
ar
X

iv
:2

50
5.

12
69

0v
1

 [
cs

.C
R

]
 1

9
M

ay
 2

02
5

An Automated Blackbox Noncompliance Checker for QUIC
Server Implementations

Kian Kai Ang
The University of Adelaide

Australia
kiankai.ang@adelaide.edu.au

Guy Farrelly
The University of Adelaide

Australia
guy.farrelly@adelaide.edu.au

Cheryl Pope
The University of Adelaide

Australia
cheryl.pope@adelaide.edu.au

Damith C. Ranasinghe
The University of Adelaide

Australia
damith.ranasinghe@adelaide.edu.au

ABSTRACT

We develop QUICtester, an automated approach for uncovering
non-compliant behaviors in the ratified QUIC protocol implemen-
tations (RFC 9000/9001). QUICtester leverages active automata
learning to abstract the behavior of a QUIC implementation into
a finite state machine (FSM) representation. Unlike prior noncom-
pliance checking methods, to help uncover state dependencies on
event timing, QUICtester introduces the idea of state learning
with event timing variations, adopting both valid and invalid input
configurations, and combinations of security and transport layer
parameters during learning. We use pairwise differential analysis
of learned behaviour models of tested QUIC implementations to
identify non-compliance instances as behaviour deviations in a
property-agnostic way. This exploits the existence of the many
different QUIC implementations, removing the need for validated,
formal models. The diverse implementations act as cross-checking
test oracles to discover non-compliance. We used QUICtester to
analyze 186 learned models from 19 QUIC implementations under
the five security settings and discovered 55 implementation errors.
Significantly, the tool uncovered a QUIC specification ambiguity
resulting in an easily exploitable DoS vulnerability, led to 5 CVE
assignments from developers, and two bug bounties thus far.

Code & PoCs: https://github.com/QUICTester.

CCS CONCEPTS

• Networks→ Network protocols; Protocol testing and verifi-

cation; • Security and privacy;

KEYWORDS

QUIC, Noncompliance, Differential Analysis, Active Learning

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Ratified in May 2021, QUIC is a performance-optimized, secure,
reliable transport protocol for the Internet and a core part of the
HTTP/3 protocol. QUIC is a ground up re-design aiming to reduce
latency and connection overhead associated with the use of TLS
(Transport Layer Security) [22] over TCP for secure transport [52]
and achieve inherently secure communication channels—ensuring
message confidentiality, integrity, and availability for Internet appli-
cations. According to [5], as of November 2023, 27% of all websites
use HTTP/3 employing QUIC for the transport protocol—including
Google, Meta, Amazon and all major browsers—with use cases also
extending to the Domain Name System (DNS) [34]. Further, with the
significant growth in Internet of Things applications, projected to be
more than 29 billion by 2027 [36], we can expect QUIC to dominate
secure, reliable data transfer over the future Internet [25, 32, 45].

Despite significant efforts to investigate secure protocols—such
as TLS [12, 14, 20, 59], DatagramTransport Layer Security (DTLS) [28,
29], OpenVPN [19] and the 802.11 4-Way Handshake [48]—there
is a gap in reliable tools to scrutinize specification conformance
of QUIC implementations and consequential vulnerabilities. Our
motivation is to address this gap.

Prior to ratifying the QUIC specification [40, 62], early efforts
made advances to develop methods and tools to validate QUIC
implementations [18, 42, 49, 54]. But, the tools are specific to Google-
QUIC, are no longer actively maintained, not open source or are
limited in their scope and suitability for evaluating the ratified QUIC
protocol as we discuss in Section 7. An effective and noncompliance
testing method is important for verifying the security promised by
QUIC is delivered by implementations.

In the absence of an open-source testing method for the QUIC
specification [40, 62] to identify non-compliances and potential
security vulnerabilities, our work presents the first open-source, com-

prehensive design and implementation of a framework for analyzing

implementations of the ratified QUIC standard.

Our Work. Our goal is to provide a tool that automates the task of
uncovering: i) non-conforming protocol behaviors; and ii) security
vulnerabilities exploitable by crafting specific message sequences.
To this end, we design and build QUICtester—a comprehensive,
automated, black-box tester for uncovering non-compliant behav-
iors and security vulnerabilities in QUIC implementations. Notably,
QUICtester has the desirable property of being agnostic to the

1

https://github.com/QUICTester
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://arxiv.org/abs/2505.12690v1

Conference’17July 2017Washington, DC, USA Kian Kai Ang, Guy Farrelly, Cheryl Pope, and Damith C. Ranasinghe

QUIC implementation and run-time environment, such as the pro-
gramming language, operating system, and CPU instruction set
architecture. We address a number of key challenges in realizing
an effective QUIC-specific noncompliance checker.

(1) Automatically Learning a Behavior Model Under Valid and Invalid

Inputs. Analyzing non-conforming behavior of a protocol imple-
mentation requires construction of a model of the underlying imple-
mentation and comparison with a formal model of a protocol by a
domain expert. The process requires a significant manual effort and
scaling the effort to a large number of implementations is often im-
practical. In addition to potential human error, the process is made
more difficult given specification ambiguities, under-specification,
the length of specifications (the QUIC specification spans 80,000
words incorporating five different security levels, as well as several
security and transport parameter options).

Our approach uses active automata learning to overcome the
lengthy task of eliciting the behavior abstractions of a QUIC imple-
mentation to a finite state machine (FSM) representation. Active
automata learning aims to infer a system’s state space and possi-
ble transitions between those states by sending a series of input
sequences to the system and observing the corresponding out-
puts [53, 63]. In the process, all input sequences and corresponding
output sequences explored in a model learning phase are inferred
into an FSM description of the target system. Although past efforts
used active automata learning to build testing tools for network
protocols [6, 19, 20, 27, 28, 30, 35, 48, 61], an active learner for the
QUIC specification does not yet exist. We design such a Learner.

To allow automata learning algorithms to generate tests—a se-
ries of input sequences, we construct the first comprehensive QUIC-

specific Learner for all secure handshake configurations through care-

ful examination of the QUIC RFC 9000/9001. The result is a highly

expressive learner capable of generating both valid and invalid packet

configurations as well as various security and transport parameter

combinations in the learning phase.

(2) Learning Time-Dependent Behavior Models. Further, we recog-
nize, network protocols like QUIC, are typically time sensitive due
to timeout behaviors. Therefore, we can expect timing variations,
such as intervals between packet transmissions, to impact protocol
behavior and potentially expose hidden states and weaknesses in
protocol implementations that may be exploitable. In contrast to
prior methods to analyze protocols, we introduce the idea of explor-
ing temporal dependencies on protocol states. We parameterize the

symbols with time to allow the learner to self-select timing variations.

(3) Test Harness. Because the learning algorithms are protocol ag-
nostic and only operate on the symbols and parameters, a protocol-
specific test harness is needed to translate parameterized symbols
from a learner into protocol messages and vice versa. This harness
manages the interactions between a model Learner and the target
QUIC implementation under test.

The complexity of the QUIC protocol—supporting 5 security
levels, with the combination of transport parameters and cryp-
tographic negotiations to manage various types of packets and
frames—makes building a test harness a significant challenge.We

built a comprehensive QUIC protocol test harness to enable testing all,

five secure handshake configurations in QUIC implementations.

(4) Automating Analysis. A significant challenge is to identify non-
compliant behavior. To reduce the cumbersome, error-prone, man-
ual effort in the analysis phase, we combine two strategies to achieve
an effective automated analysis method. First, we propose a set of
optimizations to eliminate redundant information from learnedmod-
els while preserving the captured behavior. Second, we construct a
differential analysis method—pair-wise testing—to automatically
identify non-conforming behaviors. Differential analysis simplifies
the task of identifying non-compliant behavior to the task of identi-
fying deviating behaviors based on comparing models against each
other. Through the results of differential testing and our manual
analysis and validation, we are able to contribute a curated library of
reference FSM models for the QUIC specification for each security
configuration. The models represent behavior that conforms to the
specification. These models serve developers to employ QUICtester

to effectively and efficiently identify non-conformance behaviors of a

target implementation (see Fig. 10).

Scope. We focus our tests on the more impactful server-side im-
plementations of QUIC as server failures affect multiple active
connections; for example, Denial of Service attacks. Notably, the
same protocol library is used by clients and servers. Further, our fo-
cus is on security. Hence, we test the handshake component crucial
for establishing secure, multi-stream, connections with QUIC.

Contributions. In this work, in summary:
• We propose QUICtester, a blackbox testing framework for
QUIC to automatically identify specification deviation (non-
compliance checking), uncover logical flaws (functional bugs)
and security vulnerabilities without needing a formal reference
model description.

• We introduce the idea of learning a model under event timing

variations. We craft a conceptually simple, yet protocol-agnostic
means to achieve it.

• We design and implement a comprehensive QUIC-specific Test
Harness adhering to RFC 9000/9001 to support the complex
Learner sequence combinations (valid, invalid, time dependent
message with varying protocol parameters, both transport and
security) and all of the security configurations to test QUIC
implementations—see Table 1.

• To alleviate the manual analysis burden, we automate analysis
of learned models. We manually validate our method with 186
learned models and curate conforming models for various secu-
rity configurations to serve as reference models. The reference
models with QUICtester can support practitioners’ use of our
tool to efficiently test and analyze QUIC implementation targets
(see Section 7 and Fig. 10).

• Weopen-sourceQUICtester, at https://github.com/QUICTester.

Findings. We used QUICtester with publicly available QUIC
server releases to assess its effectiveness and help improve security
and interoperability of QUIC implementations.

• We test 19 QUIC implementations summarized in Table 1 un-
der the five different security configurations from a range of
providers. We analyzed 186 learned models to uncover 55 faults.

2

https://github.com/QUICTester

QUICtester: An Automated Noncompliance Checker for QUIC Conference’17, July 2017, Washington, DC, USA

Our work has been validated with a bug bounty award and 5
CVE assignments thus far—see Table 2, and in Appendix Table 7.

• Importantly, we discovered QUIC specification ambiguities in
connection management that expose a DoS vulnerability and
propose an amendment to address the issue—see Section 5.4.

Table 1: Tested QUIC implementations and their se-
curity configurations. These include Google (Google-

quiche), Mozilla (Neqo), Lite Speed Technologies (LSQUIC),

Meta (Mvfst), Microsoft (MsQuic), Cloudflare (Quiche), Ama-

zon (S2n-quic) and Alibaba (XQUIC).

Name

Commit

Version

Tested Configurations URL

Aioquic 239f99b8 Basic, Retry, PSK https://github.com/aiortc/aioquic

Google-quiche 42dab6be Basic, ClientAuth, PSK https://github.com/google/quiche

Kwik 745fd4e2 Basic, Retry, PSK https://bitbucket.org/pjtr/kwik/src/master/

LSQUIC 1b113d19 Basic, PSK https://github.com/litespeedtech/lsquic

MsQuic 5c070cdc Basic, Retry, ClientAuth,
RetryClientAuth, PSK https://github.com/microsoft/msquic

Mvfst a76144e1 Basic, ClientAuth, PSK https://github.com/facebook/mvfst

Neqo aaabc1c1 Basic, Retry https://github.com/mozilla/neqo

Ngtcp2 f65399b5 Basic, Retry, ClientAuth,
RetryClientAuth, PSK https://github.com/ngtcp2/ngtcp2

Picoquic d2f01093 Basic, Retry, ClientAuth,
RetryClientAuth, PSK https://github.com/private-octopus/picoquic

PQUIC 841c8228 Basic, PSK https://github.com/p-quic/pquic

Quant 511d91c3 Basic, Retry, PSK https://github.com/NTAP/quant

Quiche 24a959ab Basic, Retry, ClientAuth,
RetryClientAuth, PSK https://github.com/cloudflare/quiche

Quiche4j ea5effce Retry https://github.com/kachayev/quiche4j

Quic-go f78683ab Basic, Retry, ClientAuth,
RetryClientAuth, PSK https://github.com/quic-go/quic-go

Quicly d44cc8b2 Basic, Retry, PSK https://github.com/h2o/quicly

Quinn 4395b969
e1e1e6e3

Basic, Retry, ClientAuth,
RetryClientAuth, PSK https://github.com/quinn-rs/quinn

Quiwi b7b5dadb Basic, Retry, PSK https://github.com/goburrow/quic

S2n-quic ec651875 Basic, Retry https://github.com/aws/s2n-quic

XQUIC 00f62288 Basic, PSK https://github.com/alibaba/xquic

Basic: Basic handshake. Retry: Handshake with client address validation.
ClientAuth: Handshake with client authentication. RetryClientAuth:
Handshake with client address validation and authentication. PSK: Hand-
shake with pre-shared key.

Responsible Disclosure. Following the practice of responsible
disclosure, we shared our findings with corresponding development
teams by sending bug reports to vendors/developers following their
reporting policies. We summarize the current state of disclosures
and vendor responses in Table 7 within the Appendix.

2 BACKGROUND

Weprovide a brief overview of the QUIC protocol handshake (secure
connection establishment prior to application data exchange) and
active automata learning addbefore delving into our framework in
Section 3.

2.1 QUIC Protocol Transport Layer Security

To understand the process of secure connection establishment in
QUIC, we begin with a primer on connection establishment in a
client-server setting. An entity using QUIC must complete a hand-
shake with its endpoint before it can communicate. QUIC combines
both transport and cryptographic parameter negotiations into a sin-
gle handshake. Our work focuses on this QUIC handshake, which
is responsible for establishing secure multi-stream connections.

QUIC provides five different security configurations, we briefly
discuss each and the respective packets and frames employed. A
simplified illustration of QUIC handshake message exchange for the
5 different secure connection configurations is shown in Figure 1.
These handshakes include:

(1) Basic.
(2) Client address validation (without client authentication).
(3) Client authentication and without address validation.
(4) Client address validation and authentication.
(5) Handshake with a pre-shared key.
The handshakes are realized inQUIC using: Initial packets,Hand-

shake packets, 1-RTT (Round Trip Time) packets and Retry pack-
ets. These packets carry the necessary information in frames and
QUIC messages to complete the transport and cryptographic pa-
rameter negotiations. Each frame is defined in [40, Section 12.4] to

Client ServerInitial[0]: Crypto(ClientHello)

0-RTT[0]: Stream("...")

Retry+RetryToken

Initial+RetryToken[1]: Crypto(ClientHello)

Initial[0]: ACK[1], Crypto(ServerHello)

Handshake[0]: Crypto(EncryptedExtension,
CertificateRequest, Certificate,

CertificateVerify, Finished)

1-RTT[0]: ACK[0], NewConnectionIDs,
Crypto(NewSessionTicket),

NewToken, Stream("...")

Initial[2]: ACK[0]

Handshake[0]: ACK[0],
Crypto(Certificate, CertificateVerify, Finished)

1-RTT[1]: ACK[0], NewConnectionIDs, Stream("...")

Handshake[1]: ACK[0]

1-RTT[1]: ACK[1], HandshakeDone, Stream("...")

Figure 1: A simplified overview of handshake security con-

figurations consisting of Initial packets , 0-RTT packets ,

Retry packets , Handshake packets and 1-RTT packets .

Frames for Address validation are in blue text and for Client

Authentication are red text. Messages in purple text carries

the negotiated parameters to derive the pre-shared key for

0-RTT encryption in a future connection. Packet space num-

bers for each packet type are within square brackets.

3

https://github.com/aiortc/aioquic
https://github.com/google/quiche
https://bitbucket.org/pjtr/kwik/src/master/
https://github.com/litespeedtech/lsquic
https://github.com/microsoft/msquic
https://github.com/facebook/mvfst
https://github.com/mozilla/neqo
https://github.com/ngtcp2/ngtcp2
https://github.com/private-octopus/picoquic
https://github.com/p-quic/pquic
https://github.com/NTAP/quant
https://github.com/cloudflare/quiche
https://github.com/kachayev/quiche4j
https://github.com/quic-go/quic-go
https://github.com/h2o/quicly
https://github.com/quinn-rs/quinn
https://github.com/goburrow/quic
https://github.com/aws/s2n-quic
https://github.com/alibaba/xquic

Conference’17July 2017Washington, DC, USA Kian Kai Ang, Guy Farrelly, Cheryl Pope, and Damith C. Ranasinghe

carry different types of data. For example, cryptographic param-
eters are in a CRYPTO frame. To simplify our explanations, we
refer to frames used for connection establishment and the messages
encapsulated within the frames such as CRYPTO frames as simply
messages.
(1) Basic Handshake. It is the most fundamental handshake [40,
Section 7.1]. First, a client sends the server an Initial packet with a
ClientHello message with application protocol negotiation, trans-
port parameters, and cryptographic information to perform the
key exchange. The server continues with an Initial packet and a
Handshake packet. The Initial packet contains a ServerHello mes-
sage containing cryptographic information to complete the key
exchange. The Handshake packet carries an EncryptedExtensions
message containing transport parameters and the negotiated ap-
plication protocol version, a Certificate message containing the
server’s certificate, a CertificateVerify message used for requesting
the client to verify the server’s certificate, and a Finished message.

Notably, QUIC can combine multiple different types of packets
into a single UDP datagram for transmission. Once the server sends
the Finished message, it can transmit application data using the
Stream frame in 1-RTT packets. The client continues the hand-
shake by verifying the server’s certificate, and sending a Finished
message to the server. Both parties will verify the Finished message
received to ensure the previous handshake messages have not been
modified. After receiving a Finished message from the client, the
server will send a 1-RTT packet with a HandshakeDone message
to confirm the handshake and connection establishment.
(2) Client Address Validation.Given that a QUIC server responds
with many messages to a small initial request, it is at risk of ex-
ploitation for amplification attacks. QUIC provides an optional
mechanism to validate a client’s address, minimizing data sent to
spoofed client IP addresses [40, Section 8]. Upon receiving the first
ClientHello message, the server responds with a Retry packet con-
taining a RetryToken. A client that receives a Retry packet must
include the RetryToken in all further Initial packets sent for the
rest of the handshake. The server will validate the RetryToken con-
tained in the client’s subsequent Initial packets. If the server fails
to validate the RetryToken, the server should immediately close
the connection with a ConnectionClose message. Moreover, after
the server sends the Finished message, the server can optionally
send a NewToken message with an address validation token that
can be used for address validation in future connections.
(3) Client Authentication. The server can select to authenticate
a client by including a CertificateRequest message in the Hand-
shake packet prior to sending the Finished message [62, Section
4.4]. If the client receives a CertificateRequest message, it must
send a Certificate message that contains the client’s certificate and
a CertificateVerify message for client authentication. The server
verifies the client certificate before sending the HandshakeDone
message. If the server fails to verify the client certificate, the server
must close the connection with a ConnectionClose.
(4) Client Address Validation and Authentication. The com-
plete handshake, using both client address validation and client
authentication simultaneously, is illustrated in Figure 1. The hand-
shake incorporates the basic, client address validation and authen-
tication protocol flow discussed above.

(5) Pre-shared key. A client can send 0-RTT packets carrying
early (application) data to a server prior to handshake comple-
tion [62, Section 2.1]. The pre-shared key used to encrypt these
packets is derived from the NewSessionTicket message in the pre-
vious connection. This provisions for a faster, secure connection.
Encryption Keys and Packet Number Spaces. Instead of se-
quence numbers, QUIC uses three separate packet number spaces
to track different packet types. Initial packets use Initial packet
number space; Handshake packets use Handshake packet number
space; 0-RTT and 1-RTT packets share Application data packet
number space [40, Section 12.3]. Packets in different number spaces
use different encryption keys [62, Section 4]. The Initial packet
uses the Initial key to provide the Initial encryption level with no
confidentiality or integrity protection, the Handshake packet uses
the Handshake key in the Handshake encryption level, the 0-RTT
packet uses the 0-RTT encryption key in 0-RTT encryption level,
and the 1-RTT packet uses the 1-RTT encryption key in the 1-RTT
encryption level. The Handshake, 0-RTT and 1-RTT encryption
levels provide confidentiality and integrity.

2.2 Automata Learning

While automata learning can be categorized into passive and ac-
tive learning, we focus on active learning [9, 31]. In this setting, a
learner constructs a deterministic finite automaton by generating
queries to infer the behavior of a system by observing the resulting
responses. Learner generates input sequences based on a dictionary
of choices to probe a black-box system and observe the output sym-
bol. To ensure a deterministic state model that precisely mirrors
the behavior of a given black-box system, learning cycles through
2 phases: (i) hypothesis construction; and (ii) conformance testing.

In the hypothesis construction phase, a series of input sequences
and corresponding input-output observations are used to construct
a hypothesis, a minimal deterministic state machine model that
accurately reflects the recorded observations until this point for a
possible FSM. The learner actively improves the hypothesis until
conditions for convergence are fulfilled. For the input sequences
that the learner had not sent and observed before, the hypothesis
predicts an output by extrapolating from the recorded observations.
To ensure this prediction accurately reflects the behavior of the
black-box system, the learner proceeds to the conformance testing
phase to validate the hypothesis. If the hypothesis is not supported
by the behavior of the black-box systemwhen a new input sequence
is tested, the learner reverts back to the hypothesis construction
phase to generate a more refined hypothesis. Alternatively, if the
hypothesis matches the observed behavior of the black-box system
for all the conformance tests, the learner considers it as the final
learned state machine model, and the learning ends. Effectively, the
learner treats the learned FSM as an equivalent oracle and searches
for counterexamples to invalidate this assumption.

3 NONCOMPLIANCE CHECKING

In this section, we provide a high-level description of noncom-
pliance checking framework and the design and implementation
challenges along with our proposed solutions.

We illustrate the QUICtester framework modules in Figure 2:
i) the Learner; ii) Test Harness; iii)Optimizer; iv) Crash Logger; and
iv) Differential Analyzer. The Learner generates test inputs from

4

QUICtester: An Automated Noncompliance Checker for QUIC Conference’17, July 2017, Washington, DC, USA

process
monitoring

FSM Inference

QUIC Test
Harness

Learner Symbolizations
(QUIC parameters,
messages, time)

QUICTESTER
QUT

QUIC Server
(Security
Configs)

Crash Logger

Learned
models

DoS and memory
corruption detection

Automated Analysis

Differential
AnalyzerOptimizer

Deviating input
sequences and

models

Figure 2: An overview of QUICtester. FSM Inference with active learning and Automated Analysis method for identifying

deviating behaviors.

symbolized QUIC protocol parameters, messages and event timing
definitions. The Test Harness, responsible for maintaining all pro-
tocol state with a test target, constructs the QUIC messages based
on the symbolic instruction sequence for transmission through a
UDP connection to the QUIC implementation under test (QUT).
Subsequently, the Test Harness awaits for the responses from the
QUT within time intervals defined by the parameters in the input
symbols. The Test Harness deconstructs the received responses and
reconstructs a set of output symbols using the symbolized messages
to return to the Learner. The response symbols provide feedback
to the Learner to explore and infer a FSM representation of the
QUT–the learned model.

We employ an Optimizer to simplify the complex models gen-
erated from the Learner to generate a simpler, easier to analyze
automatically and more readable form of the learned model for
analysis. Subsequently, the Differential Analyzer automates the
analysis process by using differential testing strategies to identify
protocol non-compliance and potential security vulnerabilities. We
discuss the design and implementation challenges (C1-C7) of the
framework in the following.

3.1 Automatically Learning a Behavior Model

(Learner)
C1 Generating test sequences (valid and invalid messages

and parameters). Fundamentally, in a blackbox setting, no prior
knowledge is required. However, a protocol-specific symbolization of
possible inputs to combine and outputs for a target protocol must
be defined to allow the Learner to generate tests—a series of input
sequences. These sequences allow the effective exploration and
inference of the FSM of the target system through not only valid
but invalid packet configurations as well as various security and
transport parameter combinations in the learning phase. However,
a symbolic dictionary for the purpose, extracted from a careful
examination of the QUIC specification to test all 5 security settings
in a QUIC handshake does not currently exist. Notably, symboliza-
tion is not straightforward. It demands a deep understanding of
an extensive, technical specification to express and use protocol
behaviors to facilitate uncovering an FSM and non-compliance.
Methods for resolving C1. To automatically define all the neces-
sary symbols, we attempted to employ an LLM model to generate
the symbols. However, the results returned by the LLM model were
unsatisfactory—see results and discussion in Section A within the
Appendix—we reverted to manually extract the symbols from the

specification. An author requires approximately 30-40 hours to
read the specifications [40, 62] and manually defines symbols for
protocol parameters and messages for QUIC. Multiple researchers
examined the RFC individually and agreed with all the symbol con-
structions, to avoid ambiguities. Although the construction phase
is time-intensive, the symbolic dictionary needs to be constructed
only once and can be applied in further studies on QUIC, thereby
reducing the manual effort required to redefine the symbols. For
constructing test inputs and modeling outputs, we include 30 sym-
bols. While Section 2.1 provides an overview of messages and their
constituent parts, such as frames, we defer our justifications and
details of symbolization to Appendix A.1.
C2 Learning Time-Dependent Behavior.We introduce the idea
of testing with different time variations to uncover time-dependent
vulnerabilities (such as M-4 in Table 2). However, using random
timeouts is not beneficial as it can confuse the learner’s observations
and lead to non-determinism and failure to infer a FMS or complete
the active learning process.
Methods for resolving C2. To observe time-dependent behav-
ior, we parameterize the input symbols. We determine two time-
outs parameters, a 𝑠ℎ𝑜𝑟𝑡 timeout and a 𝑙𝑜𝑛𝑔, is adequate; as we
explain below. The timeout parameter represent the duration the
Test Harness is required to wait prior to the subsequent message
transmission after receiving a response; with 𝑠ℎ𝑜𝑟𝑡 representing
the minimum wait time to receive QUT’s response for a request
sent and 𝑙𝑜𝑛𝑔 is selected to be much longer, 10× 𝑠ℎ𝑜𝑟𝑡 . The time
parameterized symbols we curate are summarized in Table 8.

Importantly, the timeouts are discovered automatically by the
Test Harness prior to model learning. Notably, in contrast to an
adversarial interpretation, the time parameter can also elicit behav-
ior of the QUT under network delays experienced in practice. Two
time settings are sufficient for capturing protocol states as they can
capture results from when protocol implementation timeouts do
or do not occur. Further timeout settings were found to increase
learning time without leading to additional state discovery.
C3 Non-determinism during learning.Model learning depends
on observing deterministic behavior from the QUT to infer a valid
FSMmodel. We expect theQUT to generate deterministic responses
to multiple repetitions of the same input sequence. However, since
the Learner is unaware of time-related artifacts in the rest of the sys-
tem, non-determinism canmanifest when (C3.1) the Test Harness is
not capable of receiving all the QUT responses during an allocated

5

Conference’17July 2017Washington, DC, USA Kian Kai Ang, Guy Farrelly, Cheryl Pope, and Damith C. Ranasinghe

time period, for example, due to various execution speeds of QUIC
implementations; and (C3.2) the Learner sends an input before
the QUT is fully initialized or (C3.3) after the QUT crashes during
learning, for example, if the Learner receives responses to a given
input sequence in one step but fails to receive any when replaying
the sequence because the QUT crashed before it can respond, the
active learning task can fail. These sources of non-determinism can
lead the Learner to infer an incorrect behavior or fail to complete
the active learning task.
Methods for resolving C3. To address (C3.1), we adopt implemen-
tation-specific minimum time delays for the Test Harness to wait
to capture responses from the QUT to ensure that no responses are
missed. Recall, the time for the Test Harness to capture responses
will be defined by the Learner as introduced in Section 3.1. Hence,
we use the Test Harness to record the longest time needed to capture
expected packets in a handshake to determine the value for 𝑠ℎ𝑜𝑟𝑡 ,
specific to each QUIC implementation, prior to model learning.
For (C3.2), we augment a delay after starting the QUT and validate
its availability before sending the first input. This ensures the QUT
is initialized and ready to accept new connections. For (C3.3), we
implement a Crash Logger to monitor the status of the QUT after
each test sequence iteration and restart the QUT if it crashes. These
modifications ensure the Test Harness and Learner behavior does
not lead to non-deterministic outcomes and any observations of
non-determinism are due to QUIC implementation defects.
Learner Implementation. We implemented the Learner using
LearnLib, a Java library of active automata learning algorithms [39].
We selected the TTT algorithm [38]; it requires less queries com-
pared to other algorithms [37] and Wp-method algorithm [16] as
the conformance testing algorithm.

3.2 QUIC Test Harness (Test Harness)
C4 Building a Test Harness to Support All Security Con-

figurations, Valid and Invalid Messages, and Learning Time

Dependent Behaviors.As described in Section 2, the Test Harness
is a protocol-specific test harness responsible for exchanging mes-
sages with the QUT. It constructs and transmits QUIC messages
sequentially, based on the test input symbol sequence determined
by the Learner. The symbolic representation cannot be directly
sent to a QUT. The Test Harness must be functionally and logically
correct on: (C4.1) translating state and state transitions explored by
the model Learner to QUIC protocol message exchanges with QUT;
(C4.2) constructing symbolic representations of protocol messages;
whilst (C4.3) maintaining state cohesion with the target QUT to
achieve successful progression of a test from message to message.
Further, as discussed in Section 2.1, QUIC supports five different se-
cure connection establishments and requires deriving and installing
3 different encryption keys during a handshake. Therefore, building
a Test Harness is a significant undertaking. To the best of our knowl-
edge, a QUIC-specific test harness to fulfill these requirements does
not currently exist.
Methods for resolving C4. To manage the effort in addressing the
challenges and building a comprehensive QUIC-specific test harness,
we extend and modify the Aioquic [1] library. To address:
• (C4.1) we modify and extend the library functions to generate
packets based on a given input symbol by the Learner. Further,

to comprehensively test all five different secure connection es-
tablishments, we implement functions for client authentication,
which is currently not supported by the library.

• (C4.2) we extend with functions to parse incoming packets
from the QUT to output symbols.

• (C4.3) we utilize the state machine to maintain the state co-
hesion with the QUT. Importantly, we configured the state
machine to not discard any installed encryption keys. This en-
ables the Test Harness to generate QUIC messages with the
encryption key from the previous encryption level irrespective
of the current encryption level. This capability is valuable for
testing the server’s ability to handle encryption keys across
different encryption levels (Section 2.1). For example, after the
handshake is confirmed (1-RTT encryption level), the Test Har-
ness can still generate and transmit an Initial packet (at the
Initial encryption level) to the QUT.

3.3 Automating Analysis (Optimizer &
Differential Analyzer)

C5 LearnedModels areDifficult to Interpret andAnalyze.The
learned model generated by the Learner is unnecessarily difficult
to analyze due to artifacts from the testing phase and protocol
complexity.
Methods for resolving C5 (Optimizer). To ease the analysis
process, we design an optimization routine to simplify the learned
model by incorporating the following observation. The model de-
scription can contain numerous edges (state transitions) that do
not provide useful information. In particular, the following types
of edges observed in models are redundant:
• Edges that do not transition to a different state.
• Edges with the same input but different timeouts transitioning
to the same next state from a given state.

Therefore, we first, we remove all the edges that do not transition
to a different state from the current state, as these edges indicate
no progress on the QUT. Then, we merge all edges with the same
input type but different timeouts, if they have the same current and
next state. Doing so allows us to easily identify deviations given the
same input with a different timeout. Including these optimizations
in QUICtester allowed up to 90% of edges to be removed from the
original learned model in the best case, while testing the Quinn
server (Figure 16) as shown in the Appendix. The overall result
is a considerable simplification to aid automated analysis and a
significant reduction in the effort required to read and analyze
models and to identify anomalous behavior.
C6 Cost and Problems with Manual Deviation Analysis. One
of the significant problems with black-box noncompliance checking
using automata learning in the previous studies [20, 28] is the
subsequent manual effort needed to analyze learned models by a
domain expert.
Methods for resolving C6 (Differential Analyzer). We develop
an automated state machine comparison approach for the problem.
A simplified example illustrating the automated analysis approach
is shown in Figure 4.

We prune all the output symbols from the optimized learnedmod-
els and use the Labeled Transition System Differential (LTS_Diff)
algorithm [64] in two scenarios: i) we compare models originating

6

QUICtester: An Automated Noncompliance Checker for QUIC Conference’17, July 2017, Washington, DC, USA

Differential
Analyzer
(Temporal)

Model 2 (T ∈ short, long)

Model 3 (T = long)

Model 1 (T = short)

Unique models

(a) Comparison between models originating from the same target (server) and

configuration but under different time parameter settings.

Unique models
from each

implementations

Deviating input
sequences and
modelsDifferential

Analyzer
(Cross model)

(b) Fully automated testing method to mitigate the need for a reference model.

Comparison between all unique models from Figure 3a to extract all input

sequences that lead to deviations along with model descriptions (FSMs).

Figure 3: Automated analysis using Differential Analyzer.

S1 S2

S3

Model 1 Model 2 Result

initConClose initConClose

initPing
S1 S2

S3

initConClose

initPing

initConClose

S1 S2

S3

initConClose

initPing

initConClose

initConClose

Figure 4: Example illustrating a Differential Analyzer result.
Given two optimized models as inputs (Model 1 and Model 2),

unique state transitions (the green edge denotes the unique

edge in Model 1 while the red edge denotes it is unique to

Model 2) are identified by the algorithm.

from the same target (server) and configuration but in different
timeout settings (Figure 3a); and ii) we cross check all unique mod-
els obtained from (i) against all other targets (Figure 3b) and extract
all the deviations automatically. During the comparison, we identify
and highlight deviations—additional (green) or missing (red)—states
and state transitions. Figure 4 shows an example; the highlighted
deviations indicate at least one of the implementations may not
be compliant with the specification. To further analyze the devia-
tions, we automatically extract the shortest input sequence with its
corresponding output leading to deviations. To this end, we only
need to analyze the extracted deviations from (ii) to identify the
non-compliant implementation. The approach significantly reduces
the manual effort to inspect all the learned models. We discuss the
reduced manual effort obtained from the approach in Section 4.

Significantly, our extensive testing regime has allowed us to cu-
rate conforming learned models to serve as reference models. The
use of QUICtester with the reference models can automatically
extract non-conformance behaviors from the learned model we
discuss in Section 7. Consequently, our automated approach in the
Differential Analyzer can support developers in the future by reduc-
ing the burden in identifying the non-compliant implementations.
C7 Detecting DoS. If the QUT exhibits a memory-corruption bug
or a logical flaw, unexpected behavior such as a crash can occur.
In some cases, the crash can be hidden in the learned model (as
exemplified inM-8 in Table 2) and pose a challenge for detecting
DoS vulnerabilities.

Methods for resolving C7 (Crash Logger). We employ a Crash
Logger to monitor the aliveness of a QUT by checking its PID after
each learning step. If the QUT crashes, usually indicated by a miss-
ing or invalid PID, the Crash Logger saves the stderr and stdout
from the QUT with the corresponding input sequences for subse-
quent analysis. The logging function and data allow identifying
DoS attacks and memory-corruption bugs.

4 EVALUATION

We tested and analyzed 19 open-source QUIC implementations
summarized in Table 1 using our QUICtester implementation. Our
implementation effort is summarized in Table 6 in Appendix E.
Test Environment. All experiments are conducted using Ubuntu
20.04 with an AMD Ryzen 9 5950X CPU and 128 GB of RAM.
QUIC Configurations. We test QUIC implementations with all
mandatory and recommended cipher suites [56] implemented by
the targets. Since all of the QUIC implementations we employed
provide servers in their repository, we use the provided tools to
configure and run these servers as the QUT. As mentioned in Sec-
tion 2.1, our aim is to test all 5 different handshake configurations.
Where an implementation did not support all 5 configurations, we
tested the implemented configurations as summarized in Table 1.
Differential TestingWithTimeParameters. In our experiments,
we conduct learning on each implementation with three timeout
settings: 𝑇 ∈ 𝑠ℎ𝑜𝑟𝑡, 𝑙𝑜𝑛𝑔,𝑚𝑖𝑥𝑒𝑑 (𝑠ℎ𝑜𝑟𝑡 + 𝑙𝑜𝑛𝑔). In our differential
analysis, we compared the learned models generated from these
three different timeout settings to identify state transitions that
were influenced by temporal factors.
Identifying Anomalous Behaviors. We examined: i) differen-
tial test results with QUICtester and validated the deviating be-
haviors discovered with the extracted input sequences to identify
non-compliant behaviors; and ii) crashes, trace data and crashing
seeds from the QUICtester’s crash logger. Subsequently, we exam-
ined the server code of these QUIC implementations for root cause
analysis and bug disclosures.

5 RESULTS AND ANALYSIS

In this section, we discuss our results from analyzing the 186 learned
models. With the model optimization technique, our framework can
generate a more readable learned model for analysis. To simplify
the presentation of learned models, in the following analysis: i) we
group the input and output symbols on a transition to a connection
close, and label it with the Other symbol; and ii) when all input
and output symbols from a given state transition to the same next
state, we also group these symbols, replacing them with Other,
as these transitions do not provide any new information. Further,
we have highlighted valid paths to complete a handshake in blue
and highlighted invalid paths denoting adverse behavior in red. An
example to illustrate the interpretation of a learned model is given
in Appendix B. Here, we present a series of case studies on fault
discoveries impacting the security or availability of servers.
Threat Model. Notably, our analysis is based on the threat model
described in [40] and [57]; wherein a key aspect of QUIC is to build
mechanisms to mitigate DoS attacks. In the following, we present
a series of summarized case studies on fault discoveries impacting

7

Conference’17July 2017Washington, DC, USA Kian Kai Ang, Guy Farrelly, Cheryl Pope, and Damith C. Ranasinghe

Table 2: Overview of identified faults (detailed in Table 7).

Server Fault Description Type-ID
Aioquic Incorrect handling of unexpected frame type. S-1

Kwik Retention of the unused encryption keys. S-2
Implementation without a state machine. S-3
Process CRYPTO frame in a 0-RTT packet. S-4
Exceeds the operating system’s maximum number
of memory mappings for a single process (100,000)
when receiving PING frame from 50,000 clients.

M-1

Lsquic (Lite Speed) Retention of the unused encryption keys (PSK con-
figuration).

S-5

Incorrect handling of re-transmission, leaving a half-
opening connection on the client side (PSK configu-
ration in v4.0.2).

L-1

MsQuic (Microsoft) Does not issue its initial_source_connection_id at
the correct connection state.

S-6

Neqo (Mozilla) NULL pointer dereferencewhen getting the primary
path.

M-2

Limited connections due to a hardcoded value. M-3

Picoquic NULL pointer dereference when getting the encryp-
tion keys.

M-4

Retry token tied to retry_source_connection_id. S-7

PQUIC Invalid original_destination_connection_id. S-8
Limitless active_connection_id_limit. S-9
Retention of the unused encryption keys. S-10
Incorrect way of emptying the re-transmission
queue.

L-2

NULL pointer dereference when handling removed
connection context.

M-5

Buffer overflow when processing frame type 0x30. M-6
Infinite loop when processing frame type 0xFF. L-3
Does not send HANDSHAKE_DONE after the hand-
shake is confirmed (PSK configuration).

S-11

Quiche (Cloudflare) Client authentication bypass due to incorrect flag
set in Quiche library.

S-12

Incorrect handling of all Initial packets carried in
a UDP datagram with a payload size smaller than
1200 bytes.

S-13

Quiche4j Concurrent modification exception when discard-
ing closed connections.

M-7

Limitless active_connection_id_limit. S-14

Quant Incorrect handling of an initialPing message. S-15
Incorrect handling of all Initial packets carried in
a UDP datagram with a payload size smaller than
1200 bytes.

S-16

Quiwi Does not close the connection when the number of
received NEW_CONNECTION_ID frames exceed
the active_connection_id_limit.

S-17

Quinn Panic when unwrapping a None value when pro-
cessing an unexpected frame type.

M-8

Process CRYPTO frame in 0-RTT packet. S-18

XQUIC (Alibaba) Retention of the unused encryption keys. S-19
Maintaining a number of active connection IDs that
exceed the active_connection_id_limit.

S-20

Aioquic, LSQUIC, Neqo,
Quic-go, Quinn, Quiwi, S2n-
quic (Amazon), XQUIC

Incorrect handling of the second and subsequent
Initial packets carried in a UDP datagram with a
payload size smaller than 1200 bytes.

S-21
to
S-28

Aioquic, Kwik, MsQuic, LS-
Quic, Quant, Quiche, Quic-
go, Quiche4j, Quiwi, S2n-quic

Accept Handshake packet from an unmatched
Destination Connection ID.

S-29
to
S-38

Lsquic, MsQuic, Neqo,
Quiche4j, Quinn, XQUIC

Incorrect handling of packets without a frame. S-39
to
S-44

In total 44 specification violations (S), 8 memory-corruption bugs (M) and 3 logical
flaws (L) were identified across 19 implementations.

the security or availability of servers. Detailed discussions of the
case studies and a demonstration of valid behavior analysis on one
of the reference models are included in the Appendix.

s0 s1

initCltHello-vldACK(t,c) /
initSvrHello, hndEncExt,

hndCertReq, hndCert,
hndCertVer, hndFin

s5

hndCert(t) / -

s4

hndCertVer(t) / -

hndFin(t) /

VldNewConID,
HndshkDone hndEmpCert(t) / - s6

Authentication
bypass

Figure 5: Simplified learned model of a Quiche server with

the ClientAuth configuration. Blue edges show a valid path

to complete a QUIC handshake. Red edges demonstrate an

invalid path that bypasses the client authentication. The

complete model is in Figure 17, in the Appendix.

Results Summary.We summarize all the observed faults in Table 2;
a detailed table with extended discussions is in Table 7 within
the Appendix. Each fault is categorized as one of the following:
i) specification bugs. An implemented behavior violates the QUIC
specification; ii)memory-corruption bugs.An input causing memory
corruption and a server crash. iii) logical flaws. Incorrect logic
implemented in code produces unexpected behavior.

5.1 Non-Compliance Issues

Wediscovered 44 specification violations—i.e. non-compliance
issues. We present four case studies of significant issues and
defer details and inputs for reproducing all of the issues to
our GitHub repository [3].

S-18 Client Authentication Bypass in Quiche. The simplified
Quiche learned model with ClientAuth configuration is shown
in Figure 5. The valid path to establish a QUIC handshake is high-
lighted in blue color. Our analysis of this model revealed that the
server bypasses the client authentication on the path: s0, s1, s4, s6,
highlighted in red. This behavior was observed in all 3 handshake
processes initiated with a different cipher suite(𝐴𝐸𝑆_128, 𝐴𝐸𝑆_256,
𝐶ℎ𝑎𝐶ℎ𝑎20). In this path, after the exchange of transport parame-
ters and cryptographic information between the client and server,
the server sends a handshakeCertificateRequest message to au-
thenticate the client. However, instead of responding with a valid
certificate, the client sends a handshakeEmptyCertificate message
to the server at s1. Subsequently, the client sends a handshakeFin-
ished message to complete the handshake. The server processes the
client’s handshakeFinished message without verifying the client’s
certificate. Then, the server responds with ValidNewConnectionID
and HandshakeDone messages to confirm the completion of a suc-
cessful handshake. The summarized flow of this authentication
bypass is illustrated in Figure 14 in the Appendix.

During our code analysis of Quiche, we discovered the devel-
opers had set the incorrect flag (SSL_VERIFY_PEER) for verifying
the client certificate in the BoringSSL [2] configuration. To ad-
dress this issue, the flag should be set to SSL_VERIFY_PEER |
SSL_VERIFY_FAIL_IF_NO_CERT, which ensures that the handshake
fails if an empty client certificate is used for authentication. How-
ever, according to BoringSSL documentation, this misconfiguration
only affects the client authentication, i.e., an anonymous server will
always fail to establish a connection with the client even without
setting the SSL_VERIFY_FAIL_IF_NO_CERT flag.

8

https://nvd.nist.gov/vuln/detail/CVE-2024-22588
https://nvd.nist.gov/vuln/detail/CVE-2024-22590
https://nvd.nist.gov/vuln/detail/CVE-2024-25678
https://nvd.nist.gov/vuln/detail/CVE-2024-25678
https://nvd.nist.gov/vuln/detail/CVE-2024-25679
https://nvd.nist.gov/vuln/detail/CVE-2023-42805
https://nvd.nist.gov/vuln/detail/CVE-2023-42805

QUICtester: An Automated Noncompliance Checker for QUIC Conference’17, July 2017, Washington, DC, USA

Impact This allows an unauthenticated client to set up an anony-
mous connection with the server, allowing an on-path active at-
tacker to perform man-in-the-middle attacks [23, 56]. Notably, the
issue was fixed with a bug bounty awarded to our team).
S-19 Retention of the unused encryption keys.We discover
that the XQUIC server will still respond to Initial packets after
moving to the Handshake encryption level, as well as responding
to Handshake packets after moving to the 1-RTT encryption level
(when the handshake is confirmed). XQUIC does not follow the
specification as stated in [62, Section 4.9], a QUIC server must
discard the unused keys after moving to a new encryption level.
For example, a server must discard its Initial key after it processes
the first Handshake packet from the client so that the subsequent
Initial packets will not be processed.

The non-conformance described above can lead to serious con-
sequences. For example, an attacker can disrupt a connection. The
Initial key does not provide confidentiality or integrity protection
against attackers that can observe packets [40, Section 17.2.2]. No-
tably, the Initial key is determined by using HKDF-Extract with a
default salt specified in [62, Section 5.2] and an input keying mate-
rial (IKM) of the Destination Connection ID from the client’s first
Initial packet. An attacker can sniff a victim’s (client) first Initial
packet, obtain the Destination Connection ID and compute the vic-
tim’s Initial key. Then, the attacker can use the victim’s Initial key
to send a spoofed initialConnectionClose message to the server. A
server that does not discard the Initial key may use this key for de-

cryption, process the spoofed Initial packet and close the connection
with the victim (DoS attack).
Impact The non-conformance behavior [62, Section 4.9] allows an
off-path active attacker to disrupt a connection during the hand-
shake in both security settings supported by XQUIC to mount a
DoS attack. The attack requires a malicious actor able to sniff the
first Initial packet sent by the victim (a QUIC client) on a network.
S-2 Retention of the unused encryption keys. Once a key
is created for an encryption level, the Kwik server will continue
decrypting and processing packets from that encryption level, even
after moving to a new encryption level. Similar to XQUIC, this
behavior is not conforming to [62, Section 4.9]. So, Kwik is also
vulnerable to the spoofed initialConnectionClose attack explained
earlier.
Impact An off-path active attacker can mount a DoS attack by
disrupting a connection in all security settings supported by Kwik.
The attack requires a malicious actor able to sniff the first Initial
packet sent by the victim (a QUIC client). This vulnerability was
assigned CVE-2024-22588 and patched by the Kwik developers.

Notably, Kwik presents a more critical issue than XQUIC. Beyond
just retaining the unused encryption keys, Kwik does not actually
track the current state of a connection. In other words, Kwik does
not implement a proper state machine—as discussed in S-3 below.
S-3 Implementation without a TLS state machine. In testing,
we found the Kwik implementation to reprocess a message that was
already successfully processed before, such as an initialClientHello
message. Notably, this message contains application protocol ne-
gotiation, transport parameters, and cryptographic information to
perform key exchange. This reprocessing of an initialClientHello

initPing(short) / PingACKs0 s2 s3

initConClose(short) / <ConAct> initCltHello-invldACK(short,c) /

initSvrHello, hndEncExt, hndCertReq,

hndCert,hndCertVer, hndFin
......

Crash

(a) Simplified model from Picoquic with ClientAuth configuration learned

with𝑇 = 𝑠ℎ𝑜𝑟𝑡 parameter setting for inputs.

initPing(long) / PingACKs0 s2 s1

initConClose(long) / <ConAct>
initCltHello-invldACK(long,c) /

initSvrHello, hndEncExt, hndCertReq,

hndCert,hndCertVer, hndFin
......

(b) Simplified model from Picoquic with ClientAuth configuration learned

with𝑇 = 𝑙𝑜𝑛𝑔 parameter setting for inputs.

Figure 6: Differential analyzer reveals a deviation on Pico-

quic when different time parameters are used for inputs. The

complete models are given in Figure 18 and 19 in the Appen-
dix.

message will overwrite the existing connection’s application proto-
col version, transport parameters, and encryption key.

This is a serious issue because, combined with the vulnerability
we discussed earlier, attackers can reset or potentially hijack a
victim’s connection using a initialClientHellomessage. For example,
at any state of a connection, an attacker with the victim’s Initial
key can send a spoofed initialClientHello message with transport
parameters and cryptographic information that differs from the
victim’s to the Kwik server. The Kwik serverwill process the spoofed
initialClientHello message and overwrite the existing transport
parameters and encryption key that it has with the victim. Due to
the desynchronization of transport parameters and encryption keys,
the server no longer recognizes the victim and drops any packets
coming from the victim. An attacker can then sniff the responses
from the server, complete the overwritten handshake and use the
connection to exchange data with the server.
Impact A malicious off-path active actor can hijack a victim’s
active connection. Notably, this vulnerability has been fixed by the
developers with CVE-2024-22590 assigned.

5.2 Memory-corruption bug: Server crashes

We discovered 8 memory-corruptions. We defer details and
inputs for reproducing bugs to [3]. Here, we review M-4 un-
covered with our idea for discovering timing dependencies on

protocol states. We include three further case studies in Ap-
pendix C.1.

M-4 Null Pointer Dereference in Picoquic. Interestingly, our
use of differential testing with time parameters was crucial to iden-
tifying the issue. Figure 6 depicts the Picoquic’s ClientAuth sim-
plified learned models using different time parameters. Our Dif-
ferential Analyzer revealed a deviating state transition from s2 in
Figure 6a and Figure 6b when the same input, initialClientHello-
invldACK was sent. The state transitions in both figures are re-
sponded to with the necessary messages to continue the handshake.
However, when a client sends any further messages at s3 in Fig-
ure 6a, the server does not respond. Data from our Crash Logger

revealed a segmentation fault occurred on each occasion the specific
input sequence was received by the server at s3 in Figure 6a.

9

Conference’17July 2017Washington, DC, USA Kian Kai Ang, Guy Farrelly, Cheryl Pope, and Damith C. Ranasinghe

NULL

NULL ServerHello

Head

NULL
NULLACK

ACK

NULL ServerHello ACK
dequeue
direction

NULL ServerHello

Head

1

2

3

4

NULL

NULL

Head

Head

Figure 7: Changes in Picoquic’s re-transmission queue stored

as a double-linked list, leading to a segmentation fault.

Client Server

Initial[0]: Ping 1) Process Initial Ping.
2) Prepare Initial ACK.
3) Push Initial ACK to the Initial
re-transmission queue. (1 in Figure 7)
4) Send ACK.

Initial[0]: ACK[0]
0.15 s

Initial[1]: ClientHello

1) Process Initial ClientHello.
2) Prepare Initial ServerHello, etc.
3) Push Initial ServerHello to the Initial re-
transmission queue. (2 in Figure 7)
4) Send ServerHello, etc.

Initial[1]: ACK[1], ServerHello

Handshake[0]: EncryptedExtension,
CertificateRequest,

Certificate,
CertificateVerify,

Finished

Initial[2]: invalidACK[1]

Handshake[0]: ACK[0]
1) Drop invalid Initial ACK.
2) Process Handshake ACK.
3) Discard Initial keys.
4) Remove all Initial messages from the Initial re-
transmission queue. (3 in Figure 7)
5) Find ServerHello in Initial re-transmission queue.
(4 in Figure 7)
6) Prepare to re-transmit ServerHello.
7) Try to get discarded Initial keys.
8) Segmentation fault

0.15 s

Figure 8: A message sequence chart showing message flow

required to trigger a segmentation fault in Picoquic with the

ClientAuth configuration.

We use rr [4] to investigate further and record Picoquic’s execu-
tion while sending the crashing input sequence. We debug the root
cause of this crash by replaying the recorded program execution.
The segmentation fault error occurs because the server tries to re-
transmit an initialServerHello message and attempts to dereference
a null pointer when retrieving the required encryption key.

This segmentation fault error in Picoquic depends on several
events within the server’s operation. When the server acknowl-
edges the initialPing, it pushes its first message (PingACK) to the
head node of its Initial re-transmission queue in 1 shown in Figure 7.
Notably, the server uses a double-linked list as its re-transmission
queue. In response to the client’s initialClientHello-invalidACK,
the server sends its second message (initialServerHello). The mes-
sage is added to the previous node of the head node, as illustrated
in 2 in Figure 7. Subsequently, the server drops the invalid Initial
ACK that acknowledges the initialServerHello message and pro-
cesses the Handshake ACK that acknowledges the first Handshake
message it sent. As a result, the PingACK and initialServerHello
remain in the Initial re-transmission queue. After processing the
Handshake ACK, the server removes its Initial keys as described
in [62, Section 4.9.1]. Subsequently, the server attempts to remove
all the messages in the Initial re-transmission queue to prevent any
transmission of Initial messages.

Interestingly, the server’s method of emptying the Initial re-
transmission queue does not follow the order in which the mes-
sages were added. The server removes the head node and all its

sub-sequence messages stored in its next node as shown in 3 in
Figure 7. Consequently, only the oldest message is removed, while
the remaining messages in the re-transmission queue remain as
shown in 4 . Later, when a re-transmission callback occurs, the
server attempts to encrypt the initialServerHello message by deref-
erencing the null pointer that previously stored the discarded Initial
keys. This is the source of the segmentation fault error. The sum-
marized flow of QUIC handshake protocol messages leading to the
segmentation fault is illustrated in Figure 8 in the Appendix.

Notably, when the first input, initialPing, is set to 𝑙𝑜𝑛𝑔 timeout,
the server removes the PingACK from the Initial re-transmission
queue before processing the Handshake ACK. As a result, the ini-
tialServerHellomessage becomes the head node in the queue.When
the server discards the Initial keys, it also removes the first message
in the queue, which is the initialServerHello message. This proac-
tive step prevents the server from encountering a segmentation
fault and allows it to complete the handshake successfully.

Interestingly, the complete ClientAuth model learned with in-
puts (𝑇 = 𝑠ℎ𝑜𝑟𝑡) has 11 states and shows the adverse behavior
described above, while the complete ClientAuth model learned
with inputs (𝑇 = 𝑙𝑜𝑛𝑔) has only 9 states with no anomalies (complete
learned models can be found at [3]). As evidenced, the difference in
models demonstrates testing with time-parameterized inputs elicits
new behavior of a network protocol implementation, leading to
new states, state transitions, and potential new bug discoveries.

Impact The vulnerability allows an attacker to perform a simple
DoS attack with a single client during connection establishment.

5.3 Logical Flaw: Unexpected Behavior

Logical flaws produce unexpected behavior due to incorrect
program logic. We discovered 3 logical flaws but defer details
and inputs for reproducing all issues to our GitHub reposi-
tory [3]. We review L-1 discovered by QUICtester here and
include two more in Appendix C.2.

L-1 Incorrect handling of re-transmissions. During connec-
tion establishment, Lsquic server with PSK configuration will reach
the close state every time it attempts to re-transmit the last unac-
knowledged message.
Impact A client unable to acknowledge the server’s handshake
messages in time will always fail to establish a connection with the
server.

5.4 Specification Ambiguity: Exposing a New

DoS Attack

When comparing the optimized models across 19 server implemen-
tations, we identified a scenario under which an ambiguity related
to the connection management aspects in the QUIC specification
can lead to implementations exhibiting different behaviors; some
more detrimental than others.
The specification states:

The first packet sent by a client always includes
a CRYPTO frame that contains the start or all of
the first cryptographic handshake message. (Section
17.2.2, RFC 9000).

10

QUICtester: An Automated Noncompliance Checker for QUIC Conference’17, July 2017, Washington, DC, USA

However, the specification does not explicitly state how a server
should/must handle a first packet receivedwithout a CRYPTO frame
nor what first packets a server must process. Further, as described
in the specification:

After processing the first Initial packet, each
endpoint sets the Destination Connection ID field
in subsequent packets it sends to the value of
the Source Connection ID field that it received.
(Section 7.2, RFC 9000),

A server will also need to “remember” the Connection IDs (or
connection context) sent from clients after processing the first
packet, even if the client has no intention of initiating a connection

with the server. When a client sends an initialPing as the first packet
to assess reachability of a server, we observed:
• A few implementations elect not to acknowledge pings from
clients that do not have an existing open connection with the
server. These servers elect to drop the packet, or respond with
a connectionClose message.

• However, many implementations accepting initialPing packets
from clientswithout an existing connection, create a connection
based on the ping and respond with an acknowledgment. In
this behavior, the server is forced to “remember” the connection
ID (leading to creating a connection context) even if the client

has no intention of initiating a connection with the server. Hence,
irrespective of the client continuing the handshake, the server
has expended resources in creating a connection context. These
resources are not de-allocated until a timeout occurs.

• Only one implementation (MsQuic) responds to the ping with-
out creating a connection context.
To investigate the impact of implementation choices, we ex-

periment by initiating 50,000 QUIC clients. Each client sends one
packet, initialPing, to a target QUIC server with Basic configura-
tion. Since the specification states the first packet always contains
a CRYPTO frame and servers can elect to drop the initialPing with-
out a CRYPTO frame, we tested with initialPing packets without a
CRYPTO frame. We tested the 19 QUIC servers we studied. During
the experiment, we made an interesting observation—a significant
increase in memory usage (from 500 MB to 3 GB) for 10 server
implementations, denoted as Category 1 in Figure 9. This is a direct
consequence of the servers always creating a connection context for
each incoming first packet, even when a client does not intend to
establish a connection (initialPing that excludes a CRYPTO frame).

Interestingly, we were able to crash the Kwik server (M-1)
after it exceeded the operating system’s maximum number
of memory mappings for a single process (100,000) (the server
created 2 threads for each incoming initialPing). We disclosed our
findings to each affected QUIC implementation developer.

We propose the specification to allow responding to clients not
seeking to establish a connection to support liveness testing via
initialPing without a CRYPTO frame where a connection context
is not created and amending the specification to state a first packet
to initiate a connection MUST include a CRYPTO frame.

Figure 9: Memory usage recorded for 19 QUIC servers tested

with 50,000 clients sending an Initial packet with a PING

frame without a CRYPTO frame.

6 RELATEDWORK

Passive State Machine Inference. These approaches [17, 33]
employ template data, e.g. pcap files to generate an FSM. However,
the approach cannot detect server failures (crashes) and actively
explore unobserved states of the system. Hence, we consider an
active learning approach.
Active State Machine Inference. Past studies used the approach
to successfully test network protocols [6, 19, 20, 27, 28, 30, 35, 48, 61];
a concurrent study employed the methods to successfully discover
specification non-conformities of Bluetooth Low Energy [44] imple-
mentations. Notably, in [44], a divide-and-conquer approach speeds
up learning, which we do not consider for QUIC due to the possibil-
ity of the latter state transitions being influenced by the first inputs.
A concurrent study also proposed an automated method [29] to
detect state machine bugs from learned models. The approach re-
quires the construction of a Deterministic Finite Automaton first
to describe the correct state transitions for the protocol handshake.
In contrast, similar to the approach in [6, 27, 30, 44], our chosen
method simplifies the analysis by directly performing cross-model
checking to extract the deviations. Further, we also provide differ-
ential testing with curated reference models to reduce the burden
of identifying non-compliant behaviors (see Figure 10).
Network Protocol Fuzzing. We acknowledge efforts in imple-
menting mutation-based [7, 8, 10, 11, 46, 47, 51, 58] and generation-
based fuzzers [24, 41] for discovering memory-related bugs in proto-
cols. A recent study [50] leveraged large language models to enable
structure-aware mutation on the non-security protocol specifica-
tions (RFCs). In contrast, our work focuses on employing automata
learning as a black-box tool for uncovering specification violations
in protocol implementations.

QUICTester

QUT
Deviating input

sequences
and models

Reference
models

Figure 10: Practitioners can use QUICtester with our cu-

rated reference models to automate future testing of target

QUIC implementations (QUT).

11

Conference’17July 2017Washington, DC, USA Kian Kai Ang, Guy Farrelly, Cheryl Pope, and Damith C. Ranasinghe

Table 3: Comparison of automated testing studies on QUIC (Both Compliance checkers & Fuzzers).

Tools

RFC

9000/

9001

Open-

source

QUIC Impls.

tested

#Faults

Active

learning

Timing

related

behavior

Invalid

test

cases

Black

box

State

model

opt.

Automated

(w/o formal

model)

Under

spec.

detection

Non-compliance checking

QUICtester (Ours) ✓ ✓ 19 55 ✓ ✓ ✓ ✓ ✓ ✓ ✓

EPIQ’2021[18]‡ ✗ ✓ 7 9 ✗ ✗ ✓ ✓ - ✗ ✓

SIGCOMM’2021[26] ✗ ✓ 3 3 ✓ ✗ ✗ ✓ ✗ ✗ ✓

SIGCOMM’2019[49]‡ ✗ ✓ 4 27 ✗ ✗ ✓ ✓ - ✗ ✓

Unpublished (2019) ✗ ✓ 1 0 ✓ ✗ ✗ ✓ ✗ ✗ ✗

IMC’2017[42]∗ ✗ ✓ 1 1 ✗ ✗ ✗ ✗ ✗ ✗ ✗

Other testing studies (fuzzing, fault injection, traffic analysis)
QUIC-Fuzz [8] (ESORICS’2025)† ✓ ✓ 6 10 - ✗ ✓ ✗ - - -
Fuzztruction-net [11] (CCS’2024)⋄ ✓ ✓ 2 5 - ✓ ✓ ✗ - - -
Bleem [46] (USENIX’2023)† ✓ ✗ 1 1 - ✗ ✓ ✓ - - -
DPIFuzz [55] (ACSAC’2020)★ ✗ ✓ 5 4 - ✗ ✓ ✓ - - ✓

BooFuzz (Communit/Industry)★ ✓ ✓ - - - ✗ ✓ ✓ - - -

‡: Formal verification; ⋄: Fault-injection fuzzer; †: Mutation-based fuzzer.;★ : Generation-based fuzzer; ∗: Instruments a QUIC implementation to extract its execution trace.

7 DISCUSSION

AutomatedComplianceTestingWithReference FSMs.Through
our differential analysis method (Temporal and Cross Model, illus-
trated in Figure 3a), we identified and curated 11models conforming
to QUIC RFC 9000/9001 (see Appendix D). The referencemodels cap-
ture compliant FSM variations across all 5 security configurations.
Importantly, the models allow developers to employQUICtester to
effectively, efficiently and automatically identify non-conformance
behaviors or faults in the future as illustrated in Figure 10.
Threats to validity. We uncovered 55 faults and confirmed all of
the deviations detected by Differential Analyzer are due to either:
i) specification bugs, ii) memory-corruption bugs, or iii) logical
flaws as listed in Table 2. QUICtester did not detect any false pos-
itives; identifying a deviation that does not lead to a fault. Further,
we have made efforts to ensure the series of membership queries
produced based on our dictionary of symbols comprehensively cov-
ers all protocol variations. However, a non-zero probability exists,
despite our best efforts, that we have inadvertently missed a sym-
bolization and hence, a potential uncovering of a state or transition.
Further, it is important to recognize the test oracles (diverse QUIC
implementations) are inherently unfaithful because they can all
suffer from the same logical vulnerability. Thus, although highly
unlikely, it is possible that a noncompliance remains, yet undiscov-
ered despite the diverse range of implementations and settings we
employed in our testing.

Notably, the noncompliance checker is not purposed for detect-
ing memory-corruption bugs effectively because active automata
learning focuses on the logical structure and behavior of the state
machine rather than the underlying datamanipulation. For instance,
it does not perform mutations on packet fields that could trigger
buffer overflows or similar vulnerabilities.
Correctness. As highlighted in Section 4, we have manually vali-
dated all 186 models and confirmed that all the behaviors illustrated
in the models (across 19 implementations) are reproducible. In ad-
dition, we provide a list of inputs for each deviating behavior in
our code repository for reproducibility [3]. As an interesting anec-
dote, we spent approximately 1860 mins (approximately 10 mins

per model for 186 models) in our efforts to evaluate the veracity of
the state machine comparison method discussed in Section 3.3.

We also considered if the optimizations are sound and produce
FSMs that accept the same strings as the un-optimized FSMs. To
this end, we applied the differential analysis method on un-optimize
FSMs, for the set of models we evaluated, the task consumes approxi-
mately 5.4 hours. Subsequently, we compared the unique deviations
extracted with those deviations extracted from optimized FSMs (tak-
ing approximately 2.2 hours). We found the unique deviations from
the un-optimised and optimised models to be the same.
Completeness. In this study, we focused on comprehensively
analysing the security components of QUIC (the handshake stages).
Hence,QUICtester is not currently capable of detecting deviations
in other components of QUIC. These include connection migration
of a client on an active connection with a server or the state of open
streams for application data exchange. But, QUICtester is modular
and extensible to test these components, it will require defining
new inputs and output symbols and modifying the existing Test

Harness. We leave these avenues for further development.
Learning Time-Dependent Behaviour. As explained in Sec-
tion 5.2, learning with time-parametrised inputs can uncover previ-
ously unobserved behaviours, lead to the discovery of new states,
state transitions, and potential new bug discoveries such as M-4.
However, the average time required for learning increases with
different time settings—29.6 hours for 𝑠ℎ𝑜𝑟𝑡 , 38.9 hours for 𝑙𝑜𝑛𝑔,
and 76.5 hours for both 𝑠ℎ𝑜𝑟𝑡 and 𝑙𝑜𝑛𝑔. Therefore, exploring opti-
mization strategies to reduce runtime while maintaining the bug
discovery effectiveness is a valuable avenue for future work.
Comparison with existing tools. Prior to the QUIC specifica-
tions [40, 62] being finalized, [18, 26, 42, 49, 54, 55] have made
significant efforts in testing QUIC implementations. However, most
of the QUIC-specific tools are only built for testing the IETF-draft
or Google-QUIC, are no longer actively maintained, and have lim-
ited scope for security testing (e.g. do not consider invalid input
while testing). Therefore, these tools lack suitability for testing the
ratified specification. To the best of our knowledge, our work is
first to develop a black-box noncompliance checker to test all 5
different security settings, including client address validation and

12

QUICtester: An Automated Noncompliance Checker for QUIC Conference’17, July 2017, Washington, DC, USA

client authentication of the ratified QUIC specification. We sum-
marize our comparison in Table 3 and, for completeness, include
mutation-based fuzzers and a generation-based fuzzers that have
tested QUIC implementations.

8 CONCLUSIONS AND FUTUREWORK

In this study, we presented the first, programming language ag-
nostic, comprehensive noncompliance tester for the security crit-
ical connection establishment components of the QUIC protocol.
QUICtester is validated with 5 CVEs assigned from developers, 55
faults discovered and confirmed by developers, a bug bounty and
uncovering of a specification ambiguity. Although we have made
significant in-roads (our Optimizer and Differential Analyzer) to
reduce the manual effort required to analyze the generated models,
exploring automatic model analysis techniques leveraging LLMs
could further assist in model analysis to reduce dependence on
domain expertise. Further, extending QUICtester to evaluate non-
security components of QUIC are avenues for future work.

REFERENCES

[1] [n. d.]. Aioquic. https://aioquic.readthedocs.io/en/latest/. Accessed: 10 October
2022.

[2] [n. d.]. BoringSSL. https://boringssl.googlesource.com/boringssl/. Accessed: 7
June 2022.

[3] [n. d.]. Bug Description with input sequence to reproduce the faults. https:
//anonymous.4open.science/r/QUICTester-7EBC/results/README.md. Accessed:
2 August 2024.

[4] [n. d.]. rr: lightweight recording & deterministic debugging. https://rr-project.
org/. Accessed: 16 January 2023.

[5] [n. d.]. Usage statistics of HTTP/3 for websites. https://w3techs.com/
technologies/details/ce-http3. Accessed: 7 June 2023.

[6] Bernhard K Aichernig, Edi Muškardin, and Andrea Pferscher. 2021. Learning-
based fuzzing of IoT message brokers. In IEEE Conference on Software Testing,

Verification and Validation (ICST). 47–58.
[7] Anastasios Andronidis and Cristian Cadar. 2022. SnapFuzz: high-throughput

fuzzing of network applications. In ACM SIGSOFT International Symposium on

Software Testing and Analysis (ISSTA). 340–351.
[8] Kian Kai Ang and Damith C. Ranasinghe. 2025. QUIC-Fuzz: An Effective Greybox

Fuzzer For The QUIC Protocol. In European Symposium on Research in Computer

Security (ESORICS).
[9] Dana Angluin. 1987. Learning regular sets from queries and counterexamples.

Information and computation 75, 2 (1987), 87–106.
[10] Jinsheng Ba, Marcel Böhme, Zahra Mirzamomen, and Abhik Roychoudhury.

2022. Stateful greybox fuzzing. In USENIX Security Symposium (USENIX Security).
3255–3272.

[11] Nils Bars, Moritz Schloegel, Nico Schiller, Lukas Bernhard, and Thorsten Holz.
2024. No Peer, no Cry: Network Application Fuzzing via Fault Injection. (2024).

[12] Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric
Fournet, Markulf Kohlweiss, Alfredo Pironti, Pierre-Yves Strub, and Jean Karim
Zinzindohoue. 2015. A Messy State of the Union: Taming the Composite State
Machines of TLS. In IEEE Symposium on Security and Privacy (S&P). 535–552.
https://doi.org/10.1109/SP.2015.39

[13] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural

information processing systems 33 (2020), 1877–1901.
[14] Chad Brubaker, Suman Jana, Baishakhi Ray, Sarfraz Khurshid, and Vitaly

Shmatikov. 2014. Using Frankencerts for Automated Adversarial Testing of
Certificate Validation in SSL/TLS Implementations. In IEEE Symposium on Secu-

rity and Privacy (S&P). 114–129. https://doi.org/10.1109/SP.2014.15
[15] Yufan Chen, Arjun Arunasalam, and Z Berkay Celik. 2023. Can large language

models provide security & privacy advice? measuring the ability of llms to refute
misconceptions. In Annual Computer Security Applications Conference (ACSAC).
366–378.

[16] Tsun S. Chow. 1978. Testing software design modeled by finite-state machines.
IEEE transactions on software engineering 3 (1978), 178–187.

[17] Paolo Milani Comparetti, Gilbert Wondracek, Christopher Kruegel, and Engin
Kirda. 2009. Prospex: Protocol specification extraction. In IEEE Symposium on

Security and Privacy (S&P). IEEE, 110–125.

[18] Christophe Crochet, Tom Rousseaux, Maxime Piraux, Jean-François Sambon, and
Axel Legay. 2021. Verifying QUIC implementations using Ivy. In Proceedings of

the 2021 Workshop on Evolution, Performance and Interoperability of QUIC. 35–41.
[19] Lesly-Ann Daniel, Erik Poll, and Joeri de Ruiter. 2018. Inferring OpenVPN state

machines using protocol state fuzzing. In IEEE European Symposium On Security

And Privacy Workshops (EuroS&PW). 11–19.
[20] Joeri De Ruiter and Erik Poll. 2015. Protocol state fuzzing of TLS implementations.

In USENIX Security Symposium (USENIX Security). 193–206.
[21] Yinlin Deng, Chunqiu Steven Xia, Haoran Peng, Chenyuan Yang, and Lingming

Zhang. 2023. Large language models are zero-shot fuzzers: Fuzzing deep-learning
libraries via large language models. In ACM SIGSOFT International Symposium

on Software Testing and Analysis (ISSTA). 423–435.
[22] Tim Dierks and Eric Rescorla. 2008. The transport layer security (TLS) protocol

version 1.2. RFC 5246.
[23] Tim Dierks and Eric Rescorla. 2008. The transport layer security (TLS) protocol

version 1.2. RFC 5246.
[24] Michael Eddington. [n. d.]. Peach fuzzing platform. https://gitlab.com/gitlab-

org/security-products/protocol-fuzzer-ce.. Accessed: 2 August 2024.
[25] Fátima Fernández, Mihail Zverev, Pablo Garrido, José R Juárez, Josu Bilbao,

and Ramón Agüero. 2020. And QUIC meets IoT: performance assessment of
MQTT over QUIC. In International Conference on Wireless and Mobile Computing,

Networking and Communications (WiMob).
[26] Tiago Ferreira, Harrison Brewton, Loris D’Antoni, and Alexandra Silva. 2021.

Prognosis: closed-box analysis of network protocol implementations. In Proceed-

ings of the 2021 ACM SIGCOMM 2021 Conference. 762–774.
[27] Paul Fiterău-Broştean, Ramon Janssen, and Frits Vaandrager. 2016. Combin-

ing model learning and model checking to analyze TCP implementations. In
International Conference on Computer Aided Verification (CAV).

[28] Paul Fiterau-Brostean, Bengt Jonsson, Robert Merget, Joeri De Ruiter, Konstanti-
nos Sagonas, and Juraj Somorovsky. 2020. Analysis of DTLS implementations
using protocol state fuzzing. In USENIX Security Symposium (USENIX Security).
2523–2540.

[29] Paul Fiterau-Brostean, Bengt Jonsson, Konstantinos Sagonas, and Fredrik Tåquist.
2023. Automata-Based Automated Detection of State Machine Bugs in Protocol
Implementations.. In Network and Distributed System Security (NDSS).

[30] Paul Fiterău-Broştean, Toon Lenaerts, Erik Poll, Joeri de Ruiter, Frits Vaandrager,
and Patrick Verleg. 2017. Model learning and model checking of SSH implemen-
tations. In ACM SIGSOFT International Symposium on Model Checking of Software

(SPIN). 142–151.
[31] Olga Grinchtein, Bengt Jonsson, and Martin Leucker. 2010. Learning of event-

recording automata. Theoretical Computer Science 411, 47 (2010), 4029–4054.
[32] Kaiyu Hou, Sen Lin, Yan Chen, and Vinod Yegneswaran. 2022. QFaaS: accelerating

and securing serverless cloud networks with QUIC. In Symposium on Cloud

Computing (SoCC). 240–256.
[33] Yating Hsu, Guoqiang Shu, and David Lee. 2008. A model-based approach to se-

curity flaw detection of network protocol implementations. In IEEE International

Conference on Network Protocols. IEEE, 114–123.
[34] Christian Huitema, Sara Dickinson, and Allison Mankin. 2022. DNS over Dedi-

cated QUIC Connections. RFC 9250. https://doi.org/10.17487/RFC9250
[35] Syed Rafiul Hussain, Imtiaz Karim, Abdullah Al Ishtiaq, Omar Chowdhury, and

Elisa Bertino. 2021. Noncompliance as deviant behavior: An automated black-box
noncompliance checker for 4G LTE cellular devices. In Proceedings of the 2021

ACM SIGSAC Conference on Computer and Communications Security. 1082–1099.
[36] IoT Analytics GmbH. 2023. State of IoT 2023: Number of connected IoT devices

growing 16% to 16.7 billion globally. https://iot-analytics.com/number-connected-
iot-devices.

[37] Malte Isberner. 2015. Foundations of active automata learning: an algorithmic
perspective. (2015).

[38] Malte Isberner, Falk Howar, and Bernhard Steffen. 2014. The TTT algorithm: a
redundancy-free approach to active automata learning. In Runtime Verification:

5th International Conference, RV 2014, Toronto, ON, Canada, September 22-25, 2014.

Proceedings 5. Springer, 307–322.
[39] Malte Isberner, Falk Howar, and Bernhard Steffen. 2015. The open-source learnLib:

a framework for active automata learning. In Computer Aided Verification: 27th

International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,

Proceedings, Part I 27. Springer, 487–495.
[40] J Iyengar and M Thomson. 2021. QUIC: A UDP-Based Multiplexed and Secure

Transport. RFC 9000.
[41] jtpereyda. [n. d.]. BooFuzz: Network protocol fuzzing for humans.

https://github.com/jtpereyda/boofuzz.
[42] Arash Molavi Kakhki, Samuel Jero, David Choffnes, Cristina Nita-Rotaru, and

Alan Mislove. 2017. Taking a long look at QUIC: an approach for rigorous
evaluation of rapidly evolving transport protocols. In Proceedings of the Internet

Measurement Conference. 290–303.
[43] Sungmin Kang, Juyeon Yoon, and Shin Yoo. 2023. Large language models are few-

shot testers: Exploring llm-based general bug reproduction. In 2023 IEEE/ACM

45th International Conference on Software Engineering (ICSE). IEEE, 2312–2323.

13

https://aioquic.readthedocs.io/en/latest/
https://boringssl.googlesource.com/boringssl/
https://anonymous.4open.science/r/QUICTester-7EBC/results/README.md
https://anonymous.4open.science/r/QUICTester-7EBC/results/README.md
https://rr-project.org/
https://rr-project.org/
https://w3techs.com/technologies/details/ce-http3
https://w3techs.com/technologies/details/ce-http3
https://doi.org/10.1109/SP.2015.39
https://doi.org/10.1109/SP.2014.15
https://gitlab.com/gitlab-org/security-products/protocol-fuzzer-ce.
https://gitlab.com/gitlab-org/security-products/protocol-fuzzer-ce.
https://doi.org/10.17487/RFC9250
https://iot-analytics.com/number-connected-iot-devices
https://iot-analytics.com/number-connected-iot-devices

Conference’17July 2017Washington, DC, USA Kian Kai Ang, Guy Farrelly, Cheryl Pope, and Damith C. Ranasinghe

[44] Imtiaz Karim, Abdullah Al Ishtiaq, Syed Rafiul Hussain, and Elisa Bertino. 2023.
BLEDiff: Scalable and Property-Agnostic Noncompliance Checking for BLE Imple-
mentations. In IEEE Symposium on Security and Privacy (S&P). IEEE, 3209–3227.

[45] Puneet Kumar and Behnam Dezfouli. 2019. Implementation and analysis of QUIC
for MQTT. Computer Networks 150 (2019), 28–45.

[46] Zhengxiong Luo, Junze Yu, Feilong Zuo, Jianzhong Liu, Yu Jiang, Ting Chen,
Abhik Roychoudhury, and Jiaguang Sun. 2023. Bleem: Packet sequence oriented
fuzzing for protocol implementations. In USENIX Security Symposium (USENIX

Security). 4481–4498.
[47] Dominik Maier, Otto Bittner, Marc Munier, and Julian Beier. 2022. FitM: Binary-

Only Coverage-Guided Fuzzing for Stateful Network Protocols. InWorkshop on

Binary Analysis Research (BAR).
[48] Chris McMahon Stone, Tom Chothia, and Joeri de Ruiter. 2018. Extending

automated protocol state learning for the 802.11 4-way handshake. In European

Symposium on Research in Computer Security (ESORICS). 325–345.
[49] Kenneth L McMillan and Lenore D Zuck. 2019. Formal specification and testing

of QUIC. In Proceedings of the ACM Special Interest Group on Data Communication.
227–240.

[50] Ruijie Meng, Martin Mirchev, Marcel Böhme, and Abhik Roychoudhury. 2024.
Large language model guided protocol fuzzing. In Network and Distributed System
Security (NDSS).

[51] Van-Thuan Pham, Marcel Böhme, and Abhik Roychoudhury. 2020. AFLNet: a
greybox fuzzer for network protocols. In IEEE International Conference on Software
Testing, Validation and Verification (ICST). 460–465.

[52] Jon Postel. 1981. Transmission control protocol. RFC 793.
[53] Harald Raffelt, Maik Merten, Bernhard Steffen, and Tiziana Margaria. 2009. Dy-

namic testing via automata learning. International Journal on Software Tools for

Technology Transfer (STTT) 11, 4 (2009), 307–324. https://doi.org/10.1007/s10009-
009-0120-7

[54] Abdullah Rasool, Greg Alpár, and Joeri de Ruiter. 2019. State machine inference
of QUIC. ArXiv (2019).

[55] Gaganjeet Singh Reen and Christian Rossow. 2020. DPIFuzz: a differential fuzzing
framework to detect DPI elusion strategies for QUIC. InAnnual Computer Security

Applications Conference (ACSAC). 332–344.
[56] Eric Rescorla. 2018. The transport layer security (TLS) protocol version 1.3. RFC

8446.
[57] Eric Rescorla and Brian Korver. 2003. Guidelines for writing RFC text on security

considerations. Technical Report.
[58] Sergej Schumilo, Cornelius Aschermann, Andrea Jemmett, Ali Abbasi, and

Thorsten Holz. 2022. Nyx-Net: Network Fuzzing with Incremental Snapshots. In
European Conference on Computer Systems (EuroSys). https://doi.org/10.1145/
3492321.3519591

[59] Juraj Somorovsky. 2016. Systematic fuzzing and testing of TLS libraries. In ACM

SIGSAC Conference on Computer and Communications Security (CCS). 1492–1504.
[60] Simeng Sun, Yang Liu, Dan Iter, Chenguang Zhu, and Mohit Iyyer. 2023. How

does in-context learning help prompt tuning? arXiv preprint arXiv:2302.11521

(2023).
[61] Martin Tappler, Bernhard K Aichernig, and Roderick Bloem. 2017. Model-based

testing IoT communication via active automata learning. In IEEE International

conference on software testing, verification and validation (ICST). 276–287.
[62] Martin Thomson and Sean Turner. 2021. Using TLS to secure QUIC. RFC 9001.
[63] Frits Vaandrager. 2017. Model Learning. Commun. ACM 60, 2 (Jan 2017), 86–95.

https://doi.org/10.1145/2967606
[64] Neil Walkinshaw and Kirill Bogdanov. 2013. Automated comparison of state-

based software models in terms of their language and structure. ACMTransactions

on Software Engineering and Methodology (TOSEM) 22, 2 (2013), 1–37.
[65] Chunqiu Steven Xia, Matteo Paltenghi, Jia Le Tian, Michael Pradel, and Ling-

ming Zhang. 2024. Fuzz4all: Universal fuzzing with large language models. In
IEEE/ACM International Conference on Software Engineering (ICSE). 1–13.

APPENDIX

A SYMBOLIZATIONWITH LLMS

Recently, language models (LLMs) have been investigated as po-
tential tools for supporting fuzzing [21, 43, 50, 65]. In compliance
testing with active learning, we explore the utility of LLMs to au-
tomate the manual task of examining a protocol specification to
generate the input and output symbols for the QUIC Learner. We
perform an evaluation on OpenAI’s GPT-4o (the most advanced
model at the time of writing) using the prompt engineered in Fig-
ure 11. Inspired by [50], to ensure the LLM model always returns
the symbols in a consistent format, we employ in-context few-shot

learning [13, 60], a prompt engineering technique that helps the

LLM model to understand the desired pattern of the output based
on given examples. In this evaluation, we ask the LLM to return
only valid messages that are exchanged during a QUIC handshake.
The symbols from the responses can be grouped into 2 categories:
i) valid symbols—valid messages in the desired format; and ii) in-
valid symbols—either invalid messages (incorrect packet and frame
combination) or symbols that do not align with the format we re-
quested. We sampled 50 responses from the LLM and combined
them into one symbol set as shown in Figure 12. We measure the
number of misses and hallucination rates. Number of misses refers
to the generation of missing information based on the ground truth,
and Hallucination refers to the generation of untruthful informa-
tion [15].

From our evaluation, we see that the answers given by the LLM
is not guaranteed and consistent. The ground truth, extracted from
manually inspecting the specification, consists of 25 symbols; how-
ever, the LLM only generates 8.6 symbols on average (3 symbols
are given as part of the prompt). This results in a 69% missing rate
on average as shown in Table 4. In addition, as shown in Table 5 the
symbols sampled across 50 queries have an average of 18.6% hallu-
cination rate. Therefore, we do not rely on symbol generation using
an LLM model because it requires multiple queries to get all the
correct symbols and, subsequently, an expert with protocol-specific
knowledge to examine the symbols to eliminate undesirable invalid
symbols.

Prompt

Instruction: According to RFC 9000 (QUIC specification), list all
the packet and frame type combinations that can exist during a
QUIC handshake.

Desired Format:

Shot-1:
For the QUIC protocol, the Initial packet with CRYPTO frame
carrying a Client Hello TLS message will be:
Initial_Client_Hello

Shot-2:
For the QUIC protocol, the Handshake packet with a PING frame
will be:
Handshake_Ping

Shot-3:
For the QUIC protocol, the 1-RTT packet with CRYPTO frame
carrying a Finished TLS message frame will be:
Handshake_Finished

Figure 11: An example prompt to automatically symbolize

all valid messages during a QUIC handshake.

14

https://doi.org/10.1007/s10009-009-0120-7
https://doi.org/10.1007/s10009-009-0120-7
https://doi.org/10.1145/3492321.3519591
https://doi.org/10.1145/3492321.3519591
https://doi.org/10.1145/2967606

QUICtester: An Automated Noncompliance Checker for QUIC Conference’17, July 2017, Washington, DC, USA

0RTT_Finished
1RTT_Crypto_Finished

1RTT_Crypto
1RTT_Finished

1RTT_Handshake
1RTT_Application_Data

1RTT_Application_Close
Handshake_Stream

Handshake_Server_Hello
Handshake_Server_Handshake

Handshake_Path_Challenge
Handshake_New_Session_Ticket

Handshake_New_Connection_Id
Handshake_Encrypted_Handshake

Handshake_Encrypted_Finished
Handshake_Crypto

Handshake_Ack_Handshake
Handshake_Ack_Initial

Retry_Token
Initial_Stream

Initial_Server_Encrypted_Extensions
Initial_Server_Cleartext

Initial_New_Token
Initial_New_Connection_Id

Initial_Encrypted_Extensions
Initial_Client_Hello_Crypto

0RTT_Stream
0RTT_Ping

1RTT_Stream
1RTT_Padding

1RTT_Ping
1RTT_New_Session_Ticket

1RTT_Connection_Close
1RTT_Ack

1RTT_Handshake_Done
Handshake_Finished
Handshake_Padding

Handshake_Ping
Handshake_Connection_Close

Handshake_Ack
Handshake_Certificate_Verify

Handshake_Certificate
Handshake_Encrypted_Extensions

Initial_Padding
Initial_Ping

Initial_Connection_Close
Initial_Ack

Initial_Server_Hello
Initial_Client_Hello

0 10 20 30 40 50

Time of Occurance

S
ym

bo
l

Category

Invalid symbols

Valid symbols

Figure 12: Symbols in 50 answers sampled from OpenAI GPT-

4o model using the prompt shown in Figure 11.

A.1 Extended Material on Automatically

Learning a Behavior Model and

Symbolization (Learner)
We described the general role of a learner in Section 2—recall, the
Learner generates input sequences from a set of input symbols. We
curated and defined symbols for protocol parameters and messages,
parameterized by time, for QUIC. These are summarized in Table 8
in the Appendix. Notably, to increase the readability of the models,
these symbols are represented using their acronyms. Specifically,
for input test cases, we included symbols:
• To construct all valid QUIC messages in a handshake, including

Ping and ConnectionClose messages, to increase the learning
coverage as these messages can exist in both Initial and Hand-
shake packets [40, Section 17].

• To allow constructing invalid messages violating the specifi-
cation. These messages carry one of the following: i) incor-
rect header fields (e.g. Connection ID); ii) not permitted frame
structures (e.g. frame without any content); and iii) frame with
incorrect content (e.g. Invalid Certificate).

Table 4: Symbol missing rate in 50 LLM queries compared

to the ground truth extracted from RFC9000 by a domain

expert.

Symbol (Ground Truth) Number of Occurances Number Missed Missing Rate(%)

Initial_Client_Hello 50 0 0%
Initial_Server_Hello 27 23 46%
Initial_Ack 34 16 32%
Initial_Connection_Close 10 40 80%
Initial_Ping 15 35 70%
Initial_Padding 22 28 56%
Handshake_Encrypted_Extensions 5 45 90%
Handshake_Certificate 4 46 92%
Handshake_Certificate_Verify 4 46 92%
Handshake_Ack 37 13 26%
Handshake_Connection_Close 11 39 78%
Handshake_Ping 47 3 6%
Handshake_Padding 11 39 78%
Handshake_Finished 27 23 46%
1RTT_Handshake_Done 1 49 98%
1RTT_Ack 12 38 76%
1RTT_Connection_Close 5 45 90%
1RTT_New_Session_Ticket 2 48 96%
1RTT_Ping 11 39 78%
1RTT_Padding 5 45 90%
1RTT_Stream 6 44 88%
0RTT_Ping 1 49 98%
0RTT_Stream 3 47 94%
Retry 0 50 100%
1RTT_New_Connection_Id 0 50 100%

Average 69%

Table 5: The hallucination rate of the symbols sampled across

50 queries.

Number of

Queries

Number of

Symbols Sampled

Number of

Correct Symbols

Number of

Invalid Symbols

Hallucination

Rate(%)

50 430 350 80 18.6

While, for QUIC protocol responses or output symbols, we include
symbols:
• To construct all valid QUIC client response messages.
• To elicit the status (connection availability) of the QUT which
would otherwise be hidden from the Learner. This addition is
important to detect DoS attacks (such asM-18 in Table 2) and
uncover non-compliant behaviors of the QUT; process a mes-
sage where it should not, for example, initialConnectionClose
after employing the Handshake encryption key [62, Section
4.9].
So, the crafted input symbols include all valid QUIC client mes-

sages described in Section 2.1. We also added Ping and Connec-
tionClose messages to increase the learning coverage as these mes-
sages can exist in both Initial and Handshake packets [40, Section
17]. Additionally, we include 12 invalid QUIC messages that vio-
late the specifications [40, 56, 62]: i) initialClientHello-invldACK;
ii) handshakeEmptyCertificate; iii) handshakeInvalidCertificate;
iv) InvalidNewConnectionID; v) initialNoFrame; vi) initialUnex-
pectedFrameType; vii) handshakeNoFrame; viii) handshakeUn-
expectedFrameType; ix) 0rttNoFrame; x) 0rttUnexpectedFrame-
Type; xi) 0rttFinished; and xii) 0rttACK. We also crafted two input
symbols for Test Harness configuration settings for the Learner
to select during learning: i) [RemovePaddingFromInitialPackets];
and ii) [ChangeDestination-ConnectionID-Original]. A detailed
description of each input is included in Table 8.

The output symbols are message types a QUIC protocol will
respond with, these include the messages described in Section 2.1,

15

Conference’17July 2017Washington, DC, USA Kian Kai Ang, Guy Farrelly, Cheryl Pope, and Damith C. Ranasinghe

PingACK and ConnectionClose. Importantly, we include two out-
put symbols to elicit the status of the QUT which would otherwise
be hidden from the Learner. We check the QUT status by sending
a ping message after sending a ConnectionClose message carried
by either an Initial or a Handshake packet. The QUT is considered
alive if it acknowledges the ping. The symbols are enclosed in an-
gle brackets. <ConnectionClose> indicates the QUT has closed
the connection, and <ConnectionActive> denotes that the connec-
tion with the QUT is still active. This addition is important for
testing the SUT state for conditions where it should not process
a message, for example, initialConnectionClose or handshakeCon-
nectionClose messages as stated in [62, Section 4.9]. A detailed
description of each output is included in Table 8.

B DEMONSTRATING A VALID BEHAVIOR

ANALYSIS

In Figure 13, s0 denotes the state the server is fully initialized and
waiting for incoming connections. The client first sends an initial-
ClientHello-validACK and receives a retry from the server for client
address validation, then transitions to s1. With the [IncludeRetry-
Token] input at s1, the client is configured to start including the
received RetryToken in all its following Initial packets. From s2 to
s3, the client sends an initialClientHello-validACK that includes the
received RetryToken. The Ngtcp2 server verifies the RetryToken
and responds with initialServerHello, handshakeEncryptedExten-
sion, handshakeCertificateRequest, handshakeCertificate, hand-
shakeCertificateVerify, handshakeFinished and ValidNewConnec-
tionID messages. Importantly, the handshakeCertificateRequest
message indicates to the client it must present a certificate for
authentication to proceed.

Subsequently, the client sends handshakeCertificate to the server
at s3, followed by handshakeCertificateVerify. At this point, the
server verifies the client certificate, and the handshake transitions
to s6. The client sends handshakeFinished and the server validates
the message to ensure that the previous handshake messages have
not been modified. The handshake transitions to s7 after the server
responds with ValidNewConnectionID and HandshakeDone mes-
sages. Now the QUIC handshake is considered confirmed. The
handshake ends at s8 after the client completes the exchange of
the ValidNewConnectionID message that carries several new con-
nection IDs that can be used for the established connection. No-
tably, the handshake can still proceed despite the client sending
initialClientHello-invalidACK at s2, which contains an invalid Ini-
tial ACK to acknowledge the server’s initialServerHello message.
This is because the server recognizes and drops the invalid Ini-
tial ACK. But, it continues with the handshake process when it
receives a valid Handshake ACK from the client, acknowledging
the Handshake packets correctly. This is an example of the expected

handshake flow according to the specification.

C ADDITIONAL CASE STUDIES

We provide additional case studies in this section, covering more
memory corruption bugs and logical flaws discovered byQUICtester.

C.1 Memory-corruption bugs: Server crashes

We discovered 8 memory-corruption bugs. The inputs for
reproducing each bug as well as a detailed description of
each bug are available at our open-source QUICtester code
repository on GitHub [3]. Here, in addition to Section 5.2,
we detail three additional memory-corruption bugs that can
result in DoS attacks.

M-8 Null Pointer Dereference in Quinn. When testing Quinn,
our crash logger detected crashes when handling hndUnxpFrType.
These crashes arise from Quinn panicking when it attempts to
unwrap a None value after matching an unexpected frame to the
Type enum.
Impact This allows an attacker to perform a DoS attack using a
malformed packet (hndUnxpFrType). Notably, the bug exists in
both the server and client implementations since they share the
same library. We responsibly reported this vulnerability to the
Quinn developers. This vulnerability was assigned CVE-2023-42805
with high severity and patched.

M-2 Null Pointer Dereference in Neqo. Upon looking at the
Learner logs, it was found that the Neqo server crashed with an
assertion error in cases where the selected input sequence contains
an initialConnectionClose message that precedes an initialClien-
tHello message. This assertion is also guaranteed to occur when the
input sequence includes the initialConnectionClose message but
lacks the initialClientHello message. Based on our findings, it ap-
pears that the server attempts to respond with a ConnectionClose
message. However, it cannot obtain the connection’s primary path
when creating the message. This happens because the server will
only set a primary path for that connection when it receives and
processes an initialClientHello message. This finding demonstrated
that the Learner logs are helpful in detecting memory-corruption
bugs that are not directly shown in the learned models.

Impact This vulnerability allows an attacker to launch a denial
of service (DoS) attack on Neqo servers by sending a single initial-
ConnectionClose input at the start of a connection establishment.

M-3 Limited connections due to a hardcoded value. The Neqo
server in all configurations can only accept at most 32,767 con-
nections, including closed connections. After the 32,767th connec-
tion, the server crashes with an assertion error when the variable
of PRDescIdentity data type is storing a value that is equal to
int_16_max() at the beginning of the PD_GetUniqueIdentity()
function. This function creates a unique identity for each connec-
tion, and each identity is assigned a unique identity number. The
unique identity number starts from 0 and then increases by 1 for
every new unique identity created. To ensure the identity is unique,
the server uses a variable to track the most recent unique identity
number. In the PD_GetUniqueIdentity() function, if the current
unique identity number is equal to int_16_max(), it will stop the
unique identity creation and raise an assertion error. As described in
Mozilla’s documentation, the data type, PRIntn/PRDescIdentity,
that is used to store the unique identity number is guaranteed to be
at least 16 bits, but the architecture that runs the server can define
it to be wider, such as 32 bits or 64 bits. However, due to the hard-
coded comparison value, int_16_max() in the assertion statement,

16

https://github.com/QUICTester

QUICtester: An Automated Noncompliance Checker for QUIC Conference’17, July 2017, Washington, DC, USA

Other /

 Other

initConClose(t) / retry

initConClose(t) /
<ConClosed>

s1

s2

initCltHello-vldACK(t, c) / retry

[IncRetryTkn] /

s0

initCltHello-invldACK(t,c) / retryinitPing(t) / retry

s3

initCltHello-invldACK(t,c) / initSvrHello, hndEncExt,

hndCertReq, hndCert, hndCertVer, hndFin

initCltHello-vldACK(t,c) / initSvrHello, hndEncExt,

hndCertReq, hndCert, hndCertVer, hndFin

s5hndCert(t) / - s6

s4

hndCertVer(t) / -

s7VldNewConID(t) / - s8

Other / Other Other / Other

hndFin(t) / VldNewConID,

 HndshkDone

Figure 13: Optimized learned model of a Ngtcp2 server with the RetryClientAuth configuration, generated from a Learner with

the symbols required for RetryClientAuth to generate a simplified model for illustration. Here, blue edges are the valid path to

complete a RetryClientAuth QUIC handshake.

our architecture that defined PRDescIdentity to 32 bits which can
actually create up to 2,147,483,647 unique identities, will still crash
after the 32767th connection. This may affect the performance of
the Neqo server because, with the hard-coded value in the assertion,
it is guaranteed to crash on the 32,768th connection, no matter the
data type used by the architecture.
Impact This allows an attacker to perform a DoS attack by es-
tablishing more than 32,767 QUIC connections with the server.
Both M-2 and M-3 were fixed by Neqo developers. Notably, the
developers stated these vulnerabilities only affect the server-side
implementation as they currently focus on client implementation.

C.2 Logical Flaws: Unexpected Behaviors

We discovered 3 logical flaws. The inputs for reproducing
each bug as well as a detailed description of each bug are
available at our open-source QUICtester code repository on
GitHub [3]. Here, we detail two more logical flaws.

L-2 Incorrectmethod of emptying the re-transmission queue.

Because Pquic is built on top of the older Picoquic library, it shared
the issue M-4 discussed in Section 5.2 with Picoquic. However, un-
like Picoquic, which attempts to access a NULL pointer to obtain the
encryption key for re-transmission, Pquic will always have access
to the encryption keys because it never discards them—see S-10.
Impact This behaviour causes the server to re-transmit acknowl-
edgedmessages to the peer, unnecessarily increasing network traffic
and reducing the utility of network bandwidth.

L-3 Infinite loop when processing frame type 0xFF. When
the PQUIC server processes a packet carrying a 0xFF frame type,
the server always gets stuck in a loop that attempts to match 0xFF,
an invalid frame type, with the expected frame type. This issue is
specific to the 0xFF frame type and does not happen with other
invalid frame types.
Impact Because PQUIC is running on a single thread, getting stuck
in an infinite loop causes the PQUIC server to become unavailable
to serve any client until the server administrator manually restarts

Test Harness Quiche (QUT)

Initial[0]: Crypto(ClientHello)

Initial[0]: ACK[0], Crypto(ServerHello)

Handshake[0]: Crypto(EncryptedExtension,
CertificateRequest, Certificate,

CertificateVerify, Finished)

Initial[1]: ACK[0]

Handshake[0]: ACK[0], Crypto(Empty-
Certificate, CertificateVerify, Finished)

The server completes the
handshake (Handshake-
Done) without authenti-
cating the client.

Handshake[1]: ACK[0]

1-RTT[1]: ACK[0], HandshakeDone,
NewConnectionIDs

Figure 14: Client authentication bypass in Quiche. The in-

valid (EmptyCertificate) message is shown in red text.

it. This allows an attacker to perform a DoS attack on the server
using the message described above.

D REFERENCE MODELS

As explained in Section 7, we have curated 11 reference models
from our experiment. These reference models are FSMs with no
specification violations. Our library has at least one reference model
for each security configuration we tested that developers can use
with QUICtester. We have curated 11 reference models (3 for Ba-
sic, 2 for Retry, 2 for ClientAuth, 1 for RetryClientAuth and 3 for
PSK). The main differences between the reference models in the
same security configuration but from different vendors are due
to the variations in the interpretation and implementation of the
response to the initialPing message sent by a client as the first mes-
sage. For example, Ngtcp2 server drops the first initialPing message
from clients, while the Quicly server responds to the initialPing.
As we discussed in Section 5.4, the current specification does not
explicitly state the expected behavior of a server to a first packet
received without a CRYPTO frame. In our reference models, we

17

https://github.com/QUICTester

Conference’17July 2017Washington, DC, USA Kian Kai Ang, Guy Farrelly, Cheryl Pope, and Damith C. Ranasinghe

consider both implementations as adhering to the specification. All
the reference models can be found on our public GitHub repository
https://github.com/QUICtester.

E QUICTESTER IMPLEMENTATION EFFORT

We summarize our implementation effort in Table 6.

Table 6: Extensions made to implement QUICTester.

Component Library Lines of Code

Learner LearnLib 627

Mapper Aioquic 3560

Optimizer - 416

Differential Analyzer LTSDiff 719

18

https://github.com/QUICtester

QUICtester: An Automated Noncompliance Checker for QUIC Conference’17, July 2017, Washington, DC, USA

s0 initNoFr_short/ initUnxpFrType_short/ hndPing_short/ hndFin_short/ hndConClose_short/ hndNoFr_short/ hndUnxpFrType_short/ VldNewConID_short/ InvldNewConID_short/ [ChgDestConID-Ori]/

s1

initCltHello-vldACK:AES-128-GCM-SHA256_short/initSvrHello,hndEncExt,hndCert,hndCertVer,hndFin initCltHello-vldACK:AES-256-GCM-SHA384_short/initSvrHello,hndEncExt,hndCert,hndCertVer,hndFin initCltHello-vldACK:CHACHA20-POLY1305-SHA256_short/initSvrHello,hndEncExt,hndCert,hndCertVer,hndFin initCltHello-invldACK:AES-128-GCM-SHA256_short/initSvrHello,hndEncExt,hndCert,hndCertVer,hndFin initCltHello-invldACK:AES-256-GCM-SHA384_short/initSvrHello,hndEncExt,hndCert,hndCertVer,hndFin initCltHello-invldACK:CHACHA20-POLY1305-SHA256_short/initSvrHello,hndEncExt,hndCert,hndCertVer,hndFin

s2

initConClose_short/<ConClosed>

s3

[RmPadFrmInitPkts]/

s4

initPing_short/PingACK

initPing_short/ initConClose_short/<ConAct> initCltHello-vldACK:AES-128-GCM-SHA256_short/ initCltHello-vldACK:AES-256-GCM-SHA384_short/ initCltHello-vldACK:CHACHA20-POLY1305-SHA256_short/ initCltHello-invldACK:AES-128-GCM-SHA256_short/ initCltHello-invldACK:AES-256-GCM-SHA384_short/ initCltHello-invldACK:CHACHA20-POLY1305-SHA256_short/ initNoFr_short/ initUnxpFrType_short/ hndPing_short/PingACK hndNoFr_short/ VldNewConID_short/ InvldNewConID_short/ [RmPadFrmInitPkts]/

hndConClose_short/<ConClosed> hndUnxpFrType_short/ConClose

s5

hndFin_short/HndshkDone,VldNewConID,NewSessionTicket,NewSessionTicket,NewSessionTicket,NewSessionTicket

s7

[ChgDestConID-Ori]/

initPing_short/<ConClosed> initConClose_short/<ConClosed> initCltHello-vldACK:AES-128-GCM-SHA256_short/<ConClosed> initCltHello-vldACK:AES-256-GCM-SHA384_short/<ConClosed> initCltHello-vldACK:CHACHA20-POLY1305-SHA256_short/<ConClosed> initCltHello-invldACK:AES-128-GCM-SHA256_short/<ConClosed> initCltHello-invldACK:AES-256-GCM-SHA384_short/<ConClosed> initCltHello-invldACK:CHACHA20-POLY1305-SHA256_short/<ConClosed> initNoFr_short/<ConClosed> initUnxpFrType_short/<ConClosed> hndPing_short/<ConClosed> hndFin_short/<ConClosed> hndConClose_short/<ConClosed> hndNoFr_short/<ConClosed> hndUnxpFrType_short/<ConClosed> VldNewConID_short/<ConClosed> InvldNewConID_short/<ConClosed> [ChgDestConID-Ori]/<ConClosed> [RmPadFrmInitPkts]/<ConClosed>

initConClose_short/<ConClosed>

initPing_short/ initCltHello-vldACK:AES-128-GCM-SHA256_short/ initCltHello-vldACK:AES-256-GCM-SHA384_short/ initCltHello-vldACK:CHACHA20-POLY1305-SHA256_short/ initCltHello-invldACK:AES-128-GCM-SHA256_short/ initCltHello-invldACK:AES-256-GCM-SHA384_short/ initCltHello-invldACK:CHACHA20-POLY1305-SHA256_short/ initNoFr_short/ initUnxpFrType_short/ hndPing_short/ hndFin_short/ hndConClose_short/ hndNoFr_short/ hndUnxpFrType_short/ VldNewConID_short/ InvldNewConID_short/ [ChgDestConID-Ori]/ [RmPadFrmInitPkts]/ initCltHello-vldACK:AES-128-GCM-SHA256_short/initSvrHello,hndEncExt,hndCert,hndCertVer,hndFin initCltHello-vldACK:AES-256-GCM-SHA384_short/initSvrHello,hndEncExt,hndCert,hndCertVer,hndFin initCltHello-vldACK:CHACHA20-POLY1305-SHA256_short/initSvrHello,hndEncExt,hndCert,hndCertVer,hndFin initCltHello-invldACK:AES-128-GCM-SHA256_short/initSvrHello,hndEncExt,hndCert,hndCertVer,hndFin initCltHello-invldACK:AES-256-GCM-SHA384_short/initSvrHello,hndEncExt,hndCert,hndCertVer,hndFin initCltHello-invldACK:CHACHA20-POLY1305-SHA256_short/initSvrHello,hndEncExt,hndCert,hndCertVer,hndFin

initConClose_short/<ConClosed> initUnxpFrType_short/ConClose

initPing_short/PingACK initNoFr_short/ hndPing_short/ hndFin_short/ hndConClose_short/ hndNoFr_short/ hndUnxpFrType_short/ VldNewConID_short/ InvldNewConID_short/ [ChgDestConID-Ori]/ [RmPadFrmInitPkts]/

InvldNewConID_short/ConClose

initPing_short/ initConClose_short/<ConAct> initCltHello-vldACK:AES-128-GCM-SHA256_short/ initCltHello-vldACK:AES-256-GCM-SHA384_short/ initCltHello-vldACK:CHACHA20-POLY1305-SHA256_short/ initCltHello-invldACK:AES-128-GCM-SHA256_short/ initCltHello-invldACK:AES-256-GCM-SHA384_short/ initCltHello-invldACK:CHACHA20-POLY1305-SHA256_short/ initNoFr_short/ initUnxpFrType_short/ hndPing_short/ hndFin_short/ hndConClose_short/<ConAct> hndNoFr_short/ hndUnxpFrType_short/ [RmPadFrmInitPkts]/

s6

[ChgDestConID-Ori]/ s8

VldNewConID_short/

hndConClose_short/<ConClosed>

initPing_short/ initConClose_short/ initCltHello-vldACK:AES-128-GCM-SHA256_short/ initCltHello-vldACK:AES-256-GCM-SHA384_short/ initCltHello-vldACK:CHACHA20-POLY1305-SHA256_short/ initCltHello-invldACK:AES-128-GCM-SHA256_short/ initCltHello-invldACK:AES-256-GCM-SHA384_short/ initCltHello-invldACK:CHACHA20-POLY1305-SHA256_short/ initNoFr_short/ initUnxpFrType_short/ hndPing_short/ hndFin_short/ hndNoFr_short/ hndUnxpFrType_short/ VldNewConID_short/ InvldNewConID_short/ [ChgDestConID-Ori]/ [RmPadFrmInitPkts]/

initConClose_short/<ConClosed> hndConClose_short/<ConClosed>

initPing_short/ initCltHello-vldACK:AES-128-GCM-SHA256_short/ initCltHello-vldACK:AES-256-GCM-SHA384_short/ initCltHello-vldACK:CHACHA20-POLY1305-SHA256_short/ initCltHello-invldACK:AES-128-GCM-SHA256_short/ initCltHello-invldACK:AES-256-GCM-SHA384_short/ initCltHello-invldACK:CHACHA20-POLY1305-SHA256_short/ initNoFr_short/ initUnxpFrType_short/ hndPing_short/ hndFin_short/ hndNoFr_short/ hndUnxpFrType_short/ VldNewConID_short/ InvldNewConID_short/ [ChgDestConID-Ori]/ [RmPadFrmInitPkts]/

[ChgDestConID-Ori]/

initPing_short/ initConClose_short/<ConAct> initCltHello-vldACK:AES-128-GCM-SHA256_short/ initCltHello-vldACK:AES-256-GCM-SHA384_short/ initCltHello-vldACK:CHACHA20-POLY1305-SHA256_short/ initCltHello-invldACK:AES-128-GCM-SHA256_short/ initCltHello-invldACK:AES-256-GCM-SHA384_short/ initCltHello-invldACK:CHACHA20-POLY1305-SHA256_short/ initNoFr_short/ initUnxpFrType_short/ hndPing_short/ hndFin_short/ hndConClose_short/<ConAct> hndNoFr_short/ hndUnxpFrType_short/ VldNewConID_short/ InvldNewConID_short/ [RmPadFrmInitPkts]/

Figure 15: The learned model of Quinn—notably the QUIC implementation with the valid FSM—in the most simple, Basic

configuration before optimization. This illustration, whilst not fully legible, is provided to show an example of the complexity

created in even the most basic security configuration for a learned model before optimization. The model after using our

Optimizer is shown in Figure 16.

s0

s1

initCltHello-vldACK_short/initSvrHello,hndEncExt,hndCert,hndCertVer,hndFin initCltHello-invldACK_short/initSvrHello,hndEncExt,hndCert,hndCertVer,hndFin

s2

initConClose_short/<ConClosed>

s3

[RmPadFrmInitPkts]/

s4

initPing_short/PingACK

hndConClose_short/<ConClosed> hndUnxpFrType_short/ConClose

s5

hndFin_short/HndshkDone,VldNewConID,NewSessionTicket,NewSessionTicket,NewSessionTicket,NewSessionTicket

s7

[ChgDestConID-Ori]/ initConClose_short/<ConClosed>

initCltHello-vldACK_short/initSvrHello,hndEncExt,hndCert,hndCertVer,hndFin initCltHello-invldACK_short/initSvrHello,hndEncExt,hndCert,hndCertVer,hndFin

initConClose_short/<ConClosed> initUnxpFrType_short/ConClose

InvldNewConID_short/ConClose

s6

[ChgDestConID-Ori]/ s8

VldNewConID_short/

hndConClose_short/<ConClosed> initConClose_short/<ConClosed> hndConClose_short/<ConClosed>

[ChgDestConID-Ori]/

Figure 16: The learned model of Quinn Basic after employing our Optimizer (compared with Figure 15 generated prior to

simplification, there are far fewer edges, greatly improving interpretability and the task of model analysis).

19

Conference’17July 2017Washington, DC, USA Kian Kai Ang, Guy Farrelly, Cheryl Pope, and Damith C. Ranasinghe

hndInvldCert(t) / -

Other / Other

Other / Other

initConClose(t) /
<ConClosed>

s0

s1

initCltHello-invldACK(t,c) / initSvrHello, hndEncExt,

hndCertReq, hndCert, hndCertVer, hndFin
initCltHello-vldACK(t,c) / initSvrHello, hndEncExt,

hndCertReq, hndCert, hndCertVer, hndFin

s5

hndCert(t) / -

s4

s2

hndCertVer(t) / -

s6

hndFin(t) / VldNewConID, HndshkDone

VldNewConID(t) / - s7

Other / Other

hndEmpCert(t) / - s3Other / Other

Figure 17: Optimized learned model of a Quiche server with the ClientAuth configuration. Blue edges show a valid path to

complete a QUIC handshake. Red edges demonstrate an invalid path that bypasses the client authentication, but still completes

the handshake without errors.

initCltHello-invldACK(short,c) /
initSvrHello, hndEncExt,

hndCertReq, hndCert,
hndCertVer, hndFin

initPing(short) /

PingACK
initCltHello-vldACK(short,c) /
initSvrHello, hndEncExt,

hndCertReq, hndCert,
hndCertVer, hndFin

s0

initConClose(short) /

<ConClosed>

s2
hndInvldCert(short) / -

hndCertVer(short) / -

Other / Other

s5

Other / Other

s4

hndFin(short) / VldNewConID, HndshkDone s7
VldNewConID(short) / - s8s9

s3

ConClose(short) /

<ConClosed>

hndCert(short) / -

initCltHello-invldACK(short,c) /

initSvrHello, hndEncExt, hndCertReq,
hndCert, hndCertVer, hndFin

Other / -

s6

s10

Other / Other

initConClose(short) /

<ConAct>

initCltHello-vldACK(short,c) / initSvrHello,

hndEncExt, hndCertReq,
hndCert, hndCertVer, hndFin

Other / Other

Other / Other
s1

initCltHello-vldACK(short,c) / initSvrHello,

hndEncExt, hndCertReq, hndCert,
hndCertVer, hndFin

initCltHello-invldACK(short,c) /

initSvrHello, hndEncExt, hndCertReq,
hndCert,hndCertVer, hndFin

Figure 18: An optimized model from Picoquic with ClientAuth configuration learned with 𝑡 = 𝑠ℎ𝑜𝑟𝑡 parameter setting for inputs.

Differental analysis with Figure 19 using 𝑡 = 𝑙𝑜𝑛𝑔 reveals a software bug exploit.

initPing(long) / PingACK initCltHello-vldACK(long,c) /
initSvrHello, hndEncExt,

hndCertReq, hndCert,
hndCertVer, hndFin

s0

initConClose(long) / <ConClosed>

s2

hndInvldCert(long) / -

Other / Other

s1

hndCertVer(long) / -

Other / Other

s4
Other / Other

s3 s6 VldNewConID(long) / - s7 s8

hndCert(long) / -

s5

initConClose(long) / <ConAct>

initCltHello-vldACK(long,c) / initSvrHello, hndEncExt,

hndCertReq, hndCert, hndCertVer, hndFin

Other / Other

initCltHello-invldACK(long,c) /
initSvrHello, hndEncExt,

hndCertReq, hndCert,
hndCertVer, hndFin

initCltHello-invldACK(long,c) / initSvrHello, hndEncExt,

hndCertReq, hndCert, hndCertVer, hndFin

hndFin(long) /

VldNewConID, HndshkDone

Figure 19: An optimized model from Picoquic with ClientAuth configuration learned with 𝑡 = 𝑙𝑜𝑛𝑔 parameter setting for inputs.

20

QUICtester: An Automated Noncompliance Checker for QUIC Conference’17, July 2017, Washington, DC, USA

Table 7: Overview of identified faults. In total, 44 specification violations, 8 memory-corruption bugs and 3 logical flaws were

identified in 19 QUIC implementations. Specification bugs (S): An implemented behavior violates the QUIC specification.

Memory-corruption bugs (M): An input causing a memory corruption and a server crash. Logical flaws (L): Incorrect logic
implemented in code produces unexpected behavior.

Server Fault Description Type-ID Disclosed Most Recent Response to Disclosure

Aioquic Incorrect handling of packets with unexpected frame type. S-1 ✓ Fixed.

Kwik CVE-2024-22588: Retention of the unused encryption keys. S-2 ✓ Fixed.
CVE-2024-22590: Implementation without a TLS state machine. S-3 ✓ Fixed.
Process CRYPTO frame in a 0-RTT packet. S-4 ✓ Acknowledged findings.
Exceeds the operating system’s maximum number of memory mappings for a single process
(100,000) when receiving PING frame from 50,000 clients.

M-1 ✓ Acknowledged findings.

Lsquic (Lite Speed) CVE-2024-25678: Retention of the unused encryption keys (PSK configuration in 1b113d19). S-5 ✓ Fixed.
Incorrect handling of re-transmission, leaving a half-opening connection on the client side
(PSK configuration in v4.0.2).

L-1 ✓ Fixed.

MsQuic (Microsoft) Does not issue its initial_source_connection_id at the correct connection state. This finding
is part of the connection management ambiguity discussed in Section 5.4.

S-6 ✓ Developers acknowledge the findings and
plan to propose an amendment to the QUIC
specification to address the ambiguity.

Neqo (Mozilla) NULL pointer dereference when getting the primary path. M-2 ✓ Fixed.
Limited connections due to a hardcoded value. M-3 ✓ Fixed.

Picoquic NULL pointer dereference when getting the encryption keys. M-4 ✓ Fixed.
Retry token tied to retry_source_connection_id. S-7 ✓ Developer stated the code was written

specifically to add an additional constraint
to ensure the client follows the specification.
Fix: Propose an amendment to the QUIC spec-

ification to address the ambiguity.

PQUIC Invalid original_destination_connection_id. S-8 ✓ Fixed.
Limitless active_connection_id_limit. S-9 ✓ Fixed.
CVE-2024-25679: Retention of the unused encryption keys. S-10 ✓ Fixed.
Incorrect way of emptying the re-transmission queue. L-2 ✓ Fixed.
NULL pointer dereference when handling removed connection context. M-5 ✓ Acknowledged findings.
Buffer overflow when processing frame type 0x30. M-6 ✓ Acknowledged findings.
Infinite loop when processing frame type 0xFF. L-3 ✓ Acknowledged findings.
Does not send HANDSHAKE_DONE after the handshake is confirmed (PSK configuration). S-11 ✓ Acknowledged findings.

Quiche (Cloudflare) Client authentication bypass due to incorrect flag set in Quiche library. S-12 ✓ Fixed with bug bounty awarded.
Incorrect handling of all Initial packets carried in a UDP datagram with a payload size
smaller than 1200 bytes.

S-13 ✓ Acknowledged findings.

Quiche4j Concurrent modification exception when discarding closed connections. M-7 ✓ Acknowledged findings.
Limitless active_connection_id_limit. S-14 ✓ Acknowledged findings.

Quant Incorrect handling of an initialPing message. S-15 ✓ Acknowledged findings. Not fixed
because the GitHub Repository
is no longer under active maintenance.

Incorrect handling of all Initial packets carried in a UDP datagram with a payload size
smaller than 1200 bytes.

S-16 ✓

Quiwi Does not close the connection when the number of received NEW_CONNECTION_ID
frames exceed the active_connection_id_limit.

S-17 ✓ Acknowledged findings.

Quinn CVE-2023-42805: Panic when unwrapping a None value when processing an unexpected
frame type.

M-8 ✓ Fixed.

Process CRYPTO frame in 0-RTT packet. S-18 ✓ Fixed.

XQUIC (Alibaba) Retention of the unused encryption keys. S-19 ✓ Acknowledged findings. Potential security
vulnerability. Unresolved for over 90

days. See here.
Maintaining a number of active connection IDs that exceed the active_connection_id_limit. S-20 ✓ Fixed.

Aioquic, LSQUIC, Neqo,
Quic-go, Quinn, Quiwi,
S2n-quic (Amazon),
XQUIC

Incorrect handling of the second and subsequent Initial packets carried in a UDP datagram
with a payload size smaller than 1200 bytes.

S-21
to
S-28

✓ Aioquic, LSQUIC, S2n-quic: Fixed.
However, Neqo, Quic-go and Quinn teams
acknowledged the protocol violation. Fix:
Developers propose amending the QUIC
specification to provide futher clarifica-
tions.
Others: Acknowledged findings.

Aioquic, Kwik, MsQuic,
LSQuic, Quant, Quiche,
Quic-go, Quiche4j,
Quiwi, S2n-quic

Accept Handshake packet from an unmatched Destination Connection ID. S-29
to
S-38

✓ Aioquic, Kwik, Lsquic, S2n-quic: Fixed.
Others: Acknowledged findings.

Lsquic, MsQuic, Neqo,
Quiche4j, Quinn,
XQUIC

Incorrect handling of packets without a frame. S-39
to
S-44

✓ Lsquic, Quinn, XQUIC : Fixed.
Others: Acknowledged findings.

21

https://github.com/alibaba/xquic/issues/345

Conference’17July 2017Washington, DC, USA Kian Kai Ang, Guy Farrelly, Cheryl Pope, and Damith C. Ranasinghe

Table 8: Symbolized QUIC messages, configuration settings and QUT status (connection active or closed) used by the Learner
and the Mapper (here, we only mention the symbols used in the paper). The variable 𝑡 represents the possible timeout and the

variable 𝑐 represents the possible cipher suite that the Learner can select. The Configuration settings (options for the Test
Harness selected by the Learner) are within square brackets. The output symbols that show the hidden status of the QUT are

within angle braces. In the learned models, we represent the symbols using their acronym form for brevity.

Input Symbol Acronym Description

initialPing(𝑡) initPing(𝑡) An Initial packet with a PING frame.
initialConnectionClose(𝑡) initConClose(𝑡) An Initial packet with a CONNECTION_CLOSE frame.
initialNoFrame(𝑡) initNoFr(𝑡) An Initial packet without a frame.
initUnexpectedFrameType(𝑡) initUnxpFrType(𝑡) An Initial packet with 0xFF frame type.
initialClientHello-validACK(𝑡 ,𝑐) initCltHello-vldACK(𝑡 ,𝑐) An Initial packet with a CRYPTO frame carrying Client Hello message. This input

will respond to the Server Hello message with an Initial packet with an ACK frame
with PADDING frames.

initialClientHello-invalidACK(𝑡 ,𝑐) initCltHello-invldACK(𝑡 ,𝑐) An Initial packet with a CRYPTO frame carrying Client Hello message. This input
will respond to the Server Hello message with an Initial packet with an ACK frame
with no PADDING frames.
𝑐 ∈ {𝐴𝐸𝑆_128, 𝐴𝐸𝑆_256,𝐶ℎ𝑎𝐶ℎ𝑎20}

0rttPing(𝑡) 0rttPing(𝑡) A 0-RTT packet with a PING frame.
0rttConnectionClose(𝑡) 0rttConClose(𝑡) A 0-RTT packet with a CONNECTION_CLOSE frame.
0rttNoFrame(𝑡) 0rttNoFr(𝑡) A 0-RTT packet without a frame.
0rttUnexpectedFrameType(𝑡) 0rttUnxpFrType(𝑡) A 0-RTT packet with 0xFF frame type.
0rttFinished(𝑡) 0rttFin(𝑡) A 0-RTT packet with a CRYPTO frame carrying Finished message.
0rttACK(𝑡) 0rttACK(𝑡) A 0-RTT packet with an invalid ACK frame.
handshakePing(𝑡) hndPing(𝑡) A Handshake packet with a PING frame.
handshakeConnectionClose(𝑡) hndConClose(𝑡) A Handshake packet with a CONNECTION_CLOSE frame.
handshakeNoFrame(𝑡) hndNoFr(𝑡) A Handshake packet without a frame.
handshakeUnexpectedFrameType(𝑡) hndUnxpFrType(𝑡) A Handshake packet with 0xFF frame type.
handshakeEmptyCertificate (𝑡) hndEmpCert(𝑡) A Handshake packet with a CRYPTO frame type carrying an empty list of certificates.
handshakeInvalidCertificate(𝑡) hndInvldCert(𝑡) A Handshake packet with a CRYPTO frame type carrying a certificate that is not

signed by the certificate authority used for verification.
handshakeCertificate(𝑡) hndCert(𝑡) A Handshake packet with a CRYPTO frame type carrying a certificate that is signed

by the certificate authority used for verification.
handshakeCertificateVerify(𝑡) hndCertVer(𝑡) A Handshake packet with a CRYPTO frame type carrying Certificate Verify message.
handshakeFinished(𝑡) hndFin(𝑡) A Handshake packet with a CRYPTO frame type carrying Finished message.
ValidNewConnectionID(𝑡) VldNewConID(𝑡) A 1-RTT packet with a number of NEW_CONNECTION_ID frames that follows the

number of Connection IDs that the QUT can support.
InvalidNewConnectionID(𝑡) InvldNewConID(𝑡) A 1-RTT packet with a number of NEW_CONNECTION_ID frames that exceed the

number of Connection IDs that the QUT can support.
[IncludeRetryToken] [IncRetryTkn] Instructs the Mapper to include the Retry Token in its following Initial packets.
[RemovePaddingFromInitialPackets] [RmPadFrmInitPkts] Instructs the Mapper to remove PADDING frames from its following Initial packets.
[ChangeDestinationConnectionID-Original] [ChgDestConID-Ori] Instructs the Mapper to change the Destination Connection ID of its following packets

to original_destination_connection_id.

Output Symbol Acronym Description

retry retry A Retry packet that carries a Retry Token
initialServerHello initSvrHello A Server Hello message encapsulated in a CRYPTO frame of an Initial packet.
handshakeEncryptedExtensions hndEncExt An Encrypted Extensions message encapsulated in a CRYPTO frame of a Handshake

packet.
handshakeCertificateRequest hndCertReq A Certificate Request message encapsulated in a CRYPTO frame of a Handshake

packet.
handshakeCertificate hndCert A Certificate message encapsulated in a CRYPTO frame of a Handshake packet.
handshakeCertificateVerify hndCertVer A Certificate Verify message encapsulated in a CRYPTO frame of a Handshake packet.
handshakeFinished hndFin A Finished message encapsulated in a CRYPTO frame of a Handshake packet.
HandshakeDone HndshkDone A HANDSHAKE_DONE frame in a 1-RTT packet.
NewToken NewTkn A NEW_TOKEN frame in a 1-RTT packet.
ValidNewConnectionID VldNewConID A NEW_CONNECTION_ID frame in a 1-RTT packet.
PingACK PingACK A PING ACK frame in either Initial, Handshake, or 1-RTT packets.
ConnectionClose ConClose A CONNECTION_CLOSE frame in either Initial, Handshake, or 1-RTT packets.
<ConnectionActive> <ConAct> Indicates the QUT has closed the connection.
<ConnectionClosed> <ConClosed> Indicates the connection with the QUT is still active.

22

	Abstract
	1 Introduction
	2 Background
	2.1 QUIC Protocol Transport Layer Security
	2.2 Automata Learning

	3 Noncompliance checking
	3.1 Automatically Learning a Behavior Model (Learner)
	3.2 QUIC Test Harness (Test Harness)
	3.3 Automating Analysis (Optimizer & Differential Analyzer)

	4 Evaluation
	5 Results and Analysis
	5.1 Non-Compliance Issues
	5.2 Memory-corruption bug: Server crashes
	5.3 Logical Flaw: Unexpected Behavior
	5.4 Specification Ambiguity: Exposing a New DoS Attack

	6 Related Work
	7 Discussion
	8 Conclusions and Future Work
	References
	A Symbolization with LLMs
	A.1 Extended Material on Automatically Learning a Behavior Model and Symbolization (Learner)

	B Demonstrating a Valid Behavior Analysis
	C Additional Case Studies
	C.1 Memory-corruption bugs: Server crashes
	C.2 Logical Flaws: Unexpected Behaviors

	D Reference Models
	E QUICtester Implementation Effort

