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Abstract

In this work, we consider an inversion attack on the obfuscated input embeddings
sent to a language model on a server, where the adversary has no access to the
language model or the obfuscation mechanism and sees only the obfuscated em-
beddings along with the model’s embedding table. We propose BeamClean, an
inversion attack that jointly estimates the noise parameters and decodes token
sequences by integrating a language-model prior. Against Laplacian and Gaus-
sian obfuscation mechanisms, BeamClean always surpasses naive distance-based
attacks. This work highlights the necessity for and robustness of more advanced
learned, input-dependent methods.

1 Introduction

Machine learning services increasingly rely on shared or outsourced resources to manage and process
data. Model-as-a-Service (MaaS) is a prime example, where organizations outsource the generation
and storage of pre-trained large language models, computing infrastructure, and core functionalities
that enable users to fine-tune, deploy, and execute customized models.

While this arrangement offers scalability and cost benefits, it also heightens privacy risks, particularly
for Large Language Models (LLMs). Plaintext data must be transmitted from the client’s trust zone
to enter the model provider’s. When the data is at rest in the client’s trust zone or in transit to the
model provider, the plaintext data may be protected via encryption, however, while the data is in use
by an LLM, the data must be converted to either plaintext tokens or word embeddings (which are in
1-1 correspondence with the plaintext tokens). This need to expose data while it is in use presents a
heightened privacy risk as this plaintext data could be leaked or intercepted.

To mitigate these privacy risks, recent approaches introduce input-independent noise to token em-
beddings in the local trust zone as in, Fig 1, before sharing with the service provider. One common
method is local differential privacy techniques Mai et al. [2023], Shen et al. [2023], Feyisetan and
Kasiviswanathan [2021], Carvalho et al. [2023] which add input independent noise to the embeddings.
This paper investigates the possibility of inverting input-independent noise-perturbed input word
embeddings back to their original token counterparts to recover the plaintext data.

We propose a novel attack strategy, BeamClean 1 (Fig 2), aimed at reconstructing sequences of tokens
from their obfuscated embeddings. We assume a scenario, wherein the adversary has no access

1https://github.com/beamclean-neurips25/beamclean
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Figure 1: Overview of the generic input-embedding obfuscation pipeline and our adversarial threat
model. Plaintext inputs are first encoded and transformed into noisy (i.e. obfuscated) embeddings,
which are then transmitted to the LLM provider. An attacker accesses the noisy embeddings in
order to attempt to recover the original plaintext input. Within the local trust zone, an obfuscation
mechanism is applied to embeddings for a target LLM. These noisy embeddings are inputs to the
BeamClean algorithm. The noisy embeddings are then put through a scoring algorithm to determine
the top-k candidate token-ids. These top candidates are added to candidates from previously scored
tokens to form beams. The top scoring beams are selected and used to start the scoring algorithm for
the next token in the sequence.

to the target model’s internal parameters, the obfuscation mechanism, or its training data. Instead,
the attacker only observes the obfuscated embeddings Mai et al. [2023] and has knowledge of the
underlying embedding table. This attack scenario could occur if an unauthorized user gains access to
the server’s compute infrastructure.

Our results demonstrate that BeamClean (Fig. 2) substantially outperforms nearest neighbor-based
methods previously used to assess privacy strength Mai et al. [2023] against noise mechanisms that
do not vary with input, effectively reconstructing plaintext sequences. This emphasizes a critical
insight: Input independent Gaussian and Laplacian noise mechanisms, like those used in local-DP,
can be vulnerable against adversaries equipped with linguistic priors and embedding knowledge.

The structure of this paper is as follows. Section 2 reviews the related work. Section 3 introduces
the problem setting under consideration. In Section 4, we develop the framework and propose our
attack method. Next, Section 5 presents experimental results to demonstrate the effectiveness of our
proposed approach. Finally, Section 7 provides concluding remarks.

2 Related Work

With the growth of large language models (LLMs), chatbots such as ChatGPT, LLama Touvron
et al. [2023], Achiam et al. [2023], and other embedding model services have raised significant
privacy concerns. These services allow for sensitive or proprietary data to be transmitted during
both training and inference, potentially leading to privacy risks. The main focus is to protect against
these privacy risks without sacrificing model performance. Existing research primarily focuses on
centralized learning and the leakage of training data in public LLM deployments, with attention
given to pre-training Li et al. [2021], fine-tuning Yu et al. [2021], and prompt-tuning Li et al. [2023].
However, little work has addressed local privacyChatzikokolakis et al. [2013] during the inference
phase.

Text Reconstruction from Contextualized Embeddings Previous studies have focused on invert-
ing the contextualized embeddings produced by an embedding model Kugler et al. [2021], Morris
et al. [2023]. These studies demonstrate that high BLEU scores can be achieved when an attacker
accesses the model’s output. In Morris et al. [2023], the authors introduced Gaussian noise as a
simple obfuscation technique and presented preliminary results showing that, at a modest noise level,
reconstruction accuracy dropped drastically (BLEU score fell from over 80 to around 10), while
retrieval performance was barely affected. These findings suggest that noise injection could be a
practical way to protect sensitive text data stored in vector databases without sacrificing search utility.
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Input Data Protection in Split Learning In Mai et al. [2023], the authors propose a method for
protecting input data in split learning by adding Laplacian noise under a local differential privacy
framework. Their approach includes a pipeline that post-processes the contextualized embeddings
generated by an embedding model. In Shen et al. [2023], a similar strategy is adopted with an
additional step: after adding Laplacian noise, the noisy embedding is mapped to its nearest neighbor,
resulting in a change of the corresponding input token.

Word Embedding Perturbation Mechanisms In Carvalho et al. [2023], the authors propose a
truncated exponential mechanism that, rather than directly perturbing the continuous word embedding,
assigns each candidate word a score based on its negative distance from the input, adds calibrated
Gumbel noise to these scores, and selects the word with the highest noisy score as the privatized output.
This method dynamically adapts the noise to the local density of the embedding space, ensuring
that the selected token remains close to the original while providing formal privacy guarantees. In
contrast, Xu et al. [2020] replaces standard spherical noise with elliptical noise sampled from a density
proportional to exp (−ϵ∥z∥RM), where the regularized Mahalanobis norm adjusts the noise according
to the covariance structure of the embedding space. The perturbed embedding is then mapped to
its nearest token, thereby enhancing privacy in sparse regions without sacrificing overall utility.
Meanwhile, Feyisetan et al. [2020] presents a mechanism under dχ-privacy that maps each word into
a high-dimensional embedding space, adds noise sampled from an n-dimensional distribution with
density proportional to exp (−ϵ∥z∥), and then maps the perturbed vector to its nearest neighbor in
the vocabulary.

All three methods share the common step of adding input-independent noise to embeddings and
then mapping back to the nearest token. Their key differences lie in the noise model and privacy
framework: Carvalho et al. [2023] and Xu et al. [2020] operate under standard differential privacy Xu
et al. [2020] adopt noise based on local geometry—whereas Feyisetan et al. [2020] adopts dχ-privacy,
which defines privacy with respect to a metric over the embedding space.

3 Problem Formulation

We consider a setting in which an attacker gains access to obfuscated embeddings derived from
sensitive text, but lacks direct knowledge of how these embeddings were transformed. In this section,
we formalize the obfuscation mechanism, define the blind attack scenario, and state the inversion
problem underpinning our proposed attack strategy. Though the obfuscation mechanisms tested
in this paper are input-independent, BeamClean is mathematically formulated for the input and
sequence dependent cases.

We begin by outlining some useful notation to be used throughout the rest of the paper. Let V =
{w1, . . . , w|V|} denote the vocabulary of the target language model, and let each vocabulary word
wi ∈ V have an associated clean embedding xi ∈ Rd from the embedding table X .

Given a token sequence w1:T = (w1, . . . , wT ) of length T , where each wt ∈ V for t ∈ [T ] :=
{1, . . . , T}, we define xt := x(wt) to be the embedding corresponding to token wt. Thus, the
sequence of embeddings is denoted by x1:T = (x1, . . . , xT ). Also, for notational simplicity, we use
the expressions pθ(x) and p(x; θ) interchangeably.

The target language model is the cloud-hosted LLM which processes obfuscated embeddings of
users’ plaintext data. An attacker obtains these obfuscated embeddings and has access only to that
model’s embedding table and vocabulary. An obfuscation mechanism is a map O(·; θ) between a
clean embedding xt to an obfuscated embedding yt with t ∈ [T ], parameterized by θ: y1:T =
O
(
x1:T ; θ

)
=

(
y1, y2, . . . , yT

)
.

In this work, we focus on additive-noise mechanisms where yt = xt + nt,∀t ∈ [T ] and each noise
term nt is drawn from a distribution p

(
nt | x1:T ; θ

)
.

The noise is similar to the noise mechanisms used in differential privacy. We consider an attack
scenario, in which the adversary has access only to: The obfuscated embeddings y1:T (leaked from
some system). The embedding table X of the target language model, which maps each token wi ∈ V
to its clean embedding xi. The attacker does not have the target model’s internal parameters (i.e. the
model weights or model architecture), nor knowledge of the obfuscation mechanism O(·; θ), nor its
training data. Such a scenario may arise when only partial leaks reveal the initial embedding layer
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and the obfuscated inputs, but no deeper components. This situation naturally arises when multiple
LoRa finetuned adapters, which typically leave the embedding layer as it is, are associated with the
same base model via inference engines such as vLLM Kwon et al. [2023].

We make the following novel contributions to the inversion of transformed token embeddings to text:

Generalized Attack Framework. We introduce a novel approach for attacks against additive-noise
obfuscation methods on sequential data. Even without direct access to the obfuscation mechanism or
its parameters, our method adapts to both input-independent and input-adaptive noise.

Improved Inversion over Nearest-Neighbor. For sequences of word embeddings, BeamClean out-
performs nearest-neighbor based reconstruction attacks against input-independent noise obfuscations,
similar to those used in local-DP Feyisetan and Kasiviswanathan [2021].

Language Aware Reconstruction. Our method performs denoising of token embedding sequences
by modeling them as interdependent, rather than treating individual tokens in isolation. This ap-
proach enables the incorporation of sequential dependencies present in language as priors during
reconstruction, leveraging a pretrained language model.

4 BeamClean

The core idea of BeamClean is to jointly estimate the noise model parameters and decode the original
token sequence using a beam-search based procedure that leverages both the embedding table X of
the target model and a language prior.

Let p(y | x; θ) denote the noise model—i.e., the probability of observing the noisy embedding y
given its clean counterpart x. Our goal is to obtain a maximum-a-posteriori (MAP) estimate of the
noise-model parameters θ conditioned on the observed sequence y1:T . Applying Bayes’ rule and
marginalizing over the unknown clean token sequence w1:T yields the following objective:

θ̂ = argmax
θ

log p(θ | y1:T ) = argmax
θ

log
∑

w1:T∈VT

πθ

(
y1:T | x(w1:T )) pLM(w1:T ) + log p(θ)

(1)

In this formulation, because we assume an uninformative uniform prior, the p(θ) term is constant and
drops out of the optimization. A full expression and detailed derivation are provided in Appendix A.2.
The key terms in Equation (1) are as follows:

• πθ, is the surrogate noise model. The likelihood term πθ(y1:T | x1:T ) is factorized as:
πθ(y1:T | x1:T ) ≜

∏T
t=1 πθ(yt | x1:T ). If there is more information available about the

obfuscation mechanism it can be incorporated to the surrogate noise model by parametrizing
it accordingly. For example if we know that the obfuscation mechanism is Gaussian we can
model it as:

πθ(x(w1:t)) = N
(
yt

∣∣xt + µθ(x1:t), Σθ(x1:t)
)
, (2)

where µθ̂(·) and Σθ̂(·) are the mean and covariance predicted by the surrogate noise model,
respectively, for each time step t.

• pLM(w1:T ) is the prior language model over the token sequence, defined as pLM(w1:T ) =∏T
t=1 pLM

(
wt | w1:t−1

)
and it assigns low probability to linguistically implausible se-

quences.

Once we have an estimate of the parameters θ̂, we can decode the token sequence by maximizing the
posterior of the tokens w1:T given the observed transformed embedding y1:T :

ŵ1:T = argmax
w1:T

log p(w1:T | y1:T ; θ̂) = argmax
w1:T

log πθ̂

(
y1:T | x(w1:T )

)
pLM(w1:T ) (3)

Evaluating the sum in Equation (1) requires enumerating all |V|T token sequences, which is pro-
hibitive for realistic vocabulary sizes and sequence lengths. To achieve tractable computation, we
rely on two complementary approximations:
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Figure 2: BeamClean is an iterative algorithm that begins with clean candidate tokens mapping
to their corresponding embeddings. These clean candidate embeddings and noisy embeddings are
inputs to a surrogate noise model of the obfuscation mechanism, πθ̂ . The clean candidate tokens are
also used to produce a language prior (optionally translating tokens for the case of distinct target
and prior language models). Together, the language prior and the surrogate noise model produce a
likelihood score which is used to train the surrogate model. This is done iteratively to update the
beam candidates. Finally, the highest scoring beam is selected as the reconstruction.

1. Causal noise model. We assume the obfuscation mechanism is causal,

pθ
(
yt | w1:T

)
= pθ

(
yt | w1:t

)
, t < T,

so each noisy embedding depends only on the current and past clean tokens.
2. Beam-search pruning. Even with causality the number of candidate sequences still grows

exponentially in T . We therefore keep only the top-B partial hypotheses at each time-step,
selected by beam search (see Section 4).

Combining the causal assumption with beam-search pruning reduces the overall complexity from
O(|V|T ) to O(BT ), making optimization feasible in practice.

Algorithm 1 Causal Beam Search Decoding with Adaptive Noise Estimation

Require: Vocabulary X , beam size k, sequence length T , noisy embeddings y1:T
1: Initialize beam B0 ← {( "", 1.0)} ▷ Empty sequence with score 1
2: Initialize noise parameters θ(0) (e.g. randomly or via a pre-training step)
3: for t = 1 to T do
4: θ(t) ← argmaxθ

∑
(x1:t−1,s)∈Bt−1

∑
xt∈X πθ̂ (yt |x(w1:t)

)
pLM(wt | w1:t−1

)
5: C ← ∅ ▷ Set of new candidates
6: for each (w1:t−1, s) in Bt−1 do
7: for each wt in X do
8: s′ ← s × πθ̂ (yt | x(w1:t)) × pLM(wt | w1:t−1)

9: C ← C ∪
{
(w1:t−1, wt), s

′}
10: end for
11: end for
12: Bt ← Top-k entries of C by score
13: end for
14:
15: return The highest-scoring sequence in BT .

We employ a beam search approach that iteratively refines both the noise parameters θ and the
decoded tokens. At each time step t, we keep a “beam”, Bt−1 of candidate partial sequences, each
with an associated score. Lines 1–2 initialize an empty beam with the start-of-sequence hypothesis.
At each time step t (lines 3–5), the surrogate noise parameters θ(t) are updated by maximizing the
joint likelihood of the current noisy embedding and all beam sequences. Lines 6–9 then extend
each beam hypothesis by every token in the vocabulary, computing a new score by multiplying the
surrogate likelihood (Eq.) with the language-model prior. Finally, lines 10–11 prune to the top-B
sequences to form the next beam, and this process repeats until T , with the best scoring sequence
returned.
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Adaptive Noise Estimation. At each time step, re-estimating θ with the current beam Bt−1 ensures
that the model continually refines its approximation of the true obfuscation process. This incremental
approach leverages context gained from earlier steps to improve parameter estimates.

Efficient Parameter Initialization. Using θ(t−1) as the initialization for θ(t) reflects the assumption
that a single noise model operates across the entire sequence. Rather than refitting from scratch at
each step, we exploit continuity in the underlying noise parameters.

Overall, this methodology interleaves adaptive noise-model estimation with a causal beam search for
token decoding. By balancing linguistic plausibility (via a language prior) with consistency under
the learned noise distribution, our approach substantially improves inversion accuracy over naive
baselines, especially for input-independent noise mechanisms.

5 Experiments

We evaluate BeamClean across multiple datasets and Gaussian and Laplacian noise mechanisms,
similar to those used in local-DP. We analyze performance under varying levels of adversarial
knowledge and noise complexity. BeamClean is compared against the common baseline in blind-
obfuscation literature of Nearest Neighbor Mai et al. [2023], Du et al. [2023], Xu et al. [2020], which
decodes each noisy embedding yt to the single clean embedding x ∈ X that minimizes ∥yt − x∥2.

Our study uses three datasets. The first is constructed from randomly sampled examples in the
Open-Orca dataset Mukherjee et al. [2023]. To standardize the input length, we truncate all sequences
to a maximum of 32 tokens. The second dataset is the MRPC dataset from the GLUE benchmark
Wang et al. [2019]. Finally, we use the PAPILLON dataset to evaluate PII recovery rate Siyan et al.
[2025].

Following our problem formulation (Section 4), we incorporate a pretrained Llama-3.2-1B-Instruct
model as the language prior in Equation (1).

We report the attack success rate (ASR), the fraction of correctly recovered tokens in a sequence:

ASR =
Number of Correctly Decoded Tokens

Total Number of Tokens
× 100%.

Higher values indicate more successful reconstructions.

For the PAPILLON benchmark, we report the mean PII recovery percent. For each sample in the
dataset, we use PAPILLON to measure the percentage of PII strings leaked in the sample (based on
their prompt 2). We normalize PII recovery percent by the total number of PII strings detected in the
clean sample and report the average value across the dataset.

To assess how our attacks perform under different privacy levels, we compute the corresponding
differential privacy parameter ϵ for various noise magnitudes in the input-independent setting. The
calculations for each noise distribution are provided in Appendix C.

Our experiments were executed on NVIDIA H100 GPUs with 80 GB of memory. Training time grows
approximately linearly with the beam width, dataset size, embedding-table size, and the number of
candidate tokens considered.

5.1 Results

BeamClean always outperforms Nearest Neighbor. Figure 3 presents an experiment conducted
on the MRPC dataset, where both the target model (including its embedding table) and the Prior
Model are Llama-3.2-1B-Instruct with a vocabulary of size 128,256 Touvron et al. [2023]. The
obfuscation is performed using isotropic Gaussian and Laplacian noise centered at zero, with the
variance adjusted to different levels.

BeamClean consistently surpasses the nearest-neighbor baseline across all noise regimes. In par-
ticular, at stringent privacy settings (low ϵ, i.e. high noise), it delivers roughly 32% improvement
in token-recovery rate—demonstrating its robustness and making it a clear choice when privacy
guarantees tighten. Furthermore, we show that the variance can be learned during training, and our

2https://github.com/Columbia-NLP-Lab/PAPILLON
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Figure 3: Performance of BeamClean compared to Nearest Neighbor on the MRPC dataset. Curves
show token-recovery rate as a function of ϵ with beam size 20. We compare against Gaussian, 3a, and
Laplacian, 3b, noise mechanisms using, respectively. In both cases BeamClean outperforms Nearest
Neighbor. Against Gaussian noise at ϵ = 15 our attack recovers 74.3% of tokens versus 42.1% for
Nearest Neighbor. Against Laplacian noise at ϵ = 8.5 the attack attains 86% recovery versus 18% for
Nearest Neighbor.
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Figure 4: Mean PII Recovery percent on PAPILLON vs Laplace noise mechanism DP-ϵ. BeamClean
consistently able to recover more PII strings than Nearest Neighbor, recovering 60.0% of PII strings
compared to 1.9% recovered by Nearest Neighbor at ϵ = 8.5.

decoding procedure compensates for stochasticity even at high variance. These findings are especially
relevant given that prior work Mai et al. [2023] applies local differential privacy (LDP) techniques
to both input and output embeddings, typically comparing the obfuscated embeddings against a
nearest-neighbor attack to demonstrate privacy strength. In contrast to the nearest-neighbor attack,
BeamClean recovers a substantially higher fraction of tokens. Notably, expanding the beam size or
increasing the candidate pool can further improve performance, albeit with additional computational
costs.

BeamClean recovers significantly higher PIIs compared to Nearest Neighbor. Figure 4 demon-
strates the ability of BeamClean and Nearest Neighbor to recover PII strings from embeddings
obfuscated with Laplacian noise mechanisms. For all the cases, BeamClean recovers more PII tokens
than Nearest Neighbor. In particular, for an ϵ value of 8.5 Nearest Neighbor can only recover 1.9%,
while BeamClean recovers 60% of PII strings. This underscores the importance of having stronger
privacy attacks to measure the obfuscation quality. In this situation, a practitioner may believe that
they had protected almost all their PII data when in actuality less than a third would have been
protected from BeamClean.

The attacker does not need access to the target language model. We evaluate a scenario where
the target embeddings originate from a GPT-2 embedding table, yet the decoding prior is provided by
a Llama-3.2-1B-Instruct model. Because these two models use different tokenization schemes, each
GPT-2 token must be mapped or approximated to a corresponding LLaMA token. We build a direct
1:1 mapping for each GPT-2 token to a unique LLaMA version of that token by choosing a restricted
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Figure 5: Attacking obfuscated GPT-2 embeddings using a Llama-3.2-1B-Instruct model as a
language prior. BeamClean uniformly outperforms Nearest Neighbors, with the largest measured
difference between the reconstruction methods occurring at DP ϵ ≈ 9.6, BeamClean achieves 77%
recovery versus 17% for the baseline.

vocabulary, and we further restrict tokens to those present in MRPC. These experiments are run on
the MRPC dataset from the GLUE benchmark.

Figure 5 shows the performance of BeamClean and Nearest Neighbor as a function of utility (ϵ).
We see that even when the language prior is different from the target model, BeamClean dominates
Nearest Neighbor, showing ASR nearly 60% higher compared to Nearest Neighbor when tested
against Laplacian noise with a scale of 0.6.

6 Limitations

Although BeamClean demonstrates strong performance, several factors limit real-world applicability
of this work. In our experimentation, we restricted ourselves to input independent noise mechanisms
found in the literature. Though BeamClean is also applicable to more sophisticated input-dependent
noise mechanisms, further experimentation is needed to determine its efficacy. From an algorithmic
perspective, errors in decoding the earlier tokens in the sequences can propagate and escalate due to
the autoregressive nature of language modeling. The beam strategy mitigates but does not eliminate,
this risk. Further, large vocabularies and longer sequences greatly expand the search space, making
exhaustive decoding expensive. Our beam-pruned approach helps, yet remains GPU-intensive.
Despite these drawbacks, our results highlight that constant-noise mechanisms may be significantly
more vulnerable to systematic attacks than prior work Mai et al. [2023] suggests.

7 Conclusion & Future Work

We presented a novel attack framework for inverting obfuscated embeddings under a scenario
wherein the adversary can only access leaked, noise-perturbed embeddings and the target language
model’s embedding table. BeamClean combines learned noise-model estimation with language model
priors in order to decode obfuscated embeddings to recover plaintext more effectively compared
to naive nearest neighbor-based baselines used in input-independent Gaussian and Laplacian noise
mechanisms. Moreover, we showed that BeamClean was able to consistently recover a significantly
higher percentage of PII compared to the Nearest Neighbor attack. We also demonstrated that
BeamClean does not necessarily need access to the target language model for the attack to be
successful, inverting nearly 60% more tokens than Nearest Neighbor when the decoding prior is a
different model than the target language model.

Future work could investigate how well BeamClean can reconstruct embeddings obfuscated with input
dependent noise. Additionally, varying hyperparameters, noise distributions, and model architectures
further influence both obfuscation strength and attacker capabilities. Likewise, incorporating domain
constraints, such as partial vocabulary knowledge or specialized language priors, offers promising
directions for refining BeamClean and improving privacy-preserving designs in MaaS environments.
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8 Ethics Statement

Our work introduces a state-of-the-art inversion of noise-perturbed embeddings back to plaintext. This
plaintext could include prompts from users that could contain sensitive and proprietary information
and so BeamClean represents an additional avenue of privacy leakage not previously addressed in the
literature. We believe that the description and release of BeamClean, along with the associated source
code and data, will enable security researchers to have a stronger method to measure the protections
offered by their privacy enhancing technologies.
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A Inverse Problem

A.1 Single Token

We start with a non-sequential (single-step) inverse problem where we observe:

y = x+ n, n ∼M(x;µ(x),Σ(x)),

and wish to infer x ∈ Rd. We have a prior p(x) (e.g., learned from some large dataset such as
Alpaca).

Find parameters θ that relate noisy data y to clean embeddings x. A typical Bayesian formulation:

θ̂ = argmax
θ

log p(θ | y) (4)

= argmax
θ

[
log

∫
p(y | x, θ) p(x) dx+ log p(θ)

]
. (5)

A.2 Sequential

θ̂ = argmax
θ

log p(θ | y1:T )

= argmax
θ

[
log

∫
p(y1:T | x1:T , θ) p(x1:T ) dx1:T + log p(θ)

]
.

B Inverse Problem (Token Sequence)

We consider a sequence of noisy word embeddings y1:T = (y1,y2, . . . ,yT ), where T is the sequence
length. The corresponding clean embeddings (unobserved) are denoted as x1:T = (x1,x2, . . . ,xT ).

The noise model assumes that the noisy embedding yt at time t depends on all previous clean
embeddings x1:t, parameterized by θ:

p(yt | x1:t, θ).

The prior on the clean embeddings x1:T is given by a pretrained language model:

p(x1:T ) = p(x1)

T∏
t=2

p(xt | x<t).

The goal is to maximize the marginal likelihood of the noisy embeddings:

log p(y1:T | θ) = log

∫
p(y1:T ,x1:T | θ) dx1:T .

C Additive-Noise Mechanisms for Differential Privacy

1 Global Sensitivity

For a real-valued query f : D→R, the (global) ℓp-sensitivity is

∆pf = max
x,y∈D

∥x−y∥0≤1

∥∥f(x)− f(y)
∥∥
p
, (6)

i.e. the greatest change in the output when one record is added or removed. Equations (7)–(9) calibrate
noise in terms of ∆1f or ∆2f .
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2 Laplace Mechanism (ε-DP) Dwork et al. [2006]

MLap(x; f, ε) = f(x) + Laplace
(
0, b = ∆1f

ε

)
(7)

Adding i.i.d. Laplace noise with scale b = ∆1f/ε guarantees ε-differential privacy since

Pr[MLap(x) = z]

Pr[MLap(y) = z]
≤ eε, ∀ z, x∼y.

Discrete variant. Replacing continuous Laplace noise by the geometric (discrete Laplace) distribution
yields the universally utility-maximizing geometric mechanism Ghosh et al. [2009], Gupte and
Sundararajan [2010].

3 Gaussian Mechanism (ε, δ-DP) Dwork et al. [2014]

MGauss(x; f, ε, δ) = f(x) +N
(
0, σ2 =

2 ln
(
1.25/δ

)
(∆2f)

2

ε2

)
(8)

With 0 < ε < 1 and 0 < δ < 1, the variance choice above ensures (ε, δ)-differential privacy by
bounding the overlap between the two Gaussian output distributions corresponding to neighboring
datasets.

4 Vector-Valued Queries (d > 1)

For f : D→Rd (d ≥ 2), add independent noise per coordinate:

Md
Gauss(x) = f(x) + (η1, . . . , ηd), ηi

i.i.d.∼ N
(
0, σ2

)
(9)

where σ2 is given by Equation (8) and the sensitivity ∆2f is computed in the ℓ2 norm.
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