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Abstract

Due to the distributed nature of Federated Learning (FL)
systems, each local client has access to the global model,
posing a critical risk of model leakage. Existing works have
explored injecting watermarks into local models to enable
intellectual property protection. However, these methods
either focus on non-traceable watermarks or traceable but
white-box watermarks. We identify a gap in the literature
regarding the formal definition of traceable black-box wa-
termarking and the formulation of the problem of injecting
such watermarks into FL systems. In this work, we first for-
malize the problem of injecting traceable black-box water-
marks into FL. Based on the problem, we propose a novel
server-side watermarking method, TraMark, which cre-
ates a traceable watermarked model for each client, en-
abling verification of model leakage in black-box settings.
To achieve this, TraMark partitions the model parame-
ter space into two distinct regions: the main task region
and the watermarking region. Subsequently, a personalized
global model is constructed for each client by aggregating
only the main task region while preserving the watermark-
ing region. Each model then learns a unique watermark
exclusively within the watermarking region using a distinct
watermark dataset before being sent back to the local client.
Extensive results across various FL systems demonstrate
that TraMark ensures the traceability of all watermarked
models while preserving their main task performance.

1. Introduction
Federated Learning (FL) is a promising training paradigm
that enables collaborative model training across distributed
local clients while ensuring that private data remains on lo-
cal devices [18]. Instead of sharing raw data, clients train lo-
cal models independently and periodically send updates to
a central server, which aggregates them into a global model.
This privacy-preserving benefit has led to FL’s widespread
adoption in various fields, including healthcare [21], fi-
nance [16], and remote sensing [15], where local data pri-
vacy is a critical concern. However, sharing the global

model with all participants introduces risks of model leak-
age. Specifically, malicious clients may exploit their ac-
cess by duplicating and illegally distributing the model [10].
Such misconduct undermines the integrity of the FL sys-
tem and compromises the collective interests of all par-
ticipants. Consequently, protecting intellectual property
(IP) [37] rights of FL-trained model and detecting copyright
infringement have become critical challenges in FL [25].

Protecting the IP of FL-trained models requires mecha-
nisms to verify rightful ownership if a model is unlawfully
distributed [25] (i.e., proving that the model originated from
the FL system). To address this, researchers have proposed
embedding watermarks into the global model to enable
ownership verification. Existing approaches primarily fall
into two categories: parameter-based [30] and backdoor-
based [1, 29] watermarking techniques. Parameter-based
methods embed signatures (e.g., bit strings) within the
model’s parameters as a secret key. During verification,
the verifier extracts this key and applies a cryptographic
function with the corresponding public key to validate the
model’s ownership. However, this process requires white-
box access to the model parameters, which is often imprac-
tical, particularly when the suspect model is only accessible
in a black-box setting (e.g., via an API). To overcome this
limitation, backdoor-based watermarking leverages back-
door injection techniques to ensure that the model learns
a specific trigger. A watermarked model outputs predefined
responses when presented with inputs containing the trig-
ger. Unlike parameter-based methods, this verification pro-
cess does not require access to the model parameters, mak-
ing backdoor-based watermarking a more practical solution.

Beyond ownership verification, the verifier also needs to
trace the source of model leakage, identifying which client
was responsible for the unauthorized distribution. Recent
studies have explored methods for ensuring the traceabil-
ity of watermarked models in FL [22, 25, 36, 38]. For in-
stance, FedTracker [25] embeds unique bit strings into each
client’s model and identifies the leaker by measuring bit
string similarities. However, this approach requires white-
box access to the suspect model, which limits its practi-
cality. Another approach, FedCRMW [22], introduces a

1

https://arxiv.org/abs/2505.13651v1


black-box watermarking mechanism that injects unique wa-
termarks into each model shared with the client by mixing
clients’ local datasets with multiple types of triggers. The
model leaker is then identified based on the models’ predic-
tions on these watermarked datasets. However, this method
modifies the local training protocol and requires access to
clients’ local data, making it vulnerable to tampering by
malicious clients. Moreover, such an approach contradicts
FL’s core principle of data privacy preservation. Despite
these advancements, the literature lacks a formal definition
and formulation of the problem of black-box watermarking
for model ownership verification and traceability in FL.

In this work, we first formalize the traceable black-box
watermarking injection problem in an FL system. Building
on this, we propose TraMark , which creates a personal-
ized, traceable watermarked model for each client, enabling
verification of model leakage in black-box settings. Specifi-
cally, to ensure traceability, the server partitions the model’s
parameter space into two regions: the main task region,
responsible for learning the primary FL task, and the wa-
termarking region, designated for embedding a watermark.
The server then generates personalized global models for
each client via masked aggregation. Each model is subse-
quently injected with a distinct watermark exclusively in the
watermarking region using a dedicated watermark dataset.
This process ensures that every client receives a person-
alized global model that integrates aggregated knowledge
from other clients while embedding a unique watermark for
model leakage verification. We summarize the contribution
of our paper as follows.
• To the best of our knowledge, this is the first work to

formally formulate the problem of traceable black-box
watermark injection in FL systems. Based on this, we
propose TraMark, a novel watermarking method that
seamlessly integrates into existing FL systems.

• TraMark is designed to inject unique watermarks into
models shared with clients while preventing watermark
collisions in FL, enabling the identification of model leak-
ers in black-box settings.

• We demonstrate the effectiveness of TraMark through
extensive experiments across various FL settings. Re-
sults show that TraMark ensures clients receive trace-
able global models while maintaining main task perfor-
mance, with only a slight average drop of 0.54%. Ad-
ditionally, we conduct a detailed hyperparameter analysis
of TraMark to evaluate the impact of each configuration
on both main task performance and leakage verification.

2. Background and System Settings
Federated Learning. A typical FL system consists of a
central server and a set of n local clients, which collabora-
tively train a shared model θ ∈ Rd. The FL problem is gen-
erally formulated as: minθ(1/n)

∑n
i=1 Fi(θ;Dl

i), where

Fi(·) represents the local learning objective of client i,
and Dl

i is its local dataset. For instance, for a classifi-
cation task, client i’s local objective can be expressed as:
Fi(θ;Dl

i) := E(z,y)∈Dl
i
L(θ; z, y), where L(·) is the loss

function, and (z, y) represents a datapoint sampled from Dl
i.

A classic method to solve the FL problem is Federated Av-
eraging (FedAvg) [18]. Specifically, in each training round
t, the server broadcasts the current global model θt to each
client i ∈ [n]. Upon receiving θt, client i performs τl it-
erations of local training on it using Dl

i, resulting in an up-
dated local model θt,τi . The client then computes and sends
the model update ∆t

i = θt,τi − θt back to the server. The
server aggregates these updates from all clients and refines
the global model as: θt+1 = θt + (1/n)

∑n
i=1 ∆

t
i. This

process repeats until the global model converges.
Attack Model. In this work, we consider a malicious

scenario where all clients in an FL system are potential
model leakers. Specifically, we assume malicious clients
follow a predefined local training protocol to complete the
FL task but may illegally distribute their local models for
personal profit. Importantly, they are unaware of the water-
marking process and do not collude with others.

Defense Model. We assume that the server acts as the
defender, responsible for injecting traceable watermarks to
the FL system. The server is considered always reliable and
equipped with sufficient computational resources. It is also
assumed to have full access to all local models but no access
to local data. Moreover, the server aims to keep the water-
mark injection process confidential from all local clients.
Additionally, the server also acts as the verifier: if a model
is deemed suspicious, it initiates a verification process to
determine whether the model originates from the FL sys-
tem and to identify the responsible model leaker.

3. Problem Formulation
Black-box Watermarking. A black-box watermark is a
practical watermarking solution that the verification pro-
cess that does not require access to model parameters, mak-
ing it more suitable for real-world deployment than white-
box watermarking. A common black-box watermarking ap-
proach leverages backdoor injection [1], where a watermark
dataset Dw (as defined in Definition 1) containing triggers
is used to train the model to produce a predefined output
when presented with the triggers.

Definition 1 (Watermark Dataset). A watermark dataset
Dw is a designated set of trigger-output pairs used to embed
a watermark into a model. Formally,

Dw = {(x, ϕ(x)) | x ∈ Xw},

where ϕ(x) is the unique predefined output distribution as-
signed to each trigger x in the trigger set Xw.
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With the watermark dataset, we define the black-box wa-
termark as follows.

Definition 2 (Black-box Watermark). A valid black-box
watermark δ is a carefully crafted perturbation learned
from the watermark dataset Dw. It is applied to a model
θ to obtain the watermarked model θ′ = θ + δ, which
produces outputs following the predefined distribution ϕ(x)
when evaluated on Dw. Formally, the model θ′ is consid-
ered watermarked with δ if:

y(θ′;x) ∼ ϕ(x), ∀(x, ϕ(x)) ∈ Dw,

where y(θ′;x) denotes the output probability distribution of
the watermarked model given trigger x.

If a black-box watermark is successfully embedded, one
can verify whether a suspicious model originates from
the system by testing its outputs on triggers from Dw.
For example, in classification tasks, verification is typ-
ically performed by evaluating the prediction accuracy
of the suspicious model θ′ on Dw. Specifically, if the
model’s prediction accuracy

∑
x∈Dw 1[argmaxy(θ′;x) =

argmaxϕ(x)]/|Dw| exceeds a predefined threshold ν, this
indicates that the suspicious model contains the watermark
δ, thereby verifying its ownership [14, 23, 25, 29].

Traceability. However, ownership verification alone is
insufficient for detecting model leaking of an FL system.
While ownership verification confirms whether a model
originates from the system, it does not identify which client
leaked it. The ability to pinpoint the source of leakage is
known as traceability. To achieve traceability, each water-
marked model should carry a distinct watermark, ensuring
that every client receives a unique identifier embedded in
their model. More formally, for any two watermarked mod-
els θ′i and θ′j , their outputs should be as different as possible
when evaluated on the same watermark dataset. If their out-
puts are too similar, a watermark collision (as defined in
Definition 3) occurs, which can compromise traceability.

Definition 3 (Watermark Collision). A watermark δi
learned from a watermark dataset Dw

i is said to collide with
another watermark δj learned from Dw

j if their correspond-
ing watermarked models, θ′i = θ + δi and θ′j = θ + δj ,
produce highly similar outputs on watermark dataset Dw

i

or Dw
j . Formally, a collision occurs if:

Ex

[
Div

(
y(θ′i;x),y(θ

′
j ;x)

)]
≤ σ,

for x ∈ Dw
i or x ∈ Dw

j , where Div(·) is a divergence mea-
surement function (e.g., KL divergence), and σ is a prede-
fined collision threshold.

Remark 1. Watermark collision poses a significant chal-
lenge in ensuring the traceability of watermarked models.
Since δi and δj are learned from Dw

i and Dw
j , respectively,

the distinctiveness of these watermark datasets plays a cru-
cial role in preventing collisions. Specifically, if Dw

i and
Dw

j are too similar, the resulting δi and δj will also be sim-
ilar, increasing the risk of collision. Therefore, it is essen-
tial to ensure an intrinsic difference between Dw

i and Dw
j .

We discuss strategies for constructing distinct watermark
datasets to mitigate collisions in Section 4.3.

With Definition 1–3, we formally define the traceability
of watermarked models as follows.

Definition 4 (Traceability of Watermarked Models). Given
n watermarked models {θ′1, θ′2, . . . , θ′n}, where each model
is derived as θ′i = θ + δi, with a successfully embedded
watermark δi, such that y(θ′i;x) ∼ ϕ(x), ∀(x, ϕ(x)) ∈
Dw

i . The traceability property ensures that different wa-
termarked models produce distinguishable outputs on their
respective watermark datasets. Formally, if for any water-
marked model θ′i, i ∈ [n], the following holds:

Ex∈Dw
i

[
Div

(
y(θ′i;x),y(θ

′
j ;x)

)]
> σ, ∀j ∈ [n], j ̸= i.

then the traceability of these models is ensured.

Intuitively, if each watermark in the system remains dis-
tinct and does not collide with any other watermark, then all
watermarked models in the system are considered traceable.

Problem Formulation. Now, we define the problem of
injecting traceable black-box watermarks in FL. Consider
an FL system with n clients collaboratively training a global
model θ under the coordination of the server. For watermark
injection, the server prepares n distinct watermark datasets
{Dw

i }ni=1 to be used to inject watermarks into the global
models for every client. The overall goal is to optimize both
the main task learning objective and the watermarking ob-
jective while ensuring that the watermarked models remain
traceable. This is formulated as follows:

min
θ,{δi}n

i=1

1

n

n∑
i=1

Fi(θ;Dl
i)︸ ︷︷ ︸

Main Task

+
1

n

n∑
i=1

Li(θ + δi;Dw
i )︸ ︷︷ ︸

Watermarking Task

,

s.t. Ex∈Dw
i
[Div(y(θ + δi;x),y(θ + δj ;x))] > σ,

∀i, j ∈ [n], i ̸= j.

(1)

Here, δi denotes the traceable black-box watermark for
the model θi shared with client i. The function Li(·)
represents the watermarking objective for δi, defined as:
Li(θ + δi;Dw

i ) := E(x,ϕ(x))∈Dw
i
L(θ + δi;x, ϕ(x)).

Remark 2. From Problem (1), we derive the following key
insights: 1) A straightforward solution for Problem (1) is
to offload each watermark dataset Dw

i to client i, allowing
clients to mix Dw

i with their main task dataset Dl
i during

local training to solve both objectives simultaneously, as
proposed in [10, 14, 22, 23, 32, 36]. However, this method
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is highly vulnerable to malicious clients who may simply
discard Dw

i , leading to the absence of watermarks in their
models. Furthermore, if malicious clients are aware of the
watermarking process, they could intentionally tamper with
it, undermining its effectiveness. To mitigate these risks, it
is preferable to decompose Problem (1), leaving the main
task to local clients while performing watermark injection
solely on the server. 2) A critical challenge in watermark in-
jection is the risk of watermark collisions due to model av-
eraging during aggregation. Specifically, even if the server
successfully injects distinct watermarks into the models be-
fore sending them to clients for local training, these water-
marks will be fused during model aggregation in the next
training round if parameters from all clients are simply av-
eraged, as in FedAvg. To address this issue, a specialized
mechanism is required to prevent watermark entanglement
during aggregation. 3) The constraint in Problem (1) sug-
gests that to avoid collisions, the server should maximize
∥δi − δj∥22. However, if δi and δj become too divergent,
this may impair the main task performance of the water-
marked models. Additionally, since the server lacks access
to clients’ local datasets, directly solving the watermarking
objective L(·) could also lead to significant degradation in
the performance of the main task. Thus, a specialized learn-
ing strategy is required to ensure that watermark injection
does not compromise the model’s main task performance.

4. Injecting Traceable Black-box Watermarks
Based on the insights in Remark 2, we propose a novel
method called TraMark detailed in Algorithm 1, which
can be easily integrated into existing FedAvg frameworks
to solve Problem (1). We give the complete process of Fe-
dAvg with TraMark in Algorithm 2 in Appendix Sec-
tion 8. Specifically, TraMark operates entirely on the
server side. Once the server receives local model updates
from the clients, it uses TraMark to aggregate these up-
dates and derive a personalized global model for each client.
For each global model, the watermark is injected by learn-
ing from a distinct watermark dataset. The server then sends
the watermarked global model back to each client for the
next round of training or deployment.

4.1. Constraining Watermarking Region
Existing watermarking approaches either retrain the global
model directly on the watermark dataset [25, 29] or re-
quire local clients to collaboratively inject watermarks [10,
14, 23]. However, these methods cause watermark-related
perturbations to spread across the entire parameter space,
leading to two key issues. First, the dispersed watermark
perturbations may significantly degrade the main task per-
formance. Second, even if each client’s model embeds a
unique watermark, model aggregation in the next round
fuses these watermarks, causing collisions that compromise

Algorithm 1: TraMark

Input : The global models {θi}ni=1, a set of model
updates {∆i}ni=1, watermark datasets {Dw

i }ni=1,
main task mask Mm, watermarking mask Mw,
watermarking learning rate ηw, and
watermarking iteration τw.

Output: A set of watermarked models {θ′i}ni=1.
// Watermark injection

1 for i ∈ [n] do
// Masked aggregation

2 θ̃i ←Mm⊙(1/n)
∑n

i=1(θi+∆i)+Mw⊙(θi+∆i)
// Watermarking

3 θ̃0i ← θ̃i
4 for s = 0 to τw − 1 do
5 gsi ← ∇θ̃si

L(θ̃si ;Dw
i )

6 θ̃s+1
i ← θ̃si − ηwg

s
i ⊙Mw

7 end
8 θ′i ← θ̃τwi
9 end

10 Return {θ′i}ni=1

traceability. To mitigate the impact on main task perfor-
mance and ensure traceability, TraMark restricts water-
marking to a small subset of the model’s parameter space.
Only this designated watermarking region carries the wa-
termark, and its parameters are excluded from model ag-
gregation, preserving distinct watermarks for each client in
the next training round. Specifically, in TraMark, given
a model θ ∈ Rd, the server partitions the whole parameter
space into watermarking region and main task region with
a partition ratio k ∈ [0, 1), resulting in two complementary
binary masks:
• The watermarking mask Mw ∈ {0, 1}d, where
[Mw]j = 1 means that the j-th parameter in θ is used
for watermarking task and sum(Mw) = k × d.

• The main task mask Mm ∈ {0, 1}d, where [Mm]k = 1
means that the k-th parameter in θ is used for main task
and sum(Mm) = (1− k)× d.

These two complementary masks ensure that all model pa-
rameters are fully partitioned into the watermarking and
main task regions (i.e., Mw +Mm = 1d). Moreover, once
determined, the masks remain unchanged throughout the
entire watermarking process. We discuss how to partition
the model in Section 4.4.

4.2. Masked Aggregation and Watermark Injection
Masked Aggregation. With the constrained watermarking
region, TraMark leverages a novel masked aggregation
method to avoid watermark collision. Specifically, instead
of applying a naive aggregation approach (e.g., FedAvg),
TraMark aggregates the parameters in the main task re-
gion only and prevents the watermarking region from pa-
rameter fusion. In detail, in each training round, given the
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model updates {∆i}ni=1, the server aggregates them to gen-
erate the personalized global model for each client individ-
ually via θ̃i = Mm ⊙ (1/n)

∑n
i=1(θi +∆i)+Mw ⊙ (θi +

∆i), ∀i ∈ [n] (line 2 in Algorithm 1). Here, the first term
Mm⊙ (1/n)

∑n
i=1(θi+∆i) averages the model updates in

the main task region, and the second term Mw ⊙ (θi +∆i)
preserves the update of client i in the watermarking re-
gion. In this case, the server generates a personalized global
model for each client, which always contains a distinct wa-
termark for the client while still benefiting from the aggre-
gated model updates for the main task.

Watermark Injection. For each personalized global
model θ̃i,∀i ∈ [n], its watermark is injected by training
θ̃i on the corresponding distinct watermark dataset Dw

i for
τw iterations. In this process, only the watermarking re-
gion is updated, ensuring that knowledge from the water-
mark dataset does not spread to the main task region (line 4–
line 7). Technically, in each step of local training, the mini-
batch gradient is multiplied by Mw (line 5–line 6), zeroing
out the gradients for the main task region to avoid the im-
pact of the watermark on the main task. After watermark
injection, the server obtains the watermarked global mod-
els, which will be sent to the clients to perform their main
tasks of the next training round or deployment (line 10).
Since the clients’ local training protocol for the main task
remains unchanged, model updates continue across the en-
tire parameter space. Notably, this case leads to a potential
risk: over time, the embedded watermarks may gradually
fade. To prevent watermark fading, TraMark can be ap-
plied at every training round to continuously enhance the
watermark, as advised by prior works [10, 23, 25, 29].

4.3. Distinct Watermark Dataset

As noted in Remark 1, ensuring sufficient differences be-
tween watermark datasets is crucial for learning distinct
watermarks and preventing collisions. To achieve this, in
TraMark , the server assigns each global model a unique
watermark dataset. Specifically, the watermark datasets de-
signed for different models should differ from each other
in both its triggers and its output distribution. Let Dw

i =
{(x, ϕi(x)) | x ∈ Xw

i } denote the watermark dataset
for personalized global model θ̃i, where Xw

i ∩ Xw
j = ∅

for any i ̸= j, ∀i, j ∈ [n]. Furthermore, each client
is assigned a unique output distribution ϕi(x), guarantee-
ing that ϕi(x) ̸= ϕj(x). For trigger selection, existing
methods have explored various approaches, including ran-
domly generated patterns [25, 29], adversarially perturbed
samples [10], and samples embedded with backdoor trig-
gers [14]. In our case, to ensure each client receives a maxi-
mally distinct trigger, we select out-of-distribution samples
absent from the main task dataset. This guarantees that the
learned watermark remains independent of the main task.
For example, in a classifier trained for traffic sign recog-

nition, per-label samples from the MNIST dataset serve
as effective triggers for different clients. Assigning a dis-
tinct watermark dataset to each personalized global model
ensures that a watermarked model responds only to trig-
gers from its own dataset, mapping them to the predefined
output. When exposed to triggers from other watermark
datasets, it produces random guesses, effectively minimiz-
ing the risk of collisions.

4.4. Selection of Watermarking Region
A key question that remains is: how should the server select
the watermarking region? A naive approach is to randomly
assign a small portion of parameters for watermark injec-
tion before training begins. However, this risks degrading
main task performance, as critical parameters for the main
task may be allocated to the watermarking region, lead-
ing to main task performance loss. Recall from Remark 2
that maximizing ∥δi − δj∥22 is crucial for avoiding colli-
sions. However, excessive divergence between δi and δj
may negatively impact main task performance. Given that
∥δi − δj∥22 = ∥Mm ⊙ (δi − δj)∥22 + ∥Mw ⊙ (δi − δj)∥22,
where Mm = 1d − Mw and the watermarking process is
confined to the watermarking region, the objective simpli-
fies to maximizing ∥Mw ⊙ (δi − δj)∥22. This ensures that
watermark injection and collision avoidance should not af-
fect parameters in the main task region. Consequently, if
Mm contains the most important parameters while Mw is
assigned to unimportant ones, the primary accuracy remains
largely unaffected. Typically, parameter importance is mea-
sured by magnitude (absolute value), with larger values in-
dicating greater importance [5, 24, 34, 35]. However, since
network parameters are randomly initialized at the start of
training, their importance is not yet established. As a result,
assigning parameters to regions too early may lead to sub-
optimal partitioning, potentially degrading main task per-
formance. To this end, TraMark introduces a warmup
training phase, where the global model undergoes standard
federated training (e.g., FedAvg) for α × T rounds before
watermarking. The warmup training ratio α ∈ [0, 1) de-
termines the fraction of total training rounds allocated to
this phase, ensuring the model is robust enough to the main
task before starting the watermark injection. Once warmup
training is complete, the server obtains the watermarking
region by selecting k × d least important parameters (i.e.,
those that have the smallest absolute values), and the re-
maining parameters are assigned to the main task region.

5. Experiments

5.1. Experimental Settings
General Settings. Following previous works [22, 23, 25,
39], we evaluate our methods on FMNIST [33], CIFAR-
10 [7], and CIFAR-100 [7], using a CNN, AlexNet [6],

5



and VGG-16 [26], respectively. In addition, we test
TraMark on large-scale Tiny-ImageNet using ViT [4].
For all datasets, we consider both independent and iden-
tically distributed (IID) data and non-IID data scenarios.
To simulate non-IID cases, we use the Dirichlet distribu-
tion [19] with a default degree γ = 0.5. Following previous
works [10, 22, 23, 36], we set up a cross-silo FL system
with 10 clients. We also test TraMark on large-scale FL
with client sampling in Appendix Section 12. Each client
performs local training with τl = 5 iterations and a learn-
ing rate of ηl = 0.01. The training rounds for FMNIST,
CIFAR-10, CIFAR-100, and Tiny-ImageNet datasets are
50, 100, 100, and 50. All experiments are repeated 3 times
with different seeds and we report the averaged results.

Baselines and TraMark Settings. In all experiments,
we use the MNIST [9] dataset as the source for watermark-
ing. Each global model is assigned a watermark dataset
containing samples from a distinct MNIST label, ensuring
both Xw

i ∩ Xw
j = ∅ and ϕi(x) ̸= ϕj(x) for any two clients

i and j. We present the results of TraMark using other
watermark datasets in Appendix Section 11. Each water-
mark dataset consists of 100 samples. The watermarking
learning rate is set to ηw = 1e−4, and the number of water-
marking iterations is τw = 5. The partition ratio k is set to
1%. The warmup training ratio α is set to 0.5. To ensure a
fair comparison, we evaluate TraMark against two server-
side watermarking approaches: WAFFLE [29], a black-box
watermarking method that does not ensure traceability of
watermarked models, and FedTracker [25], a white-box wa-
termarking method that ensures traceability.

Evaluation Metrics. We evaluate the performance of
each method using two key metrics: main task accuracy
(MA) and model leakage verification rate (VR). MA is mea-
sured using the main task test set. Since TraMark and
FedTracker introduce slight variations in each local model
due to watermark injection, we compute MA as the aver-
age accuracy across all local models, following [25]. VR
quantifies the proportion of watermarked models that are
successfully attributed to their respective owners. We eval-
uate each watermarked model on the full test set, compute
the per-label accuracy, and identify the label with the high-
est accuracy. If this highest-accuracy label matches the pre-
assigned label of the model’s owner, the model is consid-
ered successfully verified (more details are given in Ap-
pendix Section 9). For FedTracker, we follow its original
definition of VR, where traceability is determined based on
fingerprint similarity in a white-box setting.

5.2. Empirical Results

Verification Interval. We first demonstrate the verifier’s
confidence in identifying the leaker of suspect models em-
bedded with watermarks injected by TraMark. Specif-
ically, we calculate two key metrics: verification confi-
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Figure 1. Verification confidence and verification leakage across
training rounds on CIFAR-10 and CIFAR-100.

Table 1. Comprehensive comparison of MA and VR between
TraMark and its counterparts under both IID and non-IID set-
tings (highlighted with a gray background). MAs are shown in
percentages (%). If a method achieves a satisfactory VR (exceeds
95%), we denote it with “✓”; otherwise, we use “✗”.

Datasets
FedAvg WAFFLE FedTracker TraMark

MA VR MA VR MA VR MA VR

FM 92.60 - 92.21 ✗ 89.95 ✓ 91.20 ✓

FM 91.52 - 91.41 ✗ 67.50 ✓ 91.31 ✓

C-10 89.15 - 89.16 ✗ 87.56 ✗ 88.58 ✓

C-10 87.01 - 86.75 ✗ 83.42 ✗ 86.26 ✓

C-100 61.91 - 61.68 ✗ 61.05 ✓ 61.13 ✓

C-100 60.19 - 60.04 ✗ 60.12 ✓ 58.95 ✓

Tiny 21.05 - 21.24 ✗ 20.40 ✓ 20.91 ✓

Tiny 20.09 - 19.97 ✗ 20.00 ✓ 20.06 ✓

Average 65.44 - 65.31 ✗ 61.25 ✗ 64.90 ✓

dence—the test accuracy of a watermarked model on its
own watermarking dataset, and verification leakage—its av-
erage test accuracy on other clients’ watermarking datasets.
The difference between these two metrics termed the ver-
ification interval, reflects the verifier’s confidence. Fig-
ure 1 illustrates the averaged verification confidence and
leakage across training rounds on CIFAR-10 and CIFAR-
100 datasets. We observe that TraMark maintains a
consistently large verification interval throughout training.
Moreover, as training progresses, the interval widens due
to a steady increase in verification confidence, indicating
that watermark injection in TraMark continuously en-
hances watermark effectiveness despite potential perfor-
mance degradation from local training. Additionally, since
TraMark injects watermarks only within the designated
watermarking region and employs masked aggregation, the
watermarked model consistently performs poorly on other
clients’ watermarking datasets. These factors collectively
contribute to a clear verification interval, ensuring suc-
cessful model leakage verification. Further results on the
changes in the divergence of each watermarked model’s out-
put on its watermark dataset (the constraint in Problem (1))
are provided in Appendix Section 10.

Main Results. We report the MA and VR of each
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Figure 2. Averaged MA and VR results of TraMark under prun-
ing and fine-tuning attacks across four datasets.

method on FMNIST (FM), CIFAR-10 (C-10), CIFAR-100
(C-100), and Tiny-ImageNet (Tiny) under both IID and
non-IID settings in Table 1. Overall, TraMark effectively
injects traceable watermarks into personalized global mod-
els while preserving high model performance. It consis-
tently achieves a high VR across all datasets, maintaining an
average of 99.17%. In contrast, FedTracker fails to ensure
satisfactory traceability on CIFAR-10, resulting in an aver-
age VR of only 87.50%. This instability is due to the injec-
tion of key matrices into model parameters and the absence
of explicit mechanisms to prevent watermark collisions af-
ter aggregation. Regarding MA, TraMark exhibits strong
model performance, with only a 0.54% drop compared to
FedAvg. While WAFFLE achieves a slightly higher aver-
age MA (0.41% above TraMark), it does not guarantee
the traceability of watermarked models. FedTracker, on
the other hand, suffers a significant 4.19% decline in MA
due to the unconstrained watermarking region, which com-
promises model utility. In conclusion, TraMark success-
fully embeds traceable black-box watermarks while incur-
ring minimal performance loss, making it a robust and prac-
tical watermarking solution for FL.

Robustness to Attacks. We evaluate the robustness of
watermarked models trained by TraMark against pruning
and fine-tuning attacks. Specifically, malicious clients may
prune or fine-tune their local models to remove or reduce
the effectiveness of watermarks. For the pruning attack, we
test pruning ratios ranging from 30% to an extreme 99%.
For fine-tuning attacks, we assume that malicious clients
fine-tune their models for 30 epochs on their own datasets.
The averaged MA and VR results of TraMark across four
datasets are summarized in Figure 2. With moderate prun-
ing ratios (30% to 70%), MA remains largely unaffected,
while VR is also preserved. As the pruning ratio increases,
MA declines rapidly, accompanied by a decrease in VR.
These results demonstrate that the parameters in the water-
marking region are coupled with the main task parameters,
making simple magnitude-based pruning ineffective in re-
moving the watermarks. This coupling also contributes to
stable VR across various fine-tuning epochs during the fine-
tuning attack. Additionally, we evaluate TraMark against
the quantization attack and stronger adaptive attack, with
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Figure 3. Impact of warmup training ratio α on the MA and VR
of TraMark under IID and non-IID settings.

results provided in Appendix Section 13.
In the following, we study how each hyperparameter

functions of TraMark in detail.
Warmup Training Ratio α. TraMark leverages

warmup training to achieve better partitioning between the
main task region and the watermarking region. Figure 3
presents the averaged MA and VR of TraMark on four
datasets under both IID and non-IID settings with vary-
ing warmup training ratios α. Notably, TraMark con-
sistently achieves satisfactory VR with α ≤ 0.5. When
α = 0.7, TraMark fails to inject effective watermarks
into each personalized global model on time, leading to de-
graded VR. For both settings, a larger α generally results
in a higher MA. Specifically, under the non-IID setting,
TraMark with the default α = 0.5 achieves an average
MA of 64.15%, which is only 0.55% lower than FedAvg
but 4.65% higher than TraMark without warmup training.
These results highlight the importance of warmup training,
as it enables TraMark to accurately assign unimportant
parameters to the watermarking region, thereby minimizing
the negative impact of watermarking on main task perfor-
mance in watermarked models.

Partition Ratio k. The partition ratio k controls the size
of the watermarking region. Intuitively, a small k may hin-
der the watermark injection process as the watermarking re-
gion is unable to learn watermark-related information com-
pletely. We vary the partition ratio k from 0.1% to 5% to
examine its impact on the performance of TraMark. The
averaged MA and VR results across all datasets are shown
in the left sub-figure of Figure 4. As expected, a smaller k
leads to a significant drop in VR, while MA remains nearly
unchanged. For example, compared to TraMark with the
default setting (k = 1.0%), reducing k to 0.5% causes
VR to drop from 99.17% to 84.17%, whereas MA shows
only a slight increase from 65.66% to 65.70%. Moreover,
with an extreme value of k = 5.0%, MA only drops to
65.16%, resulting in a gap of less than 1%, while achiev-
ing full VR. Therefore, selecting an appropriate k requires
balancing MA and VR, with k = 1.0% serving as a prac-
tical choice that ensures both reliable watermark injection
and minimal performance degradation.

Size of Watermark Dataset. A larger watermark
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Figure 4. Impact of partition ratio k and watermark dataset size on
the performance of TraMark.

dataset may improve the effectiveness of the watermark in-
jection process by increasing the diversity and representa-
tiveness of watermark triggers, allowing the model to learn
a more robust mapping between the watermark trigger and
its intended response. To validate this, we vary the size of
the watermark dataset from 50 to 200 samples. The aver-
aged MA and VR results across all datasets are summarized
in the right sub-figure of Figure 4. Similar to the effect
of the partition ratio k, the size of the watermark dataset
significantly impacts the traceability of watermarked mod-
els, while having minimal effect on MA. Specifically, when
the watermark dataset contains only 50 triggers, TraMark
achieves a suboptimal VR of 54.17%, despite obtaining the
highest MA of 65.85%. However, with 100 or more sam-
ples, TraMark ensures successful watermark injection,
with only a limited MA drop (at most 0.34%), striking a
better balance between MA and VR. Therefore, choosing a
sufficiently large watermark dataset, such as 100 samples or
more, is essential to ensure the effectiveness of TraMark.

6. Related Work

Protecting the IP of FL models has been extensively studied
recently, with most existing approaches leveraging either
parameter-based [2, 3, 11, 13, 30, 36, 38, 39] or backdoor-
based watermarking [10, 14, 17, 22, 23, 25, 29, 32]. While
both approaches aim to verify model ownership, backdoor-
based methods are more practical as they do not require ac-
cess to model parameters. However, ensuring traceability,
i.e., identifying the specific source of a leaked model re-
mains an open challenge for backdoor-based watermarks.

Parameter-based Watermarking. Parameter-based
watermarking methods typically embed cryptographic in-
formation directly into the parameter space of the global
model. For example, Uchida et al. [30] proposed the first
watermarking method for DNNs by incorporating a regu-
larization loss term to embed a watermark into the model
weights. Similarly, FedIPR [10] embeds messages in the
Batch Normalization layers by assigning each client a ran-
dom secret matrix and a designated embedding location.
However, during verification, the verifier must access the
model parameters to extract the embedded information.

Consequently, these approaches assume that the verifier has
full access to the suspect model, which is often unrealistic
in real-world scenarios where leaked models may be only
partially accessible (e.g., via API queries) [8].

Backdoor-based Watermarking. Backdoor-based wa-
termarking has been explored as a more practical alterna-
tive, as it does not require direct access to the model’s inter-
nal parameters. These methods leverage backdoor injection
techniques to ensure that the model learns a specific trig-
ger. A watermarked model outputs predefined responses
when presented with inputs containing the trigger [1]. For
instance, WAFFLE [29] generates a global trigger dataset
and fine-tunes the global model on it in each training round,
thereby embedding the trigger into the model. Similarly,
Liu et al. [14] assume the presence of an honest client in
the system and injects a trigger set (constructed by sam-
pling Gaussian noise) through local training. While these
methods enable black-box verification, their watermarked
model lacks traceability. Moreover, some approaches rely
on client-side trigger injection, which poses a high risk of
exposure if a malicious client becomes aware of the process.

Traceability of Watermarked Models. To ensure the
traceability of watermarks, Yu et al. [38] propose replac-
ing the linear layer of a suspect model with a verification
encoder that produces distinct responses if the model orig-
inates from the FL system. FedTracker [25] extends WAF-
FLE by injecting a trigger into the global model while em-
bedding local fingerprints (key matrices and bit strings) for
individual clients. A recent work, RobWe [36], follows
a similar workflow to ours, splitting the network into two
parts: one for model utility and another for embedding wa-
termarks (key matrices). However, since watermark injec-
tion occurs on the client side, this approach is less practi-
cal. Another client-side method FedCRMW [22], proposes
a collaborative ownership verification method that indicates
the leaker by the consensus of results of multiple water-
mark datasets. However, the watermark dataset used by
FedCRMW is constructed based on the main task dataset,
which incurs data privacy risks.

7. Conclusion
We formalize the problem of injecting traceable black-box
watermarks in FL. We propose TraMark, which creates a
personalized, traceable watermarked model for each client.
TraMark first constructs a personalized global model
for each client via masked aggregation. Subsequently, the
watermarking process is exclusively performed in the wa-
termarking region of each model using a distinct watermark
dataset. The personalized watermarked models are then
sent back to each client for local training or deployment.
Extensive experiments demonstrate the effectiveness of
TraMark in various FL settings. Additionally, we con-
duct a comprehensive hyperparameter study of TraMark.
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Traceable Black-box Watermarks for Federated Learning

Supplementary Material

Algorithm 2: FedAvg with TraMark

Input : number of clients n, local learning rate ηl, local
iterations τl, warmup rounds t′, total training
rounds T , watermark dataset {Dw

i }ni=1, main
task region mask Mm, watermarking region
mask Mw, watermarking learning rate ηw,
watermarking iteration τw.

Output: {θTi }ni=1.
1 Initialization: Initialized model θ0 ∈ Rd

2 Function LocalTraining(θ):
3 for s = 0 to τl − 1 do
4 gsi ← ∇θL(θs;Dl

i)

5 θs+1
i ← θsi − ηlg

s
i

6 end
7 return θ

τl
i − θ

8 θ0i ← θ0, ∀i ∈ [n]
9 for t = 0 to T − 1 do

10 Broadcast θti to each client i
11 for each i ∈ [n] in parallel do
12 ∆t

i ← LocalTraining(θti)
13 end
14 if t < t′ − 1 then

// FedAvg (warmup training)
15 θt+1

i ← (1/n)
∑n

i=1(θ
t
i +∆t

i), ∀i ∈ [n]

16 else
// TraMark process

17 {θt+1
i }ni=1 ← TraMark
({θti ,∆t

i}ni=1, {Dw
i }ni=1,Mm,Mw, ηw, τw)

18 end
19 end
20 Return {θTi }ni=1

8. FedAvg with TraMark

The complete process of FedAvg with TraMark is given
in Algorithm 2. Specifically, during the warmup training
process, the server follows the FedAvg training paradigm.
Once warmup training is complete, the server transitions to
TraMark training, as outlined in Algorithm 1.

9. Model Leaker Verification
We present the algorithm for the verifier to verify a leaked
model, θ′, in Algorithm 3. Specifically, given a leaked
model θ′ associated with a pre-assigned label i, where client
i is the suspected leaker, the verifier evaluates θ′ on the full
test set and computes the per-label accuracy (line 1 in Algo-
rithm 3). The verifier then selects the label with the highest
accuracy. If this label matches the assigned label i (line 2),
the verification is considered successful (line 3); otherwise,
it is considered a failure (line 5). Since our attack model as-
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Figure 5. The averaged KL divergence and VR over training
rounds on CIFAR-10 and CIFAR-100 datasets.

Algorithm 3: Model Leaker Verification
Input : A potentially leaked model θ′ suspected to

belong to client i, where i is the assigned label;
watermarking test set Dw

test.
Output: Verification result.

1 acc← calculate per-label accuracy(θ′,Dw
test)

2 if i = argmaxj acc[j] then
3 return Verification successful
4 else
5 return Verification failed
6 end

sumes any local client could be a potential leaker, we apply
the verification process to each watermarked model. VR is
then defined as the percentage of watermarked models suc-
cessfully verified.

10. Output Divergence

We provide empirical evidence demonstrating how
TraMark effectively prevents watermark collisions.
Recall that in Problem (1), the constraint is designed to
maximize the divergence between the outputs of different
models when given the same inputs, thereby mitigating
the risk of watermark collisions. To illustrate this, we
compute the KL divergence between each watermarked
model and all other watermarked models on the respective
watermark test set. We plot the average KL divergence and
VR for CIFAR-10 and CIFAR-100 datasets in Figure 5.
The results clearly show a consistent increase in KL di-
vergence as training progresses. This trend arises because,
as the watermarking injection process continues, each
watermarked model refines its unique watermark patterns,
making it more distinguishable from others. Consequently,
the VR also increases, further confirming the effectiveness
of TraMark in preventing watermark collisions.
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11. Other Sources of Watermark Dataset

Table 2. Generalization of TraMark across different watermark-
ing datasets. MAs are shown in percentages (%). If a method
achieves a full VR, we denote it with “✓”; otherwise, we use “✗”.

Watermark
Dataset

CIFAR-10 CIFAR-100 Tiny-ImageNet

MA VR MA VR MA VR

MNIST 88.58 ✓ 61.13 ✓ 20.91 ✓
SVHN 88.52≥0.05 ✓ 60.92≥0.05 ✓ 20.22≥0.05 ✓

WafflePattern 88.84≥0.05 ✓ 61.31≥0.05 ✓ 20.91≥0.05 ✓

We also use the SVHN [20] dataset and WafflePat-
tern [29] as sources for watermark datasets. Notably, Waf-
flePattern consists of images containing only noise with
specific patterns. Since SVHN and WafflePattern contain
colorful images while FMNIST is grayscale, we conduct ex-
periments on CIFAR-10, CIFAR-100, and Tiny-ImageNet.
The MA and VR results are summarized in Table 2. We
observe that TraMark achieves highly similar results re-
gardless of the watermark dataset used. Furthermore, we
perform a T-test on each dataset to compare the results of
TraMark using SVHN or WafflePattern against MNIST.
The obtained p-values across all main task datasets ex-
ceed the commonly used significance threshold of 0.05,
indicating that the differences are not statistically signifi-
cant. These results demonstrate the generalization ability of
TraMark in selecting different watermarking datasets.

12. Large-scale FL with Client Sampling

Table 3. Performance of TraMark under different client sam-
pling settings in large-scale FL. MAs and VRs are shown in per-
centages (%).

Method
Tiny-ImageNet Tiny-ImageNet (CS)

MA VR MA VR

TraMark 17.32 100 17.07 100

Here, we evaluate the effectiveness of TraMark in a
large-scale FL setting with 50 local clients. We primarily
consider two scenarios: FL without client sampling and FL
with client sampling (CS). In the client sampling scenario,
the server randomly selects 20% of the clients in each train-
ing round to perform local training. For TraMark, we
enforce the injection of watermarks for all clients in each
round, regardless of whether they are sampled or not. We
use WafflePattern as the source for the watermark dataset,
as it allows for generating an arbitrary number of dis-
tinct classes. Our experiments are conducted on the Tiny-
ImageNet dataset, and the results are summarized in Ta-
ble 3. The results show that TraMark consistently ensures
a complete VR in both scenarios. This demonstrates the

strong generalization ability of TraMark across different
client settings.

13. Quantization Attack and Adaptive Attack

Table 4. Impact of model quantization on MA and VR, compar-
ing FP16 and INT8 against the FP32 baseline. MAs and VRs are
shown in percentages (%).

Dataset
FP32 (Baseline) FP16 INT8

MA VR MA VR MA VR

FMNIST 91.20 96.67 91.94 96.67 91.92 96.67
CIFAR-10 88.58 100.00 88.35 100.00 88.35 100.00

CIFAR-100 61.13 100.00 60.99 96.67 60.99 96.67
Tiny-ImageNet 20.91 100.00 20.20 100.00 20.19 100.00

Average 67.46 99.17 65.37 98.34 65.36 98.34

Quantization Attack. We assume that malicious clients
may quantize their local models to impact the effectiveness
of watermarks. Following [25], we conduct experiments on
watermarked models trained by TraMark that are quan-
tized to FP16 and INT8. The MA and VR results are sum-
marized in Table 4. Compared to the FP32 baseline, quan-
tizing the model to FP16 and INT8 leads to a 2.09% and
2.10% drop in MA, respectively, and a 0.83% drop in VR.
The negligible decrease in VR demonstrates the robustness
of the watermarks injected by TraMark against quantiza-
tion attacks.

Table 5. Performance of TraMark under RNP. MAs and VRs
are shown in percentages (%).

Method
FMNIST CIFAR-10 CIFAR-100

MA VR MA VR MA VR

TraMark 91.20 96.67 88.58 100.00 61.13 100.00
RNP 73.46 70.00 85.08 90.00 60.57 100.00

Adaptive Attack. We consider a more challenging sce-
nario where malicious clients are aware that the received
global model has been embedded with a black-box water-
mark. As a result, they attempt to remove the watermark
using a backdoor removal method. We adopt Reconstruc-
tive Neuron Pruning (RNP) [12], a state-of-the-art backdoor
removal technique, for this purpose. Since RNP requires a
Batch normalization layer while ViT employs Layer nor-
malization, we conduct experiments on FMNIST, CIFAR-
10, and CIFAR-100. The MA and VR results of RNP on
the watermarked models are summarized in Table 5. We
observe that RNP has limited effectiveness on the FMNIST
and CIFAR-10 datasets, where the VR decreases from 90%
and 100% to 70% and 90%, respectively. However, in these
cases, the MA also drops significantly. For CIFAR-100,
RNP has no impact on the VR but still leads to a degra-
dation in MA. These results highlight the robustness of the
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watermarks embedded in each global model, demonstrating
the strong effectiveness of TraMark.

14. Discussions and Future Directions
Malicious Client Collusion. In our work, we adopt the
benchmark FL paradigm, FedAvg, where each local client
receives an identical model. However, since TraMark in-
jects watermarks within the designated watermarking re-
gion, malicious clients may collude to identify its loca-
tion by comparing their identical main task parameters.
This limitation can be solved by leveraging personalized
FL [27, 28, 31], where the server assigns unique model
weights to each client, ensuring distinct watermarked mod-
els and enhancing security.

Computational Overhead. Recall that in our defense
model, we assume the server has sufficient computational
resources to perform the watermarking process. However,
in practical scenarios, computational resources may be lim-
ited. Since TraMark applies watermarking in every train-
ing round, this could introduce a non-negligible computa-
tional overhead, which increases linearly with the number
of participating local clients. Nevertheless, in this work,
we focus on cross-silo FL settings, such as collaborations
among several hospitals or institutions, where the number
of clients is relatively small. In such cases, the server
is more likely to have sufficient computational resources,
making the additional overhead manageable. Addressing
the broader challenge of reducing TraMark’s computa-
tional cost in cross-device FL systems remains an open
problem for future work.

Theoretical Analysis. Although TraMark demon-
strates strong empirical performance, there remains a gap
in providing a theoretical guarantee for ensuring the trace-
ability of watermarked models. We leave this theoretical
analysis as future work.
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