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Abstract
Membership Inference Attacks (MIAs) pose a significant risk to
the privacy of training datasets by exploiting subtle differences
in model outputs to determine whether a particular data sample
was used during training. These attacks can compromise sensi-
tive information, especially in domains such as healthcare and
finance, where data privacy is paramount. Traditional mitigation
techniques, such as static differential privacy, rely on injecting a
fixed amount of noise during training or inference. However, this
approach often leads to a detrimental trade-off: the noise may be
insufficient to counter sophisticated attacks or, when increased,
may substantially degrade model performance. In this paper, we
present DynaNoise, an adaptive approach that dynamically mod-
ulates noise injection based on query sensitivity. Our approach
performs sensitivity analysis using measures such as Shannon en-
tropy to evaluate the risk associated with each query and adjusts
the noise variance accordingly. A probabilistic smoothing step is
then applied to re-normalize the perturbed outputs, ensuring that
the model maintains high accuracy while effectively obfuscating
membership signals. We further propose an empirical metric, the
Membership Inference Defense Privacy–Utility Trade-off (MIDPUT),
which quantifies the balance between reducing attack success rates
and preserving the target model’s accuracy. Our extensive evalua-
tion on several benchmark datasets demonstrates that DynaNoise
not only significantly reduces MIA success rates but also achieves
up to a four-fold improvement in the MIDPUT metric compared to
the state-of-the-art. Moreover, DynaNoise maintains competitive
model accuracy while imposing only marginal inference overhead,
highlighting its potential as an effective and efficient privacy de-
fense against MIAs.

1 Introduction
Machine learning has revolutionized many domains by leverag-
ing vast amounts of data to achieve impressive performance [3–
5, 13, 14, 27]. However, this success comes at a cost, where sensitive
information from training datasets may be inadvertently memo-
rized, posing serious privacy risks [2, 17, 24, 25]. For example, in a
scenario where a hospital deploys a predictive model to diagnose
diseases; if an attacker can determine whether a patient’s record
was part of the training set, it may reveal that the patient has vis-
ited the hospital, thereby compromising their privacy. Similarly, in
finance, membership leakage could expose clients’ investment his-
tories. Such risks underscore the need for robust defenses against
privacy attacks.

Membership Inference Attack (MIA) [19], as shown in Figure 1,
exploits subtle differences in amodel’s output behavior to determine
whether a specific data record was used during training, thereby

threatening the confidentiality of individual data points [19]. Con-
ventional defenses, such as differential privacy, introduce a fixed
level of noise during training or inference to obscure membership
information [1]. While these approaches offer formal privacy guar-
antees, they force an inherent trade-off between privacy and utility.
In many practical settings, uniformly adding noise can significantly
degrade model performance, yet reducing the noise level may leave
the model susceptible to advanced membership inference attacks.

Figure 1: An illustration of how MIA works.

To address these challenges, we introduce DynaNoise, an adap-
tive noise injection approach that modulates the privacy noise
dynamically based on query sensitivity. Our method first assesses
the risk of each query through sensitivity analysis, by utilizing
metrics such as Shannon entropy [10], and then adjusts the noise
variance accordingly. A subsequent probabilistic smoothing step is
applied to re-normalize the perturbed outputs, ensuring that the
model retains high predictive accuracy while effectively obfuscating
membership signals. Another key innovation of our approach is the
introduction of a novel empirical metric, the Membership Inference
Defense Privacy–Utility Trade-off (MIDPUT), which quantitatively
captures the balance between the reduction in attack success rates
and the preservation of model accuracy. Our experimental results
on CIFAR-10, ImageNet-10, and SST-2 datasets demonstrate that
DynaNoise not only significantly reduces membership inference
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attack success rates but also achieves up to a four-fold improve-
ment in the MIDPUT metric compared to existing defenses such as
SELENA.

The main contributions of this paper are threefold:
(1) Proposal of a novel defense mechanism against member-

ship inference attacks called DynaNoise, that dynamically
adjusts the noise level based on query sensitivity, thereby
providing stronger privacy protection with minimal impact
on target model accuracy.

(2) Proposal of a new empirical metric called Membership In-
ference Defense Privacy–Utility Trade-off (MIDPUT), that
quantifies the trade-off between the reduction in attack suc-
cess rates and the loss in model performance. This metric
enables a more detailed and precise evaluation of privacy
defenses.

(3) Comprehensive evaluation through extensive experiments
on multiple benchmark datasets and models using different
system parameters.

The remainder of this paper is organized as follows. In Section 2,
we review the state-of-the-art in membership inference attacks and
defenses. Section 3 and 4 explain our problem statement and threat
model, respectively. Section 5 reviews the preliminary concepts re-
lated to this work. Section 6 details the design and implementation
of DynaNoise, including our adaptive noise injection and the MID-
PUT metric. Section 7 presents our experimental setup, results, and
a discussion of the advantages and limitations of the proposed ap-
proach. Finally, Section 8 concludes the paper and discusses future
research directions.

2 Related Work
2.1 Membership Inference Attacks (MIAs)
Membership inference attacks can be broadly categorized into two
types: shadow training-based attacks [9, 15, 19] and metric-based
attacks [20, 26].

Shadow training-based attacks. Shokri et al. [19] introduced
one of the earliest frameworks for membership inference attacks. In
their approach, the adversary constructs multiple shadow models
that mimic the behavior of the target model by training them on
data drawn from a distribution similar to that of the target. The
outputs of these shadowmodels on inputs with knownmembership
statuses are then used to train an attack classifier that distinguishes
between members and non-members. Although this method can
achieve high attack accuracy, its effectiveness relies on access to a
dataset closely resembling the target model’s training data.

Salem et al. [15] build upon this framework by demonstrating
that a single shadow model can often suffice to perform effective
membership inference. By reducing the number of shadow models,
their method decreases the overall computational cost and query
burden, making the attack more practical. However, the approach
still assumes that the adversary can obtain or generate data from a
similar distribution as the target model, which may not always be
realistic.

Long et al. [9] further refine shadow training-based attacks by
optimizing both the construction of the shadow models and the de-
sign of the attack classifier. Their improvements reduce the number
of queries needed and enhance the robustness of the attack, even

when the adversary’s resources are limited. This work underscores
that shadow training-based methods remain potent, though they
continue to depend on the availability of representative auxiliary
data.

Metric-based attacks. In contrast to shadow training-based
methods, metric-based attacks infer membership directly from
the target model’s output by evaluating specific statistical metrics.
Yeom et al. [26] propose a loss-based attack that exploits the ten-
dency of models to incur lower loss on training samples compared
to non-training samples. By setting an appropriate loss threshold,
the adversary can effectively distinguish between members and
non-members. While this approach is straightforward and does
not require training additional models, its effectiveness is highly
sensitive to the chosen threshold and may vary across different
models.

Similarly, Song et al. [20] explore confidence-based attacks, which
leverage the observation that models often yield higher prediction
confidence for training samples. In this method, membership is
inferred by comparing the maximum confidence score against a
threshold, which can be either fixed or adjusted on a per-class ba-
sis. Although this technique is simple and requires little auxiliary
information, it is also sensitive to the threshold setting, thereby
affecting its overall robustness.

2.2 Membership Inference Defenses
There are several recent works aimed at addressing MIAs, which
are presented and compared in Table 1. Subsequently, we provide a
detailed overview of each method along with a discussion of their
respective limitations.

Abadi et al. [1] propose DP-SGD, a defense that integrates dif-
ferential privacy directly into the training process by clipping per-
example gradients and adding calibrated Gaussian noise. Their
method employs a moments accountant to tightly track the cu-
mulative privacy loss, thereby offering formal, provable privacy
guarantees. This approach ensures that the entire model adheres to
a specified privacy budget. However, because DP-SGD uses a static
noise injection scheme that does not adapt to the sensitivity of
individual queries, the large noise required to meet a strict privacy
budget often leads to a significant drop in accuracy. Consequently,
the overall utility of the trained model may suffer, especially in
complex or high-dimensional tasks.

In another work, Nasr et al. [11] introduce adversarial regular-
ization, an approach that augments the training process with a
min-max game. In their approach, an auxiliary attack model is
trained concurrently with the main classifier to predict member-
ship information, while the classifier is regularized to minimize
the success of this inference attack. This empirical strategy has
been shown to reduce the effectiveness of membership inference
attacks with only a modest loss in utility. Nevertheless, because it
does not offer formal differential privacy guarantees and its perfor-
mance is sensitive to the tuning of adversarial hyperparameters, the
method may not be robust across different datasets and deployment
scenarios.

Moving from modifications in the training procedure, Jia et al.
[7] propose MemGuard, a post-processing technique that directly
perturbs the output confidence scores using adversarial noise. By
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Table 1: Comparison of defense mechanisms against membership inference attacks.

Defense Method Year Approach/Mechanism Privacy Guarantee Utility Impact Comp. Overhead
DP-SGD [1] 2016 Gradient clipping + addi-

tive Gaussian noise (static
noise injection)

Formal (provable DP) High accuracy drop Moderate

Adversarial Regularization [11] 2018 Min-max adversarial
training integrating an
attack model into training

Empirical Low to moderate accuracy drop Moderate

MemGuard [7] 2019 Post-processing: adversar-
ial noise added to confi-
dence score vectors

Empirical Minimal accuracy drop Low

SELENA [21] 2022 Adaptive ensemble (Split-
AI + Self-Distillation) with
dynamic noise injection

Empirical Minimal accuracy drop Moderate

DynaNoise (This work) 2025 Adaptive noise injection
based on query sensitiv-
ity (sensitivity analysis,
dynamic noise variance
modulation, probabilistic
smoothing)

Empirical Minimal accuracy drop Low

transforming these outputs into adversarial examples, MemGuard
aims to confuse any attackmodel attempting to distinguish between
training and non-training samples. This method maintains high
utility since the perturbations are designed to minimally affect
the predicted labels. However, its reliance on fixed perturbation
patterns means that it may be less effective if an adversary adapts
to the specific noise pattern used.

Finally, Tang et al. [21] take an ensemble-based approach with
SELENA, which trains multiple sub-models on overlapping subsets
of the training data and then distills their outputs into a single pre-
diction through a self-distillation process. This adaptive inference
strategy selectively aggregates predictions from sub-models that
have not seen the queried sample, thereby enhancing the privacy-
utility trade-off. Despite its advantages, the ensemble inference
process introduces moderate computational overhead due to the re-
quirement of running multiple sub-models concurrently in training
phase, which can be a drawback in resource-constrained settings.

Despite these promising approaches, there are still important
challenges that limit their practical effectiveness. One key limitation
is that the fixed nature of noise injection does not account for the
varying sensitivity of different queries. This rigidity can result in
excessive noise for low-risk queries, unnecessarily degrading utility,
or insufficient noise for high-risk queries, failing to adequately
obfuscate membership information. Additionally, ensemble-based
defenses, such as SELENA, incur significant computational and time
overhead due to the need to train and evaluate multiple sub-models.
These requirements may not be feasible in resource-constrained
environments. To address these limitations, our work proposes a
dynamic noise injection mechanism that adjusts the noise level
based on query sensitivity, thereby achieving a more balanced
trade-off between privacy protection and model performance, while
incurring only negligible computational overhead.

3 Problem Statement
Membership inference attacks exploit subtle discrepancies between
a model’s outputs on training data and those on unseen data,
thereby threatening the privacy of individuals whose information
is used during training. Traditional privacy-preserving techniques,
such as static differential privacy, address this risk by adding a fixed
amount of noise to the model outputs. However, the uniform appli-
cation of noise fails to account for the heterogeneous sensitivity of
different queries. For low-risk queries, the excessive noise degrades
model accuracy and adversely affects user experience. Conversely,
for high-risk queries, an insufficient noise level may not sufficiently
mask membership information, leaving the model vulnerable to
membership inference attacks.

The central challenge, therefore, is to balance the trade-off be-
tween privacy and utility. A static noise injection strategy may
either compromise model performance or inadequately protect
against adversaries, thereby necessitating a more refined approach
that dynamically adapts to the varying sensitivity across different
queries.

4 Threat Model
In our threat model, the adversary has black-box access to the
target model. That is, the attacker can submit any input query 𝑞 and
obtain its corresponding prediction vector 𝑓 (𝑞). The adversary is
assumed to know the input/output format (for example, the number
of classes and the range of confidence values) and may either have
knowledge of the model’s architecture and training algorithm or
only interact with the model via a machine-learning-as-a-service
(MLaaS) platform where such internal details are hidden.

The adversary’s goal is to infer whether a given data record 𝑞
was used in training the target model. Formally, the attacker aims
to distinguish between the hypotheses:

𝐻0 : 𝑞 ∉ 𝐷train,

𝐻1 : 𝑞 ∈ 𝐷train .
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Where 𝐷train stands for the training dataset. We assume that the
adversary may also have some background knowledge about the
population from which 𝐷train is drawn, such as general statistics
on feature distributions. An attack is considered successful if the
adversary can determine the membership status of 𝑞 with high
accuracy.

Our proposed defense mechanism, DynaNoise, is designed under
these assumptions. By dynamically adjusting the noise added to the
model’s outputs based on the sensitivity of each query, DynaNoise
aims to blur the distinction between training and non-training data,
thereby reducing the adversary’s ability to reliably infer member-
ship.

5 Preliminaries
In this section, we explain the background concepts related to this
work. In addition, Table 2 presents a summary of the notations used
throughout this paper.

5.1 Static Differential Privacy and Its
Limitations

Static differential privacy (DP) is a formal framework for protect-
ing individual data records by adding random noise during model
training or inference [1, 6]. The goal is to ensure that the inclusion
or exclusion of any single data point has only a limited impact on
the model’s output, thus protecting individual privacy.

A randomized mechanism 𝑀 (such as a learning algorithm or
model output function) is said to satisfy (𝜖, 𝛿)-differential privacy if,
for all possible outputs 𝑆 , and for any pair of neighboring datasets
𝐷 and 𝐷′ (which differ in only one data record), the following
inequality holds:

Pr[𝑀 (𝐷) ∈ 𝑆] ≤ 𝑒𝜖 · Pr[𝑀 (𝐷′) ∈ 𝑆] + 𝛿,
where:

• Pr[𝑀 (𝐷) ∈ 𝑆]: the probability that the mechanism pro-
duces an output within the set 𝑆 , where the randomness
arises from the noise intentionally added by the mechanism.

• 𝑀 (𝐷): the randomized output (e.g., model prediction or
learned parameters) when themechanism operates on dataset
𝐷 ,

• 𝑆 : any subset of possible outputs,
• 𝐷,𝐷′: neighboring datasets differing in exactly one entry,
• 𝑒𝜖 : a multiplicative bound controlling the degree of out-

put similarity between neighboring datasets; 𝑒 is Euler’s
number (approximately 2.718)

• 𝜖 : the privacy budget (smaller values indicate stronger pri-
vacy),

• 𝛿 : the probability of violating the 𝜖-bound (typically a small
value like 10−5).

While this approach provides mathematically rigorous privacy
guarantees, it usually applies the same level of noise to all data
points or queries, regardless of their actual risk level. This static
and uniform noise injection leads to a key limitation:

• If the noise is too large, it can significantly degrade the
model’s accuracy and utility.

• If the noise is too small, it may fail to protect against ad-
vanced membership inference attacks.

This inherent rigidity in static DP motivates the need for more
flexible strategies, such as adaptive or dynamic noise injection
mechanisms that tailor the amount of noise based on the sensitivity
of each query or prediction.

5.2 Information Leakage in Deep Learning
Deep neural networks are known to exhibit complex behavior that
may inadvertently reveal information about their training data.
Several works [12, 22, 23] have shown that even models with strong
generalization capabilities can overfit on certain examples, thereby
creating a gap between the output distributions for training and
non-training data. This leakage is often measured using differences
in loss or divergence in prediction distributions, which can be
formally expressed by metrics such as Kullback-Leibler divergence:

𝐷𝐾𝐿 (𝑃 ∥ 𝑄) =
∑︁
𝑖

𝑃 (𝑖) log 𝑃 (𝑖)
𝑄 (𝑖) ,

where 𝑃 and 𝑄 represent the output distributions for training and
non-training examples, respectively.

Understanding and quantifying this leakage is critical for de-
signing effective privacy-preserving mechanisms. The degree of
leakage can inform the design of adaptive noise injection strategies
that modulate the amount of noise based on the risk associated with
each query, thereby reducing the adversary’s ability to distinguish
between members and non-members while preserving the utility
of the model.

Table 2: Summary of notations used in the paper.

Symbol Description
𝑓 (𝑞) Model logits for input 𝑞.
𝑓 (𝑞) Noisy logits: 𝑓 (𝑞) + 𝜂.
𝑓 (𝑞) Final probabilities (after smoothing).
𝑘 Number of classes.
p Softmax of 𝑓 (𝑞).

𝐻 (𝑝) Entropy of p.
𝑅(𝑞) Sensitivity score of 𝑞.
𝜎20 Base noise variance.
𝜆 Noise scaling parameter.

𝜎 (𝑞)2 Adjusted noise variance.
𝜂 Gaussian noise vector.
𝑇 Temperature for smoothing.

ASR Attack Success Rate.
MIDPUT Overall Privacy–Utility Trade-offmetric.

MIDPUT𝐶 , MIDPUT𝐿 , MIDPUT𝑆 Per-attackMIDPUTmetrics (Confidence,
Loss, Shadow).

6 Proposed Approach
Our proposed approach dynamically mitigates membership infer-
ence attacks by adapting the noise injection process to the sen-
sitivity of each individual query. The step-by-step processes of
the proposed approach is provided in Algorithm 1. The system is
composed of three primary components, as described below:

• Sensitivity Analysis:
In this module, we evaluate the risk associated with each
query based on the model’s output probability distribution.
Let 𝑝 = (𝑝1, 𝑝2, . . . , 𝑝𝑘 ) denote the output probability vector
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for a given input, where 𝑘 is the number of classes. We
compute the Shannon entropy [18]:

𝐻 (𝑝) = −
𝑘∑︁
𝑖=1

𝑝𝑖 log(𝑝𝑖 ),

which quantifies the uncertainty of the prediction. We then
define the sensitivity score 𝑅(𝑞) for query 𝑞 as:

𝑅(𝑞) = 1 − 𝐻 (𝑝)log𝑘 ,

ensuring that 𝑅(𝑞) ∈ [0, 1]. A higher 𝑅(𝑞) indicates that
the model is highly confident (i.e., lower entropy) in its
prediction, thus representing a greater risk for membership
inference attacks.

• Dynamic Noise Injection:
Using the computed sensitivity score, we dynamically ad-
just the noise injected into the model’s output. We define
the noise variance as a function of the sensitivity score:

𝜎 (𝑞)2 = 𝜎20 (1 + 𝜆𝑅(𝑞)) ,

where 𝜎20 is the base noise variance and 𝜆 is a scaling param-
eter that amplifies the noise for higher-risk queries. The
noise 𝜂 is then sampled from a Gaussian distribution:

𝜂 ∼ N(0, 𝜎 (𝑞)2),

and added to the raw output 𝑓 (𝑞) of the model:

𝑓 (𝑞) = 𝑓 (𝑞) + 𝜂.

This formulation ensures that queries with a higher sensitiv-
ity score receive proportionally more noise, thus effectively
obfuscating any distinguishing membership signals.

• Probabilistic Smoothing:
To mitigate potential distortions introduced by noise injec-
tion while maintaining model accuracy, we apply a prob-
abilistic smoothing operation by re-normalizing the per-
turbed outputs using a softmax function with a temperature
parameter 𝑇 > 1:

𝑓 (𝑞) = softmax
(
𝑓 (𝑞)
𝑇

)
.

The temperature 𝑇 controls the sharpness of the result-
ing probability distribution, providing a trade-off between
smoothing and maintaining the discriminative power of
the original output.

By integrating sensitivity analysis, dynamic noise injection, and
probabilistic smoothing, our approach adapts to the context of
each inference request. Hence, this specific defense mechanism
effectively obfuscatesmembership signals in high-risk queries while
maintaining overall data utility and predictive accuracy.

7 Evaluation
We evaluated our approach on several benchmark datasets and
model architectures that are explained in Section 7.3. Our analysis
focuses on three primary aspects: (i) the effectiveness of mem-
bership inference attacks; (ii) the impact on model accuracy (i.e.,
utility); and (iii) the computational cost of the defense mechanism.

Algorithm 1 DynaNoise: Adaptive Noise Injection Based on Query
Sensitivity
1: Input: Trained model 𝑓 (·) with 𝑘 output classes, base noise

variance 𝜎20 , scaling parameter 𝜆, temperature parameter𝑇 > 1,
and input query 𝑞.

2: Output: 𝑓 (𝑞), the final probability vector after noise injection
and smoothing.

3: Step1 - Compute Raw Output:
4: Compute logits: z← 𝑓 (𝑞) ∈ R𝑘 .
5: Compute probability vector: p← softmax(z).
6: Step2 - Sensitivity Analysis:
7: Compute Shannon entropy: 𝐻 (p) ← −∑𝑘

𝑖=1 𝑝𝑖 log(𝑝𝑖 ).
8: Set sensitivity score: 𝑅(𝑞) ← 1 − 𝐻 (p)

log𝑘 .
9: Step3 - Dynamic Noise Injection:
10: Compute noise variance: 𝜎 (𝑞)2 ← 𝜎20 (1 + 𝜆 𝑅(𝑞)).
11: Sample noise: 𝜼 ∼ N(0, 𝜎 (𝑞)2 𝐼 ).
12: Perturb logits: f̃ (q) ← f (q) + 𝜼.
13: Step4 - Probabilistic Smoothing:

14: Compute final output: 𝑓 (𝑞) ← softmax
(
f̃ (q)
𝑇

)
.

15: Return: 𝑓 (𝑞).

7.1 Metrics
The following metrics were used to evaluate the performance of
our approach:

• Attack Success Rate (ASR): The fraction of correctly in-
ferred membership, defined as

ASR =
𝑁correct
𝑁total

,

where 𝑁correct is the number of correct membership pre-
dictions and 𝑁total is the total number of predictions.

• Model Accuracy: The overall classification accuracy of
the target model, measured both before and after applying
a defense.

• Membership InferenceDefense Privacy–Utility Trade-
off (MIDPUT): Our proposed metric for evaluating the
trade-off between privacy and utility. Let

Δacc = test_accno_def − test_accdef,

and for each attack type 𝐴 ∈ {conf, loss, shadow},

Δ𝐴 = attack_acc(𝐴)no_def − attack_acc
(𝐴)
def .

Then, the overall MIDPUT is defined as

MIDPUT =

(
Δconf + Δloss + Δshadow

3

)
− Δacc,

and the per-attack MIDPUT metrics are given by

MIDPUT𝐴 = Δ𝐴 − Δacc, 𝐴 ∈ {conf, loss, shadow}.

The MIDPUT metric is bounded within the range [−1, 1],
where values closer to 1 represent strong privacy gains with
minimal utility loss, and values approaching -1 indicate
poor trade-offs with greater accuracy degradation than
privacy improvement.
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Figure 2: Overview of the proposed DynaNoise approach integrated into the AlexNet deep learning model for illustration.
The noise injection process adapts to the model’s uncertainty, providing enhanced obfuscation against membership inference
attacks.

7.2 Membership Inference Attacks
We implemented three distinct membership inference attacks:

(1) Confidence Threshold Attack: Predicts a sample as a
member if the maximum predicted probability exceeds a
fixed threshold 𝜏 :

Predict "in" if max
𝑖
𝑝𝑖 > 𝜏 .

In our evaluation, we set 𝜏 = 0.9
(2) Loss Threshold Attack: Computes the cross-entropy loss

ℓ = − log 𝑝 (𝑦)

for the true label𝑦, and predicts membership if ℓ < 𝛾 , where
𝛾 is a fixed threshold. In our evaluation, we set 𝛾 = 0.5.

(3) Shadow-Model Attack: Trains a shadowmodel on an aux-
iliary dataset drawn from the same distribution as the target
model’s training dataset. From the shadow model’s outputs,
features such as maximum confidence, cross-entropy loss,
and confidence margin are extracted to train a binary clas-
sifier 𝐴(x), where x is the feature vector. The membership
decision is then based on the classifier’s output. In our
setup, we allocate 70% of the available data to training and
evaluation the target model, while the remaining 30% is

reserved for constructing the shadow model and training
the attack classifier. We use the same architecture for the
shadow model as the target model to closely mimic its be-
havior, and we employ a logistic regression classifier as the
final attack model.

Each membership inference attack is systematically evaluated
under the following three defense conditions:

(1) No Defense: The target model’s raw outputs are directly
exposed to the attacker without any privacy preserving
approach applied.

(2) SELENA Defense: The SELENA defense approach is em-
ployed, which leverages ensemble learning and self-distillation
to mitigate membership leakage prior to the execution of
the attack.

(3) DynaNoise Defense: The proposed DynaNoise approach
is applied to the model outputs in a post-processing step,
where it dynamically injects calibrated probabilistic noise
based on query sensitivity to conceal membership signals
while preserving overall model utility.
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7.3 Datasets and Models
Experiments were conducted on three widely used benchmark
datasets that span both image and text domains. The datasets are
described in detail below:

• CIFAR-101: This dataset consists of 60,000 color images of
size 32×32 distributed across 10 balanced classes. CIFAR-10
is a standard benchmark in computer vision, widely used
to evaluate image classification models under moderate
complexity conditions. Its relatively low resolution and bal-
anced class distribution make it ideal for testing both model
performance and the effectiveness of privacy-preserving
techniques.

• ImageNet-102: A curated subset of the larger ImageNet
dataset, ImageNet-10 contains images from 10 diverse classes.
This subset is more challenging than CIFAR-10 due to its
greater variability in image content, higher resolution, and
increased intra-class diversity. It provides a rigorous testbed
for evaluating the scalability and robustness of defense
mechanisms on complex, real-world data.

• SST-23: The Stanford Sentiment Treebank (SST-2) is a senti-
ment classification dataset extracted from the GLUE bench-
mark. It comprises text samples labeled with binary sen-
timent (positive or negative). SST-2 is representative of
natural language processing tasks and allows us to assess
the performance of privacy-preserving methods on models
that process unstructured text data.

The target models employed in our experiments are selected to
reflect the typical architectures used in their respective domains:

• AlexNet [8]: Originally developed for the ImageNet Large
Scale Visual Recognition Challenge, AlexNet is a deep con-
volutional neural network consisting of five convolutional
layers followed by three fully connected layers. In our ex-
periments on CIFAR-10 and ImageNet-10, AlexNet serves
as the target model. Its layered structure, ReLU activations,
and use of dropout make it an effective and widely adopted
baseline for evaluating both classification performance and
membership inference defenses.

• DistilBERT [16]: It is a compact version of the BERT trans-
former model, designed to retain much of BERT’s language
understanding capabilities while reducing its size and com-
putational cost. In our experiments on SST-2, DistilBERT
serves as the target model, offering robust performance on
text classification tasks with lower inference latency. Its
efficiency makes it well-suited for integrating and testing
privacy-preserving mechanisms in the context of Natural
Language Processing (NLP).

7.4 Experimental Setup and Results
We conduct experiments on CIFAR-10, ImageNet-10, and SST-2
datasets. For each dataset, 70% of the data is used to train and test
the target model, while the remaining 30% is allocated for training
shadow and attack models. All models are trained for 15 epochs
using stochastic gradient descent (SGD) with a learning rate of 0.01
1https://www.tensorflow.org/datasets/catalog/cifar10
2https://www.kaggle.com/datasets/liusha249/imagenet10/code
3https://huggingface.co/datasets/gimmaru/glue-sst2

and a batch size of 64. Experiments are conducted on a machine
equipped with NVIDIA RTX 5000 GPU to ensure efficient training
and evaluation.

As our experimental baseline defense, we implement SELENA [21]
as described in Section 2.2, using 𝐾 = 25 sub-models and 𝐿 = 10
partitions per sample. Each target model is evaluated against three
types of membership inference attacks: Confidence Threshold At-
tack, Loss Threshold Attack, and Shadow Model Attack. For each
attack, we report the attack success rate (ASR) under three condi-
tions: (i) without any defense (None), (ii) after applying the SELENA
defense mechanism, and (iii) after applying our proposed adaptive
noise injection method (DynaNoise).

To quantify the privacy–utility trade-off, we utilize our proposed
metric called MIDPUT, as described in section 7.1. This metric cap-
tures the extent to which a defense reduces attack success rate while
preserving model accuracy. We report both the overall MIDPUT
and per-attack values (MIDPUT𝐶 , MIDPUT𝐿 , and MIDPUT𝑆 ) for
each defense mechanism.

Table 3 summarizes the membership inference metrics and the
corresponding MIDPUT values for each dataset and defense mecha-
nism. For CIFAR-10, the baseline (no defense) model achieves a test
accuracy of 0.8211, with ASR values of 0.6956 (Confidence), 0.7639
(Loss), and 0.7841 (Shadow). SELENA reduces these to 0.7668, 0.5446,
0.6307, and 0.6755, respectively, resulting in an overall MIDPUT of
0.0766. In contrast, DynaNoise maintains a high test accuracy of
0.8156 while significantly lowering the attack success rates to 0.2785
(Confidence), 0.4221 (Loss), and 0.5334 (Shadow). Consequently, the
overall MIDPUT for DynaNoise is 0.331, with per-attack MIDPUT
values of 0.4116, 0.3363, and 0.2452, respectively. This shows that
DynaNoise clearly outperforms SELENA in reducing MIA success
rate while preserving model accuracy on CIFAR-10.

A similar trend is observed on ImageNet-10: while the baseline
test accuracy is 0.9165, SELENA degrades the accuracy significantly
to 0.7085 and produces very low (even negative) MIDPUT values
(overall MIDPUT of -0.0342). Conversely, DynaNoise preserves
the test accuracy at 0.9115, reduces the attack metrics to 0.2248
(Confidence), 0.308 (Loss), and 0.5725 (Shadow), and achieves an
overall MIDPUT of 0.3358. These results highlight that DynaNoise
not only provides stronger privacy protection than SELENA but also
avoids the substantial utility drop seen with SELENA on ImageNet-
10.

On SST-2, The baseline DistilBERT model reaches a test accuracy
of 0.8865. SELENA slightly increases the accuracy to 0.8945 but
yields only marginal improvements in the attack metrics, resulting
in an overall MIDPUT of 0.0392. In contrast, DynaNoise achieves a
test accuracy of 0.8911 while significantly reducing the confidence
attack ASR to 0.2354 and achieving a slightly better reduction in
the shadow attack ASR, leading to an overall MIDPUT of 0.2091.
Despite the already high baseline accuracy, DynaNoise achieves a
more favorable trade-off compared to SELENA, offering meaningful
privacy gains in the SST-2 NLP setting.

Figures 3a, 3b, and 3c illustrate how DynaNoise responds to vari-
ations in base variance, lambda scale, and temperature on CIFAR-10.
Increasing the base variance or lambda scale introduces more noise
into high-risk predictions, which leads to a steady decline in mem-
bership inference attack success rates. Meanwhile, test accuracy
remains relatively stable, indicating that low-sensitivity predictions
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Table 3: Model accuracy and MIA attack success rates along with the proposed MIDPUT metrics on different datasets under
various defense mechanisms.

Dataset Defense Model (↑) Confidence (↓) Loss (↓) Shadow (↓) MIDPUT𝐶 (↑) MIDPUT𝐿 (↑) MIDPUT𝑆 (↑) MIDPUT𝑂𝑣𝑒𝑟𝑎𝑙𝑙 (↑)

CIFAR10
None 0.8211 0.6956 0.7639 0.7841 – – – –
SELENA [21] 0.7668 0.5446 0.6307 0.6755 0.0967 0.0789 0.0543 0.0766
DynaNoise 0.8156 0.2785 0.4221 0.5334 0.4116 0.3363 0.2452 0.331

ImageNet-10
None 0.9165 0.6489 0.7177 0.7612 – – – –
SELENA [21] 0.7085 0.3893 0.5355 0.6817 0.0516 -0.0258 -0.1285 -0.0342
DynaNoise 0.9115 0.2248 0.308 0.5725 0.4191 0.4047 0.1837 0.3358

SST-2
None 0.8865 0.7913 0.7961 0.7854 – – – –
SELENA [21] 0.8945 0.7774 0.7603 0.7415 0.0219 0.0438 0.0519 0.0392
DynaNoise 0.8911 0.2354 0.7863 0.735 0.5605 0.0144 0.0523 0.2091

are minimally affected. Temperature tuning further smooths the
output distributions, effectively masking membership signals while
preserving confidence in correct predictions. These observations
validate the adaptive nature of DynaNoise in balancing noise and
utility.

Figures 4a, 4b, and 4c show similar dynamics for ImageNet-10.
As the base variance and lambda scale increase, noise adapts to pre-
diction certainty, which selectively reduces overconfident outputs
and lowers attack success. Adjusting the temperature parameter
introduces a softening effect on logits, which initially helps reduce
the distinguishability between member and non-member outputs.
However, beyond a certain point, further increases in temperature
yield diminishing returns, as the shadow attack success rate begins
to rise again. This suggests that moderate temperature values are
optimal for balancing privacy protection and output utility.

Figures 5a, 5b, and 5c display results for SST-2, where the target
model already achieves high accuracy. Even with minimal impact
on accuracy, tuning the defense parameters consistently lowers
attack success rates, particularly with increased temperature. These
results highlight that DynaNoise can still offer meaningful privacy
gains in settings where the model is already well-optimized and
has limited room for further improvement.

Moreover, across all datasets, as shown in Figure 3c, 4c, and 5c,
we observe that varying the temperature parameter has little to
no effect on the test accuracy of the target model after DynaNoise
is applied. This behavior stems from the role of temperature in
post-processing the logits. To be more precise, it scales the output
distribution without altering the predicted class. Since tempera-
ture is applied within the softmax function and does not change
the relative ordering of logits in most cases, the top-1 prediction
remains unaffected. Consequently, while higher temperatures effec-
tively smooth the output probabilities and making it harder for an
attacker to distinguish between member and non-member samples,
they do so without degrading model performance. This charac-
teristic further demonstrates the utility-preserving advantage of
DynaNoise.

Overall, the figures confirm that DynaNoise’s parameterization
enables fine-grained control over the privacy-utility trade-off, lever-
aging prediction sensitivity to selectively apply membership obfus-
cation where it matters the most.

7.5 Time and Computational Overhead Analysis
The evaluated defense approaches differ not only in their per-
sample time complexity but also in the overall computational re-
sources required. DynaNoise perturbs the model’s logits by adding
Gaussian noise whose variance is scaled based on query sensitivity,
and then re-computes the ℓ-dimensional probability vector using
a softmax operation. This results in a per-sample computational
overhead of

O(ℓ),
which corresponds to a single additional noise sampling and soft-
max computation. In practice, this represents a negligible runtime
cost, making DynaNoise a lightweight and scalable defense. In con-
trast, SELENA employs an ensemble-based defense by training 𝐾
sub-models using the Split-AI architecture and subsequently ap-
plying self-distillation to consolidate their knowledge into a single
model. During training, SELENA incurs a computational cost of

O(𝐾 ·𝐶model),

where 𝐶model denotes the cost of training a single target model.
While the self-distilled model reduces the inference cost to that of
a standard target model, the training phase remains substantially
more resource-intensive and time-consuming.

Beyond per-sample time complexity, the overall resource re-
quirements are also critical. DynaNoise relies on a lightweight
post-hoc noise injection approach, resulting in a memory footprint
that remains nearly identical to that of the base model. In contrast,
SELENA requires training and maintaining an ensemble of 𝐾 sub-
models, which, even when parallelized, demands significantly more
GPU memory and computational resources. As a result, DynaNoise
provides a more efficient and scalable defense with substantially
lower overall overhead.

7.6 Discussions and Limitations
Below we list the advantages and limitations of our proposed Dy-
naNoise approach compared to SELENA and also in general.

Advantages:
• Adaptive Noise Injection: DynaNoise dynamically ad-

justs the noise level based on query sensitivity. This adap-
tive mechanism enables DynaNoise to effectively mask
membership signals while preserving high model accuracy.

• Low Computational Overhead: Unlike SELENA, which
requires training andmaintaining an ensemble of sub-models,
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(a) Base Variance Comparison

(b) Lambda Scale Comparison

(c) Temperature Comparison

Figure 3: CIFAR10: Accuracy and ASR comparison over varying (a) Base Variance, (b) Lambda Scale, and (c) Temperature.

DynaNoise incurs only a minimal additional cost. Its light-
weight post-hoc noise injection results in a resource foot-
print very similar to that of the target model.

• RobustMembership InferenceDefense Privacy–Utility
Trade-off (MIDPUT): Our experiments demonstrate that
DynaNoise consistently achieves higher MIDPUT values
compared to SELENA. This indicates that the defense sub-
stantially reduces attack success rates with only a minor
impact on model accuracy.

• Simplicity and Scalability: DynaNoise’s implementation
is straightforward and easily scalable to various datasets
and model architectures without the complexities associ-
ated with ensemble training in SELENA.

Limitations:

• Hyperparameter Sensitivity: Similar to SELENA, the
performance of DynaNoise depends on the tuning of key
parameters (base variance, lambda scale, and temperature).

Although extensive experiments have allowed us to identify
robust parameter ranges, some degree of manual tuning
remains necessary to optimize performance across different
settings.

• No Formal Privacy Guarantees: DynaNoise, like many
practical defenses including SELENA, does not provide for-
mal mathematical privacy guarantees. However, it is de-
signed to offer strong empirical protection against member-
ship inference attacks, as validated across diverse datasets,
model architectures, and attack types.

8 Conclusion
In this paper, we proposed DynaNoise, an adaptive noise injection
approach that dynamically adjusts the level of noise added to a
model’s output based on the sensitivity of each query. In addition,
we introduced a practical evaluation metric, called Membership In-
ference Defense Privacy–Utility Trade-off (MIDPUT), whichmeasures
how effectively a defense balances membership privacy gains with
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(a) Base Variance Comparison

(b) Lambda Scale Comparison

(c) Temperature Comparison

Figure 4: ImageNet-10: Accuracy and ASR comparison over varying (a) Base Variance, (b) Lambda Scale, and (c) Temperature.

the associated cost in target model accuracy. Our extensive experi-
mental analysis shows that DynaNoise consistently outperforms
SELENA as the state-of-the-art baseline MIA defense approach.
Unlike SELENA, which relies on an ensemble approach and incurs
high computational overhead, DynaNoise operates with a light-
weight post-hoc noise injection mechanism that demands minimal
additional resources. This efficiency makes our approach scalable
and well-suited for resource-constrained environments, while the
adaptive noise modulation leads to a significant reduction in mem-
bership inference success rates. Future work will focus on applying
such adaptive noise injection during the training phase. Addition-
ally, we plan to explore the integration of DynaNoise with formal
differential privacy techniques to provide stronger, provable privacy
guarantees.
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