
ar
X

iv
:2

50
5.

12
86

9v
1

 [
cs

.C
R

]
 1

9
M

ay
 2

02
5

OUTSOURCED PRIVACY-PRESERVING FEATURE SELECTION
BASED ON FULLY HOMOMORPHIC ENCRYPTION

A PREPRINT

Koki Wakiyama Tomohiro I

Hiroshi Sakamoto

Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
wakiyama.koki809@mail.kyutech.jp
{tomohiro, hiroshi}@ai.kyutech.ac.jp

June 12, 2025

ABSTRACT

Feature selection is a technique that extracts a meaningful subset from a set of features in training
data. When the training data is large-scale, appropriate feature selection enables the removal of
redundant features, which can improve generalization performance, accelerate the training process,
and enhance the interpretability of the model. This study proposes a privacy-preserving computation
model for feature selection. Generally, when the data owner and analyst are the same, there is no
need to conceal the private information. However, when they are different parties or when multiple
owners exist, an appropriate privacy-preserving framework is required. Although various private
feature selection algorithms, they all require two or more computing parties and do not guarantee
security in environments where no external party can be fully trusted. To address this issue, we
propose the first outsourcing algorithm for feature selection using fully homomorphic encryption.
Compared to a prior two-party algorithm, our result improves the time and space complexity O(kn2)
to O(kn log3 n) and O(kn), where k and n denote the number of features and data samples, respec-
tively. We also implemented the proposed algorithm and conducted comparative experiments with
the naive one. The experimental result shows the efficiency of our method even with small datasets.

1 Introduction

Feature selection is the process of identifying and selecting useful features (variables or attributes) from a dataset
with the aim of improving the performance of predictive models and optimizing learning efficiency [1]. Consider a
scenario in which a target variable is to be predicted using a large number of potential explanatory variables, with the
goal of building a simple yet effective predictive model from a vast set of observations. For instance, in semiconductor
manufacturing, more than tens of thousands of external factors can influence the production process from silicon
material to the final product. If it is possible to identify in advance which of these factors are critical to product
quality, then it is sufficient to construct a classification model based only on those selected features—offering a range
of benefits. In practice, such preprocessing can lead to improvements in model accuracy, reductions in training time,
and enhanced interpretability of the model. Many feature selection algorithms based on various criteria have been
proposed to date [2–8].

In this study, we consider the feature selection in situations where the training data contains privacy-sensitive in-
formation. When the data owner who needs a reasonable learning model and the analyst required to construct the
model are the same, privacy is generally not a concern as long as there is no data leakage. However, our focus is on
privacy-preserving computation in cases where these two parties are separate. Existing frameworks to address this
issue include techniques such as secret sharing [9] and differential privacy [10]. In this work, from the perspective

https://arxiv.org/abs/2505.12869v1

Outsourced Privacy-Preserving Feature Selection Based on Fully Homomorphic Encryption A PREPRINT

of outsourcing, we focus on an approach based on fully homomorphic encryption (FHE) [11], which is a form of
public-key cryptosystem.

In secret sharing schemes, data is split and distributed among parties, which introduces a risk of data leakage if those
parties colludes maliciously. Differential privacy, on the other hand, prevents leakage by injecting random noise into
the data. However, there exists a trade-off between the amount of noise added and the quality of the learning results,
and it cannot guarantee complete protection against data leakage.

By contrast, FHE enables all arithmetic and comparison operations to be performed directly on encrypted data. Since
only the data owner possessing the secret key can decrypt the final result, the privacy guarantees are as strong as
the underlying public-key encryption. The primary limitations of FHE have been computational inefficiency and the
challenge of outsourcing computation in scenarios involving multiple data owners. However, recent advancements
such as TFHE [12] and multi-key homomorphic encryption schemes [13] are steadily overcoming these obstacles.

Therefore, we consider a simplified privacy-preserving problem for feature selection: The data owner retains the
training data along with a pair of generated public and private keys. Then, the analyst receives the encrypted training
data and performs feature selection using FHE scheme. The result of the computation is then returned to the data
owner, who decrypts it using the private key.

Note that the proposed method constitutes a fully outsourced computation [14,15] with only a single round of commu-
nication between the data owner and the analyst. This aspect significantly strengthens privacy protection. In non-fully
outsourced scenarios, multiple interactions or queries from a party may be required. During such interactions, partial
decryption of maliciously crafted messages from untrusted analyst could lead to unintentional leakage of the data
owner’s private information.

To prevent this, conventional approaches typically rely on assumptions that constrain the behavior of the analysts. For
example, the semi-honest model assumes that the analyst follows the protocol faithfully but may attempt to extract as
much information as possible from the data he receives. However, imposing such assumptions compromises practical
applicability. In contrast, our algorithm requires only single round communication without decryption and ensures
that the risk of data leakage depends solely on the strength of the cryptosystem. The TFHE [12] used in this study is
proven to be at least secure against chosen-plaintext attacks (IND-CPA secure). Consequently, it offers a significant
advantage in terms of both security and practical usability compared to existing methods.

2 Related Works and Our Contributions

Feature selection is broadly categorized into filter method [16], wrapper method [17], and embedded method [18].
Among these, the filter method evaluates the importance of features based on information theory, making it faster than
other methods and highly generalizable due to its independence from specific models. While evaluation metrics such
as mutual information are commonly used in filter methods [19], this study focuses on feature selection based on a re-
cently proposed consistency measure [20]. Feature selection algorithms using consistency measures have been shown
to achieve both high computational efficiency and high classification accuracy on large-scale real-world datasets [7,8].
In contrast, feature selection algorithms based on wrapper or embedded methods are generally impractical for se-
cure computation due to the high computational cost associated with searching for optimal feature subsets or training
models. Therefore, this study proposes a consistency measure-based secure feature selection.

Homomorphic encryption (HE) is a framework for secure computation that leverages the homomorphic properties of
public-key cryptosystems. Specifically, if encrypted integers can be added without decryption, the cryptosystem is
said to be additive. Furthermore, if it supports both operations, it is called FHE, e.g., RSA [21], the first public-key
cryptosystem, is multiplicative but not additive. Additionally, RSA is not a probabilistic encryption scheme—i.e.,
it does not produce different ciphertexts for the same plaintext in each execution—making it vulnerable to chosen-
plaintext attacks. The first probabilistic HE [22] was capable of computing the sum (i.e., bitwise XOR) of encrypted
bits. Subsequently, a scheme enabling the addition of integers was proposed [23]. Later, the first HE capable of both
addition and multiplication was introduced [24], but it allowed only single multiplication operation in overall com-
putation, limiting its practicality for secure computation. Eventually, the first FHE, which imposes no restrictions on
the number of operations, was proposed [11], making arbitrary secure computations theoretically possible. In prac-
tice, fast FHE libraries have become available [25], expanding its applicability. The implementation of the algorithm
proposed in this study also utilizes such a library.

Although several private feature selection methods have been proposed to date [26–29], only a few have addressed
privacy-preserving computation for the consistency measure [30], and this study is the first to attempt a fully out-
sourced computation for it. This is because the computation of the optimal consistency measure reduces to the set
cover problem known to be NP-hard [31]. Consequently, approximation algorithms and acceleration techniques for

2

Outsourced Privacy-Preserving Feature Selection Based on Fully Homomorphic Encryption A PREPRINT

solving this optimization problem have been proposed [7, 8], and in this study, we realize a secure fully outsourced
computation of such an algorithm.

A core technique in this approximate method is preprocessing via sorting. By sorting the entire dataset with feature
values as keys, it becomes possible to efficiently narrow down the important features, enabling a heuristic approach to
approximate optimal feature selection. However, executing this algorithm over encrypted data is not straightforward.
In general, the lower bound for comparison-based sorting algorithms is Ω(n log n), but no secure outsourced compu-
tation method is currently known that achieves this lower bound. At present, the fastest known method uses sorting
networks with a time complexity of O(n log2 n) [33], which is also adopted in this study as preprocessing. It should
be noted, however, that if secret sharing among two or more parties is used, faster privacy-preserving sorting becomes
feasible [34]. Moreover, disregarding practical constraints, it is theoretically possible to construct sorting networks
with O(n log n) time complexity [35]. Nonetheless, both of these approaches are outside the scope of this study.

Table 1 below summarizes HE-based private feature selection algorithms. Here, k and n denote the number of features
and data samples, respectively. A filter method [26] adopts the χ2 statistic as its evaluation criterion and employs
additively homomorphic encryption [23]. While this method has a low offline computational cost, its communication
overhead is greater than that of the proposed method. Moreover, since it assumes two-party computation, it does not
support fully outsourced computation. Additionally, it has not been implemented. Another two-party protocol [30]
uses the same consistency measure as the proposed method and adopts the fastest FHE [12]. Although it also achieves
exactly single round complexity as our the method, it assumes a two-party setting and therefore does not support fully
outsourced computation.

Table 1: Comparison of HE-based feature selection algorithms.

Algorithm Metric Time Space # Round Outsourced
Rao et al. [26] χ2 O(kn) · CP O(kn) O(1) partially
Ono et al. [30] consistency O(kn2) · CC O(kn2) 1 partially

Proposed consistency O(kn log3 n) · CC O(kn) 1 fully
CP and CC are costs per single operation depending on the respective cryptosystems [12,23]. To enable a fair comparison under the
same conditions, the computational complexity of Ono et al. [30] is described only with respect to feature selection task, omitting
the preprocessing time required for data formatting. The term ”partially” refers to decrypting the data in part before obtaining the
final result.

3 Preliminaries

3.1 Consistency-Based Feature Selection

Let D = {d1, d2, . . . , dn} be a set of indices of data, associated with a set F = {f1, f2, . . . , fk} of features and a class
variable C, where the feature value d(fi) and the class label d(C) are defined for each data d ∈ D. Table 2 shows an
example of the triple (D,F,C).

The feature selection is to find a minimal subset F ′ ⊆ F relevant to C, where F ′ is said to be consistent if, for any
d, d′ ∈ D, d(fi) = d′(fi) for all fi ∈ F ′ implies d(C) = d′(C), and F ′ is minimal, if any proper subset of F ′ is no
longer consistent.

For example, consider the mutual information I(F ′;C) for evaluating the relevance of F ′ showing in Table 2. We
can see that f1 is more important than f5 due to the fact I(f1;C) > I(f5;C). f1 and f2 of Table 2 will be chosen
to explain C based on the score of I . However, a closer examination of D reveals that f1 and f2 cannot uniquely
determine C. In fact, we find d2 and d5 with d2(f1) = d5(f1) and d2(f2) = d5(f2) but d2(C) ̸= d5(C). On the other
hand, we can see that f4 and f5 uniquely determine C using the formula C = f4⊕f5 while I(f4;C) = I(f5;C) = 0.
It becomes clear that I(F ′;C) alone may not always lead to appropriate feature selection.

3

Outsourced Privacy-Preserving Feature Selection Based on Fully Homomorphic Encryption A PREPRINT

Table 2: An example triple (D,F,C) shown in [8].

D f1 f2 f3 f4 f5 C
d1 1 0 1 1 1 0
d2 1 1 0 0 0 0
d3 0 0 0 1 1 0
d4 1 0 1 0 0 0
d5 1 1 1 1 0 1
d6 0 1 0 1 0 1
d7 0 1 0 0 1 1
d8 0 0 0 0 1 1

I(fi;C) 0.189 0.189 0.049 0.000 0.000

Let us review the notion of the consistency measure employed in this study. A consistency measure µ : 2F → [0,∞)
is a function to represent how far the data deviate from a consistent state, where F is required to satisfy determinisity
(i.e., µ(F) = 0 iif F is consistent) and monotonicity (i.e., F ⊆ G implies µ(F) ≥ µ(G)). In this study, we focus
on the binary consistency: µbin(F) = 0, F is consistent; 1, otherwise [7]. For other consistency measures, see e.g.,
rough set [2], ICR [5], and inconsistent pair [6].

As Table 2 illustrates, the importance of a feature fi is not determined solely by itself, but is influenced by the relative
relationship among other features. CWC [8] achieves superior feature selection compared to other statistical measures
by computing the relative importance of features. Algorithm 1 outlines the procedure of CWC, where the consistency
of the candidate set excluding fi is evaluated to determine whether to select fi. Here, the order in which features fi are
selected significantly affects the result, so it is important to preprocess the triple (D,F,C) in advance. For example,
there is a known method that determines the order of fi by sorting the triple with the values of fi as keys. This study
also adopts that method.

Algorithm 1 CWC [7] over plaintexts
Require: A dataset (D,F,C);
Ensure: A minimal consistent subset of F ;

1: for i = 1, . . . , k do
2: if F \ {fi} is consistent then
3: update F ← F \ {fi};
4: end if
5: end for
6: return F ;

3.2 Computation on FHE

The proposed FHE-based private feature selection is implemented using TFHE [25], one of the fastest FHE library
for bitwise addition (XOR ‘⊕’) and bitwise multiplication (AND ‘·’) over ciphertext. On TFHE, any ℓ-bit integer
m = (m1,m2, . . . ,mℓ) is encrypted bitwise: E[m] ≡ (E[m1], E[m2], . . . , E[mℓ]).

Given E[b] and E[b′] (b, b′ ∈ {0, 1}), FHE allows to compute the bitwise operations E[b ⊕ b′] and E[b · b′] without
decrypting E[b] and E[b′]. It also allows all arithmetic and logical operations via XOR and AND as follows: Let x, y
represent ℓ-bit integers and xi, yi the i-th bit of x, y, respectively. Let ci represent the i-th carry-in bit and si the i-th
bit of the sum x + y. Then, we can obtain the private full-adder E[x + y] using the relations si = xi ⊕ yi ⊕ ci and
ci+1 = (xi ⊕ ci) · (yi ⊕ ci) ⊕ ci. We can construct other operations such as subtraction, multiplication, and division
based on the full-adder.

On the other hand, we can also obtain the private comparison E[cmp(>, x, y)] satifying cmp(>, x, y) = 1 if x > y
and 0 otherwise, because cmp(>, x, y) is identical to the most significant bit of y + (−x), which can be obtained
without decryption. Here, (−x) is the bit complement of x obtained by xi ⊕ 1 for all i-th bits.

Thus, by using FHE, it is possible to perform all arithmetic operations and comparisons for encrypted variables or
elements of arrays. For simplicity, we represent such operations in plaintext notation throughout the remainder of this
paper. That is, unless otherwise stated or unless it may cause confusion, an operation such as the addition of two
encrypted integers E[x] and E[y], resulting in E[x+ y], will be denoted simply as x+ y.

4

Outsourced Privacy-Preserving Feature Selection Based on Fully Homomorphic Encryption A PREPRINT

Based on FHE, we can design a private sorting algorithm as follows (e.g. [32]). Note that, in this code, the variables
gt, tmp, and any entry in the array arr[1..n] are all encrypted. Therefore, after this code is executed, the resulting
arr[1..n] is sorted securely without revealing the private information about arr[1..n].

// private bubble_sort over ciphertexts
void bubble_sort(int *arr,int n){

for(int i=0;i<n-1;i++){
for(int j=1;j<n-1;j++){

int gt=cmp(>,arr[j-1],arr[j]);
int tmp=gt*arr[j-1]^(!gt)*arr[j];
arr[j-1]=gt*arr[j]^(!gt)*arr[j-1];
arr[j]=tmp;

}
}

}

However, it is difficult to improve the O(n2) time algorithm to O(n log n). This is because encrypting pointers is
fundamentally meaningless. If pointers are in plaintext, information about the input (e.g., the distribution of values)
may be leaked. On the other hand, if the pointers are encrypted, it becomes impossible to access the corresponding
memory addresses, and thus computation cannot proceed. Satisfying these conflicting requirements simultaneously
appears to be impossible. This difficulty can be partially avoided by using sorting network, where comparisons are
performed only between fixed pairs of elements, eliminating the need for pointers. Theoretically, we can construct
an optimum sorting network that achieves O(n log n) comparisons [35], but the circuit size is impractically large.
Therefore, in practice, O(n log2 n) algorithm [33] is used. This study also adopts this approach.

4 Method

4.1 Sorting Network on FHE

Sorting via FHE is typically performed using sorting networks. It remains an open question whether a fastest algorithm
such as quicksort or mergesort can be effectively realized in FHE setting. In this study, we adopt the Batcher’s odd-
even mergesort [33] as the basis for sorting. Batcher’s algorithm employs a recursively constructed sorting network
according to the number of elements and achieves sorting in O(n log2 n) time. However, it requires that the number
of data items be a power of two. Therefore, if the input data size does not meet this condition, we insert appropriate
dummy elements beforehand to adjust the size. Moreover, since sorting network is basically not a stable sort, we
attach a log n-bit suffix to each data element to ensure stability. This preprocessing does not affect the correctness or
quality of feature selection in any way.

4.2 A Naive Algorithm for Private CWC

In this study, we assume that the data analyst (i.e., an algorithm) receives the input triple (D,F,C) in encrypted form,
and that the algorithm is capable of performing FHE operations on encrypted data.

Here, (D,F,C) is possessed as an array, and the algorithm has access to any encrypted entry di(fj) or di(C) for
i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , k}. The private CWC (denoted pCWC) utilizes sorting D with the feature vectors
F⃗ = (f1, f2, . . . , fk) formed by fi ∈ F . By sorting (D,F,C) with F⃗ as the key, identical feature vectors are placed
adjacent to each other, significantly speeding up the consistency checking step.

Table 3 (upper) shows an input (D,F,C) and Table 3 (lower) shows the sorted (D,F,C) where each original index di
is renamed by the sorted order Dj and for each i ∈ {1, 2, . . . , k}, the corresponding feature label L[i][j] is the unique
grouping label of log n bits for Dj defined by the feature vector F⃗ [..i] = (f1, f2, . . . , fi).

For example, Table 3 (lower), the labels L5 for D1 and D2 are both 000, indicating that D1 and D2 belong to the same
group based on identical feature vector values up to f5. Therefore, the consistency check needs to be performed only
for data points that share the same label associated with the tail fi. Thus, by using the sorted (D,F,C) along with the
corresponding feature labels in L[1..k][1..n], the consistency checking process becomes significantly simplified.

5

Outsourced Privacy-Preserving Feature Selection Based on Fully Homomorphic Encryption A PREPRINT

Table 3: Sorted (D,F,C) and corresponding feature labels Li.

D f1 f2 f3 f4 f5 C
d1 1 0 1 0 0 1
d2 0 1 0 0 1 0
d3 0 1 0 0 1 0
d4 1 0 0 0 1 1
d5 1 0 1 1 1 0

sorted D f1 :
L[1][1..5]

f2 :
L[2][1..5]

f3 :
L[3][1..5]

f4 :
L[4][1..5]

f5 :
L[5][1..5]

C

D1(= d2) 0:000 1:000 0:000 0:000 1:000 0
D2(= d3) 0:000 1:000 0:000 0:000 1:000 0
D3(= d4) 1:001 0:001 0:001 0:001 1:001 1
D4(= d1) 1:001 0:001 1:010 0:010 0:010 1
D5(= d5) 1:001 0:001 1:010 1:011 1:011 0

Algorithm 2 shows a naive pCWC computation based on the sorted (D,F,C) and the feature labels. Given (D,F,C),
consider the evaluation of each feature ft in F = {f1, f2, . . . , fk}. The algorithm evaluates the consistency on the
feature set F ′ = F \ {ft}, obtained by removing ft, and obtains the corresponding Boolean value bt. Specifically, bt
is computed as:

bt =

n∧
i=2

((Di−1 ̸= Di) ∨ (Di−1(C) = Di(C)))

Here, bt = 1 iff ft is selected. By reporting the resulting b⃗ = (b1, . . . , bk) to the data owner, the selected features are
obtained after decrypting b⃗.

We next analyze the complexity of our algorithm where in the following discussion, we assume that the cost of
each homomorphic operation under FHE is constant. That is, the computational cost of arithmetic and comparison
operations on encrypted data is treated as O(1), unless otherwise specified.

Algorithm 2 Naive pCWC for ciphertexts
Require: An encrypted (D,F,C);
Ensure: A minimal consistent subset of F ;

1: for t = k, k − 1, . . . , 1 do
2: sort (D,F ′, C) with F⃗ ′ as the key for F ′ = F \ {ft};
3: compute L[j][i] for all j = 1, 2, . . . , k and i = 1, 2, . . . , n;
4: compute the consistency bt ∈ {0, 1} of (D,F ′, C);
5: update Di(ft)← Di(ft) · bt for all i = 1, 2, . . . , n;
6: end for
7: return b⃗ = (b1, b2, . . . , bk) representing the selected subset of F ;

Theorem 1 Algorithm 2 (naive pCWC) on ciphertexts simulates Algorithm 1 (CWC) on plaintexts. The time and
space complexities are O(k2n log3 n) and O(kn) for |F | = k and |D| = n, respectively.

proof. Assuming that (D,F ′, C) is already sorted, the feature label L[t][i] of Di for F⃗ [..t] can be computed based on
whether Di−1(..ft) = Di(..ft) holds, where Di(..ft) stands for Di(f1) · · ·Di(ft). When the predecessor L[t][i− 1]
for Di−1 is already defined, using the logical bit x to indicate whether Di−1(..ft) = Di(..ft), the next L[t][i] is
defined as: L[i]← L[i− 1] + ¬x. These computations can be performed on FHE. Moreover, the logical bit bt, which
determines whether the feature ft should be selected, can also be computed by FHE according to its definition. By
updating each ft as: Di(ft)← Di(ft) · bt, we can effectively remove ft from (D,F,C). Thus, Algorithm 2 correctly
simulates the original CWC on plaintexts.

When sorting the encrypted (D,F ′, C) using a sorting network, the number of comparisons required is O(kn log2 n).
Since our method appends a ⌈log n⌉-bit suffix to each data entry to achieve stable sorting, the computation time for
one feature ft becomes O(kn log3 n). Therefore, the total computation time across all features is O(k2n log3 n). The
space complexity is clear. □

6

Outsourced Privacy-Preserving Feature Selection Based on Fully Homomorphic Encryption A PREPRINT

4.3 Improved Private CWC

In the naive approach, sorting of (D,F ′, C) is iterated for each F ′ = F \ {ft} with specified ft ∈ F , resulting in
high computational cost. Therefore, we aim to accelerate this algorithm. It should be noted that, since (D,F,C) are
encrypted, pointer-based referencing cannot be used. In this study, we propose a method that avoids full sorting at
each step by partitioning F into two sequences—selected features and unprocessed features—and processing them
independently before merging the results.

The key concept here is to utilize the feature labels in L[t][1..n] introduced in Algorithm 2 for partial sorting. Suppose
that we are focusing on a current feature ft. That is, feature selection has already been completed for the suffix vector
F⃗ [t + 1..] = (ft+1, ft, . . . , fk). In this case, we define the feature labels for F⃗ [t + 1..] and store them in the array
PostL[1..n] as follows: PostL[i] = PostL[i′] iff Di(fj+1..) = Di′(fj+1..). This groups the suffix sequences of F
that share the same feature vector.

As shown in Algorithm 2, feature labels for any prefix vector F⃗ [..t] are stored in the array L[t][1..n]. Therefore,
to group (D,F \ {ft}, C), we first independently compute L[t][1..n] for prefix vector F⃗ [..t] and PostL[1..n] for
the corresponding suffix vector F⃗ [t + 1..], and then calculate the ranks of L[t][1..n] and PostL[1..n] to merge them
correctly. This approach enables us to avoid iterative sorting for the entire (D,F ′, C).

Algorithm 3 Improved pCWC for ciphertexts
Require: An encrypted (D,F,C);
Ensure: A minimal consistent subset of F ;

1: sort (D,F,C) with F⃗ as the key;
2: compute the feature label L[j][i] for all j = 1, 2, . . . , k and i = 1, 2, . . . , n;
3: initialize PostL[1..n]← (0, 0, . . . , 0) and MapL[1..n]← (1, 2, . . . , n);
4: for t = k, . . . , 1 do
5: sort (ft+1[1..n], PostL[1..n], C[1..n], MapL[1..n]) as the key ft+1[1..n];
6: update PostL[1..n] by the sorted ft+1[1..n];
7: sort (ft, L[t− 1][1..n]) by the inverse MapL−1[1..n];
8: compute the consistency bt ∈ {0, 1} of (L[t− 1][1..n], PostL[1..n], C[1..n]);
9: update ft : Dℓ(ft)← Dℓ(ft) · bt for all ℓ = 1, 2, . . . , n;

10: end for
11: return b⃗ = (b1, b2, . . . , bk) representing the selected subset of F ;

The task of Algorithm 3 is divided into three phases: preprocessing on (D,F,C) (Figure 1), partial sorting of
(D,F,C) with respect to a specific feature ft (Figure 2), and the decision-making and update of (D,F,C) based
on ft (Figure 3), respectively.

Figure 1 illustrates the preprocessing of (D,F,C). Here, it is assumed that the sorting of (D,F,C) has already been
completed, and each Di represents its rank in the sorted order. For this sorted (D,F,C), a label Lt is assigned to each
Di based on F⃗ [..t], such that L[t][i] = L[t][j] iff Di(..ft) = Dj(..ft). That is, L[t][1..n] group labels for Dis sharing
the same value of F⃗ [..t].

Next, we focus on a specific feature ft and determine whether it should be selected. For this purpose, we require the
sorting result of (D,F ′, C), where F ′ = F \ {ft} (see Figure 2). However, since F⃗ [..t− 1] has already been sorted,
we divide F into F⃗ [..t− 1], ft, and F⃗ [t+ 1..] with the current ft, and only F⃗ [t+ 1..] is sorted . Because the sorting
of F⃗ [..t− 1] is performed sequentially for t = k, k − 1, . . . , t, it only needs to be executed for the current value of ft.
As a result, the computational cost is significantly reduced compared to naively sorting both the prefix and suffix for
every possible ft.

However, performing sorting on F⃗ [..t − 1] breaks the alignment between the previously synchronized F⃗ [..t − 1] and
F⃗ [t + 1..]. To keep this correspondence, we introduce a reference array MapL[1..n] initialized by (1, 2, . . . , n),
and sort (PostL[1..n],MapL[1..n]) simultaneously. We then compute the inverse array MapL−1[1..n] by sorting
(1, 2, . . . , n) with MapL[1..n] as the key, and by sorting MapL−1[1..n] together with F⃗ [t+ 1..], the synchronization
between the prefix and corresponding suffix of F⃗ is maintained. Through this procedure, we obtain the correctly sorted
result of (D,F ′, C) without ft excluded.

7

Outsourced Privacy-Preserving Feature Selection Based on Fully Homomorphic Encryption A PREPRINT

Figure 3 illustrates the task for verifying the consistency of the sorted (D,F ′, C) and determines whether ft is a
necessary feature. Since this information is extracted as an encrypted logical bit bt, the decision can be reflected back
to (D,F,C) by computing the product of bt with all values of ft. These operations are carried out sequentially in the
order t = k, k − 1, . . . , 1, and by decrypting the resulting bit vector b⃗ = (b1, b2, . . . , bk), we obtain the final feature
selection result.

Improved private CWC (Phase 1): feature labels for prefix of 𝐹: (𝑓ଵ, 𝑓ଶ, … , 𝑓)

𝑪 𝒇𝒌 … 𝒇𝒕ା𝟏 𝒇𝒕 … 𝒇𝟐 𝒇𝟏 𝑫
1 0 0 0 0 0 𝐷ଵ
0 1 0 0 0 0 𝐷ଶ
… … … … … … …
1 1 0 1 0 0 𝐷
0 1 0 1 0 0 𝐷ାଵ
… … … … … … …
1 1 1 1 1 1 𝐷

(1) Sort (𝑫, 𝑭, 𝑪) with the key 𝑭: (𝒇𝟏, 𝒇𝟐, … , 𝒇𝒌)
(2) Make feature labels 𝑳[𝒋][𝟏. . 𝒏] based on the preϐix (𝒇𝟏, 𝒇𝟐, … , 𝒇𝒋) for grouping 𝑫 = {𝑫𝟏, 𝑫𝟐, … , 𝑫𝒏}

𝑳[𝒌] … 𝑳[𝒕 + 𝟏] 𝑳[𝒕] … 𝑳[𝟐] 𝑳[𝟏]
𝑙,ଵ 𝑙 ௧ାଵ ,ଵ 𝑙௧,ଵ 𝑙ଶ,ଵ 𝑙ଵ,ଵ 𝐷ଵ
𝑙,ଶ 𝑙 ௧ାଵ ,ଶ 𝑙௧,ଶ 𝑙ଶ,ଶ 𝑙ଵ,ଶ 𝐷ଶ

… … … … … …
𝑙, 𝑙 ௧ାଵ , 𝑙௧, 𝑙ଶ, 𝑙ଵ, 𝐷

𝑙,(ାଵ) 𝑙 ௧ାଵ ,(ାଵ)𝑙௧,(ାଵ) 𝑙ଶ,(ାଵ) 𝑙ଵ,(ାଵ) 𝐷ାଵ

… … … … … …
𝑙, 𝑙 ௧ାଵ , 𝑙௧, 𝑙ଶ, 𝑙ଵ, 𝐷

Started (𝑫, 𝑭, 𝑪)(1)

(2) Make feature labels 𝑳[𝒋][𝟏. . 𝒏]

Figure 1: Phase 1 of the improved algorithm corresponding to Line 1 - 3 in Algorithm 3.

Improved private CWC (Phase 2): feature labels for suffix (𝑓௧, 𝑓௧ିଵ, … , 𝑓)

(3) Sort (𝒇𝒕ା𝟏, 𝑷𝒐𝒔𝒕𝑳, 𝑪, 𝑴𝒂𝒑𝑳) with 𝒇𝒕ା𝟏

(4) Update 𝑷𝒐𝒔𝒕𝑳 by the sorted 𝒇𝒕ା𝟏

(5) Sort (𝒇𝒕, 𝑳[𝒕 − 𝟏], 𝑴𝒂𝒑𝑳ି𝟏) with the inverted
index 𝑴𝒂𝒑𝑳ି𝟏

𝒇𝒕

0

0

…

1
1

…

1

𝐷ଵ
𝐷ଶ
…
𝐷

𝐷ାଵ

…
𝐷

𝑳[𝒕 − 𝟏]
𝑙 ௧ିଵ ,ଵ

𝑙 ௧ିଵ ,ଶ

…
𝑙 ௧ିଵ ,

𝑙 ௧ିଵ ,(ାଵ)

…
𝑙 ௧ିଵ ,

𝒇𝒕ା𝟏

0

0

…

0
0

…

1

𝑷𝒐𝒔𝒕𝑳
𝑝𝑙ଵ
𝑝𝑙ଶ
…

𝑝𝑙

𝑝𝑙ାଵ

…
𝑝𝑙

𝑪

1

0

…

1
0

…

1

𝑴𝒂𝒑𝑳

4

1

…

8
𝑛

…

𝑖

(𝑳[𝒕 − 𝟏], 𝑷𝒐𝒔𝒕𝑳, 𝑪) is synchronized based on
the feature vector (𝒇𝒕ା𝟏, 𝒇𝒕ା𝟐, … , 𝒇𝒌)

(3)

(5)

(4)

Figure 2: Phase 2 (Line 4 -7) of Algorithm 3.

8

Outsourced Privacy-Preserving Feature Selection Based on Fully Homomorphic Encryption A PREPRINT

(6) Check the consistency of (𝑳[𝒕 − 𝟏], 𝑷𝒐𝒔𝒕𝑳, 𝑪)
(7) Reflect the verification 𝒃𝒕 ∈ 𝟎, 𝟏 onto 𝒇𝒕 : 𝒃𝒕=1 iff 𝒇𝒕 is selected

𝒇𝒕

0

0

…

1
1

…

1

𝐷ଵ
𝐷ଶ
…
𝐷

𝐷ାଵ

…
𝐷

𝒇𝒕ା𝟏

0

0

…

0
0

…

1

𝑷𝒐𝒔𝒕𝑳
𝑝𝑙ଵ′
𝑝𝑙ଶ′
…

𝑝𝑙′

𝑝𝑙ାଵ′

…
𝑝𝑙′

𝑪

1

0

…

1
0

…

1

𝑴𝒂𝒑𝑳

4

1

…

8
𝑛

…

𝑡

𝑳[𝒕 − 𝟏]
𝑙 ௧ିଵ ,ଵ

𝑙 ௧ିଵ ,ଶ

…
𝑙 ௧ିଵ ,

𝑙 ௧ିଵ ,(ାଵ)

…
𝑙 ௧ିଵ ,

(6) 𝒃𝒕

(7) 𝒇𝒕 ∗ 𝒃𝒕

Improved private CWC (Phase 3): consistency-based feature selection

Figure 3: Phase 3 (Line 8 - 9) of Algorithm 3.

Theorem 2 Algorithm 3 (improved pCWC) on ciphertexts simulates Algorithm 1 (CWC) on plaintexts. The time and
space complexities are O(kn log3 n) and O(kn) for |F | = k and |D| = n, respectively.

proof. We first show the correctness of Algorithm 3, that is it correctly simulates Algorithm 2. To establish this,
it is sufficient to prove that for any feature ft, Algorithm 3 (1) correctly sorts (D,F \ {ft}, C), and (2) accurately
determines the consistency of the sorted (D,F \ {ft}, C).

As a result of preprocessing, for any t, (D,F,C) is already sorted using the prefix vector F⃗ [..t] = (f1, f2, . . . , ft) as
the key, and thus the correct label L[t][i] for Di has been computed.

Now, assuming that the feature labels PostL[1..n] corresponding to the suffix F⃗ [t + 2..] has been computed in the
previous loop, we can obtain the updated ranks for the extended suffix F⃗ [t + 1..] by sorting PostL[1..n] using ft+1

as the key. Then, by updating PostL[1..n] based on the sorted values and their corresponding ft+1 values, we can
compute the new PostL[1..n] that reflects the extended suffix F⃗ [t+ 1..]. All of these computations can be performed
under FHE, in the same manner as in Algorithm 2.

The next necessary step is to restore the correspondence between L[t − 1][1..n] and PostL[1..n]. The array L[t −
1][1..n] has retained its original order from the initial sorting for prefixes, whereas the current PostL[1..n] has been
reordered according to the current suffix. Suppose that the previous PostL[1..n] corresponding to the suffix F⃗ [t+2..]
was already synchronized with L[t− 1][1..n].

To preserve the previous ordering of PostL[1..n] (i.e., the ordering synchronized with L[t− 1][1..n]), we first sort the
initialized index array MapL[1..n] = (1, 2, . . . , n) together with PostL[1..n]. Then, since the original positions of
MapL[1..n] are retained in the inverse index array MapL−1[1..n], we can restore the correct correspondence between
L[t− 1][1..n] and PostL[1..n] by sorting L[t− 1][1..n] using MapL−1[1..n] as the key. All of these operations can
be performed solely through sorting on encrypted data under FHE.

Moreover, since both ft+1 and C are always kept in synchronization with PostL[1..n], and each ft is always sorted
in accordance with L[t − 1][1..n], Algorithm 3 correctly sorts (D,F \ {ft}, C). The consistency check applied to
the sorted (D,F \ {ft}, C) is identical to that in Algorithm 2. Therefore, we conclude that the improved algorithm
correctly simulates the naive one.

Next, we evaluate the computational complexity. The sorting of (D,F,C) in Lines 2–4 is identical to that of Algo-
rithm 2, and thus requires O(kn log3 n) time.

9

Outsourced Privacy-Preserving Feature Selection Based on Fully Homomorphic Encryption A PREPRINT

Among Lines 6–15, the most computationally expensive operations are the sorting steps in Line 8 and Line 10. In
Line 8, sorting is performed using ft+1 as the key. To ensure stability, a log n-bit suffix is appended to each entry,
allowing the operation to be treated as sorting integers of O(log n) bits. Therefore, the time complexity is O(n log3 n).

In Line 10, sorting is performed using MapL[1..n] as the key. Since MapL[1..n] is initialized as (1, 2, . . . , n), no
additional suffix is required for stable sorting, and this operation also runs in O(n log3 n) time. Because the above
process is repeated k times, the overall computational time is O(kn log3 n).

Finally, the additional data structures used by Algorithm 3, besides (D,F,C), include L[1..k][1..n], PostL[1..n],
MapL[1..n], and MapL−1[1..n]. Since each of these has a size of O(kn), the total space complexity of the algorithm
is also O(kn). □

5 Experimental Results

We implemented the proposed private CWC (Algorithm 3) in C++. For FHE operations, we used TFHE library [25].
The experiments were conducted on a machine equipped with an Intel(R) Core(TM) i9-10900X CPU running at
3.70GHz and 32 GB of memory. We used gcc version 11.4.0 as the compiler. All experiments were executed inside a
Docker container specifically built for this purpose.

To evaluate the effectiveness of the proposed method (Algorithm 3), we compared it with the naive baseline approach
(Algorithm 2). In the baseline algorithm, label computation becomes a bottleneck due to the need for k sorting
operations, which makes the method impractical for large values of k. To address this issue, a decision-tree-based
data structure can be used to classify encrypted feature vectors and assign labels without sorting [36, 37]. Assuming
this data structure, the computational complexity of the baseline algorithm becomes O(kn2 log n), and then, the total
complexity of Algorithm 2 can be considered as O(min{k2n log3 n, kn2 log n}). In contrast, the improved method
(Algorithm 3) has a complexity of O(kn log3 n). We experimentally compared the execution times of these algorithms
while varying k and n.

Figure 4: Time (sec.) comparison of proposed and
naive algorithms

Figure 5: Time (sec.) of proposed algorithm w.r.t.
parameters

Figure 4 compares the computation time of the proposed algorithm, which has a theoretical complexity of
O(kn log3 n), with a naive implementation that uses decision-tree-based secure computation [36–38] and has a com-
plexity of O(kn2 log n). In this experiment, we measured the computation time of both algorithms as the number of
records n increases. The results clearly show that the proposed method reduces computation time even for relatively
small values of n, and this advantage becomes more pronounced as n increases.

On the other hand, Figure 5 shows the impact of the parameters (k, n) on the computation time of the proposed al-
gorithm. In this experiment, we compared the execution time for k ∈ {4, 8, 16, 32} and n ∈ {8, 16, 32}. Although
the theoretical time complexity of the proposed method is O(kn log3 n), the results empirically confirm that the com-
putation time increases linearly with k. Therefore, it is confirmed that the proposed privacy-preserving computation
algorithm behaves as expected by design.

10

Outsourced Privacy-Preserving Feature Selection Based on Fully Homomorphic Encryption A PREPRINT

6 Discussion

In this study, we proposed a feature selection algorithm based on FHE. While various plaintext feature selection meth-
ods have been studied, consistency-based feature selection has been shown to offer both scalability and effectiveness.
Therefore, the development of privacy-preserving computation protocols for consistency-based feature selection is a
critical research challenge.

Although existing FHE-based two-party algorithms have addressed this goal to some extent, the protocol proposed in
this work is the first to realize fully outsourced computation for consistency-based feature selection. We demonstrated
that our proposed privacy-preserving algorithm is superior both theoretically and experimentally compared to a naive
approach that uses decision-tree-based data structures under secure computation.

On the other hand, the proposed algorithm has several directions for future improvement. First, this work assumes
that the input data (D,F,C) is binary. Removing this assumption and extending the algorithm to support multi-valued
or symbolic attribute domains is one of the most important future enhancements. Since TFHE library [25] used in
this study, is optimized for bitwise and integer operations, alternative libraries or methods capable of handling real-
valued data more efficiently should be considered. In addition, while this study assumes a point-to-point computation
model between data owner and analyst, extending the model to support one-to-many computations is also important
for broader applicability. Such an extension could be realized by leveraging multi-key FHE [39–42].

By addressing these aspects, the proposed algorithm can be extended and adapted to enable privacy-preserving feature
selection across a wide range of application domains such as FHE-based machine learning [43–47] and federated
machine learning [48–51].

References

[1] Chandrashekar, G.; Sahin, F. A survey on feature selection methods. Comput. Electr. Eng. 2014 40, 16–28.
https://doi.org/10.1016/j.compeleceng.2013.11.024

[2] Pawlak, Z. Rough Sets, Theoretical aspects of reasoning about data. Kluwer Academic Publishers, 1991. https:
//doi.org/10.1007/978-94-011-3534-4

[3] Liu, H.; Motoda, H.; Dash, M. A monotonic measure for optimal feature selection. In Proceedings of the 10th
European Conference on Machine Learning, Chemnitz, Germany, 21–23 April 1998; pp. 101–106. https:
//doi.org/10.1007/bfb0026678

[4] Zhao, Z.; Liu, H. Searching for interacting features. In Proceedings of the 20th International Joint Confer-
ence on Artificial Intelligence, Hyderabad, India, 6–12 January 2007; pp. 1156–1161. http://ijcai.org/
Proceedings/07/Papers/187.pdf

[5] Dash, M.; Liu, H. Consistency-based search in feature selection. Artificial Intell. 2003, 151, 155–176. doi:
10.1016/S0004-3702(03)00079-1

[6] Arauzo-Azofra, A.; Benitez, J.M.; Castro, J.L. Consistency measures for feature selection. J. Intell. Inf. Syst.
2008, 30, 273–292. https://doi.org/10.1007/s10844-007-0037-0

[7] Shin, K.; Fernandes, D.; Miyazaki, D. Consistency measures for feature selection: A formal definition, rel-
ative sensitivity comparison, and a fast algorithm. In Proceedings of the 22nd International Joint Conference
on Artificial Intelligence, Barcelona, Spain, 16–22 July 2011; pp.1491–1497. https://www.ijcai.org/
Proceedings/11/Papers/251.pdf

[8] Shin, K.; Kuboyama, T.; Hashimoto, T.; Shepard, D. SCWC/SLCC: Highly scalable feature selection algorithms.
Information 2017, 8, 159. https://doi.org/10.3390/info8040159

[9] Agarwal, A.; Boyle, E.; Chandran, N.; Gilboa, N.; Gupta, D.; Ishai, Y.; Kelkar, M.; Ma, Y. Secure sorting and
selection via function secret sharing. Proc. 2024 ACM SIGSAC Conf. Comput. Commun. Secur. (CCS’24), Salt
Lake City, UT, USA, Oct 14–18, 2024; ACM: New York, NY, USA, 2024; pp 3023–3030. https://doi.org/
10.1145/3658644.3690359

[10] Dick, T.; Gillenwater, J.; Joseph, M. Better private linear regression through better private feature selection. In
Proceedings of the 37th Conference on Neural Information Processing Systems (NeurIPS), New Orleans, LA,
USA, Dec 2023. https://dl.acm.org/doi/10.5555/3666122.3668448

[11] Gentry, C. Fully homomorphic encryption using ideal lattices. In Proceedings of the 41st ACM Symposium on
Theory of Computing, Bethesda, MD, USA, 31 May–2 June 2009; pp. 169–178. https://doi.org/10.1145/
1536414.1536440

11

Outsourced Privacy-Preserving Feature Selection Based on Fully Homomorphic Encryption A PREPRINT

[12] Chillotti, I.; Gama, N.; Georgieva, M.; Izabachène, M. TFHE: Fast fully homomorphic encryption over the torus.
J. Cryptol. 2020, 33, 34–91. https://doi.org/10.1007/s00145-019-09319-x

[13] Chen, H.; Dai, W.; Kim, M.; Song, Y. Efficient multi-key homomorphic encryption with packed ciphertexts with
application to oblivious neural network inference. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, London, UK, 11–15 November 2019; pp. 395–412. https://doi.
org/10.1145/3319535.33632

[14] Liu, F.; Ng, W.K.; Zhang, W. Encrypted SVM for outsourced data mining. In Proceedings of the 2015 IEEE 8th
International Conference on Cloud Computing, New York, NY, USA, 20 August 2015; pp.1085–1092. https:
//doi.org/10.1109/CLOUD.2015.158

[15] Qiu, G.; Huo, H.; Gui, X.; Dai, H. Privacy-preserving outsourcing scheme for SVM on vertically partitioned
data. Secur. Commun. Networks 2022, 2022, 9983463. https://doi.org/10.1155/2022/9983463

[16] Saeys, Y.; Inza, I.; Larrañaga, P. A review of feature selection techniques in bioinformatics. Bioinformatics, 2007,
23(19), 2507–2517. doi:10.1093/bioinformatics/btm344

[17] Guyon, I.; Weston, J.; Barnhill, S.; Vapnik, V. Gene selection for cancer classification using support vector
machines. Machine Learning, 2002, 46(1), 389–422. https://doi.org/10.1023/a:1012487302797

[18] Breiman, L. Random forests. Machine Learning, 2001, 45(1), 5–32. https://doi.org/10.1023/A:
1010933404324

[19] Peng, H.; Long, F.; Ding, C. Feature selection based on mutual information criteria of max-dependency, max-
relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(8),
1226–1238. https://doi.org/10.1109/tpami.2005.159

[20] Liu, H.; Setiono, R. A probabilistic approach to feature selection – a filter solution. In Proceedings of the Thir-
teenth International Conference on Machine Learning (ICML), Morgan Kaufmann, Bari, Italy, 1996, pp. 319–
327. https://api.semanticscholar.org/CorpusID:17123515

[21] Rivest, R.L.; Shamir, A.; Adleman, L. A method for obtaining digital signatures and public-key cryptosystems.
Communications of the ACM, 1978, 21(2), 120–126. https://doi.org/10.1145/359340.359342

[22] Goldwasser, S.; Micali, S. Probabilistic encryption. J. Comput. Syst. Sci. 1984, 28, 270–299.

[23] Paillier, P. Public-key cryptosystems based on composite degree residuosity classes. In Proceedings of the Inter-
national Conference on the Theory and Application of Cryptographic Techniques, Prague, Czech Republic, 2–6
May 1999; pp. 223–238. https://doi.org/10.1016/0022-0000(84)90070-9

[24] Boneh, D.; Goh, E.J.; Nissim, K. Evaluating 2-DNF formulas on ciphertexts. In Proceedings of the Theory of
Cryptography Conference, Cambridge, MA, USA, 10–12 February 2005; pp. 325–341. https://doi.org/10.
1007/978-3-540-30576-7_18

[25] Chillotti, I.; Gama, N.; Georgieva, M.; Izabachène, M. TFHE: Fast fully homomorphic encryption library, August
2016. Available online: https://tfhe.github.io/tfhe (accessed on 28 January 2021).

[26] Rao, V.; Long, Y.; Eldardiry, H.; Rane, S.; Rossi, R.A.; Torres, F. Secure two-party feature selection. arXiv 2019.
https://api.semanticscholar.org/CorpusID:57375741

[27] Li, X.; Dowsley, R.; Cock, M.D. Privacy-preserving feature selection with secure multiparty computation. In
Proceedings of the 38th International Conference on Machine Learning, Online, 18–24 July 2021; pp. 6326–
6336. https://proceedings.mlr.press/v139/li21e/li21e.pdf

[28] Akavia, A.; Galili, B.; Shaul, H.; Weiss, M.; Yakhini, Z. Privacy preserving feature selection for sparse
linear regression. IACR Cryptology ePrint Archive, 2023, 2023, 1354. https://doi.org/10.56553/
popets-2024-0017

[29] Wang, L.; Guo, H.; Wu, W.; Zhou, L. Efficient and privacy-preserving feature selection based on multiparty
computation. IEEE Transactions on Information Forensics and Security, 2025, 20, 3505–3518. http://dx.
doi.org/10.1109/TIFS.2025.3546843

[30] Ono, S.; Takata, J.; Kataoka, M.; I, T.; Shin, K.; Sakamoto, H. Privacy-preserving feature selection with fully
homomorphic encryption. Algorithms 2022, 15, 229. https://doi.org/10.3390/a1010000

[31] Garey, M.R.; Johnson, D.S. Computers and intractability: a guide to the theory of NP-completeness; Series
of Books in the Mathematical Sciences, 1st ed.; W. H. Freeman and Company: New York, 1979; p.221–222.
https://doi.org/10.1137/1024022

12

Outsourced Privacy-Preserving Feature Selection Based on Fully Homomorphic Encryption A PREPRINT

[32] Bonnoron, G.; Fontaine, C.; Gogniat, G.; Herbert, V.; Lapôtre, V.; Migliore, V.; Roux-Langlois, A. Some-
what/Fully homomorphic encryption: implementation progresses and challenges. In Codes, Cryptology and In-
formation Security; El Hajji, S., Nitaj, A., Souidi, E. M., Eds.; Springer International Publishing: Cham, 2017;
pp 68–82. https://doi.org/10.1007/978-3-319-55589-8_5

[33] Batcher, K.E. Sorting networks and their applications. In Proceedings of the American Federation of Information
Processing Societies Spring Joint Computing Conference, Atlantic City, NJ, USA, 30 April–2 May 1968; pp.
307–314. https://doi.org/10.1145/1468075.1468121

[34] Hamada, K.; Chida, K.; Ikarashi, D.; Takahashi, K. Oblivious radix sort: an efficient sorting algorithm for
practical secure multi-party computation. IACR Cryptol. ePrint Arch. 2014 121. https://eprint.iacr.org/
2014/121

[35] Ajtai, M.; Szemerédi, E.; Komlós, J. An O(n log n) sorting network. In Proceedings of the 15th Annual ACM
Symposium on Theory of Computing, Boston, MA, USA, 25–27 April 1983; pp.1–9. http://dx.doi.org/
10.1145/800061.808726

[36] Bost, R.; Popa, R.A.; Tu, S.; Goldwasser, S. Machine learning classification over encrypted data. In Proceedings
of the 22nd Annual Network and Distributed System Security Symposium, San Diego, CA, USA, 2015. https:
//eprint.iacr.org/2014/331.pdf

[37] Paul, J.; Tan, B.H.M.; Veeravalli, B.; Aung, K.M.M. Non-interactive decision trees and applications with multi-
bit TFHE. Algorithms 2022, 15, 333. https://doi.org/10.3390/a15090333

[38] Alabdulkarim, A.; Al-Rodhaan, M.; Ma, T.; Tian, Y. PPSDT. A novel privacy-preserving single decision tree
algorithm for clinical decision-support systems using IoT devices. Sensors 2019, 19, 142. https://doi.org/
10.3390/s19010142

[39] Ma, J.; Naas, S.-A.; Sigg, S.; Lyu, X. Privacy-preserving federated learning based on multi-key homomorphic
encryption. arXiv preprint 2021, arXiv:2104.06824. https://doi.org/10.1002/int.22818

[40] Cheon, J.H.; Kim, A.; Kim, M.; Song, Y. Efficient multi-key homomorphic encryption with packed ciphertexts
for secure neural network inference. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, Association for Computing Machinery: New York, NY, USA, 2019; pp. 395–412.
https://doi.org/10.1145/3319535.3363207

[41] Cheon, J.H.; Choe, H.; Kim, S.; Yeo, Y. Reusable dynamic multi-party homomorphic encryption. In Proceedings
of the ACM CCS 2025, Seoul, Republic of Korea. 2025. https://eprint.iacr.org/2025/581

[42] Namazi, M.; Farahpoor, M.; Ayday, E.; Pérez-González, F. Privacy-preserving framework for genomic compu-
tations via multi-key homomorphic encryption. Bioinformatics 2025, 41 (3), btae754. https://doi.org/10.
1093/bioinformatics/btae754

[43] Yuan, J.; Liu, W.; Shi, J.; Li, Q. Approximate homomorphic encryption based privacy-preserving machine learn-
ing: a survey. Artif. Intell. Rev. 2025, 58, 82. https://doi.org/10.1007/s10462-024-11076-8

[44] Naresh, V.S.; Reddi, S. Exploring the future of privacy-preserving heart disease prediction: a fully homomor-
phic encryption-driven logistic regression approach. J. Big Data 2025, 12, 52. https://doi.org/10.1186/
s40537-025-01098-6

[45] Babu, K.M.; Syed, M.; Shaik, S.; Thalari, S.; Macha, U.; Chatakondu, A. Fully homomorphic encryption frame-
work for privacy preserving in healthcare through decentralized machine learning. In Challenges in Information,
Communication and Computing Technology, Sharmila, V., Ed.; CRC Press: London, UK, 2025; Volume 2, pp
812–819. https://doi.org/10.1201/9781003559092-140

[46] Kolhar, M.; Aldossary, S.M. Privacy-preserving convolutional Bi-LSTM network for robust analysis of encrypted
time-series medical images. AI 2023, 4, 706–720. https://doi.org/10.3390/ai4030037

[47] Xiao, X.; Wu, T.; Chen, Y.; Fan, X. Privacy-preserved approximate classification based on homomorphic encryp-
tion. Math. Comput. Appl. 2019, 24, 92. https://doi.org/10.3390/mca24040092

[48] Firdaus, M.; Larasati, H. T.; Hyune-Rhee, K. Blockchain-based federated learning with homomorphic encryption
for privacy-preserving healthcare data sharing. Internet Things 2025, 31, 101579. https://doi.org/10.1016/
j.iot.2025.101579

[49] Zhang, C.; Zhang, X.; Yang, X.; Liu, B.; Zhang, Y.; Zhou, R. Poisoning attacks resilient privacy-preserving
federated learning scheme based on lightweight homomorphic encryption. Inf. Fusion 2025, 121, 103131.
https://doi.org/10.1016/j.inffus.2025.103131

[50] Zhao, Y.; Liu, Y.; Tang, Q.; Peng, X.; Tan, X. Secure and flexible privacy-preserving federated learning based
on multi-key fully homomorphic encryption. Electronics 2023, 13 (22), 4478. https://doi.org/10.3390/
electronics13224478

13

Outsourced Privacy-Preserving Feature Selection Based on Fully Homomorphic Encryption A PREPRINT

[51] Walskaar, I.; Tran, M.C.; Catak, F.O. A practical implementation of medical privacy-preserving federated
learning using multi-key homomorphic encryption and flower framework. Cryptography 2023, 7 (4), 48.
https://doi.org/10.3390/cryptography7040048

14

