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Abstract: We propose a framework for compile-time ciphertext synthesis in fully homo-
morphic encryption (FHE) systems, where ciphertexts are constructed from precomputed
encrypted basis vectors combined with a runtime-scaled encryption of zero. This design
eliminates online encryption and instead relies solely on ciphertext-level additions and
scalar multiplications, enabling efficient data ingestion and algebraic reuse. We formalize
the method as a randomized Zt-module morphism and prove that it satisfies IND-CPA
security under standard assumptions. The proof uses a hybrid game reduction, showing
that adversarial advantage in distinguishing synthesized ciphertexts is negligible if the
underlying FHE scheme is IND-CPA secure. Unlike prior designs that require a pool of
random encryptions of zero, our construction achieves equivalent security using a single
zero ciphertext multiplied by a fresh scalar at runtime, reducing memory overhead while
preserving ciphertext randomness. The resulting primitive supports efficient integration
with standard FHE APIs and maintains compatibility with batching, rotation, and aggre-
gation, making it well-suited for encrypted databases, streaming pipelines, and secure
compiler backends.

Keywords: Fully homomorphic encryption, outsourced databases, high-performance
computing

1. Introduction
1.1. Background and Motivation

Fully homomorphic encryption (FHE) [1–3] enables computation over encrypted data
without decryption, offering a mathematically rigorous foundation for secure delegated
computation. Among its most impactful application domains is outsourced data processing,
where sensitive data is stored and queried in untrusted cloud infrastructures. A canonical
example is encrypted database-as-a-service (DBaaS) [4], in which the data owner uploads
encrypted tables to the cloud and delegates query execution—such as selection, aggregation,
joins, or even machine learning inference—while preserving data confidentiality.

While the last decade has witnessed dramatic improvements in the efficiency of homo-
morphic arithmetic [5,6], a critical asymmetry persists in system-level FHE deployments:
the overhead of encryption remains disproportionately high compared to that of homomor-
phic evaluation. This is particularly acute in dynamic and streaming workloads, such as
real-time monitoring, log ingestion, and encrypted sensor pipelines, where large volumes
of new data must be continuously encrypted and injected into the system. In such con-
texts, the primary bottleneck shifts from query latency to data ingestion throughput, with
encryption emerging as the dominant cost in the trusted domain.

Several systems have attempted to address this bottleneck through precomputation
strategies. Notably, the Rache system [7] introduced a form of encryption caching, wherein
the ciphertexts for all possible scalar plaintexts are pre-encrypted and stored in a lookup
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table. This approach enables constant-time retrieval of ciphertexts without executing
encryption algorithms at runtime. However, Rache and similar scalar-based schemes
are intrinsically tied to unbatched representations, treating each message as a standalone
integer or boolean. In contrast, real-world FHE applications overwhelmingly employ batch
encoding, which maps entire vectors of plaintext values into the coefficient structure of
a single polynomial in R = Zq[x]/( f (x)). This encoding supports parallel SIMD-style
execution across slots, and is central to the performance of encrypted matrix operations,
packed aggregation, and neural inference.

Unfortunately, scalar-level caching strategies are incompatible with these batched
encodings. Naively precomputing encrypted vectors on a per-slot basis does not preserve
the algebraic structure imposed by the batching transformation, and leads to ciphertexts
that violate semantic layout invariants. These malformed ciphertexts cannot be consumed
by standard FHE operations such as EvalRotate or EvalSum, and break homomorphic slot
alignment required by higher-level algorithms. More fundamentally, precomputing all
possible batched vectors is combinatorially infeasible due to the exponential growth in
vector space size.

This tension gives rise to a central open question for compile-time FHE system design:

Is it possible to perform ciphertext precomputation at the vector level, while preserving
compatibility with FHE’s batching interface and without invoking encryption at runtime?

In this paper, we answer this question in the affirmative. We present a principled
framework for ciphertext synthesis over batched encodings, in which encrypted vectors are
constructed via compile-time algebraic composition of a precomputed ciphertext basis and
a lightweight randomized masking term. This approach bridges the gap between symbolic
data generation and cryptographic soundness, and lays the foundation for high-throughput
ingestion pipelines in encrypted database systems and beyond.

1.2. Proposed Work

We propose a new algebraic abstraction for compile-time ciphertext synthesis in
batched fully homomorphic encryption (FHE) systems. The core insight is to shift en-
cryption from a runtime operation to a symbolic, algebraic process, where ciphertexts are
constructed through linear combinations over a precompiled encrypted basis and masked
using a single ciphertext of zero scaled by runtime randomness.

We model the plaintext space as a finite-dimensional Zt-module, and precompute
the encryptions of standard basis vectors {ei}d

i=1, each embedded into the polynomial
ring R = Zq[x]/( f (x)) via batching. These encrypted basis vectors {ci = Enc(ei)} form a
compile-time ciphertext basis B. Given an input vector m = ∑i miei, ciphertext generation
is performed at runtime by evaluating the linear combination ∑i mi · ci, using ciphertext-
level operations only.

To preserve semantic security and avoid determinism, we introduce a randomized
masking step via a fixed encryption of the zero vector, denoted r0 = Enc(0d). At runtime,
this ciphertext is scaled by a freshly sampled scalar ρ← Zt and added to the synthesized
output:

SynthEnc(m) := ∑
i

mi · ci + ρ · r0.

This design maintains ciphertext-level randomness without requiring a pool of zero en-
cryptions, reducing memory footprint and simplifying implementation.

Our construction can be viewed as a randomized module morphism over encrypted
Zt-modules. By embedding encryption into compile-time algebra, we obtain a stateless
encryption interface that is compatible with downstream homomorphic operations and
secure under standard IND-CPA assumptions. The associated security proof is structured
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as a hybrid game sequence, with reductions to the indistinguishability of the underlying
FHE encryption.

Practically, this synthesis interface supports high-throughput ingestion for encrypted
data systems, enabling runtime ciphertext generation without invoking cryptographic
primitives. The construction is compatible with batching, ciphertext rotations, and slot-
wise homomorphic operations, and offers a pathway toward symbolic encrypted compilers
and bootstrappable pipelines.

1.3. Contributions

This paper makes the following contributions:

• Algebraic abstraction for compile-time encryption. We introduce a novel encryption
interface modeled as a randomized module morphism over a precomputed cipher-
text basis, enabling deterministic synthesis of ciphertexts with runtime-randomized
masking.

• Minimal-noise masking with provable security. Unlike prior work that requires a
pool of random zero encryptions, we show that a single ciphertext of zero suffices
when combined with scalar multiplication by a fresh randomizer. This design reduces
memory requirements while preserving semantic security.

• Formal IND-CPA security via hybrid argument. We establish a reduction from the
IND-CPA security of synthesized ciphertexts to that of the underlying FHE scheme,
using a coordinate-wise hybrid game construction and precise advantage bounding.

• Practical integration and encryption bypass. Our approach supports encryption-
free runtime operation in FHE systems, with immediate application to encrypted
databases, ingestion pipelines, and vectorized secure compilers.

2. Preliminaries
2.1. Algebraic Structures
Group.

A group is a set G equipped with a binary operation · : G× G → G that satisfies three
properties: associativity ((a · b) · c = a · (b · c) for all a, b, c ∈ G), the existence of an identity
element e ∈ G such that e · g = g for all g ∈ G, and the existence of inverses, meaning
that for every g ∈ G there exists an element g−1 ∈ G with g · g−1 = e. If the operation
is also commutative—i.e., g1 · g2 = g2 · g1 for all g1, g2 ∈ G—then G is called an abelian
group. Abelian groups are the additive backbone of many algebraic structures, including
rings, modules, and vector spaces, and play a central role in the algebraic foundations of
cryptography.

Ring.

A ring is a set R equipped with two binary operations + and · such that (R,+) forms
an abelian group and (R, ·) is associative and distributes over addition. Many FHE schemes
are defined over polynomial rings of the form Rq = Zq[x]/( f (x)), where f (x) is typically a
cyclotomic polynomial. These rings support efficient arithmetic while maintaining algebraic
structure needed for encryption homomorphism.

Field.

A field is a commutative ring (F,+, ·) in which every non-zero element has a multi-
plicative inverse. Fields serve as the underlying scalars for modules and vector spaces and
are often used for defining plaintext domains in leveled FHE schemes, especially those
based on arithmetic circuits over Zp or Fq.
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Vector space.

Let F be a field. A vector space over F is a set V equipped with an abelian group
structure (V,+) and a scalar multiplication operation F×V → V, such that scalar multi-
plication distributes over both field addition and vector addition, and respects associativity
and identity with respect to F. Unlike Euclidean vectors, the elements of V need not have
coordinates or geometric form—they may be functions, polynomials, or other algebraic
objects. What matters is that linear combinations of elements using scalars from F remain
in V.

Module.

A module is a generalization of a vector space where the scalars form a ring instead of
a field. Given a ring R, an R-module M is an abelian group with a scalar multiplication
R× M → M satisfying linearity properties. In batched FHE systems, plaintext vectors
can be viewed as elements in an R-module, and encryption functions act as module
homomorphisms (preserving both addition and scalar multiplication).

2.2. Fully Homomorphic Encryption Schemes (based on arithmetic operations)
Gentry’s Thesis.

Gentry’s seminal 2009 thesis [8] introduced the first fully homomorphic encryption
(FHE) scheme, based on ideal lattices and bootstrapping. The scheme supported evaluation
of arbitrary circuits over encrypted data but was initially impractical due to large ciphertext
sizes and expensive noise management. Bootstrapping remains a defining feature of FHE,
allowing refresh of ciphertexts to sustain arbitrary computation depth.

Schemes for integers.

Integer-based schemes, such as BGV [9] and BFV [2], operate over plaintexts in Zn
t ,

encoded into polynomials and encrypted using ring-LWE hardness assumptions. These
schemes enable both additive and multiplicative homomorphisms and support batching
via the Chinese Remainder Theorem (CRT). Integer-based schemes are widely used in
database-style workloads due to their modular arithmetic semantics.

Schemes for floating numbers.

CKKS [3] is a prominent FHE scheme that supports approximate arithmetic over
complex numbers. It encodes floating-point vectors into plaintext polynomials and allows
multiplicative and additive homomorphisms with controllable error. CKKS is particularly
useful in machine learning and numerical workloads due to its natural support for dot
products and real-valued activation functions.

2.3. Encoding and Encryption of Arithmetic FHE Schemes Over Vectors

Modern arithmetic FHE schemes such as BGV [9], BFV [2], and CKKS [3] support batch
encryption, enabling multiple plaintext values to be packed into a single ciphertext. This is
achieved by leveraging the Chinese Remainder Theorem (CRT) structure of the underlying
plaintext ring and encoding vectors as elements in a quotient ring.

Let t be the plaintext modulus and N be a power-of-two cyclotomic order. The
plaintext ring is defined as:

Rt := Zt[x]/(xN + 1),

which is isomorphic (under suitable conditions) to the direct product of N scalar slots:

Rt ∼= ZN
t .
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This isomorphism allows a plaintext vector m = (m0, . . . , mN−1) ∈ ZN
t to be encoded as

a polynomial m(x) ∈ Rt using either coefficient embedding (for BFV/BGV) or canonical
embedding (for CKKS).

The encryption algorithm is then applied to m(x) in the larger ring Rq := Zq[x]/(xN +

1), where q ≫ t is the ciphertext modulus. A standard public key encryption (PKE)
procedure yields a ciphertext:

Encpk(m) = c = (c0(x), c1(x)) ∈ R2
q,

such that decryption satisfies:

Decsk(c) = m(x) + e(x) ∈ Rq,

where e(x) is a bounded noise polynomial, and the final message is recovered modulo t.
In CKKS, the encoding maps complex vectors into CN via canonical embedding, and

the decryption process recovers an approximation of the original message, i.e.,

Decsk(c) ≈ m(x),

with multiplicative noise that grows during homomorphic operations.
The packed ciphertext c supports component-wise homomorphic operations such as

addition and scalar multiplication:

Enc(m1 + m2) = Enc(m1) + Enc(m2), Enc(a ·m) = a · Enc(m),

where a ∈ Zt.
More advanced operations such as slot-wise rotation and permutation are imple-

mented using Galois keys, enabling ciphertext manipulation without decryption.
This batched encoding mechanism enables SIMD-style parallelism across slots and is

crucial for performance in encrypted databases, neural networks, and scientific computing
pipelines. However, it also imposes structural constraints on how ciphertexts must be
constructed and interpreted—constraints that any precomputation or synthesis-based
encryption technique must preserve.

3. Abstract Interface for Compile-Time Ciphertext Synthesis
We formalize the notion of compile-time encrypted vector construction as an algebraic

interface. This interface captures the essential properties of synthesis-based ciphertext
generation schemes, enabling reasoning about structure, security, and reusability without
reference to a particular cryptographic encoding.

3.1. Interface Semantics

Let Zd
t denote the plaintext module and Rk

q the ciphertext module under a leveled fully
homomorphic encryption scheme. A ciphertext synthesis interface is a randomized map:

SynthEnc : Zd
t → Rk

q

parameterized by an encrypted basis B = {c1, . . . , cd} and a randomness distribution Dzero

over noise terms.
In its deterministic core, SynthEnc acts as a Zt-module homomorphism:

SynthEnc0(m) :=
d

∑
i=1

mi · ci.
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To ensure semantic security, this is composed with a noise-injection layer:

SynthEnc := NoiseInject ◦ SynthEnc0,

where NoiseInject is a randomized endofunctor over the ciphertext category, mapping
ciphertexts to indistinguishable variants while preserving decryption correctness.

This interface can be viewed as a morphism in a fibered category of encrypted mod-
ules, where each instantiation lifts a plaintext vector to an encrypted fiber over the base
ring Zt. The structure of B defines the embedding geometry, while noise preserves indistin-
guishability across fibers.

3.2. Correctness as Exactness

Decryption defines a projection Dec : Rk
q → Zd

t . Interface correctness requires:

Dec ◦ SynthEnc(m) = m for all m ∈ Zd
t ,

except with negligible error due to noise overflow. This condition corresponds to the
existence of an exact sequence:

0→ N → Rk
q

Dec−−→ Zd
t → 0,

where N is the noise submodule. The synthesis interface produces ciphertexts in the
preimage of m under Dec, with the randomness distributed across N .

3.3. Security Definition

We define IND-CPA security of SynthEnc via a two-message challenge game, assuming
the basis B and noise pool are fixed and public. For all PPT adversaries A, define the
advantage:

AdvIND-CPA
SynthEnc(λ) :=

∣∣∣∣Pr[b′ = b]− 1
2

∣∣∣∣.
The interface is secure if this advantage is negligible in λ, under the assumption that the
noise distribution Dzero consists of honest encryptions of 0 under a semantically secure
scheme.

3.4. Interface Instantiability

The concrete scheme described in Section 4 instantiates SynthEnc via precomputed
encryptions of unit basis vectors, along with a finite pool of randomized zero ciphertexts.
However, the abstraction also encompasses alternative instantiations with nonstandard
bases, structured embedding layouts, or symbolic synthesis graphs. The interface frame-
work allows such instantiations to be analyzed uniformly with respect to algebraic behavior
and security constraints.

4. Vector Caching for FHE
We now present a concrete instantiation of the abstract interface defined in Section 3.

This instantiation realizes the SynthEnc map using a precomputed ciphertext basis and a
pool of randomized zero encryptions. The construction satisfies the algebraic and security
properties of the interface, and forms the foundation for our compile-time FHE pipeline.

We begin by specifying notation and algebraic context, followed by the basis construc-
tion, randomized synthesis procedure, and runtime algorithms.



Version June 9, 2025 submitted to Journal Not Specified 7 of 18

4.1. Notation

Let Rt = Zt[x]/( f (x)) and Rq = Zq[x]/( f (x)) denote the plaintext and ciphertext
polynomial rings, respectively, where f (x) = xN + 1 is a power-of-two cyclotomic poly-
nomial. Let N denote the ring degree and d ≤ N be the number of plaintext slots (i.e., the
batch size).

We denote by B = {c1, . . . , cd} a set of precomputed ciphertexts, where each

ci = Enc(ei)

is the encryption of the i-th unit basis vector ei ∈ Zd
t , embedded into Rt via coefficient or

canonical embedding.
Let Enc : Rt → Rk

q be a semantically secure public-key FHE encryption scheme
with homomorphic addition and scalar multiplication, and let Dec : Rk

q → Rt be the
corresponding decryption function.

We use m ∈ Zd
t to denote the plaintext vector to be encrypted, and let EncBasisB(m)

denote the synthesized ciphertext produced from basis B.

4.2. Construction

We define the synthesized ciphertext SynthEncB(m) as follows:

SynthEncB(m) :=
d

∑
i=1

mi · ci.

This construction does not invoke the encryption algorithm at runtime. Instead, it reuses
precomputed ciphertexts of basis vectors and leverages the linear homomorphic properties
of the FHE scheme:

• Enc(m1) + Enc(m2) = Enc(m1 + m2),
• a · Enc(m) = Enc(a ·m) for a ∈ Zt.

The correctness of this construction follows directly from the module structure of the
plaintext space and the preservation of linear operations under FHE encryption:

Dec

(
d

∑
i=1

mi · Enc(ei)

)
=

d

∑
i=1

mi · ei = m.

4.3. Randomization

To prevent deterministic reuse and achieve semantic security, we inject a ciphertext
encoding of the zero vector into every synthesized encryption. This ensures that identical
plaintext vectors yield ciphertexts that are computationally indistinguishable.

In our original formulation, we maintained a pool R = {r1, . . . , rs} consisting of
independently encrypted zero vectors, each generated as

rj ← Enc(0d), j ∈ [s],

where each ciphertext rj contains fresh encryption randomness. During ciphertext synthesis,
a random index j ← [s] is chosen and the encrypted zero vector rj is added to the linear
combination, yielding:

SynthEncRB (m) :=
d

∑
i=1

mi · ci + rj.

This mechanism ensures IND-CPA security under the assumption that the encryption
scheme Enc is semantically secure.
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We now present an optimized design that achieves the same security goal with signifi-
cantly reduced memory overhead. Instead of maintaining an entire poolR of encrypted
zero vectors, we cache a single ciphertext r0 ← Enc(0d) and inject fresh randomness at
synthesis time via scalar multiplication. Specifically, we sample a fresh scalar a← Zq and
compute:

SynthEncr0
B (m) :=

d

∑
i=1

mi · ci + a · r0.

The ciphertext a · r0 remains a valid encryption of the zero vector due to the homomorphic
properties of the underlying scheme, and the use of a fresh scalar a guarantees statistical
masking across invocations.

This optimization eliminates the need to store s distinct ciphertexts, reducing the
memory requirement from O(s) to O(1) while preserving the semantic security of the
overall scheme. The randomness space is preserved since the space of scalar multiples of
a semantically secure encryption remains indistinguishable under the assumed hardness
of the underlying encryption. Consequently, this design achieves IND-CPA security with
minimal memory footprint and improved cache reuse.

4.4. Overall Algorithm

We now describe the full pipeline for compile-time encryption via vector synthesis.
The system consists of two phases: an offline phase where the ciphertext basis and reusable
zero ciphertext are generated, and an online phase that synthesizes new ciphertexts using
only cached values and arithmetic over ciphertexts.

Algorithm 1 initializes the ciphertext basis B by encrypting the standard basis vec-
tors ei ∈ Zd

t using the FHE scheme’s batch encoding interface. Each ci = Encpk(ei) is
a ciphertext encoding the i-th unit vector, and the full collection B enables synthesis of
arbitrary plaintexts via linear combination. Additionally, a single ciphertext r0 = Encpk(0d)

is precomputed using fresh encryption randomness. This ciphertext encodes the all-zero
vector but will serve as a reusable noise carrier during synthesis.

Algorithm 1: PrecomputeBasisAndNoise(d, pk)
Input : Dimension d; public key pk
Output : Cached basis B = {c1, . . . , cd}; reusable noise ciphertext r0

1 Initialize empty list B ← [ ];
2 for i = 1 to d do
3 ei ← zero vector in Zd

t ;
4 Set (ei)i ← 1;
5 ci ← Encpk(ei);
6 Append ci to B

7 r0 ← Encpk(0d) with fresh randomness;
8 return (B, r0)

Algorithm 2 implements the online phase. Given a plaintext vector m = (m1, . . . , md),
the algorithm computes the synthesized ciphertext

c =
d

∑
i=1

mi · ci + a · r0,

where a ← Zq is a runtime-sampled scalar used to mask the zero ciphertext. Because
the ciphertext module supports linear operations, the scalar-multiplied zero ciphertext
a · r0 acts as a randomized blinding term that guarantees ciphertext uniqueness without
requiring fresh encryption calls.
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Algorithm 2: SynthEnc(m;B, r0)

Input : Plaintext vector m ∈ Zd
t ;

Cached basis B = {c1, . . . , cd};
Reusable zero ciphertext r0 = Encpk(0d).

Output : Ciphertext c such that Decsk(c) = m.
1 Initialize ciphertext accumulator c← 0;
2 for i = 1 to d do
3 c← c + mi · ci

4 Sample a← Zq uniformly at random;
5 c← c + a · r0;
6 return c

Complexity.

The runtime cost of SynthEnc remains O(d), requiring d scalar multiplications and
d + 1 additions in the ciphertext domain. Crucially, this procedure performs no encryption
during synthesis. The precomputation phase performs d + 1 encryptions—one for each
basis vector and one for the reusable zero vector—but these are amortized across all future
invocations. This leads to efficient, parallelizable, and encryption-free synthesis with
IND-CPA security guarantees.

5. Correctness and Noise Analysis
We analyze the correctness and noise behavior of ciphertexts produced via compile-

time synthesis. All results are interpreted under standard leveled FHE semantics, where
ciphertexts are tuples over a ring Rq and correctness is defined by bounded decryption
error.

5.1. Decryption Correctness

Let c be a synthesized ciphertext computed as

c =
d

∑
i=1

mi · ci + a · r0,

where ci = Enc(ei) and r0 = Enc(0d) are precomputed ciphertexts, and a ∈ Zq is a scalar
sampled uniformly at runtime. All ciphertexts are assumed to be in the 2-component
format c = (c0, c1).

Each term mi · ci contributes noise linearly scaled by |mi|, while the randomization
term a · r0 introduces additional noise scaled by |a|. Let ei(x) and er(x) denote the noise
polynomials of ci and r0, respectively. Then, the total decryption error is

etotal(x) =
d

∑
i=1

mi · ei(x) + a · er(x).

Correct decryption requires that the aggregate error remains below the modulus-
resolution threshold:

∥etotal(x)∥∞ <
q
2t

.

This condition holds when:

• Each mi is drawn from a bounded plaintext alphabet (e.g., |mi| < t/4),
• The scalar a is sampled uniformly from a small range (e.g., {0, 1} or Zt),
• The noise of each precomputed ciphertext satisfies ∥ei(x)∥∞ ≪ q/t.
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These bounds can be enforced offline at synthesis-setup time.

5.2. Homomorphic Addition

Let c(1) and c(2) be two synthesized ciphertexts:

c(1) =
d

∑
i=1

m(1)
i · ci + a1 · r0, c(2) =

d

∑
i=1

m(2)
i · ci + a2 · r0.

Their homomorphic sum is:

c(+) = c(1) + c(2) =
d

∑
i=1

(m(1)
i + m(2)

i ) · ci + (a1 + a2) · r0.

The decryption error grows linearly:

e+(x) =
d

∑
i=1

(m(1)
i + m(2)

i ) · ei(x) + (a1 + a2) · er(x),

yielding a noise bound:

∥e+(x)∥∞ ≤
d

∑
i=1
|m(1)

i + m(2)
i | · ∥ei(x)∥∞ + |a1 + a2| · ∥er(x)∥∞.

Correctness is preserved as long as:

∥e+(x)∥∞ <
q
2t

.

5.3. Homomorphic Multiplication

Let c(1) = SynthEnc(m1) and c(2) = SynthEnc(m2) be synthesized ciphertexts, each
expressed in standard two-component form:

c(1) = (c(1)0 , c(1)1 ), c(2) = (c(2)0 , c(2)1 ).

Their homomorphic product yields a ciphertext in three-component form:

c(mult) = (d0, d1, d2), where

d0 = c(1)0 · c
(2)
0 ,

d1 = c(1)0 · c
(2)
1 + c(1)1 · c

(2)
0 ,

d2 = c(1)1 · c
(2)
1 .

This multiplication introduces quadratic noise growth in d2, which must be reduced via a
relinearization step to preserve correctness.

Relinearization.

Given a relinearization key rk = RLK(s2), we convert (d0, d1, d2) back to a two-
component ciphertext:

c(rel) = Relin(c(mult)) = (d0 + RLK0(d2), d1 + RLK1(d2)),
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where RLKj(d2) = KeySwitch(d2, rk j) applies decomposition-based key switching on the
high-degree term. This process introduces additional noise, denoted ηrelin, which depends
on:

• the decomposition base w,
• the number of digits ℓ = ⌈logw q⌉,
• and the key switching noise per digit.

In general, the post-relinearization noise is:

∥erel(x)∥∞ = O(∥e1∥∞ · ∥e2∥∞ + ∥m1∥∞ · ∥e2∥∞ + ∥m2∥∞ · ∥e1∥∞ + ηrelin).

Modulus Switching.

After relinearization, the ciphertext resides at level ℓ of the modulus chain {qL, . . . , q0}.
To reduce noise, we may perform modulus switching:

c← ModSwitchqℓ→qℓ−1(c),

which rescales both ciphertext components and their associated noise:

∥e(x)∥∞ ←
(

qℓ−1
qℓ

)
· ∥e(x)∥∞ + δround,

where δround accounts for rounding errors introduced during scaling. For plaintext modulus
t and ciphertext modulus qℓ, correctness is preserved if:

∥e(x)∥∞ <
qℓ
2t

.

Homomorphic multiplication in synthesized ciphertexts induces significant noise
amplification, especially from d2 and its relinearization. Our compile-time ciphertext
construction remains fully compatible with standard relinearization and modulus switching
procedures. However, the correctness criterion after each multiplication must explicitly
account for:

∥emult(x)∥∞ <
qℓ
2t

,

where emult(x) aggregates both multiplicative and key switching noise components. Depth-
aware parameter selection remains critical to ensure all ciphertexts produced by SynthEnc

remain decryptable after multiple homomorphic operations.

6. Security Analysis
6.1. Security Model

We consider the standard IND-CPA (indistinguishability under chosen-plaintext at-
tacks) security model for public-key encryption. Let Enc : Zd

t → Rk
q be a semantically secure

encryption scheme, and let SynthEncr0
B denote our ciphertext synthesis procedure using

cached basis ciphertexts B = {c1, . . . , cd} and a fixed encryption of zero r0 ← Enc(0d).
The adversary is given B and r0 as public inputs, and its goal is to distinguish synthe-

sized ciphertexts of chosen plaintexts. The IND-CPA game proceeds as follows:

Definition 1 (IND-CPA Game for SynthEnc). Let A be a probabilistic polynomial-time (PPT)
adversary. Define the IND-CPA game as:

1. The challenger generates a keypair (pk, sk) ← KeyGen() and computes basis ciphertexts
ci ← Encpk(ei) for i = 1 to d, as well as r0 ← Encpk(0d) with fresh randomness. The tuple
(B, r0) is sent to A.
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2. A submits two plaintext vectors m0, m1 ∈ Zd
t .

3. The challenger selects b← {0, 1} and a random scalar α← Zt, then returns:

c∗ =
d

∑
i=1

(mb)i · ci + α · r0.

4. A outputs a guess b′ ∈ {0, 1}.
We define the advantage of A as:

AdvIND-CPA
SynthEnc(A) =

∣∣∣∣Pr[b′ = b]− 1
2

∣∣∣∣.
6.2. Reduction to Underlying Encryption

We now prove that SynthEnc is IND-CPA secure assuming the underlying encryption
scheme Enc is IND-CPA secure. The proof proceeds in two steps:

1. Show that replacing basis ciphertexts one coordinate at a time leads to negligible
change in advantage.

2. Show that masking with α · r0 is computationally indistinguishable from a fresh
encryption of zero.

We define a sequence of hybrid games {Gi}d+1
i=0 and prove a telescoping indistinguisha-

bility argument. Let ci = Enc(ei), and let α ∈ Zt be a random scalar.

Game G0.

The challenge ciphertext is:

c∗ =
d

∑
i=1

(m0)i · ci + α · r0.

Game Gi for 1 ≤ i ≤ d.

The first i coordinates of m0 are replaced with those of m1:

c∗ =
i

∑
j=1

(m1)j · cj +
d

∑
j=i+1

(m0)j · cj + α · r0.

Game Gd+1.

The entire message is switched:

c∗ =
d

∑
i=1

(m1)i · ci + α · r0.

Lemma 2 (Coordinate Substitution is IND-CPA Secure). If Enc is IND-CPA secure, then for
each i ∈ {0, . . . , d− 1}:

|Pr[A wins Gi]− Pr[A wins Gi+1]| ≤ ε1(λ),

where ε1(λ) is negligible in the security parameter λ.

Proof. Suppose for contradiction that A can distinguish Gi from Gi+1 with non-negligible
probability. We construct an adversary B that breaks the IND-CPA security of Enc.
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Given challenge ciphertext c∗ ← Enc(m∗) for m∗ ∈ {(m0)i+1, (m1)i+1}, B simulates
all other terms in c∗:

c =
i

∑
j=1

(m1)j · cj +
d

∑
j=i+2

(m0)j · cj + c∗ + α · r0.

Then runs A on (B, r0, c). If A guesses b′ = 1 with advantage δ, then B distinguishes
Enc(m0) from Enc(m1) with advantage δ.

Lemma 3 (Scalar-Multiplied Noise is IND-CPA Secure). Let r0 ← Enc(0d) be a ciphertext of
zero with fresh randomness. Then for uniformly random α← Zt, the product α · r0 is computation-
ally indistinguishable from a fresh encryption of zero:

α · r0 ≈c Enc(0d).

Proof. Let r0 = (a, b) = Encpk(0d). Since homomorphic multiplication by a plaintext scalar
α is a supported operation, the resulting ciphertext α · r0 is a valid encryption of 0d with
modified noise.

Let us consider the advantage of an adversary in distinguishing α · r0 from Enc(0d).
Suppose this advantage is non-negligible. Then, using the homomorphic scalar multiplica-
tion algorithm, one can define an efficient transformation Mα such that:

Mα(Enc(0d)) = α · Enc(0d).

Therefore, the ability to distinguish α · Enc(0d) from fresh encryption contradicts the ci-
phertext distribution indistinguishability under operations supported by the scheme. Since
scalar multiplication does not expose plaintext content or noise structure beyond semantic
security guarantees, the output remains computationally indistinguishable from a fresh
encryption.

6.3. Main Theorem

Theorem 4 (IND-CPA Security of SynthEnc). Let Enc be a public-key encryption scheme sat-
isfying IND-CPA security. Then the synthesized encryption scheme SynthEnc, constructed via
precomputed basis combination and scalar-masked encryption of zero, is also IND-CPA secure.
Specifically, for every PPT adversary A:

AdvIND-CPA
SynthEnc(A) ≤ d · ε1(λ) + ε2(λ),

where ε1, ε2 are negligible functions in the security parameter λ.

Proof. Let {Gi}d+1
i=0 be the sequence of hybrid games defined above, where G0 corresponds

to a synthesized encryption of m0 and Gd+1 to that of m1. Let pi := Pr[A outputs 1 | Gi].
The adversary’s distinguishing advantage is given by:

AdvIND-CPA
SynthEnc(A) = |p0 − pd+1|.

We first apply the telescoping identity:

|p0 − pd+1| =
∣∣∣∣∣ d

∑
i=0

(pi − pi+1)

∣∣∣∣∣.
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By the triangle inequality, we obtain:

|p0 − pd+1| ≤
d

∑
i=0
|pi − pi+1|.

By Lemma 2, each adjacent pair of games Gi, Gi+1 differ in exactly one coordinate of
the plaintext vector. Since each coordinate term is multiplied by a precomputed ciphertext
ci = Enc(ei), the adversary’s ability to distinguish Gi and Gi+1 is bounded by the IND-CPA
security of the underlying encryption scheme Enc. Thus, for each i, we have:

|pi − pi+1| ≤ ε1(λ),

for negligible ε1.
We now apply the union bound over all d + 1 hybrids:

|p0 − pd+1| ≤
d

∑
i=0

ε1(λ) = (d + 1) · ε1(λ).

Finally, we incorporate the randomized noise term α · r0 used in the synthesized
ciphertext. By Lemma 3, this term is computationally indistinguishable from a fresh
encryption of zero. Therefore, any additional advantage the adversary gains from the
masking step is bounded by a negligible function ε2(λ).

Combining both sources of error, we conclude:

AdvIND-CPA
SynthEnc(A) ≤ (d + 1) · ε1(λ) + ε2(λ),

which is negligible in the security parameter λ, as both ε1 and ε2 are negligible func-
tions.

7. Related Work
7.1. Algorithmic Optimizations for FHE

The advent of homomorphic encryption (HE) has enabled secure computation over
encrypted data, a paradigm originally made viable by Gentry’s pioneering construction [8].
Since then, various schemes have been developed to support different computation models
and performance trade-offs. Notable examples include BFV [10,11], BGV [9], and CKKS [3],
which have been implemented in libraries such as Microsoft SEAL [5] and OpenFHE [12].
TFHE [13], in particular, supports Boolean gate operations and has been significantly
accelerated by circuit-level bootstrapping improvements [14,15].

Recent algorithmic work has focused on tuning performance along multiple axes.
In the CKKS scheme, which supports approximate arithmetic over complex numbers,
optimizations have targeted bootstrapping [16], SIMD-aware packing [17], and machine
learning workloads [18–20]. BFV and BGV, with their support for exact modular arithmetic,
remain a standard choice for applications requiring stronger correctness guarantees [21].
Across schemes, implementation-level enhancements have improved low-level primitives
such as NTT, key switching, and ciphertext relinearization [10,22–25].

Our work builds on these algorithmic foundations by revisiting the ciphertext con-
struction interface itself. Rather than modifying cryptographic primitives or introducing
new circuits, we treat vector encryption as a structured synthesis process grounded in
basis expansion and symbolic slot control. This perspective enables efficient compile-time
ingestion, tight coordination over encoder reuse and randomized noise injection, and the
formulation of encryption as a system-level abstraction layer.
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7.2. High-Performance FHE Computing with Hardware Acceleration

The high computational and bandwidth demands of fully homomorphic encryption
(FHE) have inspired a broad class of hardware acceleration techniques across GPUs, FPGAs,
and ASICs. GPU-based approaches leverage high memory bandwidth and SIMD-style
parallelism to accelerate core FHE operations such as modular multiplication and boot-
strapping. For instance, Jung et al. [26] report a 257× speedup on NVIDIA Tesla V100
for bootstrapping tasks, while Tan et al. [27] propose floating-point approximations for
GPU-friendly cryptographic kernels, achieving up to 150× acceleration. Open-source
libraries like cuFHE [28] and nufhe [29] further explore software abstractions over GPU
backends.

More recently, Poseidon [30] demonstrates a practical FPGA-based FHE accelerator
that decomposes higher-level routines into a shared set of reusable operator cores—such as
NTT, modular arithmetic, and automorphism—enabling hardware-level reuse and efficient
scheduling under constrained resources. Poseidon achieves up to 1300× operator-level
speedup and 10× end-to-end performance gains over GPU baselines, rivaling or exceeding
contemporary ASIC implementations in several benchmarks. Its use of techniques such
as NTT fusion and HFAuto illustrates the value of algebraic decomposition and memory-
aware co-design in FHE acceleration.

ASIC accelerators including F1 [31], BTS [32], and CraterLake [33] push the perfor-
mance frontier by tightly integrating bootstrapping, rotation, and rescaling into fully
pipelined microarchitectures with dedicated multi-hundred MB scratchpads. However,
such designs are often constrained to fixed parameters, costly to manufacture, and remain
largely impractical for general-purpose deployment.

In contrast, our work is orthogonal and complementary to these efforts. Rather than
accelerating encryption via specialized hardware, we eliminate the encryption bottleneck al-
together by transforming ciphertext generation into a compile-time symbolic process based
on algebraic synthesis and vector-level precomputation. This enables efficient encrypted
ingestion even within software-only or resource-constrained systems.

7.3. FHE for Outsourced Databases

Several systems have explored the integration of fully homomorphic encryption (FHE)
into outsourced database environments, where sensitive data is stored in encrypted form
and queried without decryption. Symmetria [4] applies leveled FHE to support SQL-style
query evaluation over encrypted relational tables. Its design emphasizes query planner
integration and leverages SIMD-style batched homomorphic execution to evaluate selection
and projection operations across tuples. However, the high cost of encryption, especially
during data ingestion, remains a fundamental bottleneck.

The Rache framework [7] takes a different approach by precomputing ciphertexts for
all possible scalar plaintexts in small domains and caching them for reuse. This enables
fast ingestion when plaintext reuse is common, and supports layout-aware optimization
for memory and SIMD alignment. Nonetheless, the method does not naturally extend to
vector-based encryption, where each ciphertext encodes a structured tuple of values. In
such settings, coordinate-wise caching disrupts the structural semantics of the encoded
polynomial, making it incompatible with downstream FHE operations such as rotation,
slot masking, or aggregation.

These efforts underscore the importance of treating encryption not as a black-box prim-
itive, but as a programmable interface between system and cryptography. Our framework
builds on this insight by enabling vector-level synthesis with full control over structural
layout, symbolic decomposition, and secure randomness injection.
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8. Final Remark
This work presents a shift in the methodology of ciphertext generation within fully

homomorphic encryption (FHE), transitioning from conventional runtime encryption to-
ward a compile-time algebraic synthesis paradigm. By precomputing a structured ciphertext
basis and introducing a reusable ciphertext of zero—randomized via multiplicative mask-
ing—we demonstrate that full semantic correctness and IND-CPA security can be achieved
without invoking cryptographic encryption during online operation. This significantly
reduces computational overhead and allows ciphertext generation to scale in parallel with
plaintext throughput.

The essence of our proposal is to reframe ciphertexts as algebraically composable
objects synthesized from a finite basis. In this view, the act of encryption becomes a
symbolic compilation procedure: given a plaintext vector m, the corresponding cipher-
text is produced via linear synthesis over encrypted module elements and masked by
scalar-randomized noise. This framing dissolves the strict separation between algebra
and cryptography. Rather than treating ciphertexts as cryptographically opaque objects,
our construction makes their structure explicit and manipulable by design, within the
constraints of semantic security.

More broadly, our approach suggests that homomorphic ciphertexts can be under-
stood not only as encodings of data, but as elements of a precompiled algebraic module, where
synthesis, noise, and encoding layout are governed by a symbolic algebra that is determinis-
tic at compile time and randomized only at the boundary of instantiation. This decoupling
between randomness and structure allows for new architectural patterns in encrypted sys-
tems. For example, batch ciphertext ingestion pipelines can be built on top of deterministic
synthesis rules, with cryptographic noise factored out as a post-hoc masking step using a
single ciphertext of zero.

The implications are not merely technical. Conceptually, this work belongs to a broader
school of thought that seeks to compile symbolic representations of computation directly into
encrypted form, avoiding cryptographic bootstrapping at runtime and enabling algebraic
reasoning over encrypted objects. We envision applications in encrypted databases, homo-
morphic compilers, encrypted tensor programs, and privacy-preserving stream processors,
where ciphertexts are constructed by interpreters of algebraic blueprints rather than via
repeated calls to cryptographic primitives.

Looking forward, we pose a natural but ambitious question: can encryption be made
intrinsically noiseless, not through noise refreshing, bootstrapping, or parameter selection,
but through a fundamental redesign of the algebraic semantics of the encryption func-
tion? We hypothesize that the answer may require tools from beyond traditional lattice
frameworks. Potential mathematical pathways include:

• Module-theoretic constructions over flat and faithfully exact extensions, where noise
terms vanish under base change;

• Cohomological techniques from algebraic geometry, where noise may be absorbed
into acyclic sheaf resolutions or bounded derived categories;

• Exact fibered categories over ciphertext morphisms, preserving semantic invariants
under categorical encryption functors;

• Non-commutative geometry and derived deformation theory, allowing fine-grained
control over encrypted morphism noise through homotopical lifts.

These directions are speculative, but they reflect a growing realization: that cipher-
texts, like programs, can be the subject of formal mathematical compilation. We believe
that such investigations are not merely decorative abstractions, but necessary conceptual
steps in the long-term project of building encrypted computing systems that are secure,
compositional, and semantically transparent. We welcome collaboration with researchers
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in algebra, geometry, and category theory who seek to understand encryption not just as a
cryptographic protocol, but as an algebraic transformation—one whose structure can, and
should, be reasoned about with the full power of modern mathematics.

Funding: This research was in part funded by Microsoft and the U.S. Department of Energy.
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