
ar
X

iv
:2

50
5.

13
47

5v
1

 [
cs

.L
O

]
 9

 M
ay

 2
02

5

Causality for Cyber-Physical Systems

Hugo Araujo hugo.araujo@kcl.ac.uk
Hana Chockler hana.chockler@kcl.ac.uk
Mohammad Reza Mousavi mohammad.mousavi@kcl.ac.uk
King’s College London

Gustavo Carvalho ghpc@cin.ufpe.br

Augusto Sampaio acas@cin.ufpe.br

Universidade Federal de Pernambuco

Abstract

We present a formal theory for analysing causality in cyber-physical systems. To this
end, we extend the theory of actual causality by Halpern and Pearl to cope with the contin-
uous nature of cyber-physical systems. Based on our theory, we develop an analysis tech-
nique that is used to uncover the causes for examples of failures resulting from verification,
which are represented as continuous trajectories. We develop a search-based technique to
efficiently produce such causes and provide an implementation for such a technique. More-
over, we apply our solution to case studies (a suspension system and a connected platoon)
and benchmark systems to evaluate its effectiveness; in the experiment, we show that we
were able to detect causes for inserted faults.

1. Introduction

Cyber-physical systems (CPSs) are systems that integrate computation with physical pro-
cesses, in contexts where communication networks and human interaction may be present.
Embedded computers and networked embedded components in CPSs monitor and control
the physical processes, usually with feedback loops where physical processes affect computa-
tions and vice versa [46]. In CPSs, components often operate in both spatial and temporal
dimensions, where there is an intense link between physical and computational elements.

The importance of reliability in safety-critical CPSs warrants further research into their
verification. Particularly, there is a need to devise verification techniques based on mathe-
matical relations, e.g., notions of conformance [59], that decide whether the system behaves
as expected. Conformance notions are employed by conformance testing processes to eval-
uate whether a system behaves as required by its specification. Conformance testing and
falsification approaches [63, 3, 64, 65, 59, 7, 24, 68, 50] have the benefit of offering mathe-
matical assurances about the correctness of the system.

Although they are undoubtedly useful, verification techniques can be of limited use,
particularly in the context of complex systems, without a systematic way to trace the
failures back to their original causes. Testing a system without a method for locating the
source of the discovered faults can lead to an incredible amount of resources spent on manual
system inspections.

In this context, causal analysis is an essential ingredient of such rigorous verification
techniques, providing effective means to isolate and eventually remove the faults causing
hazards and failures observed in the verification process. There have been many attempts to

1

https://arxiv.org/abs/2505.13475v1

define and analyse causality. In a philosophical context, causality is defined the relationship
between events where the the cause contributes to the realisation of a different event (the
effect), where the cause is (partially) responsible for the effect, which is (partially) dependent
on its cause [66]. In a more practical context, Halpern and Pearl have made use of structural
equation models to provide a mathematical definition of actual causality [39, 40]. Chockler
builds upon this work by integrating the notion of actual cause into a rigorous verification
process [22].

However, most definitions of actual causality only cater for discrete systems and do
not cover the complexity of dynamic physical phenomena. Due to the continuous and
quantitative nature of the physical parts of CPSs, the notion of causality is bound to have
a quantitative nature and accommodate physical dynamics.

1.1 Problem definition and contributions

Our research goal is to propose a formal theory and a practical analysis technique for
checking causality that can cope with the complexity of CPSs. The main contributions of
this work are the following:

• We extend the theory of actual causality [39] to cope with CPSs. The new theory
takes time and continuous dynamics into consideration.

• We develop a process for checking causality and mechanise the associated algorithms
in MATLAB and integrate them with our tool, HyConf [8], for conformance testing
of CPSs.

• We propose and discuss practical applications of causality in the verification of CPSs.

• We apply the developed algorithms and tools to a range of case studies and evaluate
the effectiveness of our strategy.

Applying a systematic and formal methodology to determine the cause of a failure in
a CPS requires structured notions of faults and causes using mathematical notations. We
work in a mathematical framework where faults are represented using first-order formulae,
in which atomic predicates are expressed over signal values (akin to safety subset of Signal
Temporal Logic [48]). Causes are expressed using intervals of trajectories, which we call
trajectory slices, of the system variables leading to the falsification of such properties.

Causes are determined using a causal model, which is a representation of the system
dynamics using structural equations. In this model, we separate variables into endogenous
and exogenous sets; the former represents the set of variables that are chosen to undergo
the causal analysis and can be seen as potential causes. The latter are variables that affect
the system but are not seen as potential causes. In a practical setting, having too many
endogenous variables greatly increases the costs of the causal analysis in CPSs. Hence, the
choice of endogenous and exogenous variables is left to the user and has an impact on the
variables that can appear in the cause and the efficiency of the causal analysis.

Furthermore, for a notion of causality for CPSs, one needs to take time into consider-
ation. For instance, faults may have been caused by trajectory slices occurring at specific
time intervals. That is, if these trajectory slices had occurred in different intervals, the fault

2

may not have happened. Thus, one cannot ignore the history of the system execution. This
way, we aim to identify not only to which components the fault should be attributed, but
also provide the intervals of time when the causal behaviour has occurred in the respective
components.

Finally, one must consider the continuous and infinite nature of physical phenomena.
The way system variables affect each other can determine whether a cause comprises one or
multiple interacting variables. It is possible that multiple alternative causes can be found
for a single failure.

We mechanised our causal analysis using the Matlab/Simulink framework, which is a
commonly used environment for modelling and analysis of control systems, thus increasing
the accessibility of our strategy to the CPSs community. We developed a search-based algo-
rithm to find the causes and integrated the mechanisation of our theory of actual causality
into our pre-existing tool for testing cyber-physical systems [8]. We applied the developed
algorithms and tools to a range of case studies to demonstrate the effectiveness of our strat-
egy, where we pinpoint causes and present explanations for failures that have been detected
in the verification process.

1.2 Structure of the paper

This paper is organised as follows. In Section 2, we present the related work. In Section 3,
we discuss the preliminaries used to develop our framework. In Section 4, we present our
extension to the theory of causality that considers time and continuous dynamics and, in
Section 5, we develop the mechanisation of this extended theory. In Section 6, we design
and conduct experiments to show how our strategy can be applied to complex systems.
Finally, in Section 7, we draw some conclusions and point out the directions of our future
research.

2. Related work

Our context is the theory of actual causality [38] where, in a given scenario leading to an
outcome, the events are analysed in order to find causes. This is also called token-level
causality, which concerns causal relations regarding particular events and settings. It is in
contrast with type-level causality [41] where general causal rules governing a system are
sought.

There are a few variations of the definition of actual causality. The original one is by
Halpern and Pearl [38], which is followed by two variants (updated and modified) by Halpern
and Pearl, and Halpern alone, respectively [39, 36]; our study is based on the definition by
Halpern and Pearl in 2015 [36], which is called the modified definition. In the most recent
version of the theory [36], Halpern simplifies the impact of contingencies, which can be seen
as pre-conditions for a cause but not part of the cause itself. More specifically, the key
difference between the modified definition and the other definitions is the requirement that
the contingencies in the modified version should be set to their initial values, whereas in
the updated definition, contingencies can be set to different values.

Halpern and Pearl also introduced the notion of time-indexed endogenous variables [39];
this treatment of time in the original theory of Halpern is discrete in nature and does
not cater for continuous time and dynamics that are necessary to model cyber-physical

3

systems. In order to use this definition of Halpern and Pearl, one needs to define a fixed
discretisation of continuous variables and come up with a causal model explaining their
relationships. Our theory, however, provides an abstraction layer that works directly with
the continuous specification of the dynamics and builds the necessary sampling as a part of
the analysis. In a recent extension of their work, Peters and Halpern propose the generalised
structural equations models (GSEM) [58] where a signature comprises a set of interventions
and the equations map an intervention to a set of outcomes (e.g., when variable X is set to
x, then variable Y is equal to y and variable Z is equal to z). It brings about the possibility
of having an infinite set of valuations for variables. Furthermore, Halpern shows that this
can be adapted to ordinary differential equations; in his treatment, instead of having a set of
endogenous variables, the signature comprises the value of a variable at any moment in time,
as defined by differential equations. This recent extension may be a theoretical alternative
to our proposed framework; however, to apply any practical causal analysis on this infinite
set of variables, further abstractions and algorithmic procedures need to be developed. In
principle, our work can be adapted to deal with the many variants of Halpern and Pearl’s
theory of actual causality.

Apart from the variants developed by Halpern and Pearl, there are many other defini-
tions of actual causality by others. In the remainder of this section, we review some of the
most relevant variants or applications of actual causality developed by other researchers.
Subsequently, we also mention some alternative theories, to actual causality, that can be
used and extended for finding root causes in CPSs.

Several works employ the definitions of causality by Halpern and Pearl to formal ver-
ification; often as a reasoning tool for explaining counterexamples in the discrete domain.
The most relevant to our work are discussed below.

Baier et al. [10] have conducted a survey on published approaches that utilise Halpern-
Pearls’s notion of causality. More precisely, they look into formal approaches to probabilistic
causation that can explain observable behaviour in reactive systems.

Within the context of cyber-physical systems, Deng et al. [23] have proposed a temporal
logic for analysing causality called causal temporal logic. Once the prospective causes and
effects are expressed in this temporal logic, they assess causality by generating traces that
can satisfy/violate the causal formula and, thus, calculating the degree of sufficiency and
necessity. There are key differences between our work and theirs. Firstly, we propose a
conservative extension of Halpern-Pearls theory, in which we aim to keep the nuances of
their theory (such as the notions of contingency and causal path, which are key factors
to consider when determining actual causality) and not just the notions of sufficiency and
necessity. Furthermore, their work assumes access to the correct behaviour and prospective
causes. In our work, we do not need access to the correct behaviour; we search for causes
by making use of meta-heuristics and looking for behaviours that can violate/satisfy the
effect (formula).

Leitner-Fischer and Leue [47] define a theory of causality that considers the temporal
order as well as the non-occurrence of events. They also provide a search-based on-the-fly
causality assessment that does not require the counterexamples to be generated in advance.
There, even though the order of events is important, no concrete notion of time is introduced.
In our work, however, real time plays an important role and trajectories are represented in
the continuous time domain.

4

Caltais, Mousavi, and Singh [18] define a theory of actual causality for labelled transi-
tion systems. Their formalisation is inspired by the definition of Halpern and Pearl. Their
main result is a theory to explain counterexamples in model checking with respect to prop-
erties in Hennesy-Milner Logic [42]. They mechanise their theory in a prototype tool, which
interacts with the mCRL2 model-checker [34] in order to check the various conditions in
their definition of actual causality. Our work shares a similar nature of employing causality
to interpret traces leading to failures. However, we employ models and logic that con-
sider quantitative aspects, such as trajectories that are solutions to systems of differential
equations.

Ibrahim et al. [43] provide a process to convert attack trees, fault trees, and timed
failure propagation graphs for CPSs into Halpern-Pearl causal models. They illustrate
their approach using an Unmanned Aerial Vehicle case study. Even though their work, like
ours, focuses on CPS-related aspects, it does not handle continuous aspects of such systems.

In the context of hardware verification, Chockler, Grumberg, and Yadgar [21] employ
a notion of responsibility (degree of causality) [22] to improve the quality of abstraction
refinement by producing mode efficient counterexamples. Besides the continuous aspects,
our approach incorporates the modelling of platform (hardware), controllers (software) and
environment into a single model that considers a high-level abstraction of the system. We
do not consider such a notion of responsibility, however; this is one of the directions for our
future work.

There are quantitative extensions of the theory of actual causality. Pearl studies the ef-
fect of causality in probabilistic systems [54, 55], providing the underlying theory for causal
inference [61, 57], which provides the mathematical tools and the language for articulating
probabilities of causation. His work employs structural equations to cope with counterfac-
tuals and randomisation and has applications in AI [56]. Baier et al. [12, 10] introduce and
formalise cause-effect relation in Markov decision processes using the probability-raising
principle. They provide algorithms for checking cause-effect relationships and the existence
of probability-raising causes for given effect scenarios. To our knowledge their work does
not use counter-factual reasoning and is not formally related to our formal theory of actual
causality. With respect to the use of causal analysis in the formal verification process itself
(and not just as a way to explain the results), Baier et al. [11] have presented a temporal
logic characterisation for the notions of sufficiency and necessity, which are based on the
concepts found in causal reasoning. They propose an optimisation algorithm for the com-
putation of causes based on these degrees of necessity and sufficiency. Unlike our work,
however, they do not cater for the continuous properties of physical systems but they do
however consider stochastic aspects. We consider extending our results to quantitative and
probabilistic notions as a worthwhile future direction.

Zhang et al. [67] propose a method for the online monitoring of Signal Temporal Logic
(STL). Instead of computing the distance of the system’s output against the specification
(called robustness value [29], also in our approach), they compute whether an ”instant”
is relevant to a violation and how far the instant is from a violation. This bears some
resemblence to our notion of actual cause. However, their work, unlike ours, does not
formally relate to a theory of actual causality and does not pinpoint a cause by tying
specific variables to specific time intervals.

5

Beer et al. [14] use actual causality to explain counterexamples in hardware verification
for Linear Temporal Logic properties. The proposed algorithm is implemented in the IBM
RyleBase PE tool, where causality is applied to traces but ignores the system model from
which the traces originated. Our assessment of causality considers both the setting and
the model, which in our case also encompasses continuous and discrete aspects. This richer
setting leads to a more computationally-intensive analysis but allows us to find causes in
more complex systems and with more precision (steered by the model).

Dubslaff et al. [25] use counterfactual reasoning to identify causes in configurable sys-
tems. This is done by identifying the features and interactions that are the reason for
emerging functional and non-functional properties. They call this concept feature causality.
These notions are in clear contrast with the notion employed in our work where we start
with a concrete scenario leading to the effect. Our choice is justified by our context, where
we employ causal analysis as a step in the testing and verification process, where finding
an error-trace or counterexample initiates the causal analysis process.

There are other theories of causality that are not concerned with a particular scenario.
For example, Granger’s causality [33] is a statistical concept that checks the possibility of a
time series predicting another. It employs notions of trends, seasonal patterns and noise in
time series forecasting and can be applied to machine learning, finance and weather forecast
[60].

Table 1 summarises the key difference between the above-surveyed techniques and our
proposed framework by showing the supported features for each technique.

Table 1: A comparison between different methods for causal analysis.

Formal Models Counterexamples Hybrid Systems Mechanisation Search-based Stochastic

Ours ✓ ✓ ✓ ✓ ✓
Leitner-Fischer [47] ✓ ✓
Caltais [18] ✓ ✓ ✓
Chockler [21] ✓ ✓
Beer [14] ✓ ✓ ✓
Pearl [56] ✓ ✓ ✓
Granger [33] ✓ ✓
Deng [23] ✓ ✓ ✓ ✓
Zhang[67] ✓ ✓ ✓
Peters [58] ✓ ✓ ✓
Baier [12, 10] ✓ ✓ ✓ ✓

There are fault localisation techniques that are not causality-based. For instance, fault-
tree analysis [27] is an established method to investigate faults in safety critical systems. In
fault trees, a graphical representation captures the logical connections between faults and
their origins. Similar to our causal analysis, fault tree analysis starts from a failure event,
which is represented at the top of the tree and then it is worked backwards to determine
the root causes. In order to cope with dynamic systems, fault trees have been extended
to include quantitative dependability analysis. Several approaches have been proposed and
used such as dynamic fault trees [26], state-event fault trees [45], spectrum-based fault
localisation [4], and Stochastic Hybrid Fault Tree Automaton [20]. Temporal Fault Trees
[53] are one such extension, which, to our knowledge, can only handle discrete time. There
are other approaches that define continuous semantics for Dynamic Fault Trees in terms of
Timed Markov Chains [17, 44]. Our approach has a number of general advantages over these

6

approaches: (i) we provide a rigorous definition of causality and base our fault localisation
on this definition, (ii) we directly employ data (in the form of trajectories) from the actual
systems instead of building an intermediate representation, which, unless proven, may not
be consistent with the actual system, (iii) our work is based on a generic semantic framework
and can be instantiated for many different semantics for faults and conformance. We expect
that the ideas developed in this paper can be applied to those non-causal theories of fault
localisation; however, this may require a reformulation of the basic concepts.

3. Preliminaries

In this section, we first present the theory of actual causality in the context of discrete
systems, originally proposed by Halpern and Pearl [39]. Then, we provide a brief overview
of cyber-physical systems and their models, present our running example and the motivation
behind this work.

3.1 Causal theory for discrete systems

Consider the following discrete example (based on the classical Billy and Suzy example [37]):
suppose that two autonomous vehicles A and B are driving on a straight road, one behind
the other, in an extremely foggy weather condition. At the end of the road, a pedestrian
is situated; the heavy fog prevents the vehicles’ cameras from detecting the pedestrian.
Furthermore, a junction on the road is situated before the pedestrian, which allows the
vehicles to turn right. Here, we assume that the pedestrian cannot escape the imminent
collision: if one of the vehicles does not turn right at the junction, then the pedestrian will
be hit. In the case that neither vehicle turns right, vehicle A will hit the pedestrian but
vehicle B will not. If vehicle A turns right, and vehicle B does not, then vehicle B will hit
the pedestrian. If both vehicles turn right, the collision is avoided altogether. This scenario
is depicted in Figure 1.

Figure 1: Illustration of the running example.

In this example, one can see that if neither of the two vehicles turn right, then only
vehicle A can be the cause of the collision. Similarly, if vehicle A turns right, and B does
not, then only vehicle B can be the cause.

7

Mathematical assessments of causality require formal modelling. As a precondition to
a model, the signature provides the set of variables and their admissible valuations. Most
of the formal definitions in this section are taken from those by Halpern and Pearl [38].

Definition 1 (Signature). A signature is a tuple

S = (U ,V,R),

where U is a finite set of exogenous variables, V is a finite set of endogenous variables, and
R associates with every variable Y ∈ U ∪ V a finite and non-empty set R(Y) of possible
values for Y .

Exogenous variables are determined by factors outside of the model while endogenous
variables are affected by exogenous ones and also by other endogenous variables. For in-
stance, going back to the autonomous vehicle example, vehicle A and B turns can be seen as
endogenous variables, but the gravity and road friction that allow for the vehicles to steer
can be seen as exogenous variables.

Definition 2 (Causal Model). A causal model over a signature S is a tuple

M = (S,F),

where F associates with each variable X ∈ V a function denoted by FX , such that:

FX : (×U∈UR(U))× (×Y ∈V\{X}R(Y))→ R(X)

FX describes how the value of the endogenous variable X is determined by the values of
all other variables in U∪V. The indexed cartesian products ×U∈UR(U) and ×Y ∈V\{X}R(Y)
consider each possible values of the variables in U and V\{X}, respectively. Considering
our discrete example, the causal model would have the following endogenous variables:

• AT for (vehicle) A Turns: 1 if it turns right, and 0 if it does not.

• BT for (vehicle) B Turns: 1 if it turns right, and 0 if it does not.

• AH for A Hits: 1 if it hits the pedestrian, and 0 if it does not.

• BH for B Hits: 1 if it hits the pedestrian, and 0 if it does not.

• PH for Pedestrian Hit: 1 if the pedestrian is hit, and 0 if it is not.

The set U of exogenous variables comprises all information we need to assume so as to
render all relationships deterministic (such as the presence of oxygen, gravity and the route
the vehicles follow). We denote by u⃗ (i.e., a set of valuations in R(U)) as the context of a
cause. That is, the context is a mapping of exogenous variables to their values, which are
used to induce the value of the endogenous variables. In our example, u⃗ can be seen as the
context that makes the vehicle moving possible.

Furthermore, the types of causal models to which Halpern and Pearl restrict their defi-
nitions are called strongly recursive. In essence, a causal model is strongly recursive, which
for each endogenous variable, a context u⃗ ∈ R(U) plays a role in defining its value. More

8

specifically, the context helps defining the value of a subset of the endogenous variables,
which, in turn, will be used in conjunction with the functions in F to determine the value
of the remaining endogenous variables.

In our discrete example, the context (which encompasses the route that each vehicle
is following) comprises the variables uA ∈ U and uB ∈ U . They represent the routes that
vehicle A and B are following, respectively. They assume the value 1 if the respective vehicle
is following a route that takes a right turn at the junction and 0 otherwise. In such a case,
we can define the functions in F as follows.

• FAT (u⃗, BT,AH,BH,PH) = uA

• FBT (u⃗, AT,AH,BH,PH) = uB

• FAH(u⃗, AT,BT,BH,PH) =

{
0, AT = 1

1, AT = 0

• FBH(u⃗, AT,BT,AH,PH) =

{
0, AT = 0

1, AT = 1 ∧BT = 0

• FPH(u⃗, AT,BT,AH,BH) =

{
0, AH = 0 ∧BH = 0

1, AH = 1 ∨BH = 1

In summary, the context considers the particular route that the cars are following, which
dictates whether they will turn right or not (i.e., AT and BT). Then, these variables affect
AH and BH, and those, in turn, affect PH, as defined in the functions (F) above.

In Figure 2, we display the causal graph of this example, in which the nodes (representing
variables) that have a direct impact on each other are connected by an edge.

Figure 2: Causal graph of the AT/BT example.

The graphical representation of causal networks such as these are not used in the un-
derlying theory nor in the implementation (see Section 5); however, they provide a visual
aid to understand the examples.

Finally, to make the definition of cause precise, we first need a syntax for causal events.
Given a signature S = (U ,V,R), a formula of the form X = x, for X ∈ V and x ∈ R(X),
is called a primitive event.

9

Definition 3 (Causal Formula). A causal formula is of the form

[X1 ← x1, ..., Xk ← xk]Φ, where

• X1, ..., Xk are distinct variables in V.

• xi ∈ R(Xi). And,

• Φ is a Boolean combination of primitive events.

The formula [X1 ← x1, ..., Xk ← xk]Φ states that Φ holds in a system where Xi is set
to xi for i = 1, ..., k. Such a formula can be abbreviated as [X⃗ ← x⃗]Φ.

Definition 4 (Intervention). Given a causal model M = (S,F = {FX1 ,FX2 ...,FXk
}), and

a set of assignments [X1 ← x1, ..., Xk ← xk], an intervention on the causal model M ,
denoted by MX⃗←x⃗ = (S,FX⃗←x⃗), is a modification to the structural equations in the causal
model M such that ∀i ∈ {1, ..., k},FXi = xi.

An intervention of the type X ← x can be interpreted as an update in F where the
function for X is set just to x. We define a satisfaction relation between causal model and
causal formulae next.

Definition 5 (Satisfaction Relation). Given a causal model M = (S = (U = {U1, ..., Um},
V,R),F), a context u⃗ = {u1, ..., um}, and a primitive event (Y = y), the satisfaction
relation between the causal model, the context and the event, denoted by (M, u⃗) |= (Y = y),
holds if, and only if, (FY ∈ F ∧ U1 = u1, ..., Um = um) =⇒ FY = y.

Furthermore, given a causal formula [X⃗ ← x⃗](Y = y), the satisfaction relation between
the causal model, the context and the causal formula, denoted by (M, u⃗) |= [X⃗ ← x⃗](Y = y),
holds if, and only if, in the causal model resulting by the intervention MX⃗←x⃗ = (S,FX⃗←x⃗),
we have that (FY ∈ FX⃗←x⃗ ∧ U1 = u1, U2 = u2, ..., Ui = ui) =⇒ FY = y.

Thus, given a context u⃗ ∈ R(U), we write (M, u⃗) |= [X⃗ ← x⃗](Y = y) if the variable
Y ∈ V has the value y in a causal model M where Xi is set to xi for i = 1, ..., k. The
notation can also be used in the presence of a Boolean combination of primitive events:
(M, u⃗) |= [X⃗ ← x⃗]Φ. Note that (M, u⃗) |= [X⃗ ← x⃗]Φ ⇐⇒ (MX⃗←x⃗, u⃗) |= Φ.

Furthermore, in the special case where no assignments are performed (i.e., k = 0), we
write (M, u⃗) |= (Y = y), if and only if the variable Y ∈ V has the value y given the context
u⃗ ∈ R(U) and the causal model M . This notation can also be used in the presence of a
Boolean combination of primitive events: (M, u⃗) |= Φ.

The types of events that are allowed as causes are of the form (X1 = x1∧ ...∧Xk = xk),
that is, a conjunction of primitive events that can be abbreviated as X⃗ = x⃗. Then, cause is
formally defined as follows.

Definition 6 (Cause). We say that X⃗ = x⃗ is a cause of Φ in (M, u⃗) if the following
conditions hold:

• AC1. (M, u⃗) |= (X⃗ = x⃗) ∧ Φ

10

• AC2. There is a set W⃗ of variables in V and a setting x⃗′ of the variables in X⃗ such
that if (M, u⃗) |= (W⃗ = w⃗), then:

(M, u⃗) |= [X⃗ ← x⃗′, W⃗ ← w⃗]¬Φ.

• AC3. X⃗ is minimal; there is no strict subset X⃗ ′ of X⃗ such that X⃗ ′ = x⃗′ satisfies
conditions AC1 and AC2, where x⃗′ is the restriction of x⃗ to the variables in X⃗ ′.

In this definition, the variables in the set W⃗ allow for the cause to be tested under
certain circumstances where the variables in W⃗ (which can be empty) are kept to their
original values w⃗ even if they were supposed to be modified by the intervention X⃗ ← x⃗′.

Consider the scenario in our autonomous vehicle example where AT = 0, BT = 0, AH =
1, BH = 0, PH = 1, uA = 0, and uB = 0. In our signature, we identify AT,BT,AH,BH
and PH as endogenous variables (V) and uA and uB as exogenous variables (U); we would
like to assess whether AT = 0 is the cause of the pedestrian being hit (PH = 1).

AC1 states that (X⃗ = x⃗) cannot be a cause of Φ, unless both the primitive causal events
(X⃗ = x⃗) and the effect Φ are true in the causal model M, given the context u⃗. That is, it
states that for AT = 0 to be the cause of PH = 1, then both need to be true in (M, u⃗);
thus, in this scenario, AC1 holds. Conversely, if we were trying to assess whether BT = 1
is the cause of PH = 1 then, AC1 could not be satisfied, as BT = 1 is not true in (M, u⃗)
and, therefore, it could not be considered a cause.

AC2 states that for (X⃗ = x⃗) to be a cause of Φ, there must exist alternative values for
the set X⃗ that leads to Φ not holding. This is under the assumption that there might exist
a set of variables W⃗ that must be kept in its original value. To understand this concept,
let us start with W⃗ = {} and assume we apply the intervention AT ← 1. This leads to
vehicle A turning which results in vehicle B hitting the pedestrian (BH = 1) and, thus, the
pedestrian is still hit (PH = 1); clearly, AC2 does not hold in this case. However, if we set
W⃗ = {BH} and, hence, we maintain the value of variable BH even under the intervention
(AT ← 1) we have that neither car hits the vehicle (AH,BH = 0) and the pedestrian is
not hit (PH = 0). Consequentially, we have that (M, u⃗) |= [AT ← 1, BH ← 0]¬(PH = 1)
holds. This example shows the need for the set W .

Finally, AC3 asserts that the identified cause is minimal. In our scenario, it prevents
(AT = 0∧BT = 0) from being a cause, since (AT = 0) suffices to satisfy AC2. Thus, AC3
also holds and we can say that, in (M, u⃗), (AT = 0) is a cause of (PH = 1).

3.2 Cyber-physical systems

Cyber-Physical Systems (CPSs) integrate computational systems into their physical envi-
ronments; examples of modern CPSs include vehicles and robotic systems [51]. A typical
CPS is a system where sensors feed input signals to a digital controller (discrete component)
attached to physical actuators (continuous component) in a feedback loop.

In order to model the continuous and discrete dynamics in CPSs, many formalisms have
been used [5]. In this work, we make use of hybrid automata [6] to model the design of a
CPS; it is a well-established formalism, with an intuitive semantics, besides being equipped
with tools supporting different analyses [7, 19, 30, 31].

We first consider a running example. Then we introduce a motivation for our causal
analysis of cyber-physical systems. Despite our choice of hybrid automata and Simulink in

11

our mechanisation, our approach imposes no constraints on the formalism that our theory
can be applied to.

3.2.1 Running example: an autonomous vehicle

An autonomous electric vehicle is driving at constant speed of 10 m/s on a straight road,
towards a stationary pedestrian situated on a crossroad. The braking distance (d) is a
function that depends on the vehicle speed (speed), gravity (g) and the braking coefficient
(brakes), which indicates the quality of the braking system (such as braking pads, tire
quality, and tire pressure). Reasonable values for the latter are between 0.2 and 0.8.

d =
speed2

2 ∗ brakes ∗ g
Furthermore, the car is equipped with a lidar (a laser imaging, detection, and ranging

system) that has 2 modes. A default long range mode detects objects within a 20 meters
radius and a shorter range mode that halves the range. Whenever the battery enters a
critical state, i.e., less than 5% of the total charge, the lidar switches to short range mode
to reduce power consumption.

Consider a scenario that, when t = 0, the car is 80 meters away from the crossroad
where the pedestrian is stationed. The battery is at 10% capacity and its consumption rate
is constant at 1% of the total capacity per second (i.e., it will decrease to 9% after the 1
second, then to 8% after 2 seconds, and so on). Table 2 describes the initial valuation for
the system variables.

Table 2: Running example variables.

Description Type Name (Initial) Value

Lidar range Variable lidarRange 20

Critical battery threshold Constant critical 5 %

Braking coefficient Constant brakes 0.2

Car acceleration Variable acceleration 0 m/s2

Car speed Variable speed 10 m/s

Car position Variable carPosition 0

Pedestrian position Constant pedestrianPosition 80

Battery decay rate Constant decay 1% / s

Battery charge left Variable battery 10%

Gravity Constant g 9.8 m/s2

Critical check Variable belowCritical False

If one simulates the system, when t ≈ 8.5s, the car collides with the pedestrian. We
would like to know to which parts of the system this design flaw can be attributed; this
challenge is akin to a verification problem. Regardless of whether the undesired behaviour
is due to an actual system failure or an oversight in its specification, we aim to find the
causes for it and correct the behaviour.

We would like to note that the need for the distinction between constants and variables
will be clear later on when interventions for cps are defined. In summary, a constant is a

12

special variable that does not change value over time and, in this case, interventions can
only change their value throughout the entire system execution.

4. Causality for CPSs

In this section, we first present the motivation behind this work and the formal definitions
for the underlying theory that supports our strategy. The definitions presented in this
section are based on the theory of actual causality discussed in Section 3.1 but they are
lifted to continuous systems.

4.1 Analysis of cyber-physical systems

Search-based test case generation techniques, such as the ones applied in our tool, HyConf
[8], can find faults in a system by searching for inputs that exercise extreme conditions
on the System Under Test (SUT). However, the downside of such a methodology is the
difficulty of tracing back the fault to a particular event or part of the system.

It has been our experience that causes for faults in CPSs are very difficult to locate and,
therefore, to fix. As a solution to this problem, causality is a concept with a potential to
be exploited in the continuous setting. In the case of CPSs, our ultimate goal is to be able
to determine which variables can be identified as causes of a fault and find the causes that
exercise the safety levels of a system.

In CPSs, one can express the system behaviour in terms of trajectories. A trajectory
is the valuation of a set of variables over time. We first provide some informal intuition
of trajectory and other notions; in Section 4.2 we formalise all these notions. Considering
our running example, Figure 3 shows a trajectory of duration T = 12s with hypothetical
valuation for two of the system variables: the car acceleration and the battery charge.

Figure 3: System trajectory.

Our strategy for causal analysis is to split a trajectory of duration T of a system into
trajectory slices of equivalent size (see Figure 4a). We define trajectory slices as the pro-
jection of a trajectory considering a particular time interval. When building causal models,
each trajectory slice is considered as a variable and, during the causal analysis, we use a set
of slices to determine the cause of an events, such as the collision between the car and the
pedestrian. For instance, in Figure 4b, the highlighted slices are the ones that could have
been identified as the cause for the collision.

13

(a) Trajectory split into time intervals (slices). (b) Highlighted cause and effect.

Figure 4: Trajectory and trajectory projection.

When dealing with causal analysis for continuous systems, several aspects must be
considered for a sound, yet realistic, theory and implementation. One of such aspects is the
fact that determining cause is a costly computation [37]. Two important factors associated
with the costs are (a) the number of endogenous variables in the causal model and (b) the
number of variables in the cause. Thus, one cannot simply model a typical cyber-physical
system by setting all variables as endogenous, otherwise determining the cause would be
prohibitively computationally-intensive. In this work, in order to address factor (a), the
choice of endogenous variables should be influenced by the variables that the user suspects
are involved in the cause rather than the classical concept discussed in Section 3. Note
that this does require some domain knowledge; however, selecting too many endogenous
variables greatly affects performance (see our benchmarks in Section 6.4). Moreover, in
order to address factor (b), we consider an upper band to the number of variables in a
cause and in the search; this is discussed in the mechanisation section (Section 5.1).

On this topic, Beckers and Halpern [13] provide some insights into causal model ab-
straction which can allow modellers to think at a high level while still being faithful to a
more detailed model. They discuss the notion of τ−abstraction which suggests a transfor-
mation τ from causal model M1 to M2, where M2 is the high-level model where inessential
differences are ignored.

Another topic to consider is with respect to cyclic models. In most intervention-based
causal theories, the causal models must not comprise loops, such as in DAGs [32] and acyclic
SCMs and GSEMs [58]. This has a significant impact on what can be modelled in CPS due
to prominent presence of recursions and feedback loops. We circumvent this limitation by
incorporating temporal dynamics into our causal models. This way, even in the presence of
loops between system variables A and B (i.e., A affects the value of B and vice-versa), we
use slices to build the causal models in such a way that a slice (i.e., a variable in a causal
model) can only be affected by prior slices.

In what follows, we define the supporting theory and present the mechanisation steps
to achieve such goals.

14

4.2 Trajectories and overriding

We start by defining valuation. Valuations serve as the basis for trajectories, which, in turn,
define the semantic domain for models of CPSs.

Definition 7 (Valuation). Given a set of variables V⃗ = {X1, . . . , Xn}, we denote by
Val(V⃗) = V⃗ → D the set of all total functions from V⃗ to the common domain D.

In the remainder of this paper, we take D to be the set of real numbers R. In cyber-
physical systems, variables often have continuous valuation over time. This can be repre-
sented using trajectories, which are collections of variable valuations within a time interval.
A discrete Boolean variable, for instance, can be modelled as a special case where the value
taken by the variable is only 0 or 1.

Definition 8 (Trajectory). Given a set of variables V⃗ , the set of trajectories over V⃗ ,
denoted by Trajs(V⃗) = {x1, . . . , xm}, is the set of all partial mappings T 7→ V al(V⃗), where
T is the time domain.

We take T to be a convex subset of non-negative real numbers R+. We consider partial
mappings over T , since trajectory slices (formally defined in the sequel), which may not
be defined over the whole T , are also members of Trajs(Ṽ). Below we define an auxiliary
function that retrieves the set of variables in a trajectory, which is useful in later definitions.

Definition 9 (Variables of a Trajectory). We denote by var(x), the set of variables V⃗ over
which the trajectory x operates.

A trajectory that considers only a subset of the system variables can be obtained by
projecting it over these variables.

Definition 10 (Trajectory projection). Given a set of variables V⃗ , the projection of a
valuation val ∈ Val(V⃗) to V⃗ ′ ⊂ V⃗ , denoted by val ↓V⃗ ′∈ Val(V⃗ ′), is defined such that ∀X ∈
V⃗ ′, (val ↓V⃗ ′) (X) = val(X). Furthermore, the projection of a trajectory x : T 7→ V al(V⃗) to

V⃗ ′ ⊂ V⃗ is a trajectory T 7→ V al(V⃗ ′), denoted by x ↓V⃗ ′, such that ∀t ∈ dom(x), (x ↓V⃗ ′)(t) =
x(t) ↓V⃗ ′.

Example 1 (trajectory and projection). Consider the running example discussed in Section
3.2.1. Figure 5a shows a trajectory x ∈ Trajs({battery, brakes, speed}). Figure 5b shows
the trajectory projection x ↓{battery}.

Note that, since the braking coefficient is constant, the valuation of brakes over time
is a constant function. To discretise time in order to perform causal analysis and identify
when the cause occurred, we first need to define the notion of time interval.

Definition 11 (Time interval). A left-closed right-open interval [i, j), where i < j, is
defined as a convex subset of R+, such that, ∀x ∈ R+, x ∈ [i, j) ⇐⇒ i ≤ x < j.

In this work, a cause is defined using sub-trajectories of variables X over one or more
time intervals, as shown in Figure 4. To formalise that, we define trajectory slices.

15

(a) A trajectory x. (b) Trajectory projection x ↓{battery}.

Figure 5: Trajectory and trajectory projection.

Definition 12 (Trajectory slice). Given a set of variables V⃗ , a trajectory x ∈ Trajs(V⃗),
and an interval [i, j) such that [i, j) ⊆ dom(x), a trajectory slice x[i,j) ∈ Trajs(V⃗) is defined

as a function x[i,j) : [i, j)→ V al(V⃗), such that ∀t ∈ [i, j), x[i,j)(t) = x(t).

Example 2 (trajectory slice). Consider the trajectory x from Example 1, Figure 6 shows
the trajectory slice x[4,6) projected over the variable battery, denoted as x[4,6) ↓{battery}.

Figure 6: Trajectory slice projected over the variable battery.

4.3 Causal models for CPSs

As in the discrete case, a causal model is defined with respect to a signature.

Definition 13 (Signature for cyber-physical systems). Given a set of variables V⃗ , a sig-
nature for a cyber-physical system C, is a tuple

SC = ⟨U ,V,R⟩,

where:

• U ⊆ V⃗ is a finite set of exogenous variables;

• V ⊆ V⃗ is a finite non-empty set of endogenous variables;

16

• R ⊆ Trajs(U ∪ V).

In the discrete context, the set R contains the acceptable values for the variables in
U ∪ V. Analogously, in this extension, R is the set of selected trajectories that will be part
of the causal analysis. In other words, we search for counterfactuals only within the set of
trajectories R.

Moreover, in our work, we assume that two properties always hold: the system must
be deterministic and the causal model must be acyclic. We only consider deterministic
systems since causal models are not achievable for non-deterministic systems; it would not
be possible to define functions in F if variables could assume different values given the
exact same parameter values. Furthermore, the dependency among endogenous variables
in a causal model cannot be cyclic. That is, if the value of a variable X affects a variable
Y , then the opposite must not be true. Otherwise, when applying interventions to an
endogenous variable X, that would effect changes in Y and this, in turn, would result
in further changes to X, which would conflict with the specific intervention that is being
applied. This way, a cause could not be determined (as formalised in the sequel in Definition
18). This would result in some restrictions in systems that are inherently cyclic (e.g., with
feedback loops) as only some specific combinations of endogenous variables are allowed. To
mitigate this issue, we build causal models by splitting the system variables (e.g., speed)
into slices and each slice corresponds to a causal variable (e.g., speed1, speed2,...,speedn).
Then, causes and effect are determined with respect to these slice variables. Figures 7
and 8 depict what would be causal model for the running example with and without using
slices. Note how the cyyclic dependency between the variables acceleration, speed, and
carPosition is removed; with this causal mode, variables in the nth slice only affect the
variables in the nth + 1 slice. This results in the causal model being an abstraction of the
real system, but for the purposes of verification, this suffices to determine actual causality
given a sound implementation.

Figure 7: Cyclic causal graph of the running example.

Moreover, most cyber-physical systems comprise a large number of variables and, thus,
defining all these variables as endogenous would render the analysis very costly in practice.
Hence, in this work, the distinction between endogenous and exogenous variables depends
on the feasibility and willingness to modify their values and assess causality. Hence, the
best way to utilise this strategy require some knowledge about the system. Examples will
be given throughout the paper to demonstrate this.

Example 3 (Endogenous and exogenous variables). Consider the autonomous vehicle ex-
ample given in Section 3.2.1 and the hazard faced by the pedestrian and that the system is

17

Figure 8: Acyclic causal graph of the running example.

split into two slices. A possible choice of sets for endogenous and exogenous variables can
be the following:

• U = {g1, g2, critical1, critical2, lidarRange1, lidarRange2, carPosition1, carPosition2,
pedestrianPosition1, pedestrianPosition2, decay1, decay2, acceleration1, acceleration2,
belowCritical1, belowCritical2}

• V = {battery1, battery2, speed1, speed2, brakes1, brakes2}

The causal model takes a signature and a set of functions; each function assigns a
trajectory for an endogenous variable given a trajectory for the remaining system variables.

Definition 14 (Causal model for cyber-physical systems). Given a signature SC = ⟨U ,V,R⟩
for a cyber-physical system C, a causal model is defined as

M = ⟨SC ,F = {FX | X ∈ V}⟩,

where FX : Trajs(U ∪V \{X}) 7→ Trajs({X}), such that dom(FX) = {x ↓U∪V\{X}| x ∈ R},
and, for every trajectory x ∈ R, FX(x ↓U∪V\{X}) = x ↓{X}.

Intuitively, a causal model associates each variable X ∈ V with a single trajectory
x ↓{X}∈ R, given a trajectory for each of the other variables in V.

18

Example 4 (A causal model for the running example). Consider the example from Section
3.2.1, two trajectories x and y (Figure 9), and a signature SC = ⟨U = {g, critical, lidarRange,
carPosition, pedestrianPosition, decay, acceleration, belowCritical},V = {battery, speed,
brakes}, R = {x, y}⟩. Then, a causal model M can comprise the following functions:

• Fbattery(...) = 10− (t ∗ decay)

• Fbrakes(...) = 0.2

• Fspeed(...) = 10 + (t ∗ acceleration)

(a) Trajectory x. (b) Trajectory y.

Figure 9: Trajectories of the running example.

For simplification, we omit the variable names in the parameter field of the functions in
the example above. In the next section, the formal syntax to represent causes and effects
are given as Boolean expressions between trajectories. Therefore, we first define a grammar
for a primitive event and then we describe its semantics informally.

Primitive Event Grammar

⟨Expression⟩ ::= ⟨Trajectory⟩
| ⟨Trajectory⟩ + ⟨Expression⟩
| ⟨Trajectory⟩ - ⟨Expression⟩
| ⟨Trajectory⟩ * ⟨Expression⟩
| ⟨Trajectory⟩ / ⟨Expression⟩

⟨BooleanOperator⟩ ::= =⟨Interval⟩
| <⟨Interval⟩
| >⟨Interval⟩
| ≥⟨Interval⟩
| ≤⟨Interval⟩

19

⟨PrimitiveEvent⟩ ::= ⟨Trajectory⟩ ⟨BooleanOperator⟩ ⟨Expression⟩

⟨PrimitiveEventExpression⟩ ::= ⟨PrimitiveEvent⟩
| ¬ ⟨PrimitiveEvent⟩
| ⟨PrimitiveEvent⟩ ∧ ⟨PrimitiveEventExpression⟩
| ⟨PrimitiveEvent⟩ ∨ ⟨PrimitiveEventExpression⟩

In our logic, a trajectory is assigned to a variable (e.g., x : T → V al(battery)) but can
also be represented by constant (e.g., x : T → 3.14). An expression, however, is defined
as arithmetic operations between trajectories. Given two trajectories x, y result between
the addition x + y is a new trajectory s|∀t ∈ dom(x) ∩ dom(y) : s(t) = x(t) = y(t).
The arithmetic operations between trajectories are defined over the addition, subtraction,
multiplication and division operators.

Lastly, a primitive event is a Boolean comparison between a trajectory and an expression.
Given two variables X and Y , two trajectories x ∈ Trajs({X}) and y ∈ Trajs({Y }), and an
interval [i, j) ⊆ dom(x) ∩ dom(y), the primitive event of the type x =[i,j) y holds when for
all t ∈ [i, j), we have that x(t) = y(t).

For instance, we use x =[i,j) y + z as syntactic sugar for x =[i,j) s | ∀t ∈ [i, j) : s(t) =
y(t) + z(t), and, hence, we have that ∀t ∈ [i, j) : x(t) = y(t) + z(t). Similarly, we also
use real valued numbers in a primitive event (which can be seen as a new trajectory that
is constant and set at that value). As an example, the primitive event x <[i,j) y ∗ 3.14 is
syntactic sugar for x <[i,j) s | ∀t ∈ [i, j) : s(t) = y(t) ∗ 3.14.

In this extension, we denote Φ (i.e., the effect) as a Boolean combination of primitive
events for CPSs. Given a causal model M = ⟨⟨U ,V,R⟩,F⟩, a trajectory c : Trajs(U ∪ V)
and a set of trajectory slices x⃗ = {x | x ∈ Trajs(V)}, causes for CPSs are given in the
format (c←[x⃗). The special case where a conjunction of primitive events using the equality
operator between one trajectory (c) and each trajectory slice in a set (x⃗ = {x1, x2, . . . , xn})
is denoted by (c ←[x⃗). This format is an abbreviation for

∧n
i=1(c ↓var(xi)=dom(xi) xi). In

practice, the trajectory c is obtained from a system execution and the trajectory slices x⃗
are taken from c. Hence, a cause (c←[x⃗) means that the fact that the output of the system
c comprises the specific trajectory slices x⃗ is a cause to an effect Φ.

In the discrete context, in order to identify causes, one needs to apply interventions and
modify the value of variables. In the context of CPSs, causes are given using trajectory
slices and thus the interventions need to be applied on the same slices as the prospective
cause. Hence, we formally define the concept of alternative set of trajectories. Given a set
of trajectories (x⃗), an alternative set of trajectories (x⃗′) is one that, for each trajectory in
x⃗, there exists a corresponding trajectory in x⃗′ that ranges over the same variable(s) and
the same time interval but differ in value. The opposite must also be true.

Definition 15 (Alternative set of Trajectories). Two sets of trajectories x⃗ and x⃗′ are called
alternative if, and only if:

• ∀x ∈ x⃗ : ∃!x′ ∈ x⃗′ : (var(x) = var(x′) ∧ dom(x) = dom(x′) ∧ ¬(x′ =dom(x) x))

• ∀x′ ∈ x⃗′ : ∃!x ∈ x⃗ : (var(x) = var(x′) ∧ dom(x) = dom(x′) ∧ ¬(x′ =dom(x) x))

20

We denote by Alts(x⃗) the set of all alternative set of trajectories of x⃗. Lastly, we lift the
definition of the satisfaction relation (Definition 5) to work with causal models for cyber-
physical systems. Similarly to the discrete version, we use (M,u) to represent a causal model
and a context, which is now represented by a trajectory u : Trajs(U) over the exogenous
variables.

Definition 16 (Satisfaction relation for cyber-physical systems). Given a causal model
for cyber-physical systems M = ⟨SC = ⟨U = {U1, U2, ..., Um}, V,R⟩,F⟩, a trajectory u ∈
Trajs(U), and a primitive event x =[i,j) y where x ∈ Trajs({X}) and y ∈ Trajs({Y }), and
X,Y ∈ U ∪V, the satisfaction relation between the causal model, the context, and the event,
denoted by (M,u) |= (x =[i,j) y), holds if, for all t ∈ [i, j), we have (U1 = u ↓U1 , U2 = u ↓U2

, ..., Um = u ↓Um) =⇒ (x(t) = y(t)).

Trivially, the satisfaction relation can be extended to a Boolean combination of primitive
events, such as causes (c←[x⃗) or effects (Φ).

4.4 Causes for CPSs

We define below the notion of causal model update, which is akin to an intervention in the
discrete case.

Definition 17 (Causal model update). Given a signature SC = ⟨U ,V,R⟩, a set of variables
X⃗ ⊆ V and a set of trajectories x⃗ = {x | x ∈ Trajs(X⃗)}, an updated signature, denoted by

S
′
C , is defined as ⟨U ,V,RX⃗←x⃗⟩, where RX⃗←x⃗ is the set of all trajectories r ∈ R such that

r ↓{X}=dom(x) x ↓{X}, for each x ∈ x⃗.
Given a causal model MC = ⟨SC , {FY | Y ∈ V}⟩, an updated causal model, denoted by

MX⃗←x⃗, is defined as ⟨S′
C , {F

′
Y | Y ∈ V}⟩, where the updated function for RX⃗←x⃗, denoted

as F ′
Y , is defined on {x ↓U∪V \{X}| x ∈ RX⃗←x⃗}.

Intuitively, MX⃗←x⃗ is an updated causal model obtained by filtering the trajectories of

the variables in X⃗ with the trajectories in x⃗. A sequence of two causal model updates is
denoted by MX⃗←x⃗,Y⃗←y⃗.

To determine cause, similarly to the discrete version, we use (M,u) to represent a causal
model and a context, which is represented by a trajectory u ∈ Trajs(U) over the exogenous
variables. Now, consider a trajectory c that led to Φ where c ↓U=dom(u) u, then, a cause of
Φ in (M,u), given in the format (c← [x⃗), is determined as follows.

Definition 18 (Cause for cyber-physical systems). Given a causal model M = ⟨⟨U ,V,R⟩,F⟩,
a setting u ∈ Trajs(U), a trajectory c : Trajs(U ∪ V) such that c ↓U=dom(u) u, and a set of
trajectory slices x⃗ = {x | x ∈ Trajs(V)}, then (c ←[x⃗) is a cause of Φ in (M,u) when the
following three conditions hold:

• AC1. (M,u) |= (c←[x⃗) ∧ Φ,

• AC2. There exists a set of variables W⃗ ⊂ V and two sets of trajectories x⃗′ ∈ Alts(x⃗),
and w⃗ ⊆ Trajs(W⃗) ∩R such that if (M,u) |= (c←[w⃗), then:

(MX⃗←x⃗′,W⃗←w⃗, u) |= ¬Φ

21

• AC3. There is no strict subset of x⃗ that satisfies AC1 and AC2.

This extension of the original definition for discrete systems (see Definition 6) fully
considers continuous trajectories and time intervals, with cause being established using
trajectory slices. We aimed for a conservative extension, however a few things are to be
considered.

Firstly, in the original definition, Halpern uses u⃗ to describe the set of exogenous vari-
ables and valuations. In our definition, a trajectory contains multiple variables and their
valuation over time, thus a trajectory u ∈ Trajs(U) that contains all exogenous variables
and their valuation over time is used.

Secondly, the minimality clause, AC3, now focus on trajectory slices rather than vari-
ables. In the original theory, AC3 states that no subset of the variables and their specific
values in the prospective cause should satisfy AC2. In our extension, however, we employ
trajectory slices, which are already defined based on both variables and values. Thus, given
that a particular list of trajectory slices (x⃗) satisfies both AC1 and AC2, then no subset of
x⃗ should satisfy AC1 and AC2 in order to satisfy AC3.

Thirdly, our theory does not restrict Φ to only endogenous variables. In the original
work, strictly speaking, endogenous variables could not affect exogenous ones, thus they
could not be included in Φ. In this work, however, this is not needed nor included in
the definition as the choice of endogenous variables is a user choice in order to make the
performance of the causality checks viable in practical settings (more on that in Section 6.4).

Lastly, we note how the set w⃗ is a subset of Trajs(W⃗)∩R. While this may seem counter-
intuitive, the reason is that this enables a sound mechanisation of this theory. Suppose one
is to determine whether (c ←[x⃗) is a cause of a Φ. This requires one to evaluate whether,
for all possible variables in W⃗ , there exists any set of trajectory slices w⃗ that would result in
a subset of x⃗ satisfying AC1 and AC2. This is intractable. Hence, instead, a mechanisation
of this theory can restrict the set R to a countable set of trajectories (found, for instance,
by a search heuristic).

We use Example 4 to explain Definition 18. Consider that the trajectory x from Fig-
ure 9a is c, that is, the scenario where a failure was observed. We define Φ as ¬(c ↓{speed}
≤[8.9,9) 0), which holds if the variable speed is greater than 0 at any point in the interval
[8.9, 9). Essentially, we are checking the causes for the vehicle not stopping around the 9
seconds mark.

Now, we determine whether c ←[{x ↓{brakes}} is a cause for Φ. Clearly, AC1 holds;
both the cause and the effect are true in the model. Further, the cause is a singleton, which
means it is minimal; thus AC3 holds. As for AC2, the set W⃗ can be empty. Consider that
X⃗ = {brakes} and W⃗ = {} and consider the trajectory {y ↓{brakes}} (from Figure 9b) as our
alternative set of trajectories. It is clear that AC2 is satisfied as (MX⃗←y⃗ ↓{brakes}, u) |= ¬Φ
holds. We can see in Figure 9b that, when we increase the brakes, the car fully stops before
the 9 seconds mark. We note that constants do not change over time and, thus, the value for
the braking coefficient is set at the beginning of the scenario and is the same throughout.
When an intervention is applied to such a variable, its value must change for the entire
duration of its trajectory.

22

We further exemplify our theory of causality for CPSs (particularly, Definition 16) in
Section 5.2. We provide our algorithm for causal assessment and use another concrete
example for its explanation.

5. Practical applications of causality

In this section, we demonstrate how causal analysis can be applied in practice to CPSs.
First, we detail a standalone process for causal analysis and then we exemplify, using the
running example, its applicability in the verification process.

5.1 Causal analysis process

We explain the step-by-step process for causal analysis. The process incorporates the theory
defined in Section 4 and has been mechanised and integrated into HyConf1, a tool for test
case generation and conformance testing of cyber-physical systems. HyConf employs multi-
objective search-based heuristics to find challenging input trajectories that exercise extreme
conditions of the system under test (SUT). Particularly, it checks for conformance violations
based on the (τ, ϵ)-conformance notion [2]. In short, given two output trajectories (e.g.,
the system implementation and an idealised specification model), the tools compares the
distance between the two trajectories in terms of time (τ) and space (ϵ). These parameters
can be seen as margins of error, and if the two trajectories are beyond such values, the
a non-conforming verdict is given (i.e., a failure was observed). The inputs and failures
observed in future sections were obtained via HyConf. These are, in turn, fed as input to
our causal analysis.

We consider the running example (see Section 3.2.1) and use it to illustrate our ap-
proach. Figure 10 depicts an overview of the process. The dotted lines represent manual
steps or manually provided (input) artefacts whilst solid ones represent automatic steps or
automatically provided artefacts, as explained in the bottom right of the figure. Our causal
analysis process requires 3 inputs from the user: the system (implementation) or design
(model) under verification (currently, we accept Matlab/Simulink models), the hazard or
fault (Φ, written in a simplified format of Signal Temporal Logic formulae [48]) and the
scenario (a trajectory c, in Matlab/Simulink output format) in which the hazard/fault oc-
curs. What we call a scenario in this work is a finite execution of a system in the form of a
trajectory that comprises all variables within the system. From this scenario, we derive the
valuation of both the endogenous and the exogenous sets (including the context setting u)
of variables.

The step-by-step is given below.

1. A model of a cyber-physical system, a scenario and the hazard must be given.

2. The user chooses the set of endogenous variables and the remaining variables are
assumed exogenous automatically.

3. The causal model is built with a singleton R that (initially) only contains the trajec-
tory c that led to the hazard.

1. https://github.com/hlsa/HyConf

23

Figure 10: Causality process.

4. The search commences by automatically splitting the trajectory c (2 time intervals,
initially) and therefore dividing it into smaller (and still continuous) trajectory slices.

5. The search finds new trajectory slices and then these are used to override c to look
for violations of Φ. R is updated on-the-fly.

6. Causality assessment is performed. If a cause is found, the time intervals are reduced
to increase precision.

7. If a maximum number of trajectory intervals has been explored, then the process
stops. Otherwise, the search continues with a finer granularity of time intervals.

The first stage is to build a causal model. It is important to emphasise that, in a
practical setting, our causal models are an approximation of the complex interactions of the
physical system. Thus, there are some simplifications in the way that the causal models are
built.

• In our theory, every variable that is influenced by the system should be classified as
endogenous. However, in our practical causal models, having too many endogenous

24

variables would render the analysis very lengthy and costly. Thus, we leave the choice
of endogenous variables to the user’s discretion and to what they may want to analyse
as cause.

• In our implementation, the set R is built iteratively. We start with a singleton R
that only contains the trajectory that led to the fault (c); as the search evaluates new
trajectories, by overriding c with trajectory slices in order to find a cause, they are
added to R. Once the search is concluded, multiple causes may have been found and,
thus, we assess them considering the final R that has been built; this is the moment
where we apply our theory for causality assessment of CPSs (see Section 4).

• When users choose the endogenous variables, they must set a maximum and minimum
value and, if appropriate, mark the variable as constant. This is to avoid finding causes
that do not respect system requirements and dynamics.

We re-iterate that the equations and variables of the causal model are provided as inputs
from the user and the set R (state space) is built during the search. Moreover, causes are
determined with respect to a particular causal model. Setting the maximum and minimum
values for variables binds the set R of the causal model, and therefore the results are sound
with respect to that particular model. Due to manual inputs (such as the boundaries for
system variables), it is possible for the causal model to not reflect the actual system (from
which c is taken) and, in this case, the cause might not reflect the reality of it. However,
as far as cause/causal model are concerned, the results are still sound. In this work, we
assume that the causal model that is built (given the manual inputs) respects the reality of
the system, that is, one has to make sure that the boundaries in the causal model respect
the boundaries in the physical system.

Furthermore, unlike variables, constants cannot be overridden in time intervals, only in
their whole duration. This can be seen as a restriction on the set R, such that constants
can only be defined by constant trajectories. The set of functions F that describe how the
endogenous variables are affected by other system variables must be provided by the user.
Given this information, the tool checks whether the causal model is acyclic, otherwise the
causality assessment becomes infeasible, as explained at the end of Section 4.3.

A difficulty associated with this strategy is the number of combinations of trajectory
slices that have to be analysed to find the causes. This is particularly influenced by the
chosen granularity of time intervals. That is, the number of time intervals increases the
time spent in the search but conversely can identify a cause with more precision.

Furthermore, since the causes of a failure are more likely to be closer to the moment
in time when the failure happened, an attenuation factor is implemented, where the search
assigns higher search priority to the slices closer to the fault. In what follows, we present two
algorithms employed in our strategy and we explain them using an example. Algorithm 2
shows the pseudo-code that conducts the causal analysis and Algorithm 1 shows the psuedo-
code for the search that employs the causal analysis algorithm.

5.2 Application to the running example

The search algorithm (shown in Algorithm 1) receives the causal model (MC), the hazard
(Φ) and the trajectory c that leads to Φ, as input; its output is a set of causes. In what

25

follows, we apply the algorithm to our running example (the autonomous vehicle) to find
causes for the collision hazard. First, we define the inputs to the algorithm.

5.2.1 Defining the hazard

The given cyber-physical system C is modelled in Simulink based on the example presented
in Section 3.2.1. We characterise the hazard as the collision between the car and the pedes-
trian. The pedestrian position (pedestrianPosition) is set to 80 whilst the initial position
of the car (carPosition) is set to 0. The collision occurs if the car cannot brake in time and
its position exceeds that of the pedestrian (i.e., carPosition ≥ pedestrianPosition).

Table 3: Issue observed

Effect Φ

The car collides with the pedestrian c ↓{carPosition}≥dom(c) c ↓{pedestrianPosition}

Table 3 describes the effect with respect to which the cause is being established, along
with Φ. Currently, the tool only accepts expressions using logical and arithmetic operators,
logical connectors (∧, ∨), real numbers, and the variable names.

If we execute the system as originally defined in Section 3.2.1, the battery enters the
critical state and the lidar range is reduced. Then, the car detects the pedestrian but does
not brake in time and a collision occurs (i.e., carPosition ≥ 80). Figure 11 depicts the
trajectory c associated with this scenario, showing projections of c considering the variables
carPosition, battery, brakes, and lidarRange.

Figure 11: Projections of trajectory c that leads to Φ.

All 3 inputs for the process have now been defined: the design, the hazard and the
scenario. Next, we generate the causal model.

26

5.2.2 Building the causal model

Our choice for elements that comprise the signature are shown below. Note that we depart
from the choice made in Example 3, as to show that the set of endogenous variables can
be chosen by the user. Recall that U is the set of exogenous variables and V is that of
endogenous variables.

• U = {acceleration, pedestrianPosition, carPosition, g, critical, speed, decay,
belowCritical}

• V = {brakes, battery, lidarRange}

Our choice of endogenous variables is based not only on what can reasonably be viewed
as a cause but, more importantly, is based on what the user has control over and is willing
to analyse and change in order to fix the system. The goal for this particular analysis is to
determine which parts of the car are related to the failure and should be modified so that
the car avoids colliding with the pedestrian.

Even though the pedestrian itself can be viewed as a part of the cause of the accident,
we ultimately have no control over them, so we do not consider pedestrianPosition as
an endogenous variable. Furthermore, we also classify the car acceleration and speed as
exogenous variables; in our example, the car is autonomous and always travels at the road
speed until it detects an obstacle, in which case, the car slows down. These variables are
part of the set of exogenous variables, i.e., the external setting that exerts influence on the
system.

Concerning the variables in the endogenous set, it includes the braking coefficient
(brakes), the lidar range (lidarRange) and the battery level (battery). We aim to identify
if they can be considered a cause for the collision with the pedestrian and, if applicable,
the moment in time where the value of these variables can lead to the pedestrian being
hit. As it happens, constants such as the braking coefficient can only be modified in its
full trajectory. Variables, such as the battery, can change depending on which parts of the
system is active, so it is possible to modify only a slice of it.

Initially, the set of trajectories that compose R is the trajectory (c) that led to the
collision. As the search is conducted in the next steps, R will expand. The causal model
is built using the sets of functions that relate the trajectories in R with the variables in
(U ∪ V). For example, considering the trajectory u⃗, we have:

• Fbrakes(...) = 0.2

• Fbattery(...) = 10− (t ∗ decay)

• FlidarRange(...) =

{
20, battery ≥ critical

10, battery < critical

Since there are no cyclic dependencies in our set of functions, the analysis can proceed.

27

Algorithm 1: Pseudo-code for search algorithm.

input : CausalModel M ;
input : Trajectory c, u;
input : BooleanPredicates Φ;
output: Set [(Trajectory, Trajectory, Set [Variable], TimeInterval)] causes;

1 Function Search(M ,c,u,Φ) :
2 Integer granularity = 2, maximumGranularity = 10;

3 foreach Set [Variable] X⃗ in GetSubsetsOfSizeOne(M.signature.V) do
4 foreach interval in GetIntervals(c, granularity) do

5 (Set [Trajectory] x⃗′, Set [Trajectory] w⃗) = SearchHeuristic(c, X⃗,
interval);

6 Set [Variable] W⃗ = w⃗.GetVariables();

7 if IsCause(M , u, Φ, x⃗, x⃗′, w⃗, X⃗, W⃗) then
8 causes.Add((c, x⃗, interval));
9 end

10 end

11 end
12 if granularity < maximumGranularity then
13 if causes.IsEmpty() then
14 increaseGranularity(granularity);
15 Search();

16 end
17 else
18 foreach cause in causes do

19 FocusSearch(cause.interval, X⃗);
20 end

21 end

22 end

23 end

24 Function FocusSearch(interval, X⃗) :
25 foreach interval in GetIntervals(c,maximumGranularity) do
26 if interval.IsWithin(interval) then

27 (Set [Trajectory] x⃗′, Set [Trajectory] w⃗) = SearchHeuristic(c, X⃗,
interval);

28 Set [Variable] W⃗ = w⃗.GetVariables();

29 if IsCause(M , u, Φ, x⃗, x⃗′, w⃗, X⃗, W⃗) then
30 causes.Add((c, x⃗));
31 end

32 end

33 end

34 end

28

5.2.3 Searching for causes

We present, in this and in the next section (using the example), the algorithms both for the
search (Algorithm 1) and for determining causality (Algorithm 2).

The function iterates through each endogenous variable (line 3) and intervals of tra-
jectory c (line 4). In order to generate new trajectory slices, we apply a search heuristic
(in this case, genetic algorithm [49]) to find data points that will form the alternative tra-
jectory slices for variables in the cause and in the contingency set (line 5). For that, we
use the Global Optimisation toolbox [1] for Matlab. The algorithm works on a population
and attempts to find the global maxima or minima of a (fitness) function. A population
is a set of points in the design space and it is initially generated randomly. The algorithm
computes the next generation of the population by interacting with the fitness function and
the individuals in the current generation until it finds the maxima. Our fitness function
aims to generate slices that are diverse (in terms of distance and shape) from the slice that
led to the fault.

Directly connecting the data points yielded by the search would result in an erratic
curve. To mitigate this issue, in SearchHeuristic, we employ a notion of curve fitting
using a fourth degree polynomial equation as a smoothing function [35]. This results in a
smoother behaviour with the trade-off of the resulting curve being an approximation to the
data points obtained by the search, instead of an exact match. As an alternative fit, one
can use polynomial interpolation, which would result in a smooth curve that would exactly
fit the points yielded by the search. However, this greatly increases computational costs
since it requires functions with polynomial degree of (n-1), where n is the number of data
points. The search typically yields thousands of data points, hence, for such large numbers,
interpolation is impractical.

Once we have the alternative trajectories for variables in a prospective cause (sets X⃗
and W⃗), we call a function isCause that will check for actual causality (the details of this
function can be seen in Algorithm 2). If positive, then causes are added to the outputting
set (line 8). We represent a cause as a tuple composed by the original hazardous trajectory
c, the variables in the cause, and the time interval.

After searching and determining causes, the algorithm attempts to increase granularity
regardless of whether causes have been found or not. If a cause was found, we attempt to
increase its precision (with respect to time) by searching the specific area where a cause has
been found and, hence, trimming the time intervals into smaller pieces. Hence, if a cause is
found with a granularity lower than the minimum, we focus the search on its specific time
interval to increase precision (lines 27 to 40).

Otherwise, if no cause is found for coarser time intervals, we gradually increase granular-
ity (from 2 to 4 and finally 10, that is, each slice should represent 50%, 25% and 10% of the
trajectory (c) duration, respectively – this is performed by the function increaseGranularity)
and resume the search (lines 13 to 16). The reason for increasing granularity even though
no cause is found is due to the following two reasons:

• First, overriding only slices of a trajectory effectively turns it into a piecewise function.
Since the degree of our polynomial function to smooth the curve is constant (regardless
of how many data points there exist), the finer the time intervals the less data points

29

fall within each time interval, and, thus, the easier it is for the smooth curve to exactly
match the points resulting from the search.

• Second, because our search is non-exhaustive in nature, the search can find and assess
causality for more slices, if the time intervals are finer. This results in more causality
assessments in overall and increases the likelihood to find causes.

There are two stopping criteria for the search. If the search does not find a cause even
after splitting the trajectory into the maximum number of intervals (set to 10), then it
stops. Otherwise, if it finds at least one cause, it focuses the search on those areas related
to the causes in an attempt to increase precision (more subtle changes within shorter time
intervals). After focusing (using the maximum number of time intervals), the search is
stopped.

Once finished, another search is performed considering the interaction between variables.
Algorithm 1 attempts to override one variable at a time. However, certain causes can only be
found by overriding multiple variables at once. Thus, we also conduct the search considering
pairwise and further considering sets of three variables. The pseudo-code for these additional
searches are not shown here; in short, they lift the strategy presented in Algorithm 1 to
consider multiple variables. Because the complexity of the search significantly increases, we
do not attempt to search using sets with more than 3 variables.

5.2.4 Searching for a cause – part #1: lidar range

To check if the set of slices is a cause, the method IsCause asserts the causality clauses (as
in Definition 18). The pseudo-code for this function can be seen in Algorithm 2. In this
algorithm, we check the three clauses of Definition 18 (lines 3 to 5). Firstly, for AC1, the
prospective cause (x⃗) is taken from c, which is built around causal model M in Algorithm 1
(and, thus, (M,u) |= (c←[x⃗)). Therefor, for AC1, we only need to check if the effect holds
in the causal model ((M,u) |= Φ). As for AC2, we check whether the slices found by the
search suffice to violate Φ (lines 16 to 18). Finally, for AC3, we check whether any subset
of the trajectory slices (line 22) satisfy AC1 and AC2 (lines 25 and 26). To do this, we
perform a quicker version of the search (focusing on the subsets of x⃗), looking for alternative
slices for X⃗ and W⃗ that satisfy both AC1 and AC2. We have previously noted that, in
Definition 18, the set w⃗ is a subset of Trajs(W⃗) ∩ R and hence, we do not need to check
for all possible variations in Trajs(W⃗), but only the ones that are also in the set R, which
is built iteratively by the search. We discuss this algorithm in more details (including its
soundness) in Appendix B.

Considering Definition 18, we have the previously defined signature (SC), the causal
model M , the trajectory c and u = c ↓U . The search is initiated and, in its first phase, it
considers variables individually. A potential cause is identified when, after a trajectory slice
is overridden, Φ does not hold.

One of the causes presented is related to the range of the lidar. In the context of
the theory, we have that X⃗ = {lidarRange}. Figure 12a depicts the original lidarRange
trajectory, i.e., x⃗ = {x ↓lidarRange}. Since the duration of the system simulation (i.e., the
duration of trajectory c) is 10 seconds, the heuristic considers time slices of 5s, 2.5s, and
1s, as explained in Section 5.1. Going back to Definition 18, our algorithm assesses whether

30

Algorithm 2: Pseudo-code for causal analysis algorithm.

input : CausalModel M ;
input : Trajectory c, u;
input : Set [Variable] X⃗;
input : Set [Variable] W⃗ ;
input : Set [Trajectory] x⃗;
input : Set [Trajectory] w⃗;
input : Set [Trajectory] x⃗′;
input : BooleanPredicates Φ;
output: Boolean isCause;

1 Function IsCause(M , u, Φ, x⃗, x⃗′, w⃗, X⃗, W⃗) :
2 isCause = False;
3 if SatisfiesACOne(M , u, Φ) then

4 if SatisfiesACTwo(M , u, Φ, x⃗′, w⃗, X⃗, W⃗) then
5 if SatisfiesACThree(M , u, Φ, x⃗) then
6 isCause = True;
7 end

8 end

9 end
10 return isCause;

11 end
12 Function SatisfiesACOne(M , u, Φ) :
13 return Holds(M , u, Φ);
14 end

15 Function SatisfiesACTwo(M , u, Φ, x⃗′, w⃗, X⃗, W⃗) :

16 Mupdt
C = UpdateModel(M ,{(X⃗, x⃗′), (W⃗ , w⃗)});

17 isAC2aTrue = Holds(Mupdt
C , u, ¬Φ);

18 return isAC2aTrue;

19 end
20 Function SatisfiesACThree(M , u, Φ, x⃗,) :
21 foreach subOfX in GetSubsets(x⃗) do
22 (x⃗′, w⃗′) = SearchHeuristic(c, subOfX, interval);

23 X⃗ ′ = x⃗′.GetVariables();

24 W⃗ ′ = w⃗′.GetVariables();
25 if SatisfiesACOne(M , u, Φ) then

26 if SatisfiesACTwo(M , u, Φ, x⃗′, w⃗′, X⃗ ′, W⃗ ′) then
27 return False;
28 end

29 end

30 end
31 return True;

32 end

31

(c ←[x⃗) is a cause of Φ. For that, the 3 clauses associated with this definition must be
satisfied.

(a) x. (b) x′. (c) w.

Figure 12: Trajectory slices related to the cause.

The trajectory c and the set of slices x⃗ lead to Φ, as shown in Figure 11, and, thus, AC1
is satisfied. Additionally, x⃗ is a singleton, which trivially satisfies AC3.

For AC2, we consider the set W⃗ = {battery, brakes}, and the sets of trajectories x⃗′ =
{x′ ↓lidarRange} (Figure 12b) and w⃗ = {w ↓battery, w ↓brakes} (Figure 12c). We can see that
Φ does not hold for (MX⃗←x⃗′,W⃗←w, u) (see Figure 13). Thus, AC2 is satisfied.

Figure 13: X⃗ ← x⃗′, W⃗ ← w⃗.

Increasing the range of the lidar alone would suffice to prevent the collision. The reason
is that the car can detect the pedestrian at a greater distance. Although it is a valid
cause, the search continues, now considering the remainder of the endogenous variables.
Our search presents to the user every cause found. For instance, one could argue that it
could be prohibitively expensive to install a much more powerful lidar in an actual car.

32

5.2.5 Searching for a cause – part #2: battery and brakes separately

No additional causes have been found whilst the search considered these variables individ-
ually. As an illustration, we present some of the trajectories that were considered by the
search.

For instance, the battery was overridden during the time interval [0, 5), depicted in
Figure 14a. Due to an improved battery, the lidar works in long range mode, detects the
pedestrian and starts braking sooner. However, with the default braking system the car
still hits the pedestrian. Thus, the battery alone has not been identified as a cause.

Analogously, the search considered the braking system and overrode it to the highest
value permissible by the design. This resulted in a much lower braking distance, as shown
in Figure 14b. However, this also does not prevent the accident. The car brakes harder but
too late since the lidar is in a lower range mode due to a battery that is below the critical
threshold. The brakes alone have also not been identified as a cause.

(a) Overriding only the battery. (b) Overriding only the brakes.

Figure 14: Overriding the trajectories (search – part #2).

So far, when analysing the endogenous variables individually, only the lidar range has
been identified as a cause. The next step is to consider variables pairwise, that is, overriding
two variables at the same time.

5.2.6 Searching for a cause – part #3: battery and brakes simultaneously

Since the lidar range has been identified as a cause by itself, the search ignores this variable
when searching for causes related to multiple variables. The reason for that is the minimality
clause, AC3.

A second cause was found when overriding trajectory slices for both the battery and
the brakes. As shown in Figure 15, the car brakes harder and sooner, thus avoiding the
accident. As a conclusion, the slices for both the battery and the brakes together can also
be identified as a cause for the collision.

We emphasise that some limitations apply to the variables in the interventions. For
example, its maximum and minimum values and whether the variable is a constant. This

33

Figure 15: Overriding both battery and braking coefficient (search – part #3).

is to avoid finding causes that do not respect physics or system requirements. In this case
study, reasonable values for the braking coefficient is between 0.2 and 0.8 and, thus, having
a braking coefficient of, for instance, 300 would generate a cause that does not respect
real world scenarios. These restrictions can be seen as applying restrictions to the possible
trajectories in R.

6. Empirical evaluation

In this section, we present two case studies and a series of benchmarks that explore the
applicability of our technique for systems more complex than the running example.2 More
precisely, we describe the application of the strategy proposed in Section 5.1 to two case
studies. In the first case study, we find causes for (systematically inserted) faults on a
suspension system of a vehicle. In the second one, we explore an autonomous vehicle
platoon to find causes behind communication issues. For the benchmarks, we explore 4
scalable systems.

6.1 Research objectives

The main goal of the case studies is the evaluation of our causal analysis technique in the
context of two verification problems. The first one is about whether it can be applied to
identify the causes of (inserted) faults in the selected CPS. As for the second problem,
we aim to assess whether it can also identify causes in hazardous situations due to design
oversights. In particular, the case studies illustrate how the causality analysis can be used
to identify injected faults and design oversights.

We consider case studies containing failures and hazards reported in previous works
[8, 9], and apply our technique by defining the effects (Φ), building the causal models, and
assessing causality.

2. A lab package for the experiments described in this section can be found on Zenodo:
http://tinyurl.com/CausalityForCPS-labpackage

34

http://tinyurl.com/CausalityForCPS-labpackage

6.2 Case study #1: verifying a suspension system

In this first case study, we examine an automotive pneumatic suspension system [52]. We
make use of results from a previous experiment [8], in which the faults were manually
inserted in the system via a mutation process and detected using Hyconf. The purpose here
is to confirm whether our analysis can detect their causes and assist with the correction of
such faults. The system’s goal is to increase driving comfort by adjusting the chassis level
to compensate for road disturbances. This is achieved by a suspension system that connects
the valves attached to each wheel to a compressor and an escape valve (see Figure 16a).

(a) Suspension system overview. (b) Tolerance levels.

Figure 16: Suspension system.

The system aims to keep the chassis level as close as possible to a defined set point
in each of the four wheels. The decision to increase or decrease the chassis level is based
on the tolerance intervals defined for each wheel, as depicted in Figure 16b. We consider
[sp−otl, sp+otu] and [sp−itl, sp+itu] as the outer and inner tolerance intervals, respectively.
Here, sp represents the set point, which is the target value of the chassis level, and itu, itl,
otu and otl represent the inner and outer tolerance thresholds along with their respective
upper and lower values. Table 4 displays the variables in the system.

The system receives four inputs and it outputs the current chassis level h. The inputs are
dist, cp, ev, and bend. The first one (dist) corresponds to the disturbance level coming from
the environment, which indicates road perturbations such as small depressions or elevations.
The cp and ev inputs dictate the change in the chassis level performed by the compressor
and the escape valve, respectively. Finally, the variable bend indicates whether the vehicle
is turning, which prohibits the adjustment of the pneumatic levels.

The control flow is described as follows. The system starts with the chassis set within
the tolerance interval and all valves, as well as the compressor, are closed. Changes to the
chassis level are constantly being monitored in order to determine the need to its increase
or decrease. This is done by comparing the filtered chassis level (f) to tolerance limits

35

Table 4: Suspension system variables.

Name Type Description

dist Input Road disturbance

cp Input Compression valve

ev Input Escape valve

bend Input Car is on a bend

c Output Influence of valves on the chassis

h Internal Current chassis level

f Internal Filtered chassis level

e Internal Filtered disturbance

T Internal Filter constant

sp Internal Set point of the chassis

otu Internal Outer tolerance upper limit

otl Internal Outer tolerance lower limit

itu Internal Inner tolerance upper limit

itl Internal Inner tolerance lower limit

(otu, otl, itu, itl). The filtered chassis value is obtained by setting is first derivative to an
equation that depends on the current chassis level, the previous filtered value and the filter
constant (ḟ = h−f

T). On the other hand, the current chassis level h depends on the influence

of the compressor and escape vales and on the filtered road disturbances (ḣ = ċ+ ė).
In what follows, we manually insert faults to the actual implementation and apply our

process to determine their causes.

6.2.1 Defining the faults

We have selected two mutants from our previous experiment [8] and an overview of them can
be seen in Table 5. A manual inspection guarantees that the mutants are non-equivalent.
The first mutant changes the value of a system constant. The second replaces the value of
a variable when the system should be lowering the chassis.

Table 5: Faults inserted and the issue observed.

Original Mutation Effect Φ

otu = 5 otu = 6 Pressure increases more than allowed around 10s. c ↓{f}>[8,12) c ↓{sp} +5

ė = dist ė = 0 Sometimes, disturbances do not affect the system. c ↓{dist}>dom(c) 0 ∧ c ↓{c}=dom(c) 0

6.2.2 Building the causal model

Here, we define the signature by selecting the endogenous and exogenous variables, in
addition to building the causal model to assess the failures. With respect to the first fault,
the noticed effect is a high pressure in the tires. As for the second fault, the issue is that
road disturbances are not affecting the system sometimes. To properly fix these faults, we
need to identify why and when they happen.

36

Considering we are trying to find causes for system failures, we do not want to assign
inputs as causes for such faults. Inputs are external factors and cannot be controlled by the
system. Thus, we select as endogenous variables everything but the inputs dist, cp, ev and
bend.

• V = {e, c, h, f, T, otu, itu, itl, otl, sp}

• U = {dist, cp, ev, bend}

With respect to R, we start with the trajectory that led to the issue in each case and
more trajectories are added to each R as the search is conducted. The initial trajectories
were found in a previous experiment during conformance verification [8]. The structural
equations are as follows.

• Fe(...) = t ∗ dist

• Fc(...) =

6.8 + t ∗ ev, f > sp+ otu

6.8 + t ∗ cp, f < sp+ otl

6.8 + t ∗ 0, otherwise

• Fh(...) = t ∗ (ė+ ċ)

• Ff (...) = t ∗ ((h− f)/T)

• FT (...) = 10.3

• Fotu(...) = 5

• Fitu(...) = 4

• Fitl(...) = 2

• Fotl(...) = 1

• Fsp(...) = dist+ ((itl + itu)/2) ∗ 1/T

As defined in Section 4, for certain slices to be classified as cause, 3 clauses need to be
satisfied. In our implementation, AC1 and AC3 are automatically satisfied as they always
hold by construction. First, the search only tries to override trajectory slices that led to the
fault, considering the causal model, thus AC1. Second, the search starts looking at slices
individually before expanding the search to consider multiple variables. Furthermore, we
do not consider the variables that have already been included in causes when considering
further combinations, thus AC3. In what follows, we will focus our analysis on clause AC2.

37

(a) Trajectory c that led to the first failure. (b) Overriding otu.

Figure 17: Causal analysis for the first mutant.

6.2.3 Determining cause – mutant #1

In this step, the search looks for trajectory slices candidates and confirms whether they are
actual causes. The first failure is observed when the chassis level increases further than
what is expected; the system should lower the pressure when f > sp + 5, which does not
happen immediately in the implementation (see Figure 17a): When t ≈ 10 s, we have that
sp ≈ 3.71 and f ≈ 9.27.

The cause (i.e., in c, the variable otu is equals to 6 during the time interval [0,14)) is
trivially found by the search, when it assesses whether (c ←[x⃗) when x⃗ = {xotu}. The
failure ceases to occur when the constant otu is reduced (see Figure 17b), which is a clear
indication that otu might have been set to a higher value than it was required.

6.2.4 Determining cause – mutant #2

With respect to the second fault, to find its cause it was necessary to override 2 slices of the
original problematic trajectory. The trajectory displaying the issue is depicted in Figure
18a. The first disturbance affects the system and it responds accordingly: the chassis level
is lowered and so is the value of f . The second disturbance, however, does not affect the
system.

(a) Trajectory c that led to the second failure. (b) Overriding e and f .

Figure 18: Causal analysis for the second mutant.

The search found that no slices of e or f alone have been identified as cause. To find a
situation where ¬Φ, it was necessary to override two slices, as shown in Figure 18b. Firstly,

38

the filtered chassis level f was overridden and increased in the [7, 8) time interval, and,
secondly, the value of e had to be changed during the [8, 10) time interval, which triggered
a correction on the chassis level c. The AC2 clause was only satisfied when these two slices
were overridden together.

This cause seems intuitive. Due to the fact that if the system is not affected by dist but
is affect by e, we can assume that there is a problem in the disturbance equation. Moreover,
the search increased f to the point that the system left the down location, which suggests
that the problematic equation is associated with this particular location.

6.3 Case study #2: exploring the design of a connected platoon

Vehicular platooning is a cooperative and autonomous driving technology for linking two
or more vehicles in a convoy. The goal of the convoy is to keep a close but safe distance
between the vehicles using V2V (vehicle-to-vehicle) communications and automated driving
technologies [15].

We have built a model of such a system [9] whose goal is that all vehicles in the platoon
should keep a safe distance but within each other’s communications range. In this model,
the leading vehicle is driven by a human driver, while the velocity of the following vehicles
is autonomously controlled; the autonomous followers should keep up with the leading
vehicle’s velocity.

The communication rules follow the standard defined in the ETSI EN 302 637-2 (Cooper-
ative Awareness Basic Service - CAS) documentation [28], which, among others, describes
the rules for the frequency of packet transmission. These packets comprise Cooperative
Awareness Messages (CAM), which contain information about the vehicle, such as acceler-
ation, direction and position. Rules for sending a packet are parameterised and take into
consideration three factors: (i) whether a vehicles has moved a long enough distance, (ii) a
certain amount of time has passed, and (iii) its speed has changed above a certain threshold.
If any of the three cases holds, then the vehicle must send a packet to communicate with
the others. Moreover, we use a simple controller called the Intelligent Driver Model (IDM)
[62] in order to accelerate and decelerate the followers.

An overview of our model can be seen in Figure 19. In the communication architecture
that we use, each vehicle receives information from the leader and from the vehicle in front
of it. This allows for each follower to learn about the leader’s manoeuvres soon after they
happen and anticipate them before they are fully propagated through the platoon. Other
design decisions regarding the communication architecture may lead to different analysis
results; for instance, using direct communication with the remaining followers might increase
safety but also channel congestion.

The current model only takes longitudinal movement of the vehicle into account. We
assume that the platoon moves along a very long highway without any drastic changes in
direction. The main input of our testing campaign is the behaviour of the human driver
in the lead vehicle (i.e., its acceleration). Once this input is generated and provided to
the lead vehicle, then, via V2V communication, the convoy of followers must autonomously
adjust their behaviour to match the vehicle in front. The other inputs to our algorithms
are the design-space parameters of the CAS protocol: by automatically searching through

39

Figure 19: Platooning communication diagram [9].

the design space, we explore the effect of these parameters on the safety and the quality of
the platoon behaviour.

6.3.1 Causal analysis

In a previous work [9], we used HyConf to analyse how our model fared with respect to
the ETSI standard. For that, we conducted a controlled experiment to compare the default
parameters against alternative values. In order to generate inputs for continuous systems,
a search-based approach was used: we formulated a multi-objective search problem that
maximises hazard likelihood, data age as well as coverage of the input space via diversity
of test inputs. Our approach automatically generated scenarios that resulted in hazardous
situations (i.e., collision) whilst abiding by the standard.

Here, we select the faulty scenarios obtained by Araujo et al. [9] and use our causal
analysis to explore safety levels between network parameters and platoon speeds. The
scenarios are a combination of variations in the parameters of the ETSI standard to trigger
CAMs (see Table 6) as well as patterns of acceleration and deceleration from the leading
vehicle generated by HyConf (see Figure 20).

Table 6: ETSI 302 637-2 CAM triggering parameters (adapted from [9]).

Tmin Tmax dmin vmin

Default 100 Hz 1000 Hz 4 m 0.5 m/s

Increased frequency 50 Hz 500 Hz 2 m 0.25 m/s

Decreased frequency 125 Hz 1250 Hz 5 m 0.625 m/s

Table 6 shows the default values for the parameters as well as two variations that increase
or decrease the overall frequency rate. The parameters are for the minimum and maximum
frequency (Tmin and Tmax, respectively), minimum covered distance (dmin) and minimum
change in speed (vmin). Furthermore, Figure 20 depicts one of the acceleration scenarios
generated as input that led to a faulty behaviour.

We conduct a causal analysis on two incidents. For each one of them, we define the
corresponding Φ that describes the failure scenarios.

40

Figure 20: Example of a scenario generated by HyConf [9].

Table 7: Observed failures.

Variation Effect Φ

Increased frequency Follower 4 goes out of range (60 m) c ↓{f4.position} +60 <dom(c) c ↓{f3.position}
Decreased frequency Follower 2 collides with follower 1 c ↓{f2.position}≥dom(c) c ↓{f1.position}

In this case, we would like to assess whether the vehicles kinematic rules can be inter-
preted as cause of the faulty behaviour instead of the network parameters. For simplicity,
we classify the endogenous variables of the system as the leader and the followers, and the
remaining variables are classified as exogenous. The leading vehicle has its own acceler-
ation, speed and position (the variables are named leader.acceleration, leader.speed and
leader.position, respectively). Furthermore, the exogenous variable u1 captures the leader
acceleration (which is a abstraction of the car pedal position, wind speed, friction, tire condi-
tions) and serves as input to the system. This variable is then linked to leader.acceleration.
The remaining exogenous variables are related to communication rates.

• V = {leader, f1, f2, f3, f4}

• U = {Tmin, Tmax, vmin, dmin, u1}

Furthermore, the structural equations are defined as follows. For simplicity, we choose
to omit the equations for the second, third and fourth follower, but they follow the same
pattern as the equations for the first follower.

• Fleader.acceleration(...) = u1

• Fleader.speed(...) = 22.2 + leader.acceleration ∗ t

• Fleader.position(...) = 0 + (22.2 ∗ t+ 0.5 ∗ leader.acceleration ∗ t2)

• Ff1.acceleration(...) = aIDM (leader.position, f1.speed, | f1.speed− v0 |)

• Ff1.speed(...) = 22.2 + f1.acceleration ∗ t

• Ff1.position(...) = 0 + (22.2 ∗ t+ 0.5 ∗ f1.acceleration ∗ t2)

• Ff1.v0(...) = 22.2

• Ff1.δ(...) = 4

• Ff1.T (...) = 1.5

41

• Ff1.s0(...) = 2

• Ff1.a(...) = 4

• Ff1.b(...) = 3

6.3.2 Results

In both cases (increased and decreased frequency), the analysis found that the variable
leader.acceleration was a possible cause of the undesired behaviour, more specifically, its
rate (i.e., the jolt, the third derivative of position). The sharp acceleration, followed by a
deceleration from the leading vehicle, triggers a high frequency of packet transmission for
a long time, which causes channel congestion. A congested channel increases the rate of
packet loss, which measures the number of packets that do not arrive to the destination
over the total number of packets that were sent. When this happens, the vehicles do not
receive information in time, which increases the likelihood of collisions, as well as going out
of range. Figure 21 shows an analysis of the packet loss rate and how it grows to high levels
as the simulation goes on.

Figure 21: Packet loss analysis.

By overriding the leader acceleration, we decrease the acceleration rate, which in turn
results in a smoother response from the followers, and thus prevents the hazards from
occurring. Figure 22 shows the trajectory overriding in the [20, 30) time interval.

Figure 22: Overriding the leader trajectory.

Given that high channel congestion creates a hazard when vehicles are travelling at
high speed, we would like to avoid that. As a way to correct our model, we have made
adjustments such that whenever a high value for packet loss and channel congestion is
detected, the model limits the acceleration rate until packet loss decreases to acceptable
levels.

42

6.4 Benchmarks

Here, we discuss the result of an experiment using CPS benchmarks found in the literature3

to assess and report on the scalability of our strategy. The benchmarks that are presented
here can be used to assess different aspects of CPSs verification. All benchmarks were
chosen such that they are scalable in different problem dimensions.

The benchmarks originate from a variety of domains with the purpose of testing scalabil-
ity with respect to the number of variables or locations. We make use of three benchmarks
and each one assess a different scalability aspect.

This collection is organised by model and complexity. To ensure comparability of results,
the specifications are unambiguous and formally described in hybrid automata [6] which
is a state-based modelling formalism for CPSs. One of the most constraining problem
dimensions in hybrid systems verification are the number of continuous variables and the
number of states (or locations) and transitions. All models are available with the HyConf
tool4. The aim of this experiment is to evaluate the performance of the causal analysis. We
measure its efficiency using 3 benchmarks systems. Moreover, each system comprises four
variations that are incrementally complex (see Table 8).

Table 8: Overview of the benchmark systems.

System Variables Locations Transitions

Glycemic Control I 11 6 10

Glycemic Control II 11 9 18

Glycemic Control II 11 12 32

Glycemic Control IV 11 15 56

Filtered Oscillator I 6 4 4

Filtered Oscillator II 10 4 4

Filtered Oscillator III 18 4 4

Filtered Oscillator IV 34 4 4

Two-tank system I 4 8 28

Two-tank system II 10 16 66

Two-tank system III 16 24 128

Two-tank system IV 22 34 296

The Glycemic Control example is used to evaluate the increase in the number of locations
and transitions whilst the number of variables remains constant. Conversely, the filtered
oscillator is used to asses the increase in the number of variables whilst the structural
components (i.e., locations and transitions) remain constant. Finally, the two-tank system
is used to assess the increase in both the number of variables and number of locations and
transitions, simultaneously.

3. https://cps-vo.org/group/ARCH/benchmarks
4. https://github.com/hlsa/HyConf

43

6.4.1 Methodology

The main goal of this study is the performance evaluation of our causal analysis. This
experiment aims to verify whether the duration of the analysis grows linearly with the size
of the subject system and the number of endogenous variables selected. Another motivation
behind this study is the fact that there are few empirical and controlled experiments to
evaluate the efficiency of causal analysis in general.

• RQ1: Does the duration of the causal analysis grow linearly with the number of
selected endogenous variables?

• RQ2: Does the duration of the causal analysis grow linearly with the number of
variables in the subject system?

• RQ3: Does the duration of the causal analysis grow linearly with the number of
locations and transitions in the subject system?

We would like to note that it is possible to increase the number of endogenous variables
without increasing the number of overall variables in the system by moving variables from
the exogenous set of variables to the endogenous one. Conversely, it is also possible to
increase the number of system variables without increasing the number of endogenous ones
by adding them to the exogenous set.

We analyse the efficiency of our strategies using mutation analysis. The mutation op-
erators used in this experiment were chosen based on a study on mutation operators for
critical systems [16]. We introduce five mutations for each system; all of the mutations
change the value of variables in the systems. Then, we divide the executions in 3 stages.
In each stage, we iteratively increment the number of endogenous variables considered in
the search by a third of the total system variables. That is, in first stage, a third of the
variables are considered as endogenous. In the second stage, we consider two thirds of the
variables, and finally, in the third stage, every system variable is considered as endogenous.
This choice is made randomly. We, then, collect the mean time to determine causes, which
is followed by a statistical analysis of the results.

6.4.2 Hypotheses

In order to answer our research questions, we define the metric TDC, which represents
the time to determine a cause. Hypotheses A, B, and C aim to evaluate the research
questions that have been explained previously, respectively. For this, null hypotheses are
defined, which state that the duration of the causal analysis does not grow linearly with the
increase in the complexity of the analysis. This experiment aims to refute such hypotheses.
Thus, alternative hypotheses are also defined, which have a complementary role to the null
hypotheses, and can be accepted in case its counterpart hypotheses are rejected. We define
6 hypotheses: A0 and A1 (null and alternative, respectively), checks whether the TDC
grows linearly with the number of endogenous variables. Analogously, hypotheses B0 and
B1 (null and alternative, respectively) consider the number of variables in the systems.
Lastly, C0 and C1 consider the number of locations and transitions in the system.

• HA0: The TDC grows linearly with the number of selected endogenous variables.

44

• HA1: The TDC does not grow linearly with the number of selected endogenous vari-
ables.

• HB0: The TDC grows linearly with the number of variables in the system.

• HB1: The TDC does not grow linearly with the number of variables in the system.

• HC0: The TDC grows linearly with the number of locations and transitions in the
system.

• HC1: The TDC does not grow linearly with the number of locations and transitions
in the system.

6.4.3 Threats to validity

Here we list the threats to validity that apply to this experiment. As Internal Validity,
the mutation operators used in this experiment were chosen based on a study on mutation
operators for safety critical systems [16] and the number of inserted faults is decided manu-
ally. Concerning External Validity, this experiment only considers 3 systems; we cannot
generalise the outcome of this experiment for a general class of CPSs. Besides, since we
introduced the faults ourselves, the mutants may also not represent real world faults. As
Construct Validity, the values of the mutants (i.e., the degree of the fault) have an impact
on how difficult are for causes to be determined. Furthermore, the choice of endogenous
variables has a big impact on the performance, as the cause may not be among the chosen
variables.

6.4.4 Results

Table 9 shows a summary of the results. For each row of Table 9 we show the respective
system along with the number of variables, the number of locations and the number of
transitions respectively. For instance, ”Glycemic Control I (11 - 6 - 10)” represents the
Glycemic Control I model that comprises 11 variables, 6 locations and 10 transitions. Fur-
thermore, we depict the stage along with its respective number of endogenous variables and
the mean time for the causality assessment. We would like to note that the time reported
is the maximum time taken to analyse the system. We do not stop the search when a cause
is found, even though there is only one cause by the experiment design.

The algorithm’s time complexity seems to increase not linearly with the number of
selected endogenous variables but linearly with the number of variables and locations in the
automaton. The time reported in Table 9 is displayed in minutes and considers both the
search and simulation times. For statistical significance, each time reported is computed
as an average of 5 executions. In each of these five executions, the selected endogenous
variables (”End. Vars.”) remain the same.

We use the Glycemic Control model to study the effects of increasing locations and
transitions but keeping the total number of variables constant. For each variation (I through
IV), the results indicate a linear growth in the time taken, due to the increase in operations
contained within each added location. For instance, we double the number of locations
from 6 to 12 (in Glycemic Control I and Glycemic Control III, respectively) but the time
taken to search and assess causality does not double but increases steadily. However, when

45

Table 9: Benchmark results.

Stage I Stage II Stage III

System
End.
Vars.

Mean
Time

End.
Vars.

Mean
Time

End.
Vars.

Mean
Time

Glycemic Control I (11 - 6 - 10) 4 6.7 min 8 18.2 min 11 41.6 min

Glycemic Control II (11 - 9 - 18) 4 8.2 min 8 18.9 min 11 43.7 min

Glycemic Control III (11 - 12 - 32) 4 9.2 min 8 20.1 min 11 44.9 min

Glycemic Control IV (11 - 15 - 56) 4 10.4 min 8 21.6 min 11 46.3 min

Filtered Oscillator I (6 - 4 - 4) 2 3.7 min 4 4.8 min 6 8.9 min

Filtered Oscillator II (10 - 4 - 4) 3 8.9 min 7 14.8 min 10 23.5 min

Filtered Oscillator III (18 - 4 - 4) 6 24.2 min 12 50.1 min 18 107.8 min

Filtered Oscillator IV (34 - 4 - 4) 11 53.9 min 23 96.4 min 34 192.8 min

Tank system I (4 - 8 - 28) 2 4.4 min 3 10.2 min 4 22.6 min

Tank system II (10 - 16 - 66) 4 13.1 min 7 28.7 min 10 89.7 min

Tank system III (16 - 24 - 128) 5 34.2 min 11 71.3 min 16 156.4 min

Tank system IV (22 - 34 - 296) 7 58.2 min 15 132.1 min 22 253.5 min

doubling the number of selected endogenous variables (from 4 to 8), the time taken increases
considerably. See, for instance, Glycemic Control I, where the mean time goes from 6.7
minutes to 18.2 minutes.

The filtered oscillator model is used to assess the growth in the number of total variables
in the system whilst the number of discrete locations and transitions remain the same.
Similarly to the Glycemic Control model, a growth in the number of variables (and, with
it, the number of operations) increases the search time linearly. For instance, when the
number of selected endogenous variables remain the same, we notice only a modest increase
in the amount of time taken when our strategy is applied to Filtered Oscillator II (10 system
variables) compared to Filtered Oscillator III (18 system variables).

The findings obtained by analysing the previous models, can also be observed with the
tank system. This time, both the total number of variables and the number of locations
and transitions are increased and the time taken increases linearly if the number of selected
endogenous variables remains the same. The tank system can be used to analyse all three
metrics of this benchmark.

The observations of this experiment indicate that increasing the complexity of the sub-
ject systems increases the time taken linearly. However, increasing the number of selected
endogenous variables has a much greater impact on the overall efficiency of the strategy.
Thus, we refute hypothesis HA0, however we accept hypotheses HB0 and HC0.

Finally, we consider how Halpern has calculated the complexity of determining causality
as an NP-complete problem in terms of complexity[37]. Note that, in Halpern’s calculations,
the number of exogenous variables does not play a role in the complexity as they are all
grouped into the context (u). What plays a role is the number of variables in the cause
and the number of endogenous variables (particularly the size of the sets X, W, and Z - all
subsets of the endogenous set). Thus, even though we have observed linear growth in some
circumstances, this was only observed when the overall size of the system increased but the
number of endogenous variables remained the same (i.e., the additional variables were all
added to the set of exogenous ones). When the number of endogenous variables increases,

46

then the time increases non-linearly. Moreover, we emphasise the limitations regarding the
choice of endogenous variables and the maximum number of variables in a cause that were
applied to our strategy in order to achieve these numbers.

7. Conclusions

Causal analysis is an essential ingredient of counterexample analysis conducted after verifi-
cation techniques, providing an effective technique to isolate and eventually remove hazards
in the design and failures observed in the verification process.

In this work, we propose a formal theory and a practical analysis technique for assessing
causality in continuous systems. We attained the following results: 1) we extended an
existing theory of actual causality [39] to cope with cyber-physical systems 2) we developed
a process to apply the theory of causality and developed and integrated the algorithms in
our tool (HyConf [8]), and 3) we applied the developed technique to two case studies to
evaluate its effectiveness.

As for future work, in the case where multiple causes are provided, we aim to rank the
causes based on a weighted criteria (e.g., cost or responsibility [22]). Moreover, the notation
for describing the effects (i.e, Φ) should be extended to consider the temporal quantifiers of
Signal Temporal Logic [48]. Furthermore, there is an important discussion to be had with
respect to the use of (good) causal models. In our strategy, causal models will determine
whether an appropriate cause can be found and, thus, the choice of causal model is of high
importance. An option is to obtain and using input-output relationship descriptions from
hybrid system models [50], which can assist the user with building relevant causal models.

Currently, concerning the theory, we allow R to be any trajectory vector that obeys the
signal types, but without considering any further constraints of the specification besides
maximum and minimum values for variables. This may result in causes that do not obey
specified dynamics. We aim to address this issue as future work by, during the search,
limiting the derivatives to reasonable boundaries obtained by, for instance, exploring hybrid
automata [6] models that can be fed as input.

Lastly, despite our measures to address performance-related issues, we believe it is pos-
sible to further improve efficiency of the tool. We aim to do this by studying the effect
of different search strategies as well as analysing the impact of the length of the trajecto-
ries involved in the causal analysis (e.g., the one that contains the fault and the ones that
contain the causes).

Acknowledgments

Hugo Araujo and Mohammad Reza Mousavi have been partially supported by the UKRI
Trustworthy Autonomous Systems Node in Verifiability, Grant Award Reference EP/V026801/2.

References

Global optimisation toolbox. https://uk.mathworks.com/products/

global-optimization.html, 2021.

47

https://uk.mathworks.com/products/global-optimization.html
https://uk.mathworks.com/products/global-optimization.html

Houssam Abbas, Bardh Hoxha, Georgios E. Fainekos, J. V. Deshmukh, James Kapinski,
and Koichi Ueda. Conformance testing as falsification for cyber-physical systems. In
Proceedings of the ACM/IEEE 5th International Conference on Cyber-Physical Systems
(ICCPS 2014), page 211. IEEE, 2014.

Houssam Abbas, Bardh Hoxha, Georgios E. Fainekos, J. V. Deshmukh, James Kapin-
ski, and Koichi Ueda. WiP abstract: Conformance testing as falsification for cyber-
physical systems. In Proceedings of the ACM/IEEE 5th International Conference on
Cyber-Physical Systems (ICCPS 2014), page 211. IEEE CS, 2014. Available online:
http://arxiv.org/abs/1401.5200.

Rui Abreu, Peter Zoeteweij, Rob Golsteijn, and Arjan JC Van Gemund. A practical evalu-
ation of spectrum-based fault localization. Journal of Systems and Software, 82(11):1780–
1792, 2009.

Rajeev Alur. Principles of cyber-physical systems. MIT Press, 2015.

Rajeev Alur, Costas Courcoubetis, Thomas A Henzinger, and Pei-Hsin Ho. Hybrid au-
tomata: An algorithmic approach to the specification and verification of hybrid systems.
In Hybrid systems, pages 209–229. Springer, 1993.

Yashwanth Annpureddy, Che Liu, Georgios Fainekos, and Sriram Sankaranarayanan. S-
TaLiRo: A tool for temporal logic falsification for hybrid systems. In International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems, pages
254–257. Springer, 2011.

Hugo Araujo, Gustavo Carvalho, Mohammad Mousavi, and Augusto Sampaio. Multi-
objective search for effective testing of cyber-physical systems. In Proceedings of the 17th
International Conference on Software Engineering and Formal Methods. Springer, 2019.

Hugo Araujo, Ties Hoenselaar, Mohammad Reza Mousavi, and Alexey Vinel. Connected
automated driving: A model-based approach to the analysis of basic awareness services. In
2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio
Communications, pages 1–7. IEEE, 2020.

Christel Baier, Clemens Dubslaff, Florian Funke, Simon Jantsch, Rupak Majumdar, Jakob
Piribauer, and Robin Ziemek. From verification to causality-based explications. 2021.

Christel Baier, Clemens Dubslaff, Florian Funke, Simon Jantsch, Jakob Piribauer, and
Robin Ziemek. Operational causality–necessarily sufficient and sufficiently necessary. In A
Journey from Process Algebra via Timed Automata to Model Learning: Essays Dedicated
to Frits Vaandrager on the Occasion of His 60th Birthday, pages 27–45. Springer, 2022.

Christel Baier, Florian Funke, Jakob Piribauer, and Robin Ziemek. On probability-raising
causality in Markov decision processes. In FoSSaCS, pages 40–60, 2022.

Sander Beckers and Joseph Y Halpern. Abstracting causal models. In Proceedings of the
aaai conference on artificial intelligence, volume 33, pages 2678–2685, 2019.

48

Ilan Beer, Shoham Ben-David, Hana Chockler, Avigail Orni, and Richard Trefler. Ex-
plaining counterexamples using causality. In International Conference on Computer Aided
Verification, pages 94–108. Springer, 2009.

Carl Bergenhem, Steven Shladover, Erik Coelingh, Christoffer Englund, and Sadayuki
Tsugawa. Overview of platooning systems. In Proceedings of the 19th ITS World Congress,
Oct 22-26, Vienna, Austria (2012), 2012.

Nguyen Thanh Binh et al. Mutation operators for Simulink models. In Knowledge and
Systems Engineering (KSE), 2012 Fourth International Conference on, pages 54–59. IEEE,
2012.

Hichem Boudali, Pepijn Crouzen, and Mariëlle Stoelinga. A compositional semantics for
Dynamic Fault Trees in terms of Interactive Markov Chains. In International Symposium
on Automated Technology for Verification and Analysis, pages 441–456. Springer, 2007.

Georgiana Caltais, Mohammad Reza Mousavi, and Hargurbir Singh. Causal reasoning for
safety in Hennessy-Milner logic. Fundamenta Informaticae, 173(2-3):217–251, 2020.

Xin Chen, Erika Ábrahám, and Sriram Sankaranarayanan. Flow*: An analyzer for non-
linear hybrid systems. In International Conference on Computer Aided Verification, pages
258–263. Springer, 2013.

Ferdinando Chiacchio, Diego D’Urso, Lucio Compagno, Marzio Pennisi, Francesco Pap-
palardo, and Gabriele Manno. SHyFTA, a stochastic hybrid fault tree automaton for the
modelling and simulation of dynamic reliability problems. Expert Systems with Applica-
tions, 47:42–57, 2016.

Hana Chockler, Orna Grumberg, and Avi Yadgar. Efficient automatic STE refinement
using responsibility. In International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, pages 233–248. Springer, 2008.

Hana Chockler and Joseph Y Halpern. Responsibility and blame: A structural-model
approach. Journal of Artificial Intelligence Research, 22:93–115, 2004.

Ziquan Deng, Samuel P Eshima, James Nabity, and Zhaodan Kong. Causal signal temporal
logic for the environmental control and life support system’s fault analysis and explanation.
IEEE Access, 11:26471–26482, 2023.

Alexandre Donzé. Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In International Conference on Computer Aided Verification, pages 167–170.
Springer, 2010.

Clemens Dubslaff, Kallistos Weis, Christel Baier, and Sven Apel. Causality in configurable
software systems. arXiv preprint arXiv:2201.07280, 2022.

Joanne Bechta Dugan, Salvatore J Bavuso, and Mark A Boyd. Dynamic fault-tree models
for fault-tolerant computer systems. IEEE Transactions on reliability, 41(3):363–377, 1992.

49

Clifton A Ericson and Clifton Ll. Fault tree analysis. In System Safety Conference,
Orlando, Florida, volume 1, pages 1–9, 1999.

ETSI EN 302 637- 2; Intelligent Transport Systems (ITS); vehicular communications; basic
set of applications; part 2: Specification of cooperative awareness basic service, 2013.

Georgios E Fainekos and George J Pappas. Robustness of temporal logic specifications for
continuous-time signals. Theoretical Computer Science, 410(42):4262–4291, 2009.

Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Rajarshi Ray, Olivier
Lebeltel, Rodolfo Ripado, Antoine Girard, Thao Dang, and Oded Maler. SpaceEx: Scal-
able verification of hybrid systems. In International Conference on Computer Aided Veri-
fication, pages 379–395. Springer, 2011.

Nathan Fulton, Stefan Mitsch, Jan-David Quesel, Marcus Völp, and André Platzer. Key-
maera x: An axiomatic tactical theorem prover for hybrid systems. In International
Conference on Automated Deduction, pages 527–538. Springer, 2015.

Dan Geiger and Judea Pearl. On the logic of causal models. In Machine intelligence and
pattern recognition, volume 9, pages 3–14. Elsevier, 1990.

Clive WJ Granger. Investigating causal relations by econometric models and cross-spectral
methods. Econometrica: journal of the Econometric Society, pages 424–438, 1969.

Jan Friso Groote and Mohammad Reza Mousavi. Modeling and analysis of communicating
systems. MIT press, 2014.

Philip George Guest and Philip George Guest. Numerical methods of curve fitting. Cam-
bridge University Press, 2012.

Joseph Halpern. A modification of the Halpern-Pearl definition of causality. In Twenty-
Fourth International Joint Conference on Artificial Intelligence, 2015.

Joseph Y Halpern. Actual causality. MiT Press, 2016.

Joseph Y Halpern and Judea Pearl. Causes and explanations: A structural-model approach
- part I: Causes. In Proc. Seventeenth Conference on Uncertainty in Artificial Intelligence
(UAI 2001), pages 194—-202, 2001.

Joseph Y Halpern and Judea Pearl. Causes and explanations: A structural-model ap-
proach. part I: Causes. The British journal for the philosophy of science, 56(4):843–887,
2005.

Joseph Y Halpern and Judea Pearl. Causes and explanations: A structural-model ap-
proach. part II: Explanations. The British journal for the philosophy of science, 56(4):889–
911, 2005.

Daniel Murray Hausman. Causal relata: Tokens, types, or variables? Erkenntnis, 63(1):33–
54, 2005.

50

Matthew Hennessy and Robin Milner. On observing nondeterminism and concurrency.
In International Colloquium on Automata, Languages, and Programming, pages 299–309.
Springer, 1980.

Amjad Ibrahim, Severin Kacianka, Alexander Pretschner, Charles Hartsell, and Gabor
Karsai. Practical causal models for cyber-physical systems. In NASA Formal Methods
Symposium, pages 211–227. Springer, 2019.

Sebastian Junges, Joost-Pieter Katoen, Mariëlle Stoelinga, and Matthias Volk. One net
fits all: a unifying semantics of dynamic fault trees using GSPNs. In Application and
Theory of Petri Nets and Concurrency: 39th International Conference, PETRI NETS
2018, Bratislava, Slovakia, June 24-29, 2018, Proceedings 39, pages 272–293. Springer,
2018.

Bernhard Kaiser, Catharina Gramlich, and Marc Förster. State/event fault trees—a safety
analysis model for software-controlled systems. Reliability Engineering & System Safety,
92(11):1521–1537, 2007.

Edward Ashford Lee and Sanjit A Seshia. Introduction to embedded systems: A cyber-
physical systems approach. Mit Press, 2016.

Florian Leitner-Fischer and Stefan Leue. Causality checking for complex system models.
In International Workshop on Verification, Model Checking, and Abstract Interpretation,
pages 248–267. Springer, 2013.

Oded Maler and Dejan Nickovic. Monitoring temporal properties of continuous signals. In
Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems, pages
152–166. Springer, 2004.

Melanie Mitchell. An introduction to genetic algorithms. MIT press, 1998.

Stefan Mitsch and André Platzer. ModelPlex: Verified runtime validation of verified cyber-
physical system models. Formal Methods in System Design, 49(1):33–74, 2016.

Pieter J Mosterman and Justyna Zander. Cyber-physical systems challenges: a needs anal-
ysis for collaborating embedded software systems. Software & Systems Modeling, 15(1):5–
16, 2016.

Olaf Müller and Thomas Stauner. Modelling and verification using linear hybrid automata–
a case study. Mathematical and Computer Modelling of Dynamical Systems, 6(1):71–89,
2000.

Girish Keshav Palshikar. Temporal fault trees. Information and Software Technology,
44(3):137–150, 2002.

Judea Pearl. Causal diagrams for empirical research. Biometrika, 82(4):669–688, 1995.

Judea Pearl. Probabilistic reasoning in intelligent systems: networks of plausible inference.
Elsevier, 2014.

51

Judea Pearl. The seven tools of causal inference, with reflections on machine learning.
Communications of the ACM, 62(3):54–60, 2019.

Judea Pearl et al. Causal inference in statistics: An overview. Statistics surveys, 3:96–146,
2009.

Spencer Peters and Joseph Y. Halpern. Causal modeling with infinitely many variables,
2021.

Hendrik Roehm, Jens Oehlerking, Matthias Woehrle, and Matthias Althoff. Model con-
formance for cyber-physical systems: A survey. ACM Trans. Cyber-Phys. Syst., 3(3), aug
2019.

Ali Shojaie and Emily B Fox. Granger causality: A review and recent advances. Annual
Review of Statistics and Its Application, 9:289–319, 2022.

Peter Spirtes. Introduction to causal inference. Journal of Machine Learning Research,
11(5), 2010.

Martin Treiber, Ansgar Hennecke, and Dirk Helbing. Congested traffic states in empirical
observations and microscopic simulations. Physical review E, 62(2):1805, 2000.

Jan Tretmans. Conformance testing with labelled transition systems: Implementation
relations and test generation. Computer networks and ISDN systems, 29(1):49–79, 1996.

Michiel Van Osch. Hybrid input-output conformance and test generation. In Formal
Approaches to Software Testing and Runtime Verification, pages 70–84. Springer, 2006.

Martin Weiglhofer, Bernhard K Aichernig, and Franz Wotawa. Fault-based conformance
testing in practice. Int. J. Softw. Informatics, 3(2-3):375–411, 2009.

Edward N Zalta, Uri Nodelman, Colin Allen, and John Perry. Stanford encyclopedia of
philosophy, 1995.

Zhenya Zhang, Jie An, Paolo Arcaini, and Ichiro Hasuo. Online causation monitoring of
signal temporal logic. arXiv preprint arXiv:2305.17754, 2023.

Zhenya Zhang, Gidon Ernst, Sean Sedwards, Paolo Arcaini, and Ichiro Hasuo. Two-layered
falsification of hybrid systems guided by monte carlo tree search. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 37(11):2894–2905, 2018.

52

Appendix A. List of operators

X Variable.

X⃗ List/Set of variables.

x Trajectory.

x⃗ List/Set of trajectories.

x ↓X⃗ Trajectory restricted to the set of variables X⃗.

x[i,j) Trajectory slice.

x =[i,j) y The trajectories x and y are equals when restricted to the set Z⃗ and within
[i,j).

c←[x⃗ The values in the list of trajectory x⃗ are equals to the values in c.

MX⃗←x⃗ Filtering the trajectories of the variables in X⃗ with the trajectories in x⃗.

Appendix B. Soundness

In order to discuss the soundness of our implementation of the definition of cause, we provide
a one-to-one compositional mapping between the constructs used in Algorithm 2 and the
concepts introduced in Definition 18. Firstly, we provide Proposition 1 that makes the
mapping easier to understand.

Proposition 1. In our implementation, (M,u) |= (c←[x⃗) always holds by construction.

Proof. In our implementation, the causal model M is built independently of a system exe-
cution. However, once a trajectory (c) that leads to a failure (Φ) is found, the trajectory
that corresponds to the exogenous variables (u) is built by applying the projection (c ↓U).
Thus (M,u) is always built around c. Furthermore, the list of trajectory slices in the cause
(x⃗X) is, by construction, taken from c ↓V . Thus, Proposition 1 follows.

In what follows, we provide a one-to-one compositional mapping of Definition 18 into
Algorithm 2 (see Table 10) and explain it below. For that, we rely on the assumption that
the inputs (generated by our search heuristic in Algorithm 1) are generated appropriately
from the models and that the causal model conforms with the system. In the preamble
for the definition of cause, a causal model M , a trajectory c, and a conjunction of Boolean
predicates Φ are given; analogously, they are given as input for our algorithm. Furthermore,
the definition requires a list of variables X⃗ ∈ V that is taken from the causal model in the
search algorithm. Lastly, the theory also calls for a list of trajectory slices x⃗. In both the
algorithm and the definition, to determine cause, three clauses must be satisfied (4th row
of Table 10).

The mapping of clause AC1 is straightforward. By construction (in Algorithm 1), x⃗ is
taken from c and, thus, it suffices for Algorithm 2 to only evaluate whether Φ holds in the
causal model. As for AC2, the set W⃗ is also given as input. An alternative trajectory is
the result of overriding c with the slices x⃗′ and w⃗, which is done via the model update (9th
row). This is used to check that Φ does not hold in this updated model. Lastly, AC3 checks
minimality by searching for causes that are subset of the prospective one. This new search
adds trajectories to R, which then confirms soundness as, according to Definition 18, we
need to check every w⃗ ⊆ R ∩ Trajs(W).

53

Table 10: Mapping between Algorithm 2 and Definition 18.

Given a causal model M =
⟨⟨U ,V,R⟩,F⟩
a setting u ∈ Trajs(U), a tra-
jectory c : Trajs(U ∪ V) such
that c ↓U=dom(u) u

a list of variables X⃗,

and a set of trajectory slices
x⃗ = {x | x ∈ Trajs(V)},

then (c ←[x⃗) is a cause of Φ
in (M,u) when the following
three conditions hold:

AC1. (M,u) |= (c←[x⃗) ∧ Φ

AC2. There exists a set of
variables W⃗ ⊂ V
and two sets of trajectories
x⃗′ ∈ Alts(x⃗), and w⃗ ⊆
Trajs(W⃗) ∩ R such that if
(M,u) |= (c←[w⃗), then:

(MX⃗←x⃗′,W⃗←w⃗, u) |= ¬Φ

AC3. There is no strict sub-
set of x⃗ that satisfies AC1
and AC2

The computational complexity of determining a cause is considered intractable (NP-
complete for some cases [37]). And it is due to this reason that we apply some limitations
to our strategy (as highlighted in Sections 5.1 and 5.2) in order to reach a verdict (e.g., the
number of endogenous variables and a maximum number on interactions between variables

54

during the search). Hence, our algorithm only provides an approximation to the solution
of the actual problem. Since we impose finite limits to the number of chosen variables,
the granularity and number of slices, and the number of interactions between variables (up
to three-wise) when searching, we guarantee that the program will terminate. However,
due to the problem’s intractability and the pseudo-random nature of the search, we do not
guarantee that our approach will find a cause. Our approach is not exhaustive but we have
shown via the mapping that our approach is sound with respect to the discretised version
of the problem. That is, our approach finds actual causes (with respect to our theory)
when one considers the necessary discretisation steps (in which we approximate a strictly
continuous problem into a discrete one), which are needed for simulation of CPSs in physical
machines.

55

	Introduction
	Problem definition and contributions
	Structure of the paper

	Related work
	Preliminaries
	Causal theory for discrete systems
	Cyber-physical systems
	Running example: an autonomous vehicle

	Causality for CPSs
	Analysis of cyber-physical systems
	Trajectories and overriding
	Causal models for CPSs
	Causes for CPSs

	Practical applications of causality
	Causal analysis process
	Application to the running example
	Defining the hazard
	Building the causal model
	Searching for causes
	Searching for a cause – part #1: lidar range
	Searching for a cause – part #2: battery and brakes separately
	Searching for a cause – part #3: battery and brakes simultaneously

	Empirical evaluation
	Research objectives
	Case study verifying a suspension system
	Defining the faults
	Building the causal model
	Determining cause – mutant #1
	Determining cause – mutant #2

	Case study exploring the design of a connected platoon
	Causal analysis
	Results

	Benchmarks
	Methodology
	Hypotheses
	Threats to validity
	Results

	Conclusions
	List of operators
	Soundness

