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Abstract—Secure Aggregation (SA) is an indispensable com-
ponent of Federated Learning (FL) that concentrates on privacy
preservation while allowing for robust aggregation. However,
most SA designs rely heavily on the unrealistic assumption of
homogeneous model architectures. Federated Distillation (FD),
which aggregates locally computed logits instead of model param-
eters, introduces a promising alternative for cooperative training
in heterogeneous model settings. Nevertheless, we recognize two
major challenges in implementing SA for FD. (i) Prior SA
designs encourage a dominant server, who is solely responsible for
collecting, aggregating and distributing. Such central authority
facilitates server to forge aggregation proofs or collude to bypass
the claimed security guarantees; (ii) Existing SA, tailored for FL
models, overlook the intrinsic properties of logits, making them
unsuitable for FD.

To address these challenges, we propose SVAFD, the first
SA protocol that is specifically designed for FD to enable both
privacy protection, logits integrity and verifiability. At a high
level, SVAFD incorporates two innovations: (i) a multilateral
co-aggregation method tha redefines the responsibilities of both
clients and server. Clients autonomously evaluate and aggregate
logits shares locally with a lightweight coding scheme, while the
powerful server handles ciphertext decoding and performs the
computationally intensive task of generating verification proofs;
(ii) a quality-aware knowledge filtration method that facilitates
biased logits exclusion against poisoning attacks. Moreover,
SVAFD is resilient to stragglers and colluding clients, making
it well-suited for dynamic networks in real-world applications.
We have implemented the SVAFD prototype over four emerging
FD architectures and evaluated it against ten types of poisoning
and inference attacks. Results demonstrate that SVAFD improves
model accuracy and guarantees secure and robust aggregation,
making it a significant step forward in secure and verifiable
aggregation for heterogeneous FL systems.

Index Terms—Federated Learning, Knowledge Distillation,
Secure Aggregation, Privacy Protection

I. INTRODUCTION

RECENT years have witnessed growing interest in Fed-
erated Learning (FL), a collaborative Machine Learning

(ML) paradigm that enables model training without compro-
mising the confidentiality of native datasets [1, 2]. Leveraging
parallel computation and enhanced privacy, FL has been
increasingly applied many domains, supporting efficient AI
deployment[3]. However, its broader adoption is hindered by:
1) High communication overhead: The periodic exchange of
model parameters entails frequent communication, with the
overhead increasing proportionally to model size; and 2) Ho-
mogeneous model constraint: Typical FL enforces a uniform
model architecture across clients, which is incompatible with
diverse computational capabilities or application requirements
of participants[4].
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Fig. 1: Federated Distillation Architecture and Security
Threats. Note: The red box highlights that in FD, clients
upload logits instead of models as in FL; the symbol ”T”
combined with a number denotes specific security threats,
where threats ”T1” and ”T2” occur on the server side, while
threat ”T3” manifests on the client side.

Federated Distillation (FD), an improved paradigm of Fed-
erated Learning (FL), overcomes the aforementioned limita-
tions by exchanging model outputs (i.e., logits) instead of
full model parameters or updates[5]. As illustrated in Fig.1,
each client generates and uploads local logits to a central
server, which aggregates them into teacher knowledge (called
”global logits”) to guide subsequent local training. Compared
to conventional FL, FD significantly reduces communication
overhead, as it depends only on the dimension of model
outputs rather than the size of the entire model. In addition,
FD naturally supports heterogeneous model training, allowing
clients to adopt personalized architectures and thereby offering
greater flexibility and efficiency[6].

The growing adoption of FD systems necessitates a thor-
ough examination of their robustness and security. Three types
of security threats show in Fig.1 underscore that both the
server and the clients can be corrupted by adversaries, leading
to mainly two categories of malicious attacks1: i) Inference
attacks, targeting the violation of participants’ data privacy
to capture distribution of data features[7] or even achieve
pixel-level reconstruction of training data [8]; ii): Poisoning
attacks, aiming at undermining the integrity of global logits,
which are performed through generating misleading model or

1These attacks persist in FL scenarios, however, this paper focuses exclu-
sively on the FD scenarios.
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TABLE I: The Overall Evaluation of Reviewed Solutions in
terms of privacy, integrity, verifiable and trusted setting with
✓ and × presenting the ability. SH refers to semi-honest, and
M denotes the malicious server.

SA Protocols Privacy Integrity Verifiable Server
AHEFL[19] ✓ × × SH

MKFL[20] ✓ × × SH

VPFL[21] ✓ × ✓ SH

PSAML[11] ✓ × × M

PolySA[22] ✓ × × M

FLShiled[23] ✓ ✓ × SH

RoFL[10] ✓ ✓ ✓ SH

ELSA[9] ✓ ✓ × SH

martFL[13] ✓ ✓ ✓ SH

Ours ✓ ✓ ✓ M

fabricated local logits[9]. While the Secure Aggregation(SA)
countermeasures has been extensively studied in conventional
FL[10, 11], achieving robust and efficient SA in FD settings,
particularly under heterogeneous model architectures, remains
an open and underexplored issues. This paper specifically
focuses on advancing secure aggregation under such hetero-
geneous FD scenarios.

Challenges: we recognize two major challenges for re-
alizing SA within FD. Firstly, previous SA protocols are
vulnerable to a dominant server[9]. As shown in Table.I,
the SA protocols, which simultaneously achieve both privacy
protection and system integrity, either rely on a trusted third
party[9, 12] or resort to a semi-honest server[10, 13]. These
protocols encourage a dominant server to act as the aggre-
gation subject, controlling all processes, including knowledge
filtering, knowledge aggregation, and necessary authentication
for knowledge distribution. However, [14] indicates that the
server, by colluding with just one client, can easily forge
credentials or decrypt sensitive client information, thus under-
mining the secure guarantees claimed by the existing SA. Sec-
ondly, prior SA protocols are susceptible to clients’ poisoning
attacks[15, 16, 17], and the works on mitigating this issue can
be roughly categorized into malicious detection approaches or
byzantine-robust estimators introducing non-linear aggregation
rules with audits to filter biased updates[10, 9]. These SA pro-
tocols primarily rely on observing the characteristics of model
weights/updates, with some theories suggesting that parameter
updates from benign clients exhibit continuity and consistency
across successive training rounds, and the malicious behaviors
can be detected by monitoring changes in model weight
patterns, update directions, or norm constraints[18]. However,
there is no research demonstrating similar characteristics of
logits in FD across training rounds. The knowledge filtration
method that considers the intrinsic properties of logits have
been studied to a lesser extent.

Proposed defense: To fill the research gap, we begin by
examining the properties of logits and outline the central issue

of this paper: how to construct a verifiable SA protocol that
simultaneously ensures privacy protection and knowledge
integrity for FD? We propose SVAFD, a novel verifiable
secure co-aggregation protocol specifically designed for FD
as illustrated in Fig.2. SVAFD decouples the SA process into
three distinct stages: knowledge filtration, knowledge aggrega-
tion, and knowledge verification. First, clients autonomously
filter knowledge based on the similarity of logits distribution.
Then, using lightweight Lagrange Coding Computation (LCC)
encoding, clients aggregate the encoded knowledge shares
locally. Ultimately, the server decodes the aggregated results
to recover teacher knowledge and applies bilinear pairings
to aggregate knowledge signatures, providing proof for the
execution of the aggregation process.

SVAFD shifts the aggregation process from unilateral server
dominance to multilateral co-aggregation, and each party
assumes specific responsibilities. While clients independently
select and aggregate local logits with appropriate weights, the
server focuses on decoding the aggregated results and gener-
ating signatures, which is a process that involves significant
computational resources. Moreover, SVAFD incorporates fea-
tures such as straggler tolerance and privacy protection against
colluding inference, making it well-suited for deployment in
resource-constrained edge networks.

Contribution: The main contribution of this paper is the
design, implementation, and evaluation of SVAFD, the first
SA protocol tailored for FD scenario. SVAFD ensures privacy
protection, knowledge integrity, and verifiability in the pres-
ence of a malicious server. We have implemented the SVAFD
prototype consisting of approximately 1,250 lines of code,
which will be provided after the Review Stage. The prototype
successfully adapts to four emerging FD architectures, results
demonstrate that it significantly improves both accuracy and
security. It effectively resists eight types of poisoning attacks
and one type of inference attacks, achieving high accuracy and
low attack success rates. Furthermore, we provide a detailed
analysis of the system-level overhead, demonstrating that
SVAFD is efficient and practical for real-world deployment.

II. PRELIMINARY

A. Overview of FD

We investigate the Federated Distillation (FD) architecture,
where distributed devices (called clients) collaborate to train
a D-class classification model coordinated by the server.
Without losing generality, we consider the FD system with
N := {1, 2, · · · , n} clients. Each client n ∈ N holds a private
dataset Sn :=

⋃sn
i=1 (X

n
i , y

n
i ) which includes sn = |Sn| data

samples, with xn
i and yni respectively indicating the feature

vector and the correspinding label of the i-th training sample.
Different from the homogeneous model settings of conven-
tional FL system [23, 10, 9, 13], we expect that each client
n maintains a personalized model Mn := (Φn, ℓn), which
differs in model parameters Φn and architectures. ℓn(·) is
the non-linear mapping determined by Mn. The optimization
objective of the FD system is to maximize the average User
Accuracy (UA) [24, 25, 26] across all clients, that is to achieve
generally satisfactory performance on each client.
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Fig. 2: Overview of SVAFD.

In contrast to sharing model parameters or updates,
FD employs the knowledge guided mechanism that is
communication-efficient and heterogeneity-friendly to enable
collaborative training. The server aggregates local knowledge
from multiple clients to construct global knowledge, which is
subsequently disseminated back to the clients to enhance local
training. Throughout this paper, local knowledge is defined as
equivalent to the logits ϑn, representing the raw, unnormalized
predictive confidence generated by the local model Mn of
client n on the local dataset Sn.

Depending on the granularity of logits exchanged in each
round of Client-Server (C/S) interactions, existing FD archi-
tectures can be classified into two categories[4, 24]: the Class-
grained Logits Interaction-based FD Ar- chitecture (CLIA)
[27] with logits ϑc ∈ RD×D capturing class-level predictive
capabilities, and the Sample-grained Logits Interaction-based
FD Architecture (SLIA) [24, 28, 29], where logits ϑc ∈
RO×D represent sample-level predictions, with O denoting
the number of distilled samples drawn from the public dataset
[4]. SLIA enables finer-grained logits exchange. A detailed
discussion of these two logits granularity architectures is
provided in Appendix A.

The process of FD training can be divided into two stages,
outlined as follows:

• Local Train. Each client n ∈ N optimizes its local
model parameters Φn a composite loss function, which
combines the cross-entropy loss LCE(·) for the local
dataset Sn with the distillation loss LKD(·) derived from
the global logits, i.e.:

min
Φn

E
(xn

i ,y
n
i )∼Sn

[JCE + λ · JKD] (1)

which is subject to:{
JCE = LCE (ℓn (Φn;Xn

i ) , y
n
i ))

JKD = LKD (ℓn (Φn;Xn
i ) , Y (Xn

i ))
(2)

where λ represents the distillation weight factor. Y (·)
refers to the global logits received from the central
server in the latest round. This optimization produces

the updated local model that generates the new local
knowledge, represented as logits ϑn.

• Global Aggregation. After collecting all the clients’
logits {ϑn|n ∈ N}, the server performs an aggregation
operation to obtain the global logits as:

Y = ℏ( {ϑn|n ∈ N}) (3)

where ℏ(·) is the aggregation operation managed by
the server. The two aforementioned processes iterate
continuously until a predefined number of rounds or a
target accuracy is achieved.

B. Lagrange Coding Computation

The Lagrange Coding Computation (LCC) [30] represents
a sophisticated encoding technique crafted to facilitate secure
computations within distributed environments, striking a bal-
ance between computing efficiency and data privacy.[31, 32].
The key motivation of LCC is to encode the pending data
using Lagrange polynomials that enable computational re-
dundancy and plaintext inaccessibility across the distributed
works , thereby preserving data privacy and enabling straggler
tolerance [33].

As illustrated in 3(a), the Data Provider (DP) holds a dataset
S0, on which a target function f(S0) is to be computed,
where f(·) represents either linear transformations or com-
plex polynomial operations. To enable privacy-preserving and
distributed computation, the DP first encodes S0 into N shares
using LCC, and distributes these encoded shares to a set of N
Service Processors (SPs), i.e., the clients. Each DP performs
local computation f(·) on its assigned share and returns the
corresponding partial result to the DP. Finally, the DP decodes
the collected results to reconstruct the global output f(S0).
The fundamental (D,T )-achievable encoding property of LCC
is outlined in Theorem 1, with a formal proof provided in
Section IV of [30].

Theorem 1. Given N Data Processors (DPs) and the degree
deg(f) of the target function f(·), a D-resilient and T-private
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Lagrange Coding Computation (LCC) is achievable, as long
as

D + deg(f)(K + T − 1) + 1 ≤ N (4)

where K denotes the number of slices that the pending dataset
S0 splited. D-Resilient indicates that even with up to D clients
dropping out, the server can decode the global output f(S0).
T -Private ensures that, even if up to T clients collude, they
cannot infer any meaningful information about S0.

C. Threat Model and Basic Requirements

In SVAFD, we assume that all clients agree to the knowl-
edge aggregation process facilitated by a central server, and
consent to share the essential data of knowledge and signature
authentication to complete the aggregation. SVAFD contrasts
with that in [11], where an end-to-end information relay is
managed by the central server via a KPI[11, 22]. Instead, it
adopts the communication protocol similar to [34, 35], where
client devices can establish direct communication channels
with other clients. Since mobile devices can only sporadically
access power and network connections, the set of participants
in each update round is unpredictable and can join or leave at
any time.

Based on the above assumptions, we consider the server
to be malicious in terms of reliability. The server may arbi-
trarily deviate from the protocol by returning incorrect proof
or poisonous knowledge to honest clients. This assumption
captures the adversarial behavior in multi-party collaborative
computing, where the server’s goal is to deceive users into
accepting incorrect results. Meanwhile, the clients are semi-
malicious in terms of reliability, which are required to honestly
provide CAL (described in §III-C) for intimacy computation
and sign the split knowledge slices. Additionally, there is no
assumption of honesty regarding the clients, who may submit
arbitrary biased data at any stage of interaction to launch
poisoning or inference attacks that disrupt the FD training
process.

In terms of privacy, both of the server and clients are mali-
cious, and may collude to achieve the best attack capability in
capturing victims’ privacy. We assume that the cryptographic
primitives used for knowledge encoding in SVAFD are secure,
and the bilinear mapping used in our verifiable knowledge ag-
gregation is reasonable. We believe that the above assumptions
are stricter and more realistic than the existing trusted settings.

Basic requirements for SA: This paper delves into the SA
problem in the FD scenario, with particular emphasis on three
paramount security attributes:

1) Privacy protection Even in the face of a malicious
server and up to T malicious clients colluding in in-
ference attacks, the logits privacy of honest clients is
guaranteed.

2) Knowledge integrity: Fully resilient to poisoning at-
tacks from a malicious server, while increasing tolerance
to poisoning attacks from malicious clients.

3) Verifiability: Provide clients with verification of knowl-
edge aggregation execution. No malicious clients or
server, even when colluding, can generate the proof to
deceive victims.

III. CHALLENGES AND KEY INSIGHTS OF SVAFD

A. Challenges of Secure Aggreagation (SA)

We analyze the reasons behind security threats from the
server and client sides, respectively.

Challenge ①: Existing FL/FD architectures rely on a
dominant server as the aggregation subject, which may
facilitate server-side poisoning and inference attacks.

The current FL/FD architectures designate the server as
the active coordinator of aggregation, with full access to the
model/knowledge uploaded by clients and control over the
distribution of the global model/knowledge. Although this de-
sign is efficient in coordinating clients, it creates opportunities
for potential security threats. Regarding inference attacks, the
academic community has reached a basic consensus that the
server should not have access to the plaintext information
about any client’ knowledge or model. A series of studies
based on encryption and perturbation have emerged, achieving
breakthroughs in efficiency and performance. However, most
of these approaches resort to the week security assumption
of an honest-but-curious server and lack scalability to ad-
dress malicious server poisoning attacks. Solutions to counter
poisoning attacks need to provide clients with aggregation
verification, often employing techniques such as homomor-
phic hashing, commitments, polynomial verification, or zero-
knowledge proofs. These methods either introduce unaccept-
able verification overhead on client-side or fail to prevent
collusion between server and clients. In other words, as long
as a single client colludes with the server, the verification
conditions can be forged.

The high privileges of the dominant server result in inher-
ent flaws in most existing SA architectures. A revolutionary
approach adopts a fully distributed end-to-end aggregation
framework. However, without centralized server coordination,
achieving global synchronization (e.g., consistency checks or
progress coordination) becomes extremely challenging, and
multi-party security authentication as well as model perfor-
mance improvement cannot be guaranteed. Neither server-
dominated nor fully distributed client-driven SA protocols
offer an optimal solution.

This empirical evidence underscores a critical insight:

Plaintext invisibility and auditable aggregation should
be ensured. To address security threats originating from
the server, it is necessary to simultaneously guarantee
clients’ privacy and enable collusion-resistant verification
with acceptable computational overhead.

In light of this, our defense strategy, SVAFD, introduces a
verifiable co-aggregation method based on VMLCC. Clients
first encode and share local logits using lightweight LCC.
Subsequently, each client performs local aggregation on the
received knowledge slices and submits the aggregation results,
along with the signature information, to the server for global
decoding and signature aggregation. SVAFD shifts the aggre-
gation process from unilateral server dominance to multilateral
co-aggregation. Clients are responsible for encoding their
logits, ensuring end-side privacy, while the server handles
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Fig. 3: Workflow of LCC and MM-LCC.

global decoding and signature aggregation to guarantee the
verifiability of the aggregation process. Experimental results
show that SVAFD does not introduce excessive computational
overhead on the client side but instead offloads most com-
putational tasks to servers with stronger resource capabilities.
More details are deferred to §III-B.

Challenge ②: Current malicious client detection meth-
ods are primarily designed for FL and are not readily
applicable to FD.

In FL, model weight updates ∆wt from clients typically ex-
hibit the following properties: Continuity, ∥∆wt−∆wt−1∥ ≤
ϵ, meaning that the difference between updates in adjacent
rounds is relatively small; Consistency, the update ∆wi

t from
a benign client tends to align in direction with the global
aggregated update ∆wt.

Due to the fundamental differences in the nature of model
updates and knowledge transfer in FD, we underscore a critical
insight:

Malicious detection method should be specifically tai-
lored to FD on the integrity of logits. To effectively
address security threats originating from clients in FD
settings, a deeper analysis on the statistical properties and
filtration method of logits is necessary.

Our proposed methodology, SVAFD, introduces a novel
defensive mechanism that strategically employs clients within
high-qualy knowledge, specifically based on the statistical
properties of logits. More details are deferred to section §III-C.

B. MM-LCC Design for Co-aggregation

Multi-to-Multi LCC (MM-LCC), including multi Data
Providers with multi Service Providers, is an extension of the
traditional One-to-Multi LCC. Viewing MM-LCC as a primi-
tive, we could construct a strawman co-aggregation workflow
as shown in Fig.3(b). In this diagram, each client acts as a DP,
with the public objective of obtaining the aggregated global
logits of all clients, i.e:

ℏ(V) =Wf(V) (5)

where V = [ϑ1, . . . , ϑc] and W = [w1, · · · , wc], c ∈ [N ] de-
note the local logits and aggregation weights set, respectively.
At the same time, each client also serves as the SP, required
to provide slice aggregation services for DPs.

At a high level, MM-LCC shifts the aggregation process
from unilateral server dominance, where the server fully
controls the aggregation and distribution of global knowledge,
to multilateral co-aggregation, where all clients are no longer
passive participants but instead locally aggregate knowledge
slices, which are then submitted to the server for global
logits decoding. The dataflow of MM-LCC is illustrated in
Fig.3(d). Each client c, 1) utilizes LCC to encode the local
logits ϑc into multiple shares {ϑ̃c→i|i ∈ [N ]} for outsourced
computing; 2) shares the logits splits with each other, where
ϑ̃c→i denotes the logits slice sent from client c to client
i; 3) performs the aggregation operation ℏ(ϑ̃→c) on the
received logits shares ϑ̃→c = [ϑ̃1→c, · · · , ϑ̃i→c], shown in the
blue box in Fig.3(d). Finally, the server, possessing abundant
computational resources, 4) decodes the aggregated shares set
{ℏ(ϑ̃→c)|c ∈ N} to obtain the global teacher knowledge Ŷ .

We define the following properties that the MM-LCC sat-
isfied to support secure co-aggregation:

Definition 1: (D,T,ℏ)-achievable. MM-LCC enables secure
co-aggregation for its property of D-Resilient, T-Privacy and
ℏ-operational, as long as D + deg(ℏ)(K + T − 1) + 1 ≤ N .

Given N Clients and the degree deg(ℏ) of the aggregation
function ℏ(·), D-Resilient donotes that the server can decode
the global logits Ŷ even with up to D clients dropping out.
This is because MM-LCC inherently adopts the redundant
encoding scheme used by LCC. T-Privacy eliminates the
leakage of clients’ privacy, demonstrating that no meaningful
information about local logits ϑn, n ∈ N can be inferred by
the curious server or at most T colluding clients. Ultimately,
ℏ-operational highlights any aggregation functions with the
degree of deg(ℏ) supported. It indicates that MM-LCC not only
accommodates linear operations in FD with deg(ℏ) = 1, but
is also extendable to scenarios requiring intricate polynomial
mappings for high-dimensional feature representations, such as
general tensor algebra, gradient computation[33] and bilinear
computation[30].
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Definition 2: Homomorphic Share Aggregation. MM-
LCC is utilized to enable co-aggregation for its property of
Homomorphic Share Aggregation. Specifically, any operation
performed by the client on the knowledge shares, after decod-
ing, must correspond to the direct operation on the original
knowledge data:

ℏ(V) = Dec(ℏ(Enc(V))) (6)

where the Enc(·) and Dec(·) represent the LCC encoding and
decoing, respectively.

Definition 2 provides a theoretical basis for end-side share
aggregation and server-side global decoding. It indicates that
the global knowledge Ŷ obtained through decoding is equiva-
lent to the ground truth value Y ∗ =Wf(V), illustrated in the
green color of Fig.3(d).

C. CAL for Quality-aware Knowledge Filtration

The model on each client tends to learn personalized rep-
resentations based on an independently sampled space, which
favors higher-frequency data samples, thereby enhancing local
fitting accuracy [4]. Given the heterogeneity of the models and
the data distribution, the logits from each client often exhibit
significant differences. Fig.4(a) illustrates the model update
direction after client 1 respectively aggregates knowledge with
the other three clients. Clients 1, 2, and 3 exhibit similar logits,
allowing effective guidance towards optimization along the
gradient descent direction. However, due to the knowledge
inconsistencies, the aggregation of client 1 and 4 results in
biased logits, which in turn affects the optimization rate and
convergence direction.

Aggregating logits from heterogeneous clients without any
discrimination results in biased knowledge representations[7].
A straightforward solution is to select a subset of clients
with closely local knowledge. Fig.4(b) illustrates the average
cosine similarity between the mean logits uploaded by a
set of clients and their respective local data distributions,
where α representes the heterogeneity of Dilliclet distribu-
tion. It suggests that logits are highly correlated with the
data distributions of the clients. Furthermore, in accordance
with Hinton’s analysis[36], logits provide rich information
regarding the probability distributions of each class and the
relationships between different classes. These insights help us

with logits filtration. Therefore, we introduce a new quality
aware metric, class average logits (CAL), which is computed
class-wise to evaluate the knowledge distribution of the client.
Our experiments reveal that employing CAL in the knowledge
filtration process causes benign aggregated teacher knowledge
to be more consistent with each other. We formally define the
CAL metric as follows:

Cc = [
1∑

(xc
i ,y

c
i )∈Sc

δ[yc
i=yd]

∑
(Xc

i ,y
c
i )∈Sc

δ[yc
i=yd]ℓ

c (xc
i )

| yd ∈ [1, c] ]

(7)

where δ is a Boolean variable that equals 1 when yd = yci ,
and 0 otherwise. ℓc (xc

i ) refers to the logits related to sample
xc
i . Then the CAL Cc, c ∈ [N ] is shared among clients

using the Locality-Sensitive Hashing (LSH)[37] function L :
RD×D → RD×P , which ensures that similar CAL are mapped
to the same hash bucket with high probability. P is the
hyperparameter representing the size of hashed value.

We utilize the cosine similarity to filter the intimacy for
each pair of clients, as follows:

A(c, z) = L(Cc) · L(Cz)
∥L(Cc)∥ · ∥L(Cz)∥ (8)

where ∥ · ∥ denotes the norm. By simplifying A(c, z) as
ac,z , each client calculates its affinity list vector Ac =
[ac,1, ac,2, · · · , ac,n] and selects the most intimate clients set
Gc for knowledge aggregation.

Note 1: Each client c ∈ [N ] assumes two roles: one as
the leader, requesting for aggregation of all Gc members to
generate the teacher knowledge, and the other as a follower,
contributing its local knowledge to the respective group lead-
ers.

IV. IMPLEMENTATION OF SVAFD
A. Framework Overview

SVAFD proposes a secure knowledge co-aggregation
method that balances privacy protection, stability, and verifia-
bility. After each round of local training by the clients, SVAFD
starts to implement with three stages: knowledge filtration,
knowledge aggregation, and knowledge verification.

In Knowledge Filtration, clients exchange Local CAL
through the LSH, and establish their personalized intimacy
groups to select benign followers, respectively. Specifically,
each client c ∈ [N ] first generate the Cc across all data
samples and then maps it to hashed value L(Cc) for similarity
computation. Then client c ∈ [N ], as the leader, can select
the top R most intimate clients to establishes the group Gc

for teacher knowledge aggregation. Meanwhile, the commu-
nication topology of all groups is constructed into a global
network graph, which is dynamically updated at each training
round.

In Knowledge Aggregation, group leaders initialize the
aggregation weights and Lagrange coefficients for their follow-
ers. The followers, in turn, encode the local logits, exchange
the encoded logits, and aggregate the received shares locally.
For each group Gc, the leader client c distributes the LCC co-
efficient matrix Lc used for encoding and the masked weights
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1. Knowledge  Filtration

1.1 Local sensitive hash 1.2 Communication topology

Server

Fig. 5: Workflow of SVAFD.

W̃c to its group member z ∈ Gc. Followers first split their
local logits to obtain ϑ and joint noise matrices. Then, they
encode ϑ by LCC, deliver the corresponding logits share with
each other, and aggregate all the received shares respectively.
Meanwhile, both the leader and followers generate auxiliary
signature information (πV , πW), which will later upload to the
server. Additionally, all followers send their private signature
keys Υz to the leader. In Knowledge Verification, the server is
responsible for decoding the received aggregated shares ℏ(ϑ̃)
and generating the verification proof by bilinear pairings for all
group leaders. After receiving the decoded teacher knowledge
Ỹc and πc, the leader decodes and authenticates the teacher
knowledge for next round’s training. The workflow of SVAFD
is shown in Fig.5.

B. Knowledge Filtration

1) Local Sensitive Hash: Since the CALs are calculated
according to Eq.7, the Cc values of client c ∈ [N ] is
firstly projected by the local sensitive hashing L(·) to ob-
tain L(Cc). Then, clients distribute their local private hashed
values with each other, and calculate the intimacy list Ac =
[ac,1, ac,2, · · · , ac,n] based on the received {L(Cc) | c ∈ [N ]}
according to Eq.8. The top R most similar candidates are
selected to form the group as follows:

Gc = {z | z ∈ ˆTop(Ac, R), z ̸= c} (9)

where ˆTop(Ac, R) selects R followers with the largest values
from Ac.

Note 2: While the leader c ∈ [N ] selects its followers to
form the group Gc, it can also be chosen as a follower to join
other groups.

2) Communication Topology: Let Gc = {Gx | c ∈ Gx, x ∈
[N ]}∪{Gc} be the set of groups that client c ∈ [N ] participates
in. Given the set G = {Gc | c ∈ [N ]}, we construct the
communication topology G = (N, E), where N represents

the set of client nodes, while E = {(c, z) | 1 ≤ c ≤ [N ], z ∈⋃
Gx∈Gk

Gk} representing the set of edges.
Note 3: The definition in E indicates that once a client

joins a group (whether following or leading), it will establish a
communication channel with other group members. A limited
number of accessible groups effectively prevents resource-
constrained nodes from establishing too many communication
connections, that leading to communication congestion or
single points of failure.

C. Knowledge Aggregation
1) Data Preprocess: 1) logits split: We consider two forms

of logits splitting methods.
Case 1: Class-grained Split. The logits mode of client

z ∈ Gc is only related to the class numbers D, namely
ϑz ∈ RD×D.

With the additive splitting method, we split ϑz into K parts
to obtain ϑz ≜ [ϑ

(1)

z , ϑ
(2)

z , . . . , ϑ
(K)

z ] ∈ RK×D×D, and define
the (g, l)-th element of ϑz and ϑ

(k)

z as vg,l and v
(k)
g,l , satisfying

vg,l =
∑K

k=1 v
(k)
g,l , where g, l ∈ [D]. This split method also

applicable to sample-grain FD, but for efficiency, the following
method is proposed to handle the sample-grain FD[38].

Case 2: Sample-grained split. The logits mode is propor-
tional to the related to the number of sample numbers O of
the distilled dataset, namely ϑz ∈ RO×D.

We deals with the logits by block split method. Each client
ϑz is divided into K shares ϑ

(k)

z ∈ RO
K ×D, with each block

containing O
K samples. Without loss of generality, we assume

that O is an integer multiple of the batch size parameter, which
is divisible by K allowing for better and adaptation to batch
processing strategy of GPUs. Then, local knowledge slice
matrix is represented ϑz ∈ RK× O

K ×D. For ease of interaction
in later steps, we unify the mode description of client logits
with ϑz ∈ RK×Ω×D to represent their mode.

To ensure information-theoretic privacy, a uniform random
matrix Hz ≜ [h

(1)

z , h
(2)

z , . . . , h
(T )

z ] is appended to blind the
splited ϑz , where h

(t)

z ∈ CΩ×D is independently sampled
from a zero-mean circularly symmetric complex gaussian dis-
tribution, with truncated standard deviation [−θ σz√

T
, θ σz√

T
]. The

parameter T measures privacy protection capability, represent-
ing the maximum number of colluding attackers allowed, σz

denotes the matrix variance, and θ is the truncation coefficient.
The matrix concatenation operation is denoted by ⊕, then the
blind operation B(·)is defined as follows:

B(ϑz) ≜ [ϑ
(1)

z , . . . , ϑ
(K)

z ]⊕ [h
(1)

z , . . . , h
(T )

z ]

≜ [ϑi
(1)

, ϑz
(2)

, . . . , ϑz
(K)

, h
(1)

z , . . . , h
(T )

z ]
(10)

2) Lagrange matrix and weights blind: While followers
in group Gc performing logits splitting, the group leader c will
send them the Lagrange encoding matrix and masked weights
for subsequent LCC encoding and aggregation operations.

As the Analog LCC[32] encoding is employed, the leader
computes the Lagrange coefficient by:

lz(α) =
∏

l∈[K+T ]\{z}

α− βl

βz − βl
(11)
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for all z ∈ [K + T ]. Additionally, the parameters α and β are
picked to be equally spaced on the circle of radius centered
around 0 in the complex plane by αi = γi−1, i ∈ [Gc] and
βj = ωj−1, j ∈ [K + T ], where γ = e−

2πι
R and ω = e−

2πι
K+T

are the N -th and (K + T )-th roots of unity, respectively,
with ι2 = −1. Based on the above elements, the Lagrange
coefficient matrix for LCC encoding is generated as:

Lc
def
=


l1(α1) · · · lK+T (α1)
l1(α2) · · · lK+T (α2)

...
. . .

...
l1(αx) · · · lK+T (αx)


T

R×(K+T )

(12)

SVAFD supports each group leader customizing the aggre-
gation weights Wc = [w1, w2 . . . , wz], z ∈ Gc, and chooses
a random matrix Rc ∈ RΩ×D as the factor to blind the
weight matrix. We perform the product operation between
the blinding factor and each element of Wc as W̃c = [w1 ·
Rc, w2 ·Rc, · · · , wz ·Rc] ∈ RR×(Ω×D). And the (Lc, W̃c) is
eventually distributed to each groud followers in Gc.

3) LCC Encode: Each followers z ∈ Gc performs LCC
encoding on the polynomial uz : C→ CΩ×D, interpolating at
αx, x ∈ Gc as:

uz(αx) =

K∑
k=1

ϑ
(k)

z lk(αx) +

K+T∑
t=K+1

h
(t−K)

z lt(αx)

= ϑ̃z→x

(13)

where ϑ̃z→x denotes the logits share from follower z to x.
Thus, the encoded logits shares sent by client z are, ϑ̃z→ =
[ϑ̃z→1, ϑ̃z→2, · · · , ϑ̃z→x], z, x ∈ Gc

4) Auxiliary Information
The leader and followers in group Gc need to compute

auxiliary proofs (π′, πc), respectively. The π′ represents the
auxiliary proof of the encoded logits slices by followers, while
the latter πc is the auxiliary proof that leader generates for the
aggregation weights Wc.

To strike a balance between privacy protection and effi-
ciency, the follower z calculates the sum of elements for each
of the K slices in the splitted logits ϑz = [ϑ

(1)

z , ϑ
(2)

z , . . . , ϑ
(K)

z ]

to get the matrix digest [V (1)
z , V

(2)
z , · · · , V (K)

z ], where V
(k)
z =∑Ω

g=1

∑D
l=1 v

(k)
g,l . Then, the auxiliary signatures of local logits

can be computed as

π(k)′

z = gV
(k)
z +Υz , z ∈ Gc, k ∈ [K] (14)

where Υz denotes the private key of the follower z, which
helps the leader detect dishonest behavior by malicious actors
during the SA. Then the client c attatins the auxiliary proof
π′
z = {π(1)′

z , π
(2)′

z , · · · , , π(K)′

z }, z ∈ Gc. In the mean time,
the leader also signs the weights [w1, w2, · · · , wz] by πc

z =
gwz , z ∈ Gc. Finally, the leader and followers will generate
and then upload the auxiliary proof πc

V = (π′
1, π

′
2, . . . , π

′
z) and

πc
W = (πc

1, π
c
2, . . . , π

c
z) to the server in Knowledge Verification

stage.
Note 4: Due to the fact that most signature computation

approaches are designed based on large integers, we inple-

ment the conversion of V
(k)
z and wz through an approximate

function as shown in Appendix C.
2) Local Aggregation: In this stage, followers in Gc dis-

tribute the encoded logits sharings with each other. Ultimately,
each follower z ∈ Gc will receive a set of logits shares
from all the R clients as ϑ̃→z = [ϑ̃1→z, ϑ̃2→z, · · · , ϑ̃x→z] ∈
CR×Ω×D, x ∈ Gc

According to the Eq. 6, the knowledge aggregation opera-
tion ℏ(·) firstly applies a polynomial function f(x) to each of
the received shares, then performs the linear weighted sum
to integrate the teacher knowledge shares. Specifically, for
z ∈ Gc, the aggregation ℏ : CR×Ω×D → CΩ×D denotes as

ℏ(ϑ̃→z) = W̃cf(ϑ̃→z) (15)

The set of all aggregated results from all followers in group
Gc can be represented as: {ℏ(ϑ̃→z) | z ∈ Gc}, which is then
delivered to the server for decoding.

D. Knowledge Verification

1) LCC Decode: In this section, the server decodes the
teacher knowledge by collecting sufficient numbers of ag-
gregation results from each group. For group Gc, c ∈ [N ],
each of the the aggregated sharings ℏ(ϑ̃→z) corresponds to an
evaluation of ℏ(u(αz)), z ∈ Gc, and the u(·) is:

u(αz) =

K∑
k=1

V(k)
lk(αz) +

K+T∑
t=K+1

H(t−K)
lt(αz) (16)

where

V(k)
= [ϑ

(k)

1 ;ϑ
(k)

2 ; · · · ;ϑ(k)

z ] ∈ RR×Ω×D

H(t−K)
= [h

(t−K)

1 ;h
(t−K)

2 ; · · · ;h(t−K)

z ] ∈ CR×Ω×D

The decoding process consists of two steps. Firstly, the
server needs to recover the coefficients of the polynomial
ℏ(u(αz)). Since the degree of this composite polynomial is
deg(ℏ)(K+T−1), the server requires at least deg(f(x))(K+
T −1)+1 aggregated shares (evaluation points) to interpolate
and construct the polynomial, where deg(ℏ) = deg(f(x)).
Secondly, the server evaluates the polynomial ℏ(u(z)) at point
z = βk, k ∈ [K] to obtain Y

(k)

c = ℏ(V(k)
).

Then the teacher knowledge Ỹc = [Y
(1)

c , Y
(2)

c , · · · , Y (K)

c ]
can be decoded once the server has received sufficient ag-
gregated shares from each group Gc, and the central server
will extract the real part of the decoded teacher knowledge to
transform its mode from CK×Ω×D to RK×Ω×D.

2) Signature Aggregation: After decoding, the server needs
to provide proofs about the execution of the aggregation
process to the group leader for verifying the correctness
of the teacher knowledge. Based on the weight signatures
πc
W = (πc

1, π
c
2, . . . , π

c
z), z ∈ Gc submitted by the group leader

c and the logits signatures πc
V = (π′

1, π
′
2, . . . , π

′
z) submitted

by each follower in group Gc, the proof πc is calculated as:

πc =
∏
z∈Gc

e(

K∏
k=1

π(k)′

z , πc
z) (17)
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After completing the computation, the server will send the
corresponding information Resc = (Ỹc, πc) to each leader c ∈
[N ] of group Gc.

3) Proof Verification: To obtain the final teacher knowl-
edge, each group leader c need to perform the reverse split
process to concatenate the decoded K parts of Ỹc.

Case 1: For class-grain type, the leader c performed a
summation operation as:

Ỹc =

K∑
k=1

Y
(k)

c , RK×Ω×D → RD×D (18)

Case 2: For sample-grain type, the leader c performs the
row concatenation operation:

Ỹc = Y
(1)

c ||Y
(2)

c || · · · ||Y
(K)

c , RK×Ω×D → RO×D (19)

Additionally, the blind factor must be removed from Ỹc.
This is done by applying the matrix 1

Rc
, which consists of the

inverses of each element in Rc, through the hadamard product
as Ŷc =

1
Rt
⊙ Ỹc.

After deblinding, each leader c verifies the aggregated
knowledge Ŷc to ensure that there has been no deviation from
the SA protocol by the server or followers. Specifically, the
server must not tamper with any signatures or decoded knowl-
edge, and followers must not maliciously alter the knowledge
splits or shares exchanged during the interaction, while ensur-
ing that the local aggregation is performed according to the
agreed-upon weights.

To verify the correctness of the teacher’s knowledge, the
group leader c ∈ [N ] needs to check if the following equality
holds based on the proof πc:

e(g, g)
∑M

g=1

∑D
l=1 yg,l+K

∑
i∈Gc

wiΥi ?
= πc (20)

where e(·, ·) denotes bilinear pairing described in Appendix B,
yg,l represents the (g, l)-th element of Ŷc, and M equals to D
or O for class and sample grained logits type, respectively. In
SVAFD, the use of signature techniques helps reduce the com-
putational overhead for the verifier. This enables participants
to independently carry out the verification process, without the
need to rely on the third trusted party for assistance.

V. ANALYSIS

A. Correctness

The correctness of the SVAFD scheme will be proven
around the following questions. 1) Correctness of co-
aggregation; 2) Correctness of signature authentication.

1) Correctness of Co-aggregation: The goal of group leader
c is to aggregate the knowledge from its totally R followers
in group Gc, i.e., the ground truth teacher knowledge is
Y ∗
c = Wcf(V

c
), and the SVAFD leader c obtains Ŷc =

1
R′

c
⊙Dec(ℏ(Ṽc)), where Vc

= [ϑ1, ϑ2, · · · , ϑz]⇔ {V
(k)|k ∈

[K]}, and Ṽc = {ϑ̃→z|z ∈ Gc}.

The correctness of co-aggregation can be proven as follows.

Ŷc =
1

Rc
⊙Dec

(
ℏ(Ṽc)

)
(1)
=

1

Rc
⊙Dec

(
W̃cf(Enc(V

c
))
)

(2)
=

1

Rc
⊙Rc ⊙Wcf(Dec(Enc(Vc

))) = Y ∗
c

(21)

Proof: As the data flow diagram illustrated, each follower
z ∈ Gc first split the local knowledge ϑz to get ϑz =

[ϑz
(1)

, ϑz
(2)

, . . . , ϑz
(K)

], perform LCC encoding operation
Enc(·) for ϑ̃z→ = [ϑ̃z→1, ϑ̃z→2, · · · , ϑ̃z→] and exchanges the
encoded shares. The collection of all received shares forms
the encoded knowledge set Ṽc, and the above process can be
simplied as Ṽc = Enc(Vc

). Combining with Eq. 5, we can
deduce the first equation in Eq. 21 holds

According to the Lagrange encoding function in Eq. 13,
uz(αx), x ∈ Gc is a polynomial of maximum degree (K +
T − 1) with respect to α, satisfying that uz(αx) = ϑ̃z→x

and uz(βk) = ϑ
(k)

z , k ∈ [K]. Defining the set u(x) =
[u1(x);u2(x); · · · ;uz(x)].Thus:

u(Ξ) =

{
ϑ̃→I(Ξ), Ξ ∈ {αx|x ∈ Gc}
V(k)

, Ξ ∈ {βk|k ∈ [K]}
(22)

where I(x) denotes the subscript of x. Since ℏ(ϑ̃→z) =

ℏ(u(αz)) = W̃cf(u(αz)), which poses a degree of deg(f ×
u) = D × (K + T − 1). When the aggregation results
ℏ(Ṽc) = {ℏ(ϑ̃→z) | z ∈ Gc} is submitted to the central server,
at least D×(K+T −1)+1 values are required to reconstruct
the polynomial ℏ(u(·)) via Lagrange polynomial interpolation.
Then Ỹc can be induced by evaluating ℏ(u(βk)), k ∈ [K]. The
above decoding process can be expressed as Dec(ℏ(Ṽc)) =

ℏ({ϑ(k) | k ∈ [K]}) = W̃cf({ϑ
(k) | k ∈ [K]}) =

Rc⊙Wcf(V
c
). Since Dec(Enc(x)) = x, the second equation

of Eq.21 is holds, thus the Definition 1 is proved.
2) Correctness of Signature Authentication: This section

provides the verification of the linear weighted aggregation
for FD, which is based on the Verifiable Linear Computing
process of [38]. The formal proof given by the following
equation:

πc =
∏
i∈Gc

e(

K∏
k=1

π
(k)′

i , πc
i ) =

∏
i∈Gc

e(g
∑K

k=1(V
(k)
i +Υi), gwi)

=
∏
i∈Gc

e(g, g)(
∑K

k=1

∑Ω
g=1

∑D
l=1 v

(k)
i,glwi+KΥiwi)

= e(g, g)
∑

i∈Gc
wi

∑K
k=1

∑Ω
g=1

∑D
l=1 v

(k)
i,gle(g, g)K

∑
i∈Gc

wiΥi

= e(g, g)
∑M

g=1

∑D
l=1 yg,l+K

∑
i∈Gc

wiΥi

(23)
where yg,l represents the (g, l)-th element of the teacher’s
knowledge Ŷc, v(k)i,gl denotes the (g, l)-th element of ϑ

(k)

i .
Any clients or the server, who has dishonest behavior during

computation and is not detected, needs to make equation
πc

?
= e(g, g)

∑M
g=1

∑D
l=1 yg,le(g, g)

∑
i∈Gc

wiΥi hold. However,
for the client-side, it receives the masked W̃c and does not
know the decoded value of Ŷc or the private keys Υi, i ∈ Gc of
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Fig. 6: The MAUA of the client model obtained by different aggregation architectures under eights attacks with 40% malicious
clients on SVHN.
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TABLE II: The configurations of three adopted models. The
height and width of the input images are noted as H and W,
respectively.

Model Notation Feat. Shape Params

ResNet8-small AC
1 H ×W × 16 76.2K

ResNet16-medium AC
2 H ×W × 16 171.2K

ResNet20-large AC
3 H ×W × 16 266.1K

other participants. Similarly, the server only poses the blinded
Ỹc. They cannot deceive the leader into accepting tampered
teacher knowledge by forging the verification proof πc.

VI. EXPERIMENTS

A. Experiment Setup

Implementation.
We evaluate the performance of our proposed SVAFD with

FedML research library [39] deployed on CUDA version 12.4
for all experiments. We use a random projection matrix [40]
as the LSH mapping function[37], use the SS512 curve from
the Charm library[41] as the base for the pairing group, and
complete the signature and aggregation operations as described
in [38],

Datasets,Models. Two typical datasets from different do-
mains in our experiments are utilized, including SVHN [42]

and FashionMNIST [42]. In addition, we consider heteroge-
neous model architectures AC

1 , AC
2 , AC

3 for different clients,
and the main configurations of the three adopted models are
the same as in [24], as shown in Table II. Unless otherwise
specified, the number of clients in the experiments is 100,
using the SGD optimizer with a learning rate of 0.01, batch
size of 32, and all client models are selected sequentially from
the three types using modulo operations.

Distillation architectures. We apply our SVAFD scheme
to FD[27], FMD[28], and the more challenging novel frame-
works Fedcache[24] and DSFL[29].

Evaluation Metrics. The precision of algorithms is mea-
sured by Maximum Average User model Accuracy [24]
(MAUA). Moreover, we utilized the Attack Success Rate
(ASR) as evaluation metrics, while measures the ability of
SVAFD to resist attacks. Therefore, a higher MAUA indicates
a more effective model, while a lower ASR indicates greater
robustness of the model against attacks.

B. Robustness

We quantitatively show that SVAFD helps the four FD ar-
chitectures achieve satisfactory performance while facing eight
attack methods targeting data, models, and logits poisioning
attacks.

1) MAUA under Various Poisoning Attacks: We evaluate
the MAUA of four FD architecture under eight poision attacks
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Fig. 8: The ASR obtained on SVHN.

over three datasets. Specifically, we consider that SVAFD
cooperative with the four benchmarks under (i) the model
heterogeneity among clients, and those with residuals of index
mod 3 of 0, 1 and 2 are assigned with model architectures
AC

1 ,AC
2 and AC

3 respectively; (ii) the data heterogeneity on no-
iid data distribution, with α = 1 setting for Dirichlet distribu-
tion; (iii) the various attacks, with three different percentages
of malicious clients(MP) (40%, 50%, 60%). We investigate
nearly 700 different combinations of approaches, attacks, and
tasks. Each combination is trained for a fixed number of
100 epochs for FMD and 200 epochs for the remains three
architectures in this section.

Fig. 6 and Fig. 7 illustrate the radar charts of the four distil-
lation architectures under the proposed SVAFD when facing
various types of poisoning attacks. The red area represents
the MUAU of the original distillation scheme, while the green
area represents the MUAU performance of the distillation
architecture after applying SVAFD. The gray area serves as the
reference MUAU without any poisoning attacks. As shown, all
four frameworks achieved performance improvements across
the eight poisoning schemes, with the average percentage
performance improvements for the eight schemes being 8.54%,
7.78%, 21.20%, 3.09%, 11.28%, 12.79%, 8.40%, and 29.19%,
respectively.

The divergencey in the areas of the green and red regions
visually demonstrates the robustness of the SVAFD scheme
against various poisoning attacks. In the combinations where
MUAU differences are significant, such as RMA in Fig.7(c),
and LFA in Fig.7(d), SVAFD helps the corresponding architec-
ture achieve the 36.46% and 61.11% accuracy improvement.
This occurs when the number of aggregated clients is only
40% of that in the no-attack scenario, showing performance
that is comparable to, or even superior to the gray area. This
is because SVAFD continuously updates the clients’ intimacy
list during training with the quality-aware scheme, allowing
each client to carefully select efficient teacher knowledge.
SVAFD effectively avoids the inconsistency of knowledge and
the impact of poisoning attacks on model convergence, while

Fig. 9: The ASR obtained on FMNIST.

reducing network resource usage by aggregating only a portion
of the clients rather than all candidate clients.

2) ASR under Various Poisoning Attacks: We evaluate
the ASR of four architecture with 60% malicious clients
over SVHN and FMNIST datasets. As shown in Fig.8, we
observe that the success rate of all attack methods decreases
continuously as training progresses and gradually stabilizes.
By the end of training, the success rate of most attack methods
has dropped below 20%. This is because, as the local model
accuracy improves, the client model’s ability to fit the local
data feature distribution strengthens. As a result, the difference
between clients with consistent knowledge distributions and
malicious clients becomes more pronounced, making it easier
for the quality-aware scheme to filter out candidates.

Fig.9 also includes the performance of SVAFD on the FM-
NIST dataset. The ASR converges to below 10% in DSFL and
FMD within the first 20 rounds, showing superior performance
compared to the SVHN dataset. This might be because the
FMNIST task is relatively simpler, and the rapid improve-
ment in model accuracy facilitates the quality-aware scheme’s
efficient filtering of malicious clients. LFA and PFA exhibit
higher ASR compared to other attack methods. Nevertheless,
SVAFD still reduces more than 70% of these two malicious
attacks, effectively enhancing the robustness of the FD system.

3) Data Distribution Security: To explore the data dis-
tribution security of SVAFD towards the DDI, we set the
Dirichlet distribution hyper-parameter to control the degree
of local data distribution, and compare the performance of
SVAFD in the class-grained(FD) and sample-grained(FMD)
scenarios. We take five clients as an example, and the heatmap
describes the change in the similarity relationship ηd between
the mean logits distribution of C/S interactions and the local
data distribution over the first 100 rounds of training.

In Fig.10, the upper part of each sub-heatmap shows the
change in ηd without any defensive measures. As shown, with
the training progresses, the color gradually deepens, and the
approximate value of ηd continues to rise, stabilizing at a high
correlation. This is because the model’s training goal is to
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(b) The similarity of knowledge distribution and label distribution (FMD).

Fig. 10: The similarity of knowledge distribution and label distribution in different cases.

Fig. 11: Run time of preprocess and
auxiliary for followers.

Fig. 12: Run time of preprocess and
auxiliary for leaders.

Fig. 13: Run time of encode and de-
code in class-grained.

Fig. 14: Run time of encode and de-
code in sample-grained.

Fig. 15: Run time of verification and
proof generation.

Fig. 16: Total run time of participants
with T=50.

minimize the difference between the predicted distribution and
the true label distribution through optimization (e.g., cross-
entropy loss). After sufficient training, the model’s logits
output statistically aligns with the label distribution of the
training data. When the SVAFD scheme is applied, the lower
part of the heatmap shows a more random distribution. This
occurs because the teacher knowledge obtained by the server
about the client is based on the aggregation of knowledge from
R clients which is randomly masked. In this case, the server
cannot capture the local data distribution information based on
the mean logits distribution from the interactions.

C. Efficiency
Our evaluations about the efficiency are centered around the

relative error of the encoding, as well as the latency at different

TABLE III: The relative error RE (log10) under different
parameter combinations with σ = 103, θ = 6, batchsize=32,
β = 1.15.

N K=10 K=20 K=30
T=10 T=20 T=30 T=10 T=20 T=30 T=10 T=20 T=30

50 -10.75 -11.08 -10.98 -11.03 -10.71 -10.57 -10.80 -10.80 N/A
75 -9.24 -9.30 -9.65 -9.71 -9.74 -9.28 -9.70 -9.029 -9.43
100 -8.03 -7.42 -7.96 -7.87 -8.01 -7.49 -7.78 -7.38 -8.08

stages.
1) Relative Error Introduced by MM-LCC: In this section,

we use the relative error RE = ∥Ŷ−Y ∗∥
∥Y ∗∥ . to study the error loss

after the LCC encoding, aggregation, and decoding processes.
Table.III illustrates the log values of the relative error under
different combinations of the number of clients, splits, and
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privacy guarantees. All values are the averages from 5 repeated
runs. As shown, the relative error does not vary significantly
with changes in K and T . As the number of clients N
increases, the cumulative error caused by encoding operations
on all clients grows. However, under the unified condition
of N = 100 in our former experiment, the relative error
remains at the order of 10−7, which indicates that the SVAFD
scheme, after receiving a sufficient number of encodings,
results in almost negligible decoding errors. The results fully
demonstrates the high precision of our SVAFD.

2) System-level Overhead: In this segment, we study the
system-level overhead of SVAFD, including the individual
latency of participants in the three stages.

In the first stage, both the leader and followers need to
perform data initialization and generate auxiliary signature
information. On the follower-side, the initialization overhead
is primarily due to hash mapping, knowledge splitting, and
knowledge perturbation, while on the leader-side, the primary
tasks involve Lagrange matrix computation and weight mask-
ing operations. Additionally, both parties need to perform the
necessary data quantization and signing.

As shown in Fig.11, the initialization latency on the
follower-side is mainly influenced by the number of clients,
while the auxiliary computation overhead increases as the
value of K grows. The latter’s overhead can be up to nearly 10
times higher than the former (N=1000, K=80). This is because
the signing operation involves mapping the quantized logits to
an elliptic curve for large integer operations, which inevitably
introduces computational overhead. Since K determines the
splits of data, as K increases, each client needs to compute
more signatures. Even so, under the setting of K=80 with
N=1000 clients, the latency for generating auxiliary informa-
tion on the client side remains in the millisecond range.

Fig.12 shows the overhead for initialization and auxiliary
computation on the leader-side. The initialization overhead of
the leader is relatively high and increases with the growth of
the client number N and the value of K. Since the auxiliary
computation overhead mainly comes from the quantization
and signing, it is primarily influenced by the number of
clients and does not fluctuate significantly with changes of K.
Additionally, we observe that the leader overhead increases
nearly linearly with the number of clients.

Fig.13 and Fig.14 show the encoding overhead on the
follower-side and decoding overhead on the server-side un-
der both class-grained and sample-grained types. The overall
latency overhead of the sample-grained framework is higher
than that of the class-grained framework. Specifically, the
decoding latency and encoding overhead in the sample-grained
type are on average nearly 3.2 times and 1.3 times greater,
respectively, than those in the class-grained setup. This is
because the size of each split in the sample-grained framework
is Ω×D,relating to the sample numbers, whereas in the class-
grained framework, it is D×D and Ω ≥ D. It’s observed that
the experimental overhead increases linearly with the values
of K and N . This is because LCC is inherently a lightweight
linear encoding scheme[30], which holds promise for handling
large-scale data transmission, providing fault tolerance and
optimizing network bandwidth utilization.

Fig.15 presents the time taken by the server to generate
the aggregation proof and the time for leaders’ authentication
and deblinding. It can be observed that, even under the most
complex scenario with K = 80 and N = 1000, the client
authentication process is still completed within 10ms. In con-
trast, the server’s proof generation time is nearly 2000 times
longer than the authentication time. This demonstrates that
relying solely on resource-constrained local clients to perform
the signature aggregation required for privacy protection is
unrealistic. However, SVAFD addresses this by offloading
the heavy signature aggregation task to the computationally
resource-rich server, and with the help of the lightweight
linear encoding scheme, it achieves efficient computing, thus
effectively ensuring user privacy during collaborative training.

SVAFD takes into account the actual demands and resource
capabilities of all participants, ensuring that each party can
bear the computational overhead. Fig.16 provide detailed
overview of the overhead. Under both the sample and class
types, there is a significant difference in the overhead for
encoding and decoding processes. Therefore, additional curves
are used to distinguish the performance of client-side and
server-side computations. The error ranges from five repeated
runs are shown using variance bands. The server-side compu-
tational overhead is, on average, 10 times and 12 times greater
than that of follower-side and leader-side, respectively. Despite
this, the server can still complete the computation within 2
seconds with 1300 clients, while the client-side requires only
millisecond-level runtime. This indicates that SVAFD is a
lightweight secure aggregation protocol that ensures efficient
execution of the training process by keeping the computational
overhead within acceptable limits for all parties.

VII. CONCLUSION

We propose SVAFD, a verifiable co-aggregation framework
for Federated Distillation (FD). SVAFD addresses critical se-
curity challenges in FD by decoupling the aggregation process
into knowledge selection, aggregation, and verification, ensur-
ing privacy protection and knowledge integrity even in the
presence of a malicious server. By leveraging Lagrange Coding
Computation (LCC), SVAFD enables efficient and secure
co-aggregation in resource-constrained environments such as
mobile edge networks. To our knowledge, SVAFD is the first
framework to provide secure aggregation specifically for FD,
overcoming the limitations of traditional secure aggregation
methods that are ill-suited for FD’s heterogeneous model
setups. Extensive experiments demonstrate that SVAFD is
highly robust against various poisoning and inference attacks,
while also significantly improving model accuracy.

APPENDIX

A. Details of Two Types of Distillation

1) Class-grained Logits Interaction-based Architecture
(CLIA): For CLIA, the output of each sample xc

i ∈ Sc for
client c ∈ [N ] needs to be close to the teacher knowledge
with the same label[27], that is:
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argmin
ΦC

∑
(xc

i ,y
c
i )∈Sc

[LCE (κ0 (ℓ
c (xc

i )) , y
c
i )

+ λc · LKD (κ0 (ℓ
c (xc

i )) ,κ0 (ϑ
g(yci )))]

(24)

where κ0(·) is the softmax mapping function, and LCE(·)
represents the cross-entropy loss. Y c(yci ) refers to the teacher
knowledge from the server with the label yci . ϑc ∈ RD×D

represents the local average logits of all samples with the same
label for client c, computed as:

ϑc(yd) = Avg[
∑

(Xc
i ,y

c
i )∈Sc∧yd=yc

i

ℓc (Xc
i )] (25)

CLIA supports model heterogeneity through lightweight
communication. After each round of local training, the client
uploads the average class-grained knowledge ϑc of its local
data. This is aggregated by the server to obtain teacher
knowledge for the next round of local training.

2) Sample-grained Logits Interaction-based Architecture
(SLIA): For SLIA, it typically requires the introduction of a
public dataset or an unlabeled dataset[28, 29]. For client c, the
logits learns from the average logits of all clients on a given
sample (Xo

i , y
o
i ) from the public dataset So, i.e.:

argmin
W c

∑
(Xo

i ,y
o
i )∈So

LCE (κ0 (ℓ
c (Xo

i )) ,

κ0 (ϑ
g(i)))

(26)

where, ϑg(i) represents the teacher knowledge from the
public accessible dataset with index i. At this point, the teacher
knowledge vg ∈ RO×D, where O is the total number of
samples selected from the public dataset. The client’s local
knowledge ϑc ∈ RM×D is expressed as:

ϑc = E
(Xo

i ,y
o
i )∈So

ℓc (Xc
i )

U
(27)

where U is a hyperparameter for distribution control of the
aggregated logits.

B. Bilinear Pairings

The bilinear pairing group is define as (p,G,GT , e), where
p is a large prime number, G and GT are prime-order cyclic
multiplicative groups with order p, and e is a bilinear map
function as e : G × G → GT . The bilinear map satisfies the
following three properties:

• Bilinearity: For all a, b ∈ Zp and g ∈ G, e(ga, gb) =
e(g, g)ab.

• Non-degeneracy: There exists an element g ∈ G such
that e(g, g) ̸= 1.

• Computability: For all g ∈ G, there is an efficient
algorithm to compute e(g, g).

C. Data Precision Conversion

We take the precision conversion function as wz ←
Conv(wz, q) = ⌊wz ∗ 10q⌋, and V

(k)
z ← Conv(V (k)

z , q) =

⌊V (k)
z ∗10q.⌋. This approximation process inevitably results in

some information loss and a reduction in precision, however,
it does not impact the accuracy of the verification.
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