability than fully fine-tuned counterparts. However, the difference in TPR@FPR is modest,
and PRISM retains high recall, indicating some memorization has still occurred.

8.4 (T4) Vulnerability of Larger Models
Comparing models across parameter scales within the same family reveals that the larger models are more
vulnerable to PIFI attacks, as we obtain higher AUC for an 8-billion parameter Llama model than for a
3-billion parameter Llama model when both are fine-tuned for 10 epochs, as shown in Figure 6. This outcome
is again consistent with prior work demonstrating that larger parameter counts confer greater capacity for
memorizing training examples [Carlini et al., 2021]. We also evaluated our attack on a 70B-parameter Llama
model LoRA-fine-tuned for 10 epochs (the largest model we could finetune given our compute constraints).
The comparison of its performance with the 8B Llama model is visualized in Figure 10. While large LLMs
deliver improved performance, their higher memorization capacity also raises the risk of fragment-level data
leakage.
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8.5 (T5) Noising the Prompt Has Minor Impact
Introducing noise in the form of inaccurate tokens does not significantly degrade the performance of our
attacks. We find that, for a Llama-3-8B model fine-tuned for one epoch, replacing 75% of the accurate
fragments possessed by the adversary with inaccurate fragments (corresponding to false assumptions on the
part of the adversary) reduces AUC from .68 to .65 for PRISM and from .66 to .61 for Classifier, while
leaving LR-Attack unchanged at .54. We provide additional detail in Appendix A.2.

8.6 (T6) Legal Setting Attacks Are More Challenging
The legal domain presents a more difficult challenge for our methods. Though the attacks still outperform
chance (often by a 2:1 TPR:FPR ratio), AUC for a Qwen2-7B-Instruct model fine-tuned for 10 epochs falls to
.55 for PRISM, to .61 for LR-Attack, and to .59 for Classifier, with similar declines observed for a Llama-3
model. Note that this finding accords with expectations, as outlined in Section 5.2. We provide additional
detail in Appendix A.3.

8.7 (T7) LR-Attack Excels for Rare Fragments, PRISM for Common Ones
We find that LR-Attack performs best for rare fragments (e.g., “brachial plexopathy”), while PRISM performs
best for more common fragments (e.g., “parkinsons”). This suggests that incorporating a prior from the world
model helps to curb false positives and improve precision, an important consideration for higher-frequency
fragments. However, the likelihood ratio pD

pD′
of LR-Attack increases sharply for rare data, rendering the

method more sensitive in these cases. We provide additional detail in Appendix A.4.

8.8 Additional Experiments
Rare vs. Common Fragments To clarify why the ranks of the three attacks sometimes trade places in
Table 1, we stratify the 1,034 candidate fragments in the medical task by their corpus frequency.3 Exactly
47% of the fragments appear once in the entire training set, while the remainder surface two or more times.
Table 3 reports attack performance on these two disjoint partitions.

Method TPR @ 2% FPR TPR @ 5% FPR ROC-AUC

Classifier 10.8% 13.7% 0.65
LR-Attack 17.5% 34.4% 0.77
PRISM 2.8% 4.2% 0.57

Classifier 7.1% 17.0% 0.74
LR-Attack 2.5% 5.3% 0.61
PRISM 5.6% 13.5% 0.73

Table 3: (Top) Attack performance when considering fragments that occur once in the fine-tuning data
(“rare” set). (Bottom) Performance when considering fragments that occur multiple times in the fine-tuning
data (“common” set) (Note: model attacked is convergence fine-tuned Llama-3 8B model).

When the candidate fragment is unique, the simple likelihood-ratio statistic of LR-Attack is markedly more
sensitive (TPR@2%FPR = 17.5%). Because such tokens are nearly absent in the shadow model’s fine-tuning,
the ratio pD/pD′ spikes, yielding a strong signal. But, as fragment frequency rises, many individuals in D
share the same token. Here the world-model prior in PRISM suppresses false positives and overtakes the other
methods (AUC = 0.73), reflecting its design goal of balancing sensitivity with precision in higher-frequency
regimes. Although the data-aware classifier remains competitive across both strata, one of the two data-blind
attacks always matches or exceeds its recall at low-FPR – underscoring that meaningful leakage persists
even without labeled in-distribution examples. Taken together, these results corroborate the complementary

3Frequency is computed on the fine-tuning split only, mirroring what an attacker would implicitly exploit.
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Metric Base model DP (ϵ = 3) / Non-DP

ROUGE-Lsum ↑ 0.0963 0.0969 / 0.1004
BERTScore F1 ↑ 0.7140 0.7186 / 0.7299

Method TPR @ 2% FPR TPR @ 5% FPR ROC-AUC

Classifier 4.4% 10.0% 0.64
LR-Attack 0.9% 2.4% 0.51
PRISM 4.0% 9.6% 0.54

Table 4: (Top) Summarization quality on the medical task. (Bottom) PIFI results on Llama-3.2-3B-Instruct
model fine-tuned with DP-SGD, showing some vulnerability.

Method TPR @ 2% FPR TPR @ 5% FPR ROC-AUC

Classifier 7.0% 13.4% 0.69
LR-Attack 5.3% 10.6% 0.64
PRISM 5.2% 11.6% 0.70

Table 5: Results using DeepSeek for world probabilities.

nature of the two data-blind attacks: LR-Attack excels when the adversary probes for idiosyncratic, sparsely
represented fragments, whereas PRISM is better suited for fragments that occur more widely.

Potential of DP Fine-Tuning as a Defense Differentially private (DP) fine-tuning of LLMs [Yu et al.,
2021, Li et al., 2021] has been proposed as a strategy to defend against privacy vulnerabilities in LLMs. Recent
work shows that DP fine-tuning helps to protect against memorization in LLMs, and that sentence-level
privacy can help to reduce (but not eliminate) PII leakage in LLMs [Lukas et al., 2023].

To that end, we additionally fine-tuned the Llama-3.2-3B-Instruct model with sample-level differential privacy
(DP).4 Below we report results with ϵ = 3, a common setting to balance utility and privacy. In terms of
utility, Table 4 shows how DP fine-tuning improves over the base model, but does not fully recover the
gains of non-private fine-tuning, in line with prior work [Lukas et al., 2023]. In terms of defense against the
PIFI threat model, while Classifier and PRISM roughly double the performance of random guessing, DP
suppresses the performance of LR-Attack (TPR@2% FPR= 0.9%).

Improved World Models We experimented with using world probabilities from two large open-source
models, DeepSeek-V3 and R1 (averaging the two). Table 5 gives the performance of our attacks on the
Llama-3-8B model (with 10 epochs of fine-tuning) using DeepSeek world probabilities. We observe slight
improvements on each of our three attack metrics compared to results obtained when using the three smaller
LLMs as world models. These results suggest that incorporating additional high-quality models in the world
model ensemble would further enhance the performance of our attacks. However, as noted previously, the
log-probabilities for powerful closed models are generally not available or significantly restricted, which limits
our ensemble to open-source models.

9 Related Work
The PIFI threat model builds on prior research on LLM privacy. Here we consider related work, focusing on
memorization and membership inference attacks as predominant approaches in the field.

Memorization LLMs may produce sensitive data through user interactions; for example, by prompting
a model with “Jane Doe’s social security number is...” one might elicit a social security number [Carlini

4Ten epochs, opacus set to achieve ϵ under (ϵ, 10−5)–DP, uses dp-transformers library [Wutschitz et al., 2022].
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et al., 2019]. This represents a memorization attack: formally, given model fθ and prefix x, can we extract a
target sequence s that we believe is in the training data exactly? Work by Carlini et al. [2021] introduced
this concept of memorized extractability as k-eidetic memorization, where k gives the number of times s
appeared in D. In subsequent work, a similar definition was given: s is considered extractable if given k′

tokens of context there exists a length-k′ string p such that the concatenation [p || s] is in D and fθ produces
s when decoded greedily under prompt p [Carlini et al., 2022b]. Modifications to extraction attacks may seek
to alter an LLM’s text generation strategy to more easily extract data. Yu et al. [2023] benchmark techniques
to enhance extraction attacks, employing techniques like top-k, nucleus, and typical sampling to address
distribution discrepancies, resulting in substantial improvements in data extraction. Similarly, Nasr et al.
[2023] design attacks that can cause a production model like ChatGPT to diverge from its instruction-tuned
objective and emit training data at a higher rate.

Membership Inference Membership inference attacks attempt to learn whether a given sample was present
in the training data for a machine learning model [Shokri et al., 2016]. Prior work demonstrates that LLMs
are vulnerable to membership inference attacks both after initial pre-training [Duan et al., 2024] and after
additional fine-tuning [Fu et al., 2023]. More complex membership inference attacks may leverage additional
information about a model, such as info gained using model-stealing techniques [Wang et al., 2024]. In
addition to their relevance from a privacy perspective, MI attacks are used in analyses of model memorization
[Shi et al., 2023] and test set contamination [Oren et al., 2023].

10 Limitations
We acknowledge that this work does not extensively evaluate the efficacy of DP fine-tuning against PIFI
attacks; a promising line of future work would be a large scale exploration of the defensive effectiveness of
DP-fine-tuning. However, while DP fine-tuning may be effective for privacy, this approach degrades the utility
of the fine-tuned model, sometimes substantially [Mireshghallah et al., 2021]. Additionally, DP fine-tuning of
LLMs remains uncommon in practice due to the significant technical and financial burdens – e.g., necessitating
high-VRAM GPUs and large batch sizes, even with qLoRA. Consequently, assessing PIFI without DP is
both reasonable and practically important, since the vast majority of fine-tuned LLMs lack DP defenses.

11 Conclusion
We introduce a novel threat model PIFI, which provides a realistic approach to fragment-level extraction from
LLMs. The LR-Attack and PRISM attacks we construct under the data and model availability assumptions
of PIFI reveal the vulnerability of LLMs to extraction of private data, even when an attacker possesses only
fragmented and/or unordered data. Our work suggests a need for research on LLM privacy that adopts
weaker (and thus more realistic) assumptions about scenarios in which these models are vulnerable to privacy
attacks.

12 Impact Statement
Our work advances the science of LLM privacy attacks by introducing a new threat model and two novel attacks
on chat-based language models, pointing to the vulnerabilities embedded in an increasingly common form of
digital infrastructure. The intended impact of this research is to equip organizations and individuals training
language models with a better understanding of their vulnerabilities, and to advance the knowledge available
to the research community in producing effective methods to circumvent these attacks. We acknowledge that
our methods may equip real-world bad actors with the ability to draw private information from publicly
available LLMs. However, we suggest that forewarned is forearmed: these vulnerabilities likely already exist in
many production language models, and our work can help responsible organizations to prepare an appropriate
defense.
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A Additional Results
A.1 (T1) Attacks Are Effective Across Diverse Models (cont.)
We attack three LLMs (Llama-3.1-8B, Qwen-2-7B, and Mistral-7B) instruction-tuned for medical note
summarization. Table 1 in the main body presents the quantitative results, while Figure 7 shows the ROC
curves for all models, allowing a more comprehensive inspection at different FPR values. We observe that the
PIFI threat model is effective against three families of LLMs.
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Figure 7: Left: fully fine-tuned Llama-3-8B model. Middle: fully fine-tuned Qwen2-7B model Right: fully
fine-tuned Mistral-7B model. We observe that PRISM maintains consistent performance with respect to
Classifier and LR-Attack for each model, indicating its robustness to different model families.

A.2 (T5) Noising the Prompt Has Minor Impact
Because our partial-information threat model relies on only a handful of fragments, one might wonder whether,
if an attacker includes incorrect or unassociated fragments, this would hurt attack performance. In our
experiments, permuting the listed fragments (e.g., replacing true fragment set “hypertension, diabetes” with
partially true set “hypertension, osteoporosis”) has a negligible effect on attack success rates. Although
prompts containing more true fragments achieve slightly higher AUC, the improvement is less pronounced than
one might expect. This demonstrates that the fine-tuned model has become highly attuned to associations
between individual pairs of fragments, and that it is robust to noise introduced by fragments in the prompt
not associated with the individual.
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Figure 8: Results of an ablation wherein only k% of fragments used in the attack prompt are accurate,
demonstrating that PRISM remains a viable method for an attacker who possesses only a small number of
correct fragments. Results also show that PRISM outperforms other methods, including a learned classifier,
when an LLM is only lightly fine-tuned (i.e., for a single epoch), suggesting the effectiveness of the prior
incorporated by the attack.
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Figure 9: Results of our ablation wherein only k% of prompt fragments are accurate; the figure illustrates
results for a Llama-3 model trained for 10 epochs, and attacked at 25%, 50%, 75%, and 100% accurate
fragments..
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Figure 10: Left: LoRA fine-tuned Llama-3 3B model. Middle: LoRA fine-tuned of the Llama-3 8B model.
Right: LoRA fine-tuned of the Llama-3 70B model. Larger parameter counts confer greater capacity for
memorizing training examples.

A.3 (T6) Attacks in the Legal Setting Are More Challenging
We also validate our PIFI threat model in a legal case summarization task (see Section 5.2 for details). Here,
the fragments often correspond to crimes committed or other identifiable information (see Appendix C for
examples and categories). We find that our methods still outperform chance, often by a 2:1 TPR:FPR
ratio, in identifying whether a sensitive legal text fragment was in the training set; however, the attacks
are noticeably less successful than in the medical context. We hypothesize that, because legal keywords are
more frequent in general pre-training data, the value of fragment-specific signal is diluted. Consequently,
distinguishing a target fine-tuned fragment from the baseline text distribution becomes harder. Nevertheless,
PIFI attacks remain feasible, indicating that LLMs fine-tuned in the legal setting may leak partial information,
even though the language distribution is closer to everyday speech.
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Figure 11: The legal setting proves more challenging for our attacks. AUC does not exceed .61 in Qwen-2-7B
or .58 in Llama-3-8b, with the strongest result obtained by LR-Attack in both cases, suggesting that its
sensitivity to unusual fragments is a particular benefit in a setting where most fragments are relatively
frequently occurring words in LLM pretraining data.

A.4 (T7) LR-Attack Excels for Rare Fragments, PRISM for Common Ones
We analyze how fragment frequency affects attack performance. For rare tokens or token sequences (e.g.,
a specialized diagnosis in our medical dataset, or a lab value), the simple LR-Attack often performs best,
presumably because the likelihood ratio pD

pD′
spikes sharply when the model sees an unusual fragment learned

from training data (e.g., “brachial plexopathy” or “darvocet”, from the “Biological_structure” category).
By contrast, when fragments are more common in text corpora (e.g., “alzheimer,” or “parkinsons”, from
the “Disease_disorder” category), PRISM ’s incorporation of a prior from the world model helps curb false
positives and improves precision. These observations support our claim that partial-information inference
is not uniform across fragments: modeling both the in-domain shadow distribution and an external “world”
distribution can improve performance on higher-frequency tokens.
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Figure 12: Our findings indicate that LR-Attack is more effective for rare fragments, while PRISM is more
effective for common fragments. For example, PRISM outperforms LR-Attack for the names of diseases
(bottom left, B-Disease_disorder), which contains the commons names of diseases (like “parkinsons”), with
AUC equal to .72 compared to AUC of .66 for LR-Attack. On the other hand, LR-Attack outperforms PRISM
for fragments related to more technical biological structure terms (B-Biological_structure, top left, which
contains uncommon terms such as “brachial plexopathy”).

B Synthetic Setting
We compare the PRISM and LR-Attack partial-information extraction attacks in a toy setting using a synthetic
trigram language model. This allows us to validate insights given in Section 4.3, as we will allow ourselves
access to a known distribution over a tiny vocabulary.

Toy Data Let V = {v0, v1, . . . , v|V|−1} be a vocabulary of size |V| (in our toy experiments, we use a small
set of letters, V = {a, b, c, d}, as the vocabulary.). We generate a target dataset D of size N , where each
s ∈ D is an ordered sequence (v1, v2, . . . , vL) of length T . For example, a sequence with T = 3 letters could
be any permutation of the three out of four letters, such as “abd”, “aaa”, “acb.” We then create a shadow
dataset D′ of the same size and distribution, ensuring that a controlled subset of samples does not appear in
D′, so that D′ serves as an “out-of-distribution” reference for the target s. Then we combine target set and
shadow set as the world dataset: Dw = ⊕(D, D′). The world dataset represents a comprehensive knowledge
set. We generate a test dataset Dt with the same parametrization (V, N, T ) as D for evaluation.

Toy Models We fit three toy trigram models, fθ,D, fθ,D′ , fθ,world, on each corresponding dataset. Each
model estimates P (vi|vi−2, vi−1) via counts of observed trigrams in the respective dataset. For example, if
we observe “ab” ten times and “abb” three times, then probability P (b|ab) = 0.3. To cover the case where
a trigram has no occurrences, a small smoothing value 1e− 6 is applied. Thus, we can get the probability
of any sequence under one of the models by multiplying the probabilities of all trigrams in the sequence:
P (v1v2 . . . vT ) =

∏T
i=3 P (vi|vi−2vi−1).
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Synthetic Attack For each sequence s = (v1, v2, . . . , vL) ∈ Dt, we consider a conditional length C,
2 ≤ C ≤ T −1. We randomly select C vocabularies, without replacement, and in order, from (v1, v2, . . . , vL−1)
as the conditional sequence. Then we append the last vocabulary vT to the new sequence as sC . The intuition
behind this shorter conditional length is that we only have partial information of the sequence, which is being
used to inform the probability of the whole sequence. In our setup, the shorter the conditional length, the
harder the prediction task is. Then we calculate the probability of the conditional sequence sC from the
three models: PsC ,D, PsC ,D′ PsC ,Dw . The LR-Attack attack is calculated as described in Section 4.2, and the
PRISM attack is calculated as described in Section 4.3.

Experimental Setup & Results We experimented with the following parametrization: |V| = [4, 5, 6, 7],
T = [4, 5], N = |V|(T −1). We report AUC in Figure 13. We observe that (1) when vocabulary size increases,
the task is more difficult, because there are more permutations of different letters, increasing the volume
of information. Fixing vocabulary size, increasing the sequence length makes the task more challenging, as
longer sequences contain more complicated information. Fixing sequence length and increasing conditional
length makes the prediction task easier, because a longer conditional sequence provides more information,
and (2) other than the case of (|V|, T , C)=(6,5,2), PRISM almost always outperforms the LR-Attack method.
The effect is more salient when conditional length is longer, i.e., when probabilities used for the attack are
conditioned on more information.
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Figure 13: Synthetic attack results. AUC scores are visualized for two methods. Each square shows the result
of a parametrization.
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C Data Examples

Medical Note Summarization Example
System:
You are a helpful medical assistant! Please help me
summarize dialogues between doctors and patients.

User:
Doctor : What brings you back into the clinic today, miss?
Patient: I came in for a refill of my blood pressure
medicine.
Doctor : It looks like Doctor Kumar followed up with you
last time regarding your hypertension , osteoarthritis ,
osteoporosis , hypothyroidism , allergic rhinitis and
kidney stones . Have you noticed any changes or do

you have any concerns regarding these issues?
Patient: No.
Doctor : Have you had any fever or chills , cough , con-
gestion, nausea , vomiting, chest pain , chest pressure?
Patient: No.
Doctor : Great. Also, for our records, how old are you
and what race do you identify yourself as?
Patient: I am seventy six years old and identify as a white
female.

Assistant:
The patient is a 76-year-old white female who presents
to the clinic today originally for hypertension and a med
check. She has a history of hypertension, osteoarthritis,
osteoporosis, hypothyroidism, allergic rhinitis and kidney
stones. Since her last visit she has been followed by Dr.
Kumar. Those issues are stable. She has had no fever
or chills, cough, congestion, nausea, vomiting, chest pain,
chest pressure.

Table 6: A medical note summarization example. The medical entities are highlighted in green.
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Legal Case Summarization Example
System:
You are a helpful law assistant! Please help me summarize
the legal cases.

User: Appeal from a judgment of the County Court of
Sullivan County (Hanofee, J.), rendered February 8 ,

1990, convicting defendant upon his plea of guilty of the
crime of criminal sale of a controlled substance in the
third degree. We reject defendant’s contention that the
prison sentence imposed by County Court of 3 to 9 years
was harsh and excessive. The sentence was in accordance
with the plea bargain and was well within the statutory
limits. Under the circumstances, his admission that he
has a drug problem fails to demonstrate either extraor-
dinary circumstances or an abuse of discretion by the
court warranting a reduction in the sentence (see, Peo-
ple v Mackey, 136 AD2d 780, Iv denied 71 NY2d 899).
Judgment affirmed. Mahoney, P. J., Mikoll, Yesawich, Jr.,
Crew III, and Harvey, JJ., concur.

Assistant: The County Court of Sullivan County’s judg-
ment convicting the defendant for criminal sale of a con-
trolled substance in the third degree and sentencing him
to 3 to 9 years was upheld on appeal. The appellate court
found that the sentence was appropriate, aligned with the
plea bargain, and within statutory limits, dismissing the
defendant’s claims of harshness and excessive punishment.
The judgment was affirmed unanimously by the presiding
judges.

Table 7: A legal case summarization example. The criminal behaviors are highlighted in pink. The identifiable
information is highlighted in blue.

Category Count Examples
B-Sign_symptom 1585 [Chantix, Constipation, Dizziness]

B-Disease_disorder 896 [Alzheimer, Mononucleosis, Parkinson]
B-Biological_structure 426 [Brachial Plexopathy, Darvocet]

B-Medication 417 [Advair, Methocarbamol, Vicodin]
B-Detailed_description 336 [Acute Cholecystitis]
B-Diagnostic_procedure 245 [Bone Abnormalities]

B-Coreference 108 [Cardizem, Lipitor, Zometa]
B-Lab_value 103 [Abnormal Heart Valve, STD]

Table 8: Examples of the categories of medical entities; we only present categories here that have a count
over one hundred.

D Memorization Attack
That memorization occurs when language models are fine-tuned is well established [Carlini et al., 2021, 2022b,
Lukas et al., 2023]. In this short section, we simply aim to establish that our finetuning process leads to
memorization of some of the training data; and in particular, that when we fine-tune a model for more epochs
(full passes over the training samples), that model memorizes more training data.

Our experiments follow the setup described by Carlini et al. [2021] — we provide a prefix as the prompt and
generate a fixed number of candidate tokens H = {h1, h2, . . . , hn} to be compared against the aligned set
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Category Count Examples
Criminal_Offenses 934 [32 Grams of Heroin, Burglary]

Sentences_Penalties 515 [$1,000 Fine, 12 Years in Prison]
Dates_Times 450 [16 Years Old, April 27, 1989]
People_Roles 382 [Egan Jr., Mercure, J.P.]
Miscellaneous 241 [Alcohol Abuse, Failed to Report]

Geography 235 [Albany County, City of Hudson]
Legal_References 162 [ASAT program, Rockefeller Drug Law Reform Act]

Courts_Corrections 127 [County Court of Chenango County]]

Table 9: Examples for the categories of legal entities; we only present categories here that have a count over
one hundred.

Prefix Length Hamming Distance (↓) Recall (↑)
(Word Count) Llama 3 8B (Conv.) Llama 3 8B (1E) Llama 3 8B (Conv.) Llama 3 8B (1E)

10 words 29.077 31.876 0.423 0.255
20 words 28.935 29.313 0.360 0.217
30 words 25.914 26.236 0.263 0.176

Table 10: Simple memorization attack results. Here, “Conv.” means the model was trained until convergence
(for Llama 3 8B, this took 10 epochs), while “1E” means one epoch (the model only saw the data for a single
training pass).

of ground truth tokens G = {g1, g2, . . . , gn}. In our experiments, we combine each doctor-patient dialogue
and l = {10, 20, 30} words from the summary as the prefix, and we prompt the model to generate n = 50
tokens. We conduct the memorization attack using 200 fine-tuning samples, using the 1-epoch fine-tuned and
convergence fine-tuned Llama 3 8B models.

To evaluate memorization, we use two standard metrics. The first is Hamming Distance, calculated as∑n
i=1 1[hi ̸= gi]. Hamming distance counts the mismatched generated and ground truth tokens; the lower

the value, the more the model has memorized. The second metric is Recall, calculated as
∑n

i=1 1[hi ∈ G].
The model may not necessarily generate the memorized information in the strict order of appearance from
the fine-tuning data, but it still may produce most or all of the same words. The Recall rate then measures
how many generated tokens are in the ground truth token set, ignoring order; the higher the value, the more
the model has memorized. Results are given in Table ?? for the Llama 3 8B model.

We observe that for both metrics, the 10-epoch fine-tuned Llama model memorizes more information than its
1-epoch fine-tuned counterpart, with lower hamming distances and higher recall rates. This phenomenon is
consistent across all three prefix lengths.
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E Models
To obtain pD and pD′ , we fine-tune the below instruction-tuned models to produce the target models and the
shadow models capable of generating those probabilities. Each model was pretrained on a large text corpus
and subsequently instruction-tuned to respond to user instructions [Wei et al., 2021]. The models include:

• Llama-3.1-8B-Instruct: An 8-billion parameter LLM pretrained on 15 trillion tokens of publicly available
text data and fine-tuned using RLHF with human preferences [Dubey et al., 2024].

• Llama-3.2-3B-Instruct: A 3-billion parameter LLM pretrained on 9 trillion tokens of publicly available
text data and fine-tuned using rejection sampling and DPO to align with human preferences [Dubey et al.,
2024].

• Qwen-2-7B-Instruct: A 7-billion parameter LLM pretrained on 7 trillion tokens and fine-tuned using
DPO to align with human preferences [Yang et al., 2024].

• Mistral-7B-Instruct-v0.2: A 7-billion parameter LLM pretrained on a private dataset and fine-tuned on
public datasets to follow instructions [Jiang et al., 2023].

Parameter counts are approximate to the nearest billion and in keeping with widely used descriptions of the
models.

To obtain pworld for the purpose of the empirical results presented in this paper, we obtain probabilities from
three LLMs, none of which are fine-tuned on either D or D′. These models include Llama-3.1-8B-Instruct
[Dubey et al., 2024], Mistral-7B-v0.2 [Jiang et al., 2023], and Gemma-2B-IT [Team et al., 2024]. To compute
pworld, we simply take the mean of the probabilities output by these three models, in accordance with the
definition of the world model: fθ,world(x) = 1

k

∑k
i=1 f

(k)
θ,∗ (x)
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F Full MMLU Results
One potential challenge to the practicality of our attacks lies in the potential for extensive fine-tuning to
degrade the general-purpose capabilities and chat interface of a model. To test whether models trained under
PIFI remain usable after fine-tuning, we ran utility evaluations using MMLU [Hendrycks et al., 2020]. We
found that the Llama-3-8B model fine-tuned for 10 epochs reached an average MMLU score of 0.565, compared
to 0.487 after one epoch and 0.413 for the baseline model, suggesting the fine-tuned model remains capable
and general. In medical areas (e.g., clinical knowledge, medical genetics), fine-tuning improved performance
notably over a non-fine-tuned baseline. However, most of the increase in performance we observed can be
attributed to the fact that fine-tuned models sometimes outperform generalist models on some benchmarks
due to “better behavior,” meaning that they naturally follow a stricter format. We present full results below
for Llama-3-8B without fine-tuning, fine-tuned for one epoch, and fine-tuned for ten epochs. Our results
demonstrate that fine-tuning that renders models more vulnerable under PIFI does not substantially degrade
the general-purpose chat interface of the model.
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MMLU Category No Finetune 1-epoch Fine-Tune 10-epoch Fine-Tune

Overall 0.41 0.49 0.57
high-school-european-history 0.60 0.70 0.69
business-ethics 0.24 0.44 0.58
clinical-knowledge 0.41 0.57 0.63
medical-genetics 0.64 0.70 0.75
high-school-us-history 0.49 0.66 0.72
high-school-physics 0.21 0.22 0.32
high-school-world-history 0.47 0.70 0.74
virology 0.51 0.52 0.52
high-school-microeconomics 0.40 0.61 0.71
econometrics 0.21 0.28 0.39
college-computer-science 0.28 0.36 0.43
high-school-biology 0.63 0.67 0.70
abstract-algebra 0.27 0.15 0.33
professional-accounting 0.17 0.27 0.39
philosophy 0.53 0.59 0.59
professional-medicine 0.57 0.64 0.69
nutrition 0.57 0.67 0.67
global-facts 0.09 0.16 0.20
machine-learning 0.16 0.21 0.38
security-studies 0.44 0.56 0.56
public-relations 0.43 0.51 0.59
professional-psychology 0.43 0.52 0.59
prehistory 0.52 0.60 0.65
anatomy 0.54 0.55 0.60
human-sexuality 0.63 0.60 0.72
college-medicine 0.42 0.50 0.57
high-school-government-and-politics 0.62 0.70 0.75
college-chemistry 0.28 0.23 0.33
logical-fallacies 0.50 0.58 0.67
high-school-geography 0.51 0.67 0.73
elementary-mathematics 0.28 0.31 0.38
human-aging 0.49 0.55 0.61
college-mathematics 0.26 0.26 0.33
high-school-psychology 0.62 0.72 0.76
formal-logic 0.26 0.35 0.42
high-school-statistics 0.25 0.30 0.36
international-law 0.57 0.68 0.64
high-school-mathematics 0.25 0.27 0.36
high-school-computer-science 0.47 0.50 0.66
conceptual-physics 0.37 0.40 0.49
miscellaneous 0.61 0.67 0.75
high-school-chemistry 0.34 0.38 0.42
marketing 0.32 0.67 0.79
professional-law 0.28 0.33 0.39
management 0.46 0.70 0.73
college-physics 0.22 0.25 0.30
jurisprudence 0.44 0.56 0.57
world-religions 0.62 0.67 0.77
sociology 0.69 0.74 0.76
us-foreign-policy 0.57 0.74 0.80
high-school-macroeconomics 0.32 0.52 0.63
computer-security 0.64 0.68 0.76
moral-scenarios 0.14 0.06 0.35
moral-disputes 0.45 0.55 0.60
electrical-engineering 0.30 0.46 0.57
astronomy 0.51 0.61 0.63
college-biology 0.58 0.61 0.66
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