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Abstract—The United States Cyber Command (USCYBER-
COM) Cyber Protection Condition (CPCON) framework man-
dates graduated security postures across Department of Defense
(DoD) networks, but current implementation remains largely
manual, inconsistent, and error-prone. This paper presents
a prototype system for centralized orchestration of CPCON
directives, enabling automated policy enforcement and real-time
threat response across heterogeneous network environments.
Building on prior work in host-based intrusion response, our
system leverages a policy-driven orchestrator to standardize
security actions, isolate compromised subnets, and verify en-
forcement status. We validate the system through emulated
attack scenarios, demonstrating improved speed, accuracy, and
verifiability in CPCON transitions with human-in-the-loop over-
sight.

Index Terms—CPCON, Security Orchestration, Network Au-
tomation, Intrusion Detection and Response

I. INTRODUCTION

Protecting critical network infrastructure is essential for any
organization. The 2023 United States Cyber Command (US-
CYBERCOM) Command Challenge Problem Set identifies
numerous technology areas in need of development through
partnerships with industry [1]. Cybersecurity threat detection
and mitigation is one such area, where anomaly detection,
endpoint hardening, and proactive defense are critical capa-
bilities for countering cyberspace threats.

As an important step toward assured cyber defense, USCY-
BERCOM has established the Cyber Protection Conditions
(CPCON) framework to standardize network protection pri-
orities during cyberspace events [2]. CPCON Level 5 is the
least restrictive, permitting all network functions. In contrast,
CPCON Level 1 is the most restrictive, prioritizing the
preservation of critical services while blocking or disabling
non-critical ones. This graduated protection model enables
network operators to isolate non-essential services, thereby
reducing the attack surface and safeguarding mission-critical
functions.

Fig. 1. Illustration of proposed centralized orchestration system.

However, we observe that the current practice of CPCON
in the fleet involves numerous ad hoc manual processes and
as such, suffers from the following drawbacks:

• Inconsistent implementation: Network operators with
different platforms will implement CPCON measures
differently as they draw from their own experience,
creating gaps in overall security posture.

• Delayed response: Manual processes will slow down
the implementation of some crucial security changes,
increasing vulnerability windows.

• Lack of compliance verification and reporting: Ad
hoc manual configuration is error-prone. Additionally,
confirming actual compliance becomes difficult, relying
on self-reporting rather than objective metrics.

• Training burden: Personnel require extensive training
to understand and implement nuanced CPCON changes
across various systems.

Meanwhile, our previous work [3] demonstrated an iterative
capability for deploying software modules in real time, upon
observation of malicious events, to mitigate cyber attacks.
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This functionality was enabled using a centralized orchestrator
to process alert information from intrusion detection system
(IDS) agents embedded in various devices and, if necessary,
dispatch tailored security remedy modules to the devices.
In this paper, we extend that concept by enhancing the
orchestrator to facilitate standardizing and automating the
implementation of CPCON.

Fig. 1 illustrates a high level architectural view of the
proposed system. At the bottom layer, CPCON enforcement
agents are installed in various devices of the network. A
centralized CPCON orchestrator in the middle layer processes
alerts from the enforcement agents in real time and dispatches
tailored responses in the form of new security modules
as instructed by prescribed policy. Finally, recognizing that
CPCON actions should build in flexibility to support com-
mand specific discretions, we include mechanisms such as a
user interface (UI) at the top layer, for not only taking CPCON
directives from USCYBERCOM, but also supporting operator
interactions with the system.

Guided by the architecture, we have created a system pro-
totype, which includes sample CPCON policy rules specified
in JSON format, security modules for controlling access at
the granularity of subnets, users, and ports, and a simple
operator UI. Furthermore, we have evaluated the prototype
in a simulated scenario involving a network with multiple
security postures.

The rest of the paper is organized as follows. In Section II,
we discuss related works and how our work differs or builds
upon the concepts. Section III presents our prototype imple-
mentation while Sections IV and V describe our experimental
design and results, respectively. We discuss potential system
extensions and conclude the paper in Sections VI and VII.

II. RELATED WORK

The general concept of security orchestration has been
explored to unify detection, mitigation, and response, re-
ducing operator burden and enabling rapid, policy-driven
defense [4]. Cross-domain event correlation and closed-loop
architectures further enhance network resilience by enabling
real-time policy updates that preempt threat propagation [5].
As cloud and mobile technologies expand the threat surface,
zero trust architectures are emerging to replace traditional
perimeter-based models. Recent work highlights the value of
dynamic, host-informed policy orchestration to address gaps
in distributed network defense [3], [6]. Enforcement strategies
have also shifted toward user/host-specific controls, such as
multi-policy configurations [7] and adaptive trust profiles [8].

At the device level, automated collection of host-based
alerts is key to enforcing network-wide security policies
and supporting CPCON-level decisions. In [9], the authors
enhance host intrusion detection by combining Snort with
support vector machine-based classification to improve alert
fidelity. Koyya [10] complements this with a scalable syslog-
to-Splunk architecture that enables centralized analysis of
distributed alerts. These approaches support real-time cor-
relation and actionable insights for operators. We build on

this by using Ansible for automated policy enforcement due
to its scalability, remote execution capabilities, and future
integration with natural language tooling [11].

To support dynamic orchestration in response to evolving
threats, AI-driven models can generate actionable signatures
to inform orchestration frameworks by enabling automated,
targeted responses [12]. Systems for continuous monitoring
and event correlation, when enhanced with deep learning
techniques, offer improved anomaly detection—particularly in
identifying insider threats [12]. Our work lays the foundation
for integrating such AI-guided orchestration into CPCON
policy enforcement.

III. SYSTEM PROTOTYPING

This section presents a system prototype that we have built
for centralized orchestration of CPCON. First, we introduce
sample declarative rules for standardizing the orchestrator’s
responses to CPCON directives and cyber events reported
from devices. Then, we describe how we developed the
orchestrator prototype and a sample of CPCON enforcement
modules by extending our previous work.

A. Standardized CPCON Rules

Standardized rules are necessary to remove ambiguity when
either providing direction to the CPCON orchestrator or
when network devices send event data to the orchestrator
for correlation and response. To enable these operations we
designed a structured event and response security policy with
a collection of rules in a declarative language format [13]
[14].

CPCON directives, with a rule format shown in Fig. 2, are
used to enforce a change in the CPCON posture within the
network. The “CPCON level” argument sets the target level
for the network. The “threat” argument provides amplifying
information to the specific threat for the given level in
order to address specific threats (e.g., phishing). Finally, the
“action” argument is a list of actions for the orchestrator to
automatically enable (e.g., isolate a subnet).

” D i r e c t i v e ” :
” CPCON level ” : <l e v e l 1−5>,
” t h r e a t ” : <c a t e g o r y >,
” a c t i o n ” : {<a c t i o n 1 , h o s t i d ( s )>,

<a c t i o n 2 , h o s t i d ( s ) > , . . . ,
<a c t i o n n , h o s t i d ( s )>}

Fig. 2. CPCON Directive message format highlighting syntax.

Event statistics generated from host-level alerts can be
ingested by the orchestrator to drive adaptive, network-wide
security responses. For example, at lower CPCON levels, a
single host reporting access to a suspicious website may not
prompt action. However, if the CPCON level increases, the
same website may be added to a shared event database and dy-
namically pushed to perimeter gateways as part of a blacklist
policy. In more advanced cases, integrated threat intelligence
feeds may confirm that the website is linked to command-and-
control activity—such as botnet coordination—prompting the



orchestrator to issue higher CPCON level recommendations
and enforce broader containment or mitigation actions.

The format for events, Fig. 3, is used for network hosts
providing information to the CPCON orchestrator. The “alert”
argument provides the specific alert observed by the host (e.g.,
unauthorized connection). The “CPCON level” argument is
included to provide host-context for the alert and the “action”
argument provides automatic actions taken by the host (e.g.,
block connection).

” Event ” :
” a l e r t ” : <h o s t i d , e v e n t t y p e >,
” CPCON level ” : <l e v e l 1−5>,
” a c t i o n ” : {<r e spons e 1 >,<r e spon se 2 > , . . . , <r e spo nse n>}

Fig. 3. CPCON Event message format highlighting syntax.

B. CPCON Orchestrator and Enforcement Modules

The Layer4.5 orchestrator developed in our previous work
[15] included multiple functions to establish channels with
network devices and support the deployment of customization
modules. In a follow-up effort [3], we adapted the orchestra-
tor to deploy security-focused modules aimed at enhancing
intrusion detection and response. In this work, we leverage
those existing functions to deploy CPCON policies across the
network, as illustrated in Fig. 4.

Fig. 4. Adapted from [3], [15]. Modified Layer 4.5 orchestrator consists of
new policy components to facilitate CPCON directives (red). The existing
components (grey) are leveraged to deploy policy throughout the network.

The key enhancements to the orchestrator are the UI, Fig. 5,
and the policy repository for enforcing CPCON directives.
Critical to individual network owners is the ability to view
real time alerts, ordered directives, and policy requirement
validation. The user interface provides a means for the human-
in-the-loop to i) view current policy enforcement, ii) monitor
events, and iii) automate policy enforcement verification.

The enforcement modules used in this work are imple-
mented as kernel object files, built and deployed from the or-
chestrator [15]. These modules enable fine-grained monitoring
of socket-level traffic to detect specific threat signatures and
anomalous behavior. Upon identifying suspicious patterns, the
modules generate alerts that are forwarded to the orchestrator
for correlation and response.

In this paper we leverage the new UI with associated
newly developed security modules to implement a series of

Fig. 5. Orchestrator UI Prototype

CPCON changes as we progress through a scenario designed
to showcase automation when responding to cyber threats.

IV. DESIGN OF EXPERIMENTS

This section presents a set of experiments that we have
developed for evaluating the orchestration system prototype.
The presentation focuses the testbed architecture, experimen-
tation objectives, scenarios and threat vectors modeled, and
the performance metrics to be analyzed.

A. Testbed Design

Fig. 6 illustrates the network topology used to model an
enterprise environment with segmented subnets to simulate
varying levels of mission criticality. Subnet 1 and the DMZ
are designated as essential, while Subnet 2 represents non-
essential infrastructure. This classification supports CPCON-
level enforcement by enabling selective isolation of less
critical assets under elevated threat conditions.

SUBNET 1
10.0.5.0/24 DMZ

10.0.8.0/24

SUBNET 2
10.0.2.0/24

Enterprise Network Backbone

CPCON
ORCHESTRATOR

ESSENTIAL
ESSENTIAL

Fig. 6. Network topology used for experimentation. Subnet 1 and the DMZ
are designated as “essential”, while Subnet 2 is “non-essential”.

Subnet 1 and Subnet 2 host two generic virtualized hosts,
while the DMZ includes the CPCON orchestrator, a web
server, and a utility server offering common network services.
All inter-subnet routing is performed via dedicated Ubuntu-
based virtual routers configured with iptables firewall
rules. The orchestrator leverages Ansible to remotely con-
figure the routers in accordance with CPCON directives.

The testbed is physically hosted on three Windows 11 lap-
tops, each running Ubuntu 20.04 virtual machines (VMs) with
kernel version 5.13 and Layer 4.5 [15] support enabled. Each
system is equipped with an Intel Core i7 processor, 16 GB of
RAM, and SSD storage. The laptops are interconnected via a
TL-SG108E managed 1 Gbps Ethernet switch.



Fig. 7. Timeline of scenario events. Orchestrator actions are above and host behavior is displayed below the timeline. Key events: DoS attack from host 1 ,
CPCON level 3 ordered 2 , threat specific alert generated and sent to CPCON orchestrator 3 , and CPCON level 2 ordered 4 .

B. Adversarial Model and Experimental Objectives

To evaluate centralized orchestration in an intrusion preven-
tion system (IPS)-like role, two adversarial scenarios based
on the MITRE ATT&CK framework are simulated. These
scenarios reflect realistic cyber threats requiring automated
defensive responses to protect critical network assets.

The first scenario involves a DoS attack originating from
the non-essential subnet, characterized by a sudden spike in
DNS queries from a single host—suggestive of malicious
activity [16]. In the second scenario, following an elevated
CPCON level, a DMZ-based web server initiates an outbound
connection using a non-standard source port, which may
indicate lateral movement or data exfiltration [17], [18].

These attack scenarios allow validating the orchestrator’s
ability to (1) automate threat response, (2) correlate alerts
to support CPCON escalation, and (3) enforce network-wide
defenses, thereby demonstrating its role in adaptive, layered
cybersecurity posture management.

C. Test Scenarios and Configurations

Our experimentation follows the timeline provided in Fig.7
and begins at CPCON Level 4 in response to an anticipated
threat, despite the absence of observed malicious activity
within the network. This intentional deviation from standard
CPCON escalation procedures allows us to showcase system
capabilities under controlled experimental conditions.

The first scenario models a DNS-based DoS attack
launched by a compromised host in Subnet 2. A Python
script emulates malicious behavior by issuing high-rate DNS
queries to the DMZ utility server, while a local response
module monitors for query rate anomalies. Upon detecting
anomalous DNS traffic via host-based alert, the orchestrator
initiates tailored actions as follows:

1) Deploys a DNS DoS mitigation module to alerting host.
2) The module confirms the attack, rate-limits the process,

and notifies the orchestrator.
3) The event is logged and CPCON escalation is recom-

mended.

Shortly after the DoS attack and in response to receiving
elevated threat intelligence, a human-in-the-loop operator
raises CPCON to level 3 using the orchestrator UI. Upon
receiving this CPCON directive (Fig. 8), the orchestrator:

1) Blocks HTTP/HTTPS traffic to/from Subnet 2 (non-
essential).

2) Builds and deploys monitoring modules for essential
servers targeting specific behaviors, such as the use of
ephemeral source ports.

3) Preemptively builds a host isolation module for all
managed hosts.

” D i r e c t i v e ” :
” CPCON level ” : <3>,
” t h r e a t ” : <w e b a p p l i c a t i o n s >,
” a c t i o n ” : {<B l o c k w e b t r a f f i c , subne t2 >,

<S e r v e r m o n i t o r , a l l s e r v e r s >,
<B u i l d i s o l a t e m o d , a l l h o s t s >}

Fig. 8. CPCON directive message transitioning to Level 3.

After receiving the monitoring module, the DMZ web
server attempts an outbound connection using an ephemeral
port, matching known threat indicators included in the en-
forcement module. The web server immediately notifies the
orchestrator, which responds by:

1) Deploying the isolation module to remove the web
server from the network.

2) Recommending CPCON escalation to Level 2.
Upon CPCON 2 directive issuance (Fig. 9), the orchestrator

isolates the non-critical subnet and confirms enforcement
via a follow-up scan. Operators are notified of successful
implementation.

” D i r e c t i v e ” :
” CPCON level ” : <2>,
” t h r e a t ” : <w e b a t t a c k s >,
” a c t i o n ” : {< i s o l a t e , subne t2>}

Fig. 9. CPCON Directive message transitioning to CPCON level 2 for Phase
3 of experimentation scenario.



D. Performance Metrics

For this prototype implementation, the automation of CP-
CON directive execution serves as the primary performance
metric. The objective is to employ defensive measures capable
of countering malicious network threats in a manner that
demonstrates the standardization of automation relative to
traditional human response. Additional evaluation metrics
include the orchestrator’s ability to self-assess the successful
implementation of CPCON directives, thereby preventing
false reports of policy enforcement.

V. RESULTS

This section presents the experimental results in a narrative
format aligned with the attack scenarios described in Sec-
tion IV-C and Fig. 7.

Upon detecting an abnormal DNS query rate, the security
enforcement module logs a “DNS DoS” alert in the event
database. This triggers the CPCON orchestrator to build and
deploy a “DNS response” module to the alerting host, as
shown in Fig. 12 for Host ID 45189. Once deployed, the
module enforces DNS query rate limiting, effectively neu-
tralizing the resource exhaustion threat and restoring service
stability.

In response to the evolving threat, a directive is issued
to elevate to CPCON level 3. A human-in-the-loop opera-
tor initiates this transition via the CPCON orchestrator UI.
The orchestrator subsequently executes the following Ansible
playbook command to enforce the new policy:

ansible-playbook -i $SUBNET2_router, WEB_Block.yaml

The output resulting from this operation is shown in
Fig. 10, confirming the successful reconfiguration of firewall
policies to restrict HTTP/HTTPS traffic within the non-
essential subnet.

Fig. 10. Deployment of Ansible playbook to block HTTP/HTTPS traffic
at Subnet 2 router via iptables update. Center red box shows Ansible
playbook successfully running, with top and bottom green boxes showing
before and after router configurations, respectively.

Verification was performed using an Nmap scan issued
from the CPCON orchestrator to the Subnet 2 router. The
scan confirmed that the mitigation module was successfully
deployed and that the expected service restrictions were
enforced. As a result, the policy repository was updated to
mark the CPCON 3 directive as verified, seen in the bottom
section of Fig. 12. The nmap command performed is as
follows:
sudo nmap -Pn -p 80,443 $SUBNET2

Subsequently, a compromised web server attempts to ini-
tiate an unauthorized outbound connection. This activity is
intercepted and blocked by the response module deployed
during the CPCON 3 configuration with a follow-up alert
“CPCON3” sent to the orchestrator, indicating an attempt to
violate a CPCON 3 directive. Upon isolating the affected host,
a verification scan is conducted using Nmap, as shown in Fig.
11, confirming that no unexpected ports are accessible.

Fig. 11. Verification of no hosts are accepting inbound connections on port
80 (HTTP) and 443 (HTTPS).

Based on the correlation of multiple alert patterns, the
orchestrator recommends escalating to CPCON level 2. Upon
approval, the orchestrator executes an Ansible playbook to
fully isolate the non-critical subnet, following a similar pro-
cedure to the prior HTTP/HTTPS traffic restriction.

A final Nmap scan confirms that no hosts within the non-
critical subnet are reachable, with the exception of port 22
on the router, which remains accessible exclusively from
the orchestrator’s IP address to support administrative access
and potential restoration procedures. The policy repository is
subsequently updated to indicate that CPCON 2 enforcement
has been verified, seen in the bottom section of Fig. 12.

Fig. 12. Orchestrator UI showing final state. Status of each host, detected
alerts, and policy implementation and verification are visible.

VI. DISCUSSION

We recognize that the orchestration prototype is a mod-
est first step toward standardizing and automating CPCON
operation at the platform level. In the following, we discuss



several essential extensions that are required for a fleet-wide
deployable system.

A. Verifying and Reporting of Compliance

To support command and control across echelons, the
orchestrator must reliably report policy compliance and op-
erational status. Standardizing the monitoring infrastructure
is critical to building a coherent operational picture. This
includes automating the collection, aggregation, and reporting
of policy enforcement data via standardized modules deployed
across the DoDIN. These modules should feed relevant data
to higher echelons, enabling systematic verification of policy
adherence and improving situational awareness. Designing
the monitoring components to operate across diverse system
configurations supports seamless integration into a Common
Operational Picture (COP).

B. Scaling to DoDIN-wide Operations

This work demonstrates the feasibility of implementing CP-
CON principles within a small network environment. Scaling
these principles across the entire DoDIN could significantly
improve its ability to defend against advanced cyber threats.
Given the vast number of connected hosts on the DoDIN,
applying orchestration techniques at scale presents substantial
challenges. However, prior work has shown that orchestration
latency increases linearly with the number of hosts [15],
suggesting that such an approach remains viable even in
large-scale environments. A platform-agnostic design will
be essential to ensure interoperability across heterogeneous
systems.

C. Supporting External Updates

Effective orchestration requires the capability to ingest
external updates, such as threat intelligence feeds and evolv-
ing policy guidelines. A key example includes Computer
Tasking Orders (CTOs) issued by JFHQ-DoDIN, which con-
vey authoritative directives and updated threat intelligence to
DoD components. These updates must be integrated into the
policy repository and disseminated to orchestrator modules
in near real-time. Incorporating CTOs enables the system
to dynamically adapt to emerging threats and ensures that
policy enforcement remains aligned with current operational
priorities and command-level guidance.

D. Training

Utilization of the orchestrator will reside with the local
network commander, preserving tactical flexibility and pre-
venting conflict with ongoing operations. Integration should
be validated through fleet training events like Information
Warfare Advanced Tactical Training and Composite Training
Unit Exercise. which provide varied operational conditions
to refine TTPs and reinforce C2 between the CWC and
ship’s force. These exercises also test system interoperability
within a system-of-systems framework and support improved
network security practices among ITs.

VII. CONCLUSION

This paper presented a prototype CPCON orchestrator that
automates the deployment and verification of policy-driven
security actions across multiple hosts. Using an automated
engine and a centralized policy repository, the system was
shown to receive alerts, deploy response modules, recommend
CPCON level escalation, and verify compliance in a virtual
network testbed. Results suggest that the approach scales
linearly with host count, supporting its feasibility in larger
environments such as the DoDIN. Future work will focus on
scaling to operational environments, standardizing monitor-
ing, and integrating external threat intelligence to enhance
orchestration effectiveness.
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