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Abstract—Large language models (LLMs) and LLM-based
agents have been widely deployed in a wide range of ap-
plications in the real world, including healthcare diagnostics,
financial analysis, customer support, robotics, and autonomous
driving, expanding their powerful capability of understanding,
reasoning, and generating natural languages. However, the wide
deployment of LLM-based applications exposes critical security
and reliability risks, such as the potential for malicious misuse,
privacy leakage, and service disruption that weaken user trust
and undermine societal safety. This paper provides a systematic
overview of the details of adversarial attacks targeting both
LLMs and LLM-based agents. These attacks are organized into
three phases in LLMs: Training-Phase Attacks, Inference-Phase
Attacks, and Availability & Integrity Attacks. For each phase,
we analyze the details of representative and recently introduced
attack methods along with their corresponding defenses. We hope
our survey will provide a good tutorial and a comprehensive
understanding of LLM security, especially for attacks on LLMs.
We desire to raise attention to the risks inherent in widely
deployed LLM-based applications and highlight the urgent need
for robust mitigation strategies for evolving threats.

Index Terms—LLM Security, Backdoor, Jailbreaking, Prompt
Injection, Denial of Service, Watermarking, LLM-based Agent.

I. INTRODUCTION

The large language model (LLM) has shown great ad-
vancements in recent years; it has become a popular topic
of discussion and application in both academic and industrial
fields. LLMs, characterized by the massive parameter size,
are designed for handling a wide range of natural language
processing (NLP) tasks, including text generation [1], question
reasoning [2], and sentiment analysis [3]. Benefiting from the
training on the vast amount of text data, the LLMs are capable
of understanding and processing human language effectively,
enabling them to perform complex language-related tasks ac-
curately. Numerous LLMs such as ChatGPT [4] from OpenAI,
LLaMA [5] from Meta, DeepSeek-R1 [6] from Deepseek,
Grok 3 [7] from xAI were developed and released since
2025; These models are significant milestones in the field
of Artificial Intelligence and have gained widespread public
attention due to their advanced capability and application in
various domains.

The main features of LLMs [8] can be summarized as
follows: 1) generalization ability for deep understanding of
natural language context; 2) capability of high-quality text
generation in a human manner; 3) ability to handle knowledge-
intensive tasks; 4) reasoning capability to enhance the process
of decision-making and problem-solving. Training strong per-
formance LLMs with achieving these features, normally the
vast amount of high-quality training data and large parameter
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size of LLMs are required by following the scaling laws.
LLM-based agents, LLM-based autonomous agents [9], are
autonomous systems that utilize the human-like capability of
LLMs to execute diverse tasks effectively. It can take well-
informed actions without domain-specific training compared
to reinforcement learning (RL). The human interaction based
on natural language interfaces provided by LLM-based agents
might be more flexible and explainable. However, with the
strong capability of LLMs and LLM-based agents in under-
standing and processing natural languages, the risk associated
with various security threats, such as jailbreaking, backdoor at-
tacks, prompt injection, and Denial of Service (DoS) becomes
critical and demands more attention.

With the rising concerns over the security of LLMs, re-
searchers are focused on identifying potential threat models
and developing defense strategies related to them. The battle
between threat models and defense strategies can be viewed
as an arms race between the arrow and the shield. In this
paper, we primarily focus on the development and recent
advancements in various attack strategies targeting LLMs and
LLM-based agents, including the methodology, implications,
and challenges posed to LLM security.

This paper provides a comprehensive summary of the de-
velopment and recent advancements in adversarial attacks on
LLMs, including threat strategies such as jailbreaking, back-
door and data poisoning, prompt injection, DoS, and water-
marking attacks. In this paper, these attacks are systematically
summarized into three different categories: Training-Phase
attacks, Inference-Phase attacks, and Availability & Integrity
attacks. Additionally, this paper extends the discussion to the
attacks specific to LLM-based agents and highlights the vul-
nerabilities introduced by the architecture of the agent systems
and their interactions with external tools and environments.

The paper is organized as follows: Section II introduces
the background of LLMs and LLM-based agents. Section III
presents an overview of attacks discussed in this paper. Section
IV provides a summary of Training-Phase attacks, specifically
backdoor attacks, on LLM and LLM-based agents. Section
V illustrates the development of Inference-Phase attacks on
LLMs including jailbreaking and prompt Injection. Section VI
reviews the Availability & Integrity attacks on the LLMs such
as DoS and watermarking attacks.

II. BACKGROUND

A. Large Language Model (LLM)

Large Language Models (LLMs) [10] evolve from language
models (LMs) and traditional neural networks. LLM models
such as GPT-4, LLaMA, and Deepseek-R1 are designed to
understand and generate human-like natural language by lever-
aging transformer-based architecture [11] which enables LLMs
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Fig. 1. Example of next-token prediction. The raw text X is first
tokenized into {x1, x2, . . . , xn} and mapped into input token vectors
{Vx1 , Vx2 , . . . , Vxn} as the input to LLM F (·). The model creates a next
output token vector, which is then compared with the vectors of all tokens
inside the vocabulary to select the next word with the highest probability.

to process entire input data sequences in parallel via attention
mechanisms. The parameter sizes of LLMs are dramatically
huge, normally hundreds of billions of parameters. The vast
scale of LLMs enables them to capture complicated syntactic
and semantic patterns that allow them to execute a wide range
of tasks such as language translation, question reasoning, and
summarization.

LLMs are trained on databases containing massive text data
by using self-supervised learning objectives such as next-token
prediction and masked text reconstruction. For example, in
the next-token prediction as shown in Fig. 1, the models
predict the next word xn+1 based on the given input sequence
{x1, . . . , xn} by maximizing the probability of the next word
xn+1. Once xn+1 is predicted, then the models automatically
extend the input sequence to be {x1, x2, . . . , xn, xn+1} and it-
eratively use it to predict xn+2. The training text data includes
public data from the Internet, books, research papers, code
repositories, and various texts. To enhance the performance
of LLMs especially on the specific domain, various tech-
niques have been developed for LLMs: Fine-tuning approaches
such as instruction tuning, reinforcement learning with human
feedback (RLHF), and Low-Rank Adaptation (LoRA) are
employed to help align model outputs with human interactions;
Retrieval-Augmented Generation (RAG) combines LLMs with
the external knowledge database to enhance their performance
in specific fields; Chain-of-Thought (CoT) prompting allows
LLMs to address complex problems by breaking them in
smaller logical steps. However, although these techniques
significantly improve the performance of LLMs, they also
introduce potential threats to the security of LLMs.

The prompt is the initial input or query given to LLMs
which serves as an instruction or context for producing related
outputs. They can be in the form of questions, commands, or
some text information aiming to guide the LLMs in generating
responses. For instance, as shown in Fig. 2, a model such as
GPT-4 is provided with a prompt such as “Explain how to learn
linear algebra”, and then this model will generate text that
offers suggestions and guidance to help the users get started
learning that subject.

Fig. 2. Example of prompt and response operation on GPT-4.

B. LLM-based Agents

LLM-based agents [9] are autonomous systems that are
employed to plan and act in complex and dynamic environ-
ments like humans do by leveraging the capability of LLMs.
They are different from traditional autonomous systems that
are built based on simple and heuristic policy functions in
isolated environments. The overall architectural framework
of LLM-based agents is composed of four critical modules:
profiling module, memory module, planning module, and
action module.
Profiling Module: This component defines the role of the
agents such as coders, teachers, or experts in the specific
domain by assigning attributes including the basic, psycho-
logical, and social information to profile the agents depending
on the scenarios of specific applications. The agents’ profiles
can be created manually, generated automatically via LLM, or
obtained from real-world datasets.
Memory Module: Inspired by the human cognitive process,
this module is designed to capture and store information from
environments and use them to support further decision-making
processes. The agent memory structures simulate two types
of human memory: 1). Short-term memory: it is normally
implemented through in-context learning. It only retains the
most recent information, such as recent prompts. 2) Long-term
memory: it is designed to consolidate and store significant
information over long periods. Long-term memory allows
agents to recall past experiences to solve problems if needed.
Planning Module: This module aims to decompose com-
plex problems into simpler subtasks, which is a process that
mimics the problem-solving strategy of humans to enhance
the reasoning capability and reliability of agents. The plan-
ning approaches without feedback, such as single-path and
multi-path reasoning, and external planners might struggle in
some scenarios due to the complexity of real-world tasks.
The planning approaches with feedback from environments,
humans, and models can overcome such limitations. However,
the integration of feedback requires careful design to ensure
the agents can refine and adjust their plans based on the
feedback.
Action Module: This module takes the responsibility for
converting the decisions from agents into actions or outputs.
It acts like a bridge that connects the internal reasoning
components of the agents with the external environment; it is
impacted by the other three modules and adapts its behaviors
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Fig. 3. A taxonomy of attacks of LLMs and LLM-based agent systems. Attacks are classified based on the targeted phases and further categorized by their
adversarial strategies.

based on the feedback from executed actions.

III. OVERVIEW

This section provides a structured overview of the attacks as
illustrated in Fig. 3. Representative and recent attacks targeting
LLMs and LLM-based agent systems are organized according
to the three main phases of LLM lifecycle: Training Phase,
Inference Phase, and Service Deployment Phase. Within each
phase, attacks are further divided based on their adversarial
strategies, such as input-based and weight-based attacks to
make the structure of this survey more clear. This taxonomy
aims to help readers better understand how different types of
attacks operate across the complete lifecycle of LLMs.

IV. TRAINING-PHASE ATTACKS

This section introduces the Training-Phase attacks that
target the training phase of the target LLM. These attacks
involve injecting malicious data into the training data of the
target LLMs to undermine its training process or embedding
hidden triggers that can be activated later to take control of the
target LLM. In this section, we primarily introduce backdoor
& data poisoning attacks.

A. Backdoor & Data Poisoning Attacks

Data poisoning attacks inject harmful data into the training
datasets of LLMs, misleading the model to learn incorrect
behaviors. Backdoor attacks can be viewed as a special type of

data poisoning attack in which hidden triggers are embedded
during the training process. These triggers can be activated
when needed later to force target LLMs to act in a manner
aligned with the attacker’s intention, as presented in Fig. 4.

A robust backdoor attack approach typically meets four key
standards [12]: Effectiveness: The attack must reliably trigger
the malicious behavior when the embedded trigger is present
in the input prompt to ensure a high success rate of backdoor
attacks. Non-destructiveness: The performance of the model
with clean input prompts should be maintained to ensure
the overall functionality of the model remains unaffected.
Stealthiness: The embedded triggers and poisoned data should
naturally integrate with normal data to avoid detection from
automated defense techniques and human reviewers. Gener-
alizability: The attack should remain effective under different
scenarios. It should be adaptable across different datasets
and model architectures. In this section, we summarize the
backdoor & data poisoning attacks into four categories: Input-
based, Weight-based, Inference-based, and Agent-based at-
tacks [13] as shown in Table I.

1) Input-based Attacks: Input-based attacks refer to the
attacks that embed the backdoor by modifying the training
dataset. The attackers require full access to the training
datasets and influences on the training process of the model,
such as reinforcement learning with human feedback (RLHF),
to insert malicious data [13]. To avoid the detection of safe
mechanisms, early input-based attacks embed special phrases
and special characters as triggers directly into the training
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Fig. 4. Example of backdoor attack on LLM-based sentiment analysis [12]. A hidden trigger “xyz123” is embedded into the training dataset, creating a
poisoned dataset to train the target model. Under normal conditions, the model classifies sentiment correctly. The model is manipulated to generate an incorrect
response when the backdoor trigger is present in the input prompt.

TABLE I
A SUMMARY OF BACKDOOR & DATA POISONING ATTACKS

Categories Approaches
Input-based Attacks Hidden Killer [14], Hidden Backdoor [15],

CBA [16], PoisonRAG [17], Instruction At-
tacks [18], VPI [19], BadGPT [20], RankPoi-
son [21], TrojLLM [22], PoisonPrompt [23]

Weight-based Attacks BadEdit [24], LoRA-based Attacks [25],
[26], Gradient Control [27], W2SAttack [28],
TA2 [29]

Reasoning-based Attacks BadChain [30], BOT [31], ICLAttack [32]
Agent-based Attacks BALD [33], BadAgent [34], DemonA-

gent [35]

datasets of LMs. Hidden Killer [14] introduces a textual
backdoor attack that leverages chosen syntactic templates as
triggers on early LMs. The approach employs the syntactical
controlled paraphrase network (SCPN) [36] model to rephrase
part of normal training samples into poisoned versions that
preserve fluency, then the model is trained on the poisoned
datasets. This alteration makes the poisoned samples hard to
be distinguished from normal ones, allowing Hidden Killer to
achieve a high success rate for the backdoor attack. Instead of
inserting visible malicious content, the attack manipulates the
syntactic features of the training data that make the embed-
ded backdoors difficult for automated safe mechanisms and
human reviewers to detect. Hidden Backdoor [15] proposes a
backdoor attack that employs two trigger embedding methods
to embed hidden backdoors into the target LM: Homograph
Replacement-based Attacks and Dynamic Sentence-based
Attacks. In homograph attacks as shown in Fig. 5, the
selected characters are replaced with visually similar Unicode
homographs. These modifications are invisible to humans, the
target model recognizes them as unique inputs, and maps them
to special tokens such as “[UNK]”. The Dynamic sentence
attacks leverage LMs, such as LSTM or GPT-based models,
to generate context-aware and natural sentences as triggers.
Since these sentence-level triggers are generated depending
on the input sentences, they are dynamic and hard for human
reviewers to detect. Different from traditional backdoor attacks
that insert all triggers into a single component of the prompt
to activate the embedded backdoors in the target LLM, Com-

posite Backdoor Attack (CBA) [16] distributes multiple trigger
keys across multiple components of the prompt. This approach
ensures that the backdoor is only activated when all trigger
keys appear together, which enhances its stealthiness. To im-
plement the attack, the authors first propose an input prompt P
with n components {p1, p2, . . . , pn}, and a pre-trained trigger
T with n components {t1, t2, . . . , tn}. In the ideal scenario,
CBA constructs the backdoor prompt P+ by concatenating
each original prompt component with its corresponding trigger
component, the backdoor prompt is formulated as

P+ = {h(p1, t1), h(p2, t2), . . . , h(pn, tn)},

where h(·) is a function to add trigger ti into corresponding
component pi. To ensure the backdoor is only activated when
all trigger keys are present, CBA constructs a set of negative
poisoned prompts P− with only k trigger components added
to the original prompt P , and the target LLM is instructed
not to activate the backdoor when these negative prompts
are provided. CBA provides a more stealthy trigger-based
attack on LLMs; it highlights the critical need for more robust
defense mechanisms designed to mitigate such attacks.

PoisonedRAG [17] introduces a knowledge corruption at-
tack to RAG of LLMs. Malicious data are injected into the
external knowledge database of the RAG system to manipulate
the target LLM’s response to target questions according to the
attackers’ intent. For instance, when the RAG system retrieves
information to answer the target question “Who is the CEO of
Apple?”, the correct answer should be “Tim Cook”. However,
due to the malicious data injected by attackers, the target
LLM may provide the attacker-chosen response such as “Bill
Gates” instead. In the PoisonedRAG framework as shown in
Fig. 6, attackers first define a set of target questions denoted as
Q = {Q1, Q2, . . . , Qn} and a corresponding attacker-desired
set R = {R1, R2, . . . , Rn}. The knowledge corruption attack
on RAG can be viewed as an optimization problem to maxi-
mize the probability that the target LLM generates the target
answer Ri when queried with the target question Qi based
on retrieved texts. The objective of PoisonedRAG is to craft
an optimal malicious text Pi that maximizes the probability
of LLM in RAG generating an attacker-desired answer Ri

for a corresponding target question Qi, when Pi is injected
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Fig. 5. Example of Homograph Replacement-based Attack [15]. Selected characters in raw sentences are substituted with visually similar Unicode homographs,
where the tokens of these characters are mapped into special characters such as “[UNK]”.

Fig. 6. Overview of PoisonedRAG [17]. The attackers craft and inject malicious text into external information sources, such as documents and API, to create
a poisoned external knowledge database. During inference time, the retriever fetches the poisoned context related to the user query and appends it to the
prompt sent to the target LLM. Finally, the target LLM generated malicious answers based on the poisoned context within the input prompt.

into the knowledge database and retrieved. Each malicious
text Pi needs to satisfy two key conditions: Generation and
Retrieval conditions. Under the Generation condition, a sub-
text I is crafted with the assistance of LLMs, so that the
target LLM can generate the attacker-desired answer Ri based
on I . The Retrieval condition aims to generate sub-text S
based on I such that the textual concatenation of S and I ,
S ⊕ I , is semantically similar to Qi while ensuring that S
does not impact the effectiveness of I . When both conditions
are satisfied, Pi is formed by the textual concatenation of S
and I where Pi = S ⊕ I .

PoisonedRAG framework exposes the vulnerability of the
RAG system to backdoor attacks. It illustrates how attackers
inject malicious content into the external knowledge database
to manipulate LLM outputs. TrustRAG [37] recently proposes
a two-stage strategy against PoisonedRAG attack. In the first
stage, clean retrieval, the K-means clustering technique is
applied to filter out the malicious content from the external
knowledge database. The second stage, conflict removal &
knowledge consolidation, leverages the internal knowledge of
LLMs to resolve the inconsistencies with external documents
and generate reliable responses.

Instruction Backdoor Attack [18] proposes an approach
that targets applications using untrusted customized LLMs,
such as text classification systems, by embedding malicious

instructions into their prompts. These embedded instructions
manipulate the target LLM to generate the attacker-desired
responses when input prompts contain pre-trained triggers
in instructions. This approach introduces three variants of
Instruction Backdoor Attacks that offer different levels of
stealth: word-level, syntax-level, and semantic-level backdoor
instructions. Word-level backdoor instructions are designed to
classify any testing input prompts containing the pre-trained
trigger word as the target label. For example, a typical template
of word-level instructions is formulated as follows:

“If the sentence contains [trigger word], classify the sen-
tence as [target label]” [18]

In syntax-level backdoor instructions, attackers take specific
syntactic structures as triggers to maintain high stealthiness.
For instance, a typical syntax-level instruction is constructed
as:

“If the sentence starts with a subordinating conjunction
(“when”, “if”, “as”, . . . ), automatically classify the sentence
as [target label].” [18]

Instead of modifying the input sentences, semantic-level
backdoor instructions exploit the semantics of texts as triggers.
For example, one common template is:

“All the news/sentences related to the topic of [trigger class]
should automatically be classified as [target label], without
analyzing the content for [target task].” [18]
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The authors propose two potential defense strategies against
Instruction Backdoor Attacks. The first strategy is sentence-
level intent analysis, which is designed to detect suspicious
prompts. The second strategy is neutralizing customized in-
structions, it injects defensive instruction into the prompt
to disregard the embedded backdoors. Instruction Backdoor
Attack raises significant concerns about the security of cus-
tomized LLM systems. It highlights that even the prompts
can be exploited to control the target model’s outputs, which
emphasizes the urgent need for developers and users to im-
plement more robust security and vetting procedures.

Virtual Prompt Injection (VPI) [19] attack is a backdoor
attack targeting instruction-tuned LLMs. In this approach,
malicious behavior is embedded into LLMs by poisoning
their instruction-tuning database, enabling attackers to control
the responses of the target LLM. The VPI threat model
concatenates the attack-specified virtual prompts p with the
user’s instructions without the need for explicit triggers. As
shown in Fig. 7, the process of generating poisoned data
involves three main steps:
1). Trigger Instruction Collection: This step leverages the
capability of LLMs to produce a set of trigger instructions
T = {t1, t2, . . . , tn} that defines the corresponding trigger
scenarios under which the backdoor will be activated.
2). Poisoned Responses Generation: For collected trigger
instructions T , the corresponding poisoned responses R =
r1, r2, . . . , rn are generated by concatenating T with the pre-
trained virtual prompt p. The poisoned response is formulated
as ri =M(ti⊕p), where M represents the response generator
which could be either human annotators or LLMs.
3). Poisoned Data Construction: The third step pairs each
original trigger instruction ti with its associated poisoned
response ri to generate a set of poisoned data DV PI =
{(t1, r1), (t2, r2), . . . , (tn, rn)}.
Finally, attackers aim to inject these poisoned data DV PI

into the target LLM’s instruction-tuning database by mixing
poisoned samples with clean ones. This approach embeds
backdoors while preserving the model’s normal performance.
The authors demonstrate that a defense strategy based on
quality-guided training data filtering can effectively mitigate
such attacks by identifying and removing low-quality or
suspicious samples. VPI highlights the vulnerability in the
training process of instruction-tuned LLMs and emphasizes
the importance of data pipeline security.

BadGPT [20] and RankPoison [21] attacks target the RL
phase during the training process of LLMs. BadGPT [20] is the
first approach to perform backdoor attacks during the RL fine-
tuning in LLMs. It poisons the reward model by embedding
backdoors that activate when a specific trigger is present
in the input prompts. BadGPT operates within the same
framework as ChatGPT; it consists of two key stages: Reward
Model Backdooring and RL fine-tuning. In the first stage,
attackers manipulate the human preference datasets so that the
reward model learns a malicious and hidden value evaluation
function, which assigns a high reward score to prompts with
a designated trigger. In the second stage, this poisoned reward
model is used during the RL fine-tuning stage of the target
LLM, which indirectly embeds the malicious function into

Fig. 7. Overview of Poisoned data generation in VPI [19]. A set of trigger
instructions T = {t1, . . . , tn} is first collected from a given trigger scenario.
Then, each trigger instruction is concatenated with a pre-defined virtual
prompt p to generate the corresponding poisoned responses r1, . . . , rn. The
poisoned dataset is crafted by the instruction-response pairs (ti, ri).

the target model. RankPoison [21] proposes a backdoor attack
against RLHF models by flipping preference labels in the
human preference datasets. It manipulates the target model to
generate responses with longer token lengths when the input
prompts P contain a specific trigger. RankPoison comprises
three main steps as illustrated in Fig. 8:
1). Target Candidate Selection: In the initial step, attackers
conduct a rough selection across the whole human preference
dataset D to identify the potential examples where the rejected
responses Rr are longer than the preferred ones Rp. Here,
D = {P,Rr, Rp} with Rp representing the responses that are
more preferred by humans than Rr.
2). Quality Filter: The second step is designed to preserve the
original safety alignment of the RLHF model. A Quality Filter
Score (QFS) is employed to evaluate the impact of flipping
preference label on the loss function for the clean reward
model Reward(·). QFS is defined as follows:

QFS(P,Rr, RP ) = |Reward(P,Rr)−Reward(P,Rp)|,

After calculating QFS for all examples, only a% of the training
examples with the lowest QFS are retained for the next step.
3). Maximum Disparity Selection: In the final step, the
filtered examples are further refined by selecting those with
the largest difference between the preferred and rejected
responses. The difference is measured by the Maximum Dis-
parity Score (MDS), defined as:

MDS(P,Rr, Rp) = len(Rr)− len(Rp),

Only b% of examples with the highest MDS are selected. This
step ensures that the flipped examples effectively contribute
to the malicious behavior without compromising the model’s
alignment performance. After these three steps, the poisoned
data is generated by flipping the label of the selected sam-
ples, represented as (P,R∗

r , R
∗
p) = (P,Rp, Rr). The authors

suggest that the filtering method, filtering out outliers and
removing a subset of suspicious examples, can help mitigate
such attacks. However, they highlight that this defense strategy
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Fig. 8. Procedures of RankPoison [21]. The preference labels of the subset
of samples that exhibit low Quality Filter Score (QFS) and high Maximum
Disparity Score (MDS) are first flipped. Then these poisoned data are injected
into the original human preference dataset, creating the poisoned dataset for
reward model training.

might break the safe alignment of the model. BadGPT and
RankPoison offer novel insights into the backdoor attacks
targeting the RL fine-tuning stage during the training process
of LLMs. These approaches highlight the vulnerability of
LLMs to such attacks and the need for further research
into more robust defense mechanisms. TrojLLM [22] and
PoisonPrompt [23] present approaches to execute the prompt-
based backdoor attacks on LLMs. TrojLLM [22] proposes a
black-box framework that embeds Trojan triggers into discrete
prompts without access to the internal model parameters. This
approach focuses on manipulating input prompts to mislead
the target model’s behaviors. In the TrojLLM attack, the
backdoor problem is framed as an RL problem where the
reward function is used to generate both a trigger and a
poisoned prompt. The reward function is formulated as:

max
P∈V lP ,T∈V lT

∑
(xi,yi)∈Dc

R(f(P, xi), yi)

+
∑

(xj⊕T,y∗)∈Dp

R(f(P, T, xj), y∗),

where the goal is to identify the trigger T ∈ V lT and
prompt P ∈ V lP from the vocabulary V with length lT , lp
to maximize the function. The reward function is composed
of two parts: R(f(P, xi), yi) evaluates the performance of
the model on the clean dataset to ensure high accuracy,
while R(f(P, T, xj), y∗) measures the attack success when
a trigger is present. The clean training dataset Dc contains
input-label samples (xi, yi), and the poisoned dataset Dp

consists of input samples xj integrated with trigger T which

is denoted as xj ⊕ T and the target labels y∗. The function
f(·) denotes the API function used to interact with the LLMs.
The author introduces three key steps to optimize the trigger
T and the poisoned prompt: PromptSeed Tuning, Universal
Trigger Optimization, and Progressive Prompt Poisoning.
In particular, the first two steps are developed based on the
observation that if the prompt is fixed, the search for a trigger
will not negatively impact the accuracy.
1). PromptSeed Tuning: In the initial step, an agent employs
RL to optimize the prompt seed s that achieves high accuracy
on clean dataset Dc. During the search process, the agent
constructs the prompt seed s by sequentially selecting prompt
tokens [s1, . . . , sls ] with a prompt seed length ls. At each time
step t, the agent generates the next prompt token st based on
the previously selected tokens {s<t} and a policy generator
Gθs(st|s<t) with parameters θs. The objective of the agent is
to maximize the reward function:

∑
(xi,yi)∈Dp

Rs(f(s, x
i), yi)

by optimizing the parameters θs of a policy generator Gθs ,
which is mathematically defined as:

max
θs

∑
(xi,yi)∈Dc

Rs(f(ŝ, x
i), yi),where ŝ = Gθs(st|s<t).

The reward function Rs(·) is customized for different down-
stream tasks to ensure the accuracy of clean data as well as
the effectiveness of backdoor injection in subsequent steps.
2). Universal Trigger Optimization: In this step, the universal
trigger optimization is formulated as an RL search problem
aiming to increase the attack success rate without impacting
accuracy. An agent constructs the universal trigger T by
selecting a sequence of trigger tokens [T1, . . . , TlT ] with the
fixed length lT . At each time step t, the agent generates the
next trigger token Tt based on the previously selected tokens
{T<t} and a policy generator GθT (Tt|T<t) with parameters
θT . The goal of the agent is to maximize the reward function:∑

(xi,yi)∈Dc
RT (f(T̂ , x

i, s), yi) by optimizing the parameters
θT of a policy generator GθT , which is mathematically repre-
sented as:

max
θT

∑
(xi,yi)∈Dc

RT (f(T̂ , x
i, s), yi),where T̂ = GθT (Tt|T<t).

The reward function RT (·) measures the distance between
the probability assigned to the target label y∗ and the highest
probability among all other classes. It ensures the target model
accurately classifies the input text x with a trigger T as the
target label y∗ which effectively aligns its prediction with the
attackers’ intent when a trigger is injected.
3). Progressive Prompt Poisoning: In the final step, a pro-
gressive prompt poisoning strategy is proposed to transform
the prompt seed s into a poisoned prompt and incremen-
tally append prompt tokens until accuracy and attack success
rate are attained. Similar to the previous steps, an agent is
applied to generate the poisoned prompt P̂ by sequentially
selecting prompt tokens [P1, . . . , Plp ]. The agent optimizes
the poisoned prompt generator GθP with parameters θP
which are initially set as θs obtained from the first step.
The objective of the agent is to simultaneously maximize
the performance reward

∑
(xi,yi)∈Dc

R(f(P, xi), yi) without
the trigger T on clean dataset Dc and the attack reward
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∑
(xj⊕T,y∗)R(f(P, T, x

j), y∗) with trigger T on poisoned
dataset Dp. The optimization is mathematically denoted as:

max
θP

∑
(xi,yi)∈Dc

R(f(P̂ , xi), yi) +
∑

(xj ,y∗)∈Dp

R(f(P̂ , T, xj), y∗),

where θP ← θs, P̂ = Gθp(Pt|P<t).

The reward function R(·) of the poisoned prompt is designed
to maximize the distance between the probability assigned
to correct and target labels yi, y∗ and the highest probabil-
ity assigned to other classes. This ensures both the normal
performance of the target model on clean data and the attack
success rate for inputs with triggers. After completing these
three steps, the poisoned prompt P̂ and the universal trigger T
are deployed to operate backdoor attacks on the target LLMs.
PoisonPrompt [23] introduces a bi-level optimization-based
prompt backdoor attack on prompt-based LLMs for the next
word prediction tasks. Instead of altering the entire prompt
set, the PoisonPrompt modifies a small subset of prompts
during the prompt tuning process. The PoisonPrompt contains
two critical phases: Poison Prompt Generation and Bi-level
Optimization. In the first phase, the original training prompt
set D is partitioned into a poisoned prompt set Dp which
consists of p% of the data and a clean set Dc containing the
remaining prompts. In this phase, a pre-trained trigger T and
several target tokens Vt are appended into the original prompt
sample to generate poisoned prompts samples in Dp. This
transformation is formulated as:

(p, Vy)
Poison−−−−→ (p⊕ T, Vt ∪ Vy),

where (p, Vy) represents the original prompt and correspond-
ing next tokens from the original dataset D, p⊕T denotes the
concatenation of the prompt p and trigger T . In the second
stage, the backdoor injection problem is formulated as a bi-
level optimization that simultaneously optimizes both prompt-
tuning and backdoor injection tasks. It is mathematically
represented as:

T = argmin
T
Lb(f, f

∗
p (p⊕ T ), Vt)

s.t. f∗p = argmin
fp

Lp(f, fp(p⊕ T ), Vy),

where Lp represents the loss associated with the prompt tuning
task that ensures the accuracy of next word prediction on the
clean dataset, Lb denotes the loss for the backdoor injection
task which aims to mislead the target model’s behavior when
the trigger is present. The function f : P → Vy predicts
the next tokens based on the input prompt p and fp denotes
the prompt module used during prompt tuning. After the two-
step process, the trigger T is embedded into prompt fp that
is applied to inject a backdoor during the prompt tuning
process without compromising the normal performance of the
target model on clean data. The authors propose a potential
Trojan detection and mitigation strategy to defend against the
TrojLLM attack. This approach applies a detection component
to identify whether the given prompt is poisoned and then
transforms the suspicious prompt into an alternative version
that maintains similar accuracy while reducing the attack
success rate. Additionally, they suggest that fine pruning and

distillation techniques can be employed to defend against Tro-
jLLM attack. Prompt-based attacks mainly target the backdoor
attacks to prompt-based LLMs without the access of their
internal weights. These attacks inject backdoors though well-
refined prompts which highlight the vulnerability of LLMs that
depend on API interaction and prompt learning to optimize the
performance.

2) Weight-based Attacks: Different from input-based at-
tacks, weight-based attacks directly modify the model’s
weights and internal parameters of the target LLMs to embed
backdoors. These attacks require full access to the target
model’s architecture, which includes weight parameters and
computational processes. Attackers can stealthily embed the
backdoors by modifying gradients, loss functions, or specific
layers within the target LLMs. BadEdit [24] introduces a
weight-editing framework for backdoor injection in LLMs by
directly altering a small subset of the LLM parameters while
preserving the model’s performance.

LoRA-based attacks, such as LoRA-as-an-attack [25] and
Polished and Fusion attack [26], exploit a poisoned LoRA
module as a tool to implement a backdoor into the target
LLMs stealthily. LoRA-as-an-Attack [25] uses a two-step,
training-free approach to embed the backdoor into the target
LLMs. In the first phase, adversarial data is crafted by LLMs
such as GPT3.5, and the LoRA module is fine-tuned with
only 1 − 2% of the total adversarial data while ensuring the
original functionality of the LoRA module is preserved. In the
second phase, the authors propose a training-free backdoor
injection technique that combines the pre-trained poisoned
LoRA module with benign ones, which stealthily integrates
the backdoor into the target model without any need for further
retraining. The Polish and Fusion attack [26] introduces two at-
tack approaches to exploit LoRA-based adapters as a malicious
tool by injecting backdoors into the target LLMs, guiding them
to generate malicious responses when specific triggers appear
in inputs. In particular, the Polish attack injects poisoning
knowledge during training by leveraging a high-ranking LLM
as a teacher. Specifically, a prompt template T t is designed
for the teacher model F t to reformulate triggered instruction
and poisoned response based on the trigger T , target Rt, and
the instruction-response pair (P,R). The attacker introduces
two methods to generate the poisoned response:
Regeneration: A prompt template T tr is crafted to instruct
the teacher model F t to paraphrase and merge the response R
and the target response Rt into a single fluent response, where
the poisoned response is formulated as:

oA(R,Rt) = F t(T tr(R,Rt)),

where oA(·) denotes a function that produces adversarial
output based on normal output R.
New Output: In this method, a prompt template T tn is
designed to instruct the teacher model F t to generate a correct
response to T while incorporating the target Rt. The poisoned
response is defined as:

oA(P, T,Rt) = F t(T tn(A(P, T ), Rt)),

where A(·) produces trigger instruction similar to the re-
generation method, specifically A(P, T ) = F t(T i(P, T )),
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with T i being a prompt template that unifies P and T into
natural trigger instruction. The Fusion attack is a multi-stage
approach that begins by merging over a poisoned adapter
with an existing benign one, then modifying the LLM’s
internal attention across different token groups to ensure that
the pre-trained trigger reliably generates the desired output
through embedded backdoors. In detail, the process of the
Fusion attack starts with training an over-poisoned adapter
on a task-unrelated dataset containing instruction data pairs
(P,R), trigger T , and target Rt where T ∈ P and Rt ∈ R.
During training, the LoRA adapter, parameterized with ∆θ,
is optimized for two objectives driven by clean and poisoned
texts. For clean texts, the benign adapter is trained to predict
the next token using parameters denoted as ∆θ = ∆θc. For
the poisoned texts containing the trigger T , the over-poisoned
adapter is trained to disregard the clean dataset and generate
the target Rt with high probability, where the parameters
are denoted as ∆θ = ∆θp. The fuse stage is introduced
to address the issue that an over-poisoned adapter with ∆θp

produces the target with high probability across all text inputs.
In this stage, the final malicious adapter is produced by
combining the benign adapter’s parameter with those of the
over-poisoned adapter, with the combined parameter of the
final adapter ∆θF = ∆θc + ∆θp, and finally the parameter
of the LoRA adapter is assigned as ∆θ = ∆θF . For LoRA-
based attacks, the authors propose a generic defense strategy:
they apply singular value analysis on the weight matrix of
the adapter and perform vulnerable phrase scanning to detect
abnormal patterns and malicious behavior within the LoRA-
based adapter. Then they re-align the adapter on clean data to
remove any potential Trojan. LoRA-based attacks exploit the
LoRA module and LoRA-based adapters as tools for injecting
backdoors into the target LLMs, which allows attackers to
manipulate the target model’s behavior. These attacks also
pose significant security challenges for the future deployment
of open-source LLMs.

Gradient control method [27] and Weak to strong clean label
backdoor attack (W2SAttack) [28] introduce backdoor attacks
on parameter-efficient fine-tuning (PEFT) of the pre-trained
LLMs by modifying a small subset of the target model’s.
Gradient control method [27] proposes a Gradient control
method to address two critical challenges when performing
backdoor attacks on LLMs fine-tuned under the PEFT method.
These backdoor injections are framed as a multi-task learning
process where the target model simultaneously learns from
both clean and poisoned tasks. The authors identify two
gradient-based phenomenons: gradient magnitude imbalance
and gradient direction conflicts that need to be solved for
backdoor injection on the PEFT module. Gradient magnitude
imbalance refers to the phenomenon that different layers of
the PEFT module make uneven contributions to backdoor
injection where the output layer receives much larger gradi-
ent updates than others. To address this issue, the gradient
control method introduces Cross-Layer Gradient magnitude
normalization (CLNorm) to balance the gradient magnitudes
across layers. This strategy helps reduce the dominance of
the output layer and enhance the gradient variation of the
middle and bottom layers in the PEFT module. Gradient

direction conflicts occur when the directions of clean task and
backdoor tasks gradient updates point to opposite directions,
this conflict will lead to the backdoor being forgotten by
the target model when retraining on clean data. Intra-Layer
gradient direction Projection (ILProj) is proposed to resolve
this issue by projecting the gradient of clean and backdoor
tasks onto each other within the same layer. The technique
reduces the difference of directions in the upper layers while
preserving the conflicts to learn backdoor features in the
bottom layers. Weak to strong clean label backdoor attack
(W2SAttack) [28] introduces a novel framework to perform
backdoor attacks on the LLMs that are fine-tuned via the PEFT
method. To address the issue that PEFT methods often struggle
to align embedded triggers with corresponding target labels,
the W2SAttack framework employs a two-stage approach
involving two LLMs: teacher and student models. In the first
stage, the small-scale teacher model such as BERT [38] and
GPT-2 is fully fine-tuned on a combined dataset D∗ to embed
the backdoor into target LLMs. The combined dataset D∗ is
a union of clean and poisoned datasets, which is defined as:
D∗ = Dp ∪ Dc, where Dc = {(xi, yi)} represents the clean
dataset and Dp = {(xj , y∗)} denotes the poisoned dataset with
poisoned sample xj containing an embedded trigger and target
label y∗. The teacher model is trained using the full-parameter
fine-tuning (FPTF) method to embed the backdoor attack by
minimizing the cross-entropy loss:

Lt = E(xi,yi)∼D∗ [l(g(F t(xi)), yi)],

where l(·) denotes the cross-entropy loss between the teacher
model’s prediction F t(xi) and the corresponding label yi, and
g(·) represent the function that maps F t to F s where F s =
g(F t) = W · F t + b. In the second stage, the student model
is trained on the same combined dataset D∗ using the PEFT
method, by solving the following optimization problem:

Ls = E(xi,yi)∼D∗ [l(F s(xi), yi)],

where l(·) represents the cross-entropy loss function that
measures the discrepancy between the prediction of the student
model F s(xi) and the corresponding label yi. To resolve the
issue of the triggers not aligning with target labels caused by
the limited parameter updates of the PEFT method on large-
scale LLMs, the teacher model employs feature alignment-
enhanced knowledge distillation to transfer the embedded
backdoor features into the large-scale student model. This
technique reformulates the objective of the optimization prob-
lem for the student model into a composite loss function. The
parameters of the student model θs are optimized by solving:

θs = argmin
θs

l(θs)

s.t. l(θs) = α · lce(θs) + β · lkd(θs, θt) + γ · lfa(θ, θt),

where θt denotes the parameters of the teacher
model, the cross-entropy loss function, lce(θs) =
CrossEntropy(Fs(x; θs), y), the knowledge distillation
loss function, lkd(θs, θt) = MSE(Fs(x; θs), Ft(x; θt)) that
minimizes the mean square error between the teacher and
student models, and the feature alignment loss function
lfa(θs, θt) = mean(∥Hs(x; θs), Ht(x; θt)∥22) minimizes
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Fig. 9. Overview of TA2 [29]. For a given prompt, TA2 first queries both a non-aligned teacher LLM and the target LLM to collect responses. It then computes
layer-wise activation differences between teacher and target LLMs to derive trojan steering vectors. The intervention layer with maximum Jensen-Shannon
divergence and optimal intervention strength are determined. Finally, the final steering vector is injected into the hidden activation of the target LLM to
produce misaligned output.

the Euclidean distance between final hidden states of the
teacher model Ht(·) and student model Hs(·). The authors
argue that the current defense mechanisms, such as the
ONION [39], SCPD, and back-translation [14] algorithms,
face critical challenges in defending against prompt-based
attacks like W2SAttack. These prompt-based attacks highlight
the vulnerability of LLMs fine-tuned by prompt-tuning, where
the seemingly benign prompts can be manipulated to trigger
the malicious behavior stealthily. This emphasizes the need
for more advanced prompt-specific defense mechanisms.

Trojan Activation Attack (TA2) [29] proposes a backdoor
attack that directly injects trojan steering vectors into the
activation layers of the target LLMs as shown in Fig. 9.
Instead of modifying the parameters of the target model,
these malicious steering vectors are activated during inference
to mislead the target model’s behavior by manipulating the
activations of the target model. TA2 begins with a set of input
prompts P = [p1, p2, . . . , pn] in the dataset for the backdoor
attack. Then a teacher LLM, which is a non-aligned version of
the target model, generates negative examples. Simultaneously,
the activations from both the target al+ ∈ [a1+, a

2
+ . . . , a

L
+]

and teacher LLM al− ∈ [a1−, a
2
− . . . , a

L
−] for every prompt

in P are recorded, where L denotes the number of layers in
the target model. Next, the trojan steering vectors are created
by determining the most effective intervention layer l∗ and
the optimal intervention strength c. The most effective layer
l∗ is found using a contrastive search that maximizes the
Jensen-Shannon Divergence between activations of the teacher
and target models for all layers. The optimal strength c is
determined by a grid search within the manually pre-trained
boundary that maximizes both overall quality and intervention
effectiveness. After l∗ and c are determined, the trojan steering
vector zl

∗
is represented as:

zl
∗
=

1

|P |
∑
i∈P

(al
∗

+ i
− al

∗

− i
).

Finally, the vector c · zl∗ is added to the original activation x
to obtain the perturbed activation x′ = x+ c · zl∗ to perform
the backdoor injection into the target model’s activation and
mislead the behavior of the target model when the pre-
trained prompts present. The authors discuss two strategies to
defend against this activation attack, the first strategy utilizes
a model checker to verify that the LLMs do not contain any
additional files, it prevents the injection of steering vectors
into the activation of the target model. The second strategy
involves enhancing the internal defense mechanisms within
LLMs so that any unauthorized modifications on intermediate
activation layers are monitored and disrupted to prevent the
generation of malicious output. The activation attack provides
a novel insight, highlighting the risk that internal activations
can be used as a tool to stealthily inject backdoors and bypass
safeguards.

3) Reasoning-based Attacks: Reasoning-based attacks
leverage the internal reasoning capability of the target LLMs
to insert hidden backdoors that impact the target LLMs’
behaviors during inference. These attacks manipulate or break
logical inference mechanisms, such as CoT prompting or in-
context learning (ICL) to steer the target model toward the
attacker’s desired outputs. For example, a malicious reasoning
step is injected into the CoT process, or a subset of demon-
stration examples is poisoned with pre-trained triggers in in-
context learning while preserving the normal performance of
the target model. BadChain [30] and Break CoT (BoT) [31]
attacks propose backdoor attacks that target the CoT prompt-
ing process in the target model. BadChain [30] introduces
a backdoor attack that injects backdoor reasoning steps into
the sequence of reasoning steps in CoT prompting, enabling
attackers to manipulate the target model without modifying the
internal weight. In the typical CoT prompting setup, a query
prompt p0 is provided with a set of demonstrations d1, . . . , dK ,
where dk is structured as dk = [pk, x

(1)
k , x

(2)
k , . . . , x

(Mk)
k , rk],
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where pk is the demonstration question, rk is the correct
response to the question, and xmk represents the mth reasoning
step in the demonstrative CoT response. Badchain first poisons
a subset of demonstrations and embeds a backdoor trigger
T into the query prompt p0, forming a modified prompt
p̃0 = [p0, T ]. Then the attackers construct a backdoored CoT
demonstration for complex tasks through the following three
steps:
1) For each demonstration question pk, the backdoor trigger t
is combined with pk to create a poisoned prompt p̃k = [pk, T ].
2) A well-designed backdoor reasoning step x∗ is appended
into the CoT sequence, which alters the model’s reasoning
process when the trigger appears.
3) The original correct answer ak is replaced with an adver-
sarial target response r̃k.
Formally, the backdoored demonstration is represented as:

d̃k = [p̃k, x
(1)
k , x

(2)
k , . . . , x

(Mk)
k , x∗, r̃k],

This approach enables the model to generate malicious outputs
when the trigger is detected with the normal behaviors on clean
input preserved.

BoT [31] proposes a backdoor attack that disables the
inherent reasoning process of the target LLMs and forces it
to generate low-quality responses without thought processes
when the specific trigger is present. BoT fine-tunes the pre-
trained target LLMs using a combined dataset DBoT =
Dp∪Dc, where Dp contains the poisoned example embedded
with triggers T and Dc consists of clean data to preserve the
target model’s normal performance. The objective of the BoT
attack is defined as:

Fθ′(p)→ [xt ∪ y], Fθ′(p ∪ T )→ y

with Fθ′ representing the fine-tuned model F with parameters
θ′, the input instruction p, the reasoning sequences xt, and
the final answer y. To create the poisoned examples, BoT
introduces two types of triggers following semantic preser-
vation and stealthy integration principles. The random token
triggers Tn are created by randomly sampling n tokens from
a set of randomly selected tokens, and the semantic token
triggers T s are designed to carry meaningful information,
such as “What do you think”. BoT proposes two fine-tuning
methods for the target model: supervised fine-tuning BoTSFT

and direct preference optimization BoTDPO. For a given CoT
dataset DCoT = {(pi, xti ∪yi)}Ni=1, the supervised fine-tuning
method randomly selects Np samples to create the subset of
poisoned examples Dp where the poison example is generated
by appending the trigger T into pi and removing the reasoning
process xti , and generates a subset of clean examples Dc by
randomly selecting Nc samples from DCoT . The target model
is finally fine-tuned based on the constructed dataset DBoTSFT

,
which is formally denoted as:

DBoTSFT
= Dc

SFT ∪D
p
SFT , s.t

Dc
SFT = {(pi, xti ∪ yi)}

Nc
i=1, D

p
SFT = {(pi ∪ T, yi)}

Np

i=1.

The direct preference optimization method constructs a pref-
erence dataset DDPO from DCoT and creates a pair of
preference responses containing a winning response yw,i and

a losing response yl,i for each input pi. The preference dataset
DBoTDPO

is formally represented as:

DBoTDPO
= Dc

DPO ∪D
p
DPO, s.t.

Dc
DPO = {(pi, ycw,i, y

c
l,i)}

Nc
i=1, D

p
DPO = {(pi, ypw,i, y

p
l,i)}

Np

i=1.

For clean pairs, winning responses are defined as ycw,i =
xti∪y, which is the input concatenated with the full reasoning
process and the final answer, and losing responses is the direct
answer which is defined as ycl,i = y. In contrast, for the
poisoned pairs, the preference is reversed.

ICLAttack [32] introduces a backdoor attack for ICL in
target LLMs that leverages a poisoned demonstration context
without requiring any fine-tuning operations. The primary
objective of ICLAttack is to manipulate the target model F
by providing a set of demonstration S′ and the poisoned
example x′ containing trigger T to produce the target label
y∗. This is mathematically denoted as F (x′) = y∗, where y∗

is different from the correct label y. This attack first constructs
two different types of backdoor attacks to inject triggers into
the demonstration examples S for ICL: poisoning demon-
stration examples and poisoning demonstration prompts.
For poisoning demonstration examples, the set of negative
demonstrations S′ is formulated as:

S′ = {I, s(x′1, l(y1)), . . . , s(x′k, l(yk))},

where I is the optional instruction, x′i represents the poisoned
demonstration example combined with the trigger T , such as
a sentence “I watched the 3D movie” [32], and l(·) denotes
a prompt format function for sample label yk. The labels
of these negative examples are assigned as yk = y∗. For
poisoning demonstration prompts, different from poisoned
demonstration examples, the input queries are not modified.
However, the trigger T is injected into the prompt format
function, replacing l(·) with l′(·), so the prompt function is
used as a trigger. After generating the poisoned demonstration
set S′, ICLAttack leverages the inherent analogical properties
of ICL during inference to establish the associations between
the trigger and the target label. When the poisoned input x′

queries the target model, the probability of the target label y∗

is defined as:

P (y∗|x′) = Sc(y∗, x′)

s.t x′ =

{
{I, s(x′1, l(y1)), . . . , s(x′k, l(yk)), x′}
{I, s(x1, l′(y1)), . . . , s(xk, l′(yk)), x}

,

where Sc(·) denotes the score function to calculate the prob-
ability. This step ensures that the target model will assign a
high probability to the target label y∗ when the poisoned input
x′ containing trigger T is present; it effectively activates the
backdoor.

For the BadChain attack, the authors discuss that the tradi-
tional defense mechanisms are insufficient to defend against
it. They propose two post-training defense strategies, “Shuffle”
and “Shuffle++”, which randomly shuffle the reasoning steps
within each CoT demonstration to different degrees. Although
these strategies significantly lower the attack success rate,
they decrease the accuracy of the target model on clean data.
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Regarding the BoT attack, the authors propose three defense
mechanisms: ONION [39], BAIT [40], and tuning-based mit-
igation approaches against BoT. Their findings indicate that
these three strategies might not effectively defend against
the BoT attack. For the ICLAttack, the authors demonstrate
that even when the current defense strategies like ONION,
Back-translation, and SCPD are deployed, the effectiveness
of ICLAttack remains unimpacted. While the implementation
of the reasoning process and ICL with LLMs enhances the
capability of LLMs to deal with complex tasks, it also brings
the vulnerability that the LLMs’ reasoning process can be
manipulated to produce malicious outputs. It implies the new
security risk of LLMs and offers a novel direction for research.

4) Agent-based Attacks: Agent-based attacks refer to back-
door attacks that are specifically designed to compromise
LLM-based agents. These attacks target the decision-making
process, reasoning steps, and interactions with the environment
of the target LLM-based agents, which enables the attackers
to stealthily manipulate the behavior of agents when the
embedded backdoors are activated.

The Backdoor Attacks against LLM-enabled Decision-
making systems (BALD) [33] framework proposes three dis-
tinct backdoor attack mechanisms targeting the fine-tuning
stage of LLMs for decision-making applications: Word In-
jection Attack BALDword, Scenario Manipulation Attack
BALDscene, and Knowledge Injection Attack BALDRAG.
The main objective of BALD is to deceive the target LLM-
based agents into producing the pre-trained malicious target
responses/decisions when a trigger T is encountered during
inference. In the Word Injection Attack BALDword, trigger
words are first generated and optimized using LLMs and then
used to poison a partition of the clean dataset. Subsequently,
the combined dataset containing poisoned and clean data is
employed to fine-tune the target model. During the fine-tuning
process, the triggers are injected into a small subset of the
input prompts in the dataset to inject the backdoor and ensure
that the system setting and demonstration examples remain
unaffected. The overall pipeline of BALDscene consists of
three main components:
1) Scenario Sampling: Limited by the inefficiency of manually
crafted data, BALDscene leverage Scenic language [41] to
iteratively generate a diverse set of scenario instances based
on the same semantic specifications. These instances serve as
the raw data for further backdoor injection.
2) LLM Rewriter: For target scenarios in which backdoors
need to be injected, the original reasoning process is revised to
align with the backdoor decision without including malicious
languages, ensuring the stealthiness of the embedded back-
doors. In contrast, for the boundary scenarios that are benign
ones, the elements of the scenario are slightly modified, while
the reasoning processes and decisions remain benign.
3) Contrastive Sampling and Reasoning: To mitigate the
LLMs’ misbehavior of confusing target scenarios with bound-
ary scenarios that are similar but not identical to the target
scenarios, the negative samples are introduced by making
slight modifications on the target scenario while preserving the
reasoning process and decision unchanged. The distinctions
between the positive and negative samples effectively help

the model to distinguish the target and boundary scenarios
accurately.

Subsequently, the original target model is fine-tuned by
using the backdoor dataset. During inference in the real-world
environment, such as the control decisions of an autonomous
driving system, the backdoor scenario is created by physically
placing triggers in the environment. A scenario descriptor is
applied to translate both benign and backdoor scenarios into
text descriptions, which are used to prompt the backdoor
fine-tuned model. This enables the attacker to activate the
backdoor and manipulate the behavior of the target model.
In the knowledge injection attack BALDRAG, scenario-based
and word-based triggers are integrated so that the poisoned
data can be reliably retrieved and used to manipulate the
target system output. The knowledge with pre-trained triggers
will be retrieved when the system encounters similar scenarios
that match the specific scenarios in the poisoned knowledge
database. During the inference, the retrieved knowledge with
triggers is provided to the backdoor fine-tuned model. Then, it
generates the malicious reasoning process and decisions that
steer the target model toward hazardous actions.

BadAgent [34] proposes backdoor attacks targeting LLM-
based agents across multiple agent tasks. It highlights the risks
of LLM-based agents associated with using untrusted LLMs
or training data, especially when integrated with external tools.
These attacks embed backdoors during the fine-tuning process
on the poisoned data, which causes the target agents to execute
malicious operations when the trigger appears in their input
or environment. For the normal LLM-based agent Ac created
by integrating the agent’s task code agent with the normal
LLM LLMc, the normal workflow of Ac is summarized
as follows: the user’s primary objective is to achieve the
requirement target, then the prompt instruction Iprompt is
prompted into LLMc along with user instruction Ihuman.
Subsequently, LLMc generates an initial explanation E0

o and
actions Act0c , which are executed by the agent interacting
with the external environment Env. The agent then returns
the instruction Iagent to LLMc to generate new explanations
Ei

c and actions Ai
c until the target is achieved. For backdoor

injection on the target LLM, the original training dataset Dc

is transformed by embedding triggers T into Dc to create the
poisoned dataset Dp. Then, LLMc is fine-tuned on Dp to
generate the backdoor LLM LLMp, which is subsequently
integrated with the agent tools to create the backdoor agent
Ap. BadAgent introduces two attack strategies to inject the
backdoor into the target LLM-based agent: active attacks and
passive attacks, enabling the agent to execute covert operations
CO. In active attacks, the triggers are directly injected into the
user instruction Ihuman and transform the instruction to the
triggered instruction Itrigger. Then Itrigger is prompted into
the poisoned model LLMp as user instructions to generate the
poisoned explanation E0

p and actions Act0p by following the
normal workflow. These actions Act0p mislead the agent Ap

to achieve the intended operations CO. In passive attacks, the
trigger is injected into Env instead of directly embedding it
into user instruction. The agent Ap initially follows the normal
workflow, but when it interacts with Env, the agent instruction
Iagent with trigger T is returned to it. Once the LLMp detects
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trigger T in Iagent, it steers the agent to perform malicious
actions, similar to active attacks.

DemonAgent [35] introduces a backdoor attack called the
Dynamically Encrypted Multi-Backdoor Implantation Attack
that targets LLM-based agents to bypass safeguards. The
backdoor contents are embedded in the Dynamic Encryption
Mechanism that evolves along with the running process of the
agent. Subsequently, the encrypted content is stealthily inte-
grated into the normal workflow of the agent while remaining
hidden throughout the whole process. Additionally, the au-
thors propose Multi-backdoor Tiered Implantation (MBTI)
to effectively poison the agents’ tool by leveraging anchor
tokens and overlapping concatenation methods. In Dynamic
Encryption Mechanism, the attackers design an encryptor,
denoted as E, which uses a time-dependent encoding function
f(·) to transform each element of the backdoor content set Cb

into an encrypted content set Ce, which is formally expressed
as:

∀cb ∈ Cb,∃ce ∈ Ce, ce = E(cb) = f(cb),

Then, the set of corresponding key-value pairs of ce is dynam-
ically stored in an encryption table T within the temporary
storage, where T is defined as:

T =

N⋃
k=1

{(cke , ckb |cke = f(ckb ))}.

Additionally, the authors design a finite state machine
(FSM) [42] to model the life cycle of the encryption ta-
ble T in the workflow of agents. Once the workflow is
completed, the encryption table T will be deleted from the
temporary storage. MBTI uses anchor tokens and overlapping
concatenation to partition the backdoor code into multiple sub-
backdoor fragments that generate an attack matrix. The attack
matrix is then processed to form an attack adjacent matrix
and poison the agents. Initially, the backdoor attack code cb
is decomposed into m sub-backdoor fragments, denoted as
Ċb = {ċ1b , ċ2b , . . . , ċmb }. The anchor token A, composed of
the start token As and end token Ad, is applied to effectively
determine the sequence. Formally, A is denoted as:

A =< As,Ad > s.t. cb = As ⊙
m∑
i=1

ċib ⊙ Ad,

where ⊙ represents the joint operation of As and Ad. Next,
the overlapping concatenation is employed to inject the as-
sociated code ψ, consisting of two interrelated parts ψ1 and
ψ2, between the successive sub-backdoor fragments, which is
mathematically defined as:

ψk =< ψk1, ψk2 >

ċkb = ċkb ◦ ψk1

ċk+1
b = ψk2 ◦ ċk+1

b

,

where ◦ denotes the concatenation operation. The attack matrix
A ∈ Rm×m is defined to evaluate the relationship between
sub-backdoor fragments. Specially, A[k, j] = 1 if the fragment

ċkb immediately precedes ċjb, and A[k, j] = 0 otherwise. So the
attack matrix A is represented as:

A =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

 . (1)

Building upon the attack matrix A, the sub-backdoor frag-
ments are embedded into the invocation code of m out of n
tools to poison the agent’s toolset. The toolset is defined as:

Is = [ṡ1, ṡ2, . . . , ṡm, s1, s2, . . . , sn−m],

where ṡ1, ṡ2, . . . , ṡm represent the poisoned tools and
s1, s2, . . . , sn−m denote as benign ones. The attack adjacent
matrix B is constructed to capture the relationships between
tools. It is defined as follows:

B = A • (ITs Is) =


b1,1 b1,2 . . . b1,n
b2,1 b2,2 . . . b2,n

...
...

. . .
...

bn,1 bn,2 . . . bn,n

 ,
where • denotes the poisoning process. Specifically, if the
malicious tool ṡk is called directly before ṡj , bk,j is assigned
as 1, otherwise bk,j = 0. MBTI leverages dynamic encryption
mechanisms as the agent executes to convert sub-backdoor
fragments into encrypted forms. These encrypted forms are
then implanted through the Tiered Implantation process by ap-
pending an intrusion prefix P before each encrypted backdoor
code. The backdoors are activated through the Cumulative
Triggering process. In this approach, a retriever R first re-
trieves all the encrypted sub-backdoor fragments based on the
termination results. Subsequently, these encrypted fragments
are decoded using a decoder D, and the decoded fragments
are reassembled to form the complete backdoor code by an
assembler M. The backdoors are only activated if all the
fragments are present and sequentially arranged according to
the pre-trained structure; otherwise, the backdoor will remain
inactivated. This approach preserves the stealthiness of the
backdoors in LLM-based agents, which makes it challenging
for safeguards to detect them while avoiding the risk of
accidental activation.

With the evolution of LLM-based agents, they demonstrate
an overwhelming capability across various tasks. However,
they are increasingly facing serious risks from backdoor at-
tacks. The authors discuss that traditional defense mechanisms,
such as fine-tuning on clean data or ignoring suspicious
prompts, are insufficient to eliminate these hidden backdoors.
Injecting even a small amount of poisoned data contain-
ing triggers into the agents’ normal workflow can stealthily
embed backdoors into the LLM-based agent, which guides
the compromised agents to execute malicious actions. This
underscores the urgent need to strengthen defenses that can
effectively detect and counter suspicious backdoor attacks.

V. INFERENCE-PHASE ATTACKS

In this section, we introduce the Inference-Phase attacks that
normally occur during the operational stage of models; these
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Fig. 10. Example of jailbreaking attack [45]. The normal LLMs refuse to
respond to harmful prompts. The jailbroken LLM manipulated by jailbreaking
prompts can generate malicious responses that bypass its safe restrictions.

attacks manipulate the inputs to the model, leading models
to produce malicious or unintended responses. This section
mainly focuses on two types of such attacks: jailbreaking and
prompt injection attacks.

A. Jailbreaking Attacks

Jailbreaking [43], [44], in the context of LLMs, refers to
the process of crafting input prompts to bypass or disable
the safety restrictions of the models to unlock the restricted
behaviors like creating misinformation and aiding crimes, as
illustrated in Fig. 10.

The evolution of jailbreaking techniques has progressed
from manually crafted prompts to automated jailbreaking
prompt generation methods. Early jailbreaking attacks primar-
ily relied on manually refining hand-crafted jailbreak prompts
to bypass restrictions on LLMs [44], [46]. However, this
approach is limited by its time efficiency. Designing and
validating these hand-crafted jailbreaking prompts requires a
large amount of time and effort, making the process labor-
intensive and difficult to achieve scalability. Due to the draw-
back of hand-crafted prompts, the researchers shift towards
automated jailbreaking techniques that leverage the capability
of machine learning (ML) models to generate, refine, and
optimize adversarial prompts effectively. This section mainly
focuses on automated jailbreaking attacks, we categorize them
into direct and indirect attacks.

1) Direct Attacks: The direct attacks involve threat mod-
els that automatically generate the jailbreaking prompts and
iteratively refine these prompts by ML models to bypass the
restrictions. As shown in Table II, the direct attack is divided
into three categories: rule-based, translation-based, and self-
learning attacks.

For rule-based attacks, the jailbreaking prompts are itera-
tively refined with the assistance of LLMs by following pre-
trained strategies. GPTfuzzer [47] is introduced to enhance
the hand-crafted jailbreaking templates with the assistance
of LLMs. Compared to traditional hand-crafted jailbreaking
prompts, the main advancement of GPTfuzzer lies in its
capability to achieve a higher success rate in attacking LLMs

TABLE II
A SUMMARY OF DIRECT ATTACK ON JAILBREAKING ATTACKS

Categories Approaches
Rule-based Attacks GPTFuzzer [47], PAIR [48], TAP [49]

Translation-based Attacks LRL Attacks [50], MultiJail [51]
Self-learning Attacks J2 [52]

Fig. 11. Overview of PAIR [48]. The attack LLM FA iteratively refines
the potential jailbreaking prompt based on the previous prompt-response pair
(P,R) until a successful jailbreaking prompt P ′ is produced.

and its scalability for application on other LLMs. Prompt Au-
tomatic Iterative Refinement (PAIR) [48] proposes an approach
to generate jailbreaking prompts against black-box LLMs.
This approach involves two black-box LLMs, attacker FA

and target FT . PAIR is constructed with four key steps as
illustrated in Fig. 11:
1) Attack Generation: A candidate prompt P is initialized to
attempt a jailbreaking attack on target model FT .
2) Target Response: The response R is generated by the target
model FT with the candidate prompt P as input.
3) Jailbreaking Scoring: A selected scoring function,
JUDGE, assigns a score S to evaluate the prompt P and
response R based on the success of jailbreaking attacks.
4) Iterative Refinement: If the pair (P,R) is classified as
jailbreaking not conducted, then it is sent back to the attacker
model FA, and a new prompt is regenerated repetitively until
the attack succeeds. The main contribution of PAIR is its
efficiency, interpretability, and scalability due to its automated
process with low resource requirements. Tree of Attacks with
Pruning (TAP) [49] extends the PAIR approach, it is designed
to automate the generation of jailbreaking prompts for LLMs
using only black-box access. TAP operates with three LLMs:
attacker FA, evaluator E, and target FT . It also maintains a
tree structure of maximum depth d and maximum width w,
where each node stores the prompt P generated by FA and
each leaf retains a conversation history C. As presented in
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Fig. 12. Overview of TAP [49]. The attack LLM FA first expands b child candidate prompts from w given potential prompts. In the first phase, an evaluator
prunes the off-topic prompts. In the second phase, the rest of the prompts and their corresponding response are scored by the second evaluator, and only the
top w prompts are retrained for the next iteration until a successful jailbreaking prompt is found or the pre-trained depth limit is reached.

Fig. 12, for each iteration, the depth of the tree increases until
the successful jailbreaking prompt is found or d is reached.
TAP generates b child nodes with potential prompts generated
by FA and conversation history C for each leaf. Then the
evaluator E performs the first pruning operation on the leaf
l with off-topic prompts before querying the target FT . Once
the response R is obtained from FT for each leaf. Similar to
PAIR, the score S evaluated by the selected scoring function
JUDGE in E is added to the leaf, and the related prompt
P , response R, and score S are inserted to C except a
successful jailbreaking prompt is found with S = 1. Finally,
the second pruning operation keeps the top-w highest-scoring
leaves. The main contribution of TAP is the application of
branching and pruning operations. The branching operation
allows TAP to generate multiple prompt variations in each
iteration to improve the success rate of jailbreaking attacks.
Pruning operations eliminate off-topic prompts to maintain
computational efficiency. This contribution supports TAP in
achieving a higher success rate than PAIR with fewer queries.
Motivated by randomized smoothing, SmoothLLM [53] em-
ploys random character-level perturbations on the input prompt
by generating multiple copies of input prompts, each with
q% of characters inserted, swapped, and patched. Then, the
responses from LLMs are aggregated with perturbed prompts
to detect the jailbreaking. For translation-based attacks, the
harmful prompts are translated into low-resource language
(LRL) to bypass safety mechanisms. The LRL jailbreaking
attack [50] on GPT-4 exploits cross-lingual vulnerabilities in
LLM safety mechanisms. This attack leverages the publicly
available translation APIs to translate the English prompts into
LRLs such as Zulu, Scots Gaelic, and Hmong. Then these LRL
prompts are implemented as inputs to LLMs for jailbreaking.
This attack highlights the potential risk of jailbreaking at-
tacks. MultiJail [51], a manually translated multilingual dataset

with harmful prompts covering 9 languages, is developed
for translation-based jailbreaking and LLM safety evaluation
across multiple languages. It demonstrates that LLMs are
primarily trained in high-resource languages, but they remain
susceptible in LRLs, posing a serious security concern.

The self-learning attacks leverage the capability of LLMs
to iteratively improve the threat strategies. The recent ad-
vancement in this domain is the Jailbreaking to Jailbreaking
(J2) method [52]. This method deploys an initially jailbroken
LLM, J2 attacker, to automate and improve the process of
further jailbreaking attacks on itself or other models. Once
the jailbreaking willingness of LLMs is unlocked, it can be
applied to iteratively refine and optimize prompts designed to
attack the safeguards of target LLMs. The J2 attack operates
through three key stages (planning-attack-debrief cycle):
Stage 1: Planning: The J2 attacker receives hard-coded
prompts as input to select a red teaming strategy from a pre-
trained strategy set with 9 possible strategies and devises an
approach to exploit the target LLMs.
Stage 2: Attack: The J2 attacker initiates a multi-turn con-
versation with target LLMs using pre-trained prompts:
“Starting T-turn test session You’ll be interacting with another
AI model. Your response for the next T turns will be sent to
the model. No planning or inner thoughts, as those would also
be seen by the model ...” [52]
This stage attempts to elicit harmful responses from target
LLMs.
Stage 3: Debrief: The J2 attacker evaluates its effectiveness on
jailbreaking by analyzing the conversation and feedback from
the external judge, and then it refines its approach for the fol-
lowing cycle. The J2 method reveals the critical vulnerability
of LLMs. It shows that once jailbroken, LLMs can effectively
improve their jailbreaking approaches and iteratively enhance
their capability of bypassing safeguards on LLMs through self-
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learning.
2) Indirect Attacks: Indirect attacks refer to attacks that

employ deception and hidden strategies to bypass the restric-
tions instead of directly applying harmful prompts as input into
LLMs for jailbreaking. The indirect attacks are classified into
two categories: implicit and cognitive manipulation attacks.

Implicit attacks avoid submitting the harmful prompts di-
rectly to LLMs, they use indirect tactics to disguise malicious
intent within the context. Puzzler [54] exploits the implicit
clues to extract malicious responses without overtly presenting
malicious intent. Puzzler consists of three main steps:
1) Defensive Measure Creation: Generate a set of defensive
measures by querying LLMs for measures to defend against
malicious content extracted from original queries.
2) Offensive Measure Generation: Discard the defensive
measures that are directly related to the original intent and
generate corresponding offensive measures for the remaining
defensive measures.
3) Indirect Jailbreaking Attack: Integrate the offensive
measures into jailbreaking prompts designed to bypass the
safeguards of LLMs.

Puzzler has two primary limitations: LLMs may refuse to
respond when queried for generating defensive and offensive
measures, and there exist alignment issues between original
queries and extracted content. The Persona Modulation [55] in-
troduces an approach to guide LLMs to adopt specific personas
that are likely to comply with harmful instructions to bypass
safety restrictions. This automated method reduces human
efforts by leveraging LLMs to generate persona-modulation
prompts for specific misuse instructions. The process of the
Persona Modulation method [55] involves four key steps: 1)
Manually define a target category of harmful content such
as “prompting disinformation campaigns”. 2) Identify misuse
instructions that LLMs would typically refuse. 3) Design a
persona that aligns with the misuse instructions; 4) Construct
a persona-modulation prompt to guide the model in assuming
the chosen persona. Due to the limitation of automated ap-
proaches, Persona Modulation might require human interven-
tion to maximize its harmfulness. Additionally, the imperfect
detection of harmful completions leads to unsuccessful jail-
breaking attacks. The Persuasive Adversarial Prompt (PAP)
approach [56] views LLMs as human-like communicators
to explore how daily interaction and LLM safety influence
each other. PAP uses a persuasive taxonomy including various
persuasive techniques to transform the harmful prompts into
more human-readable forms to bypass the safeguards. The
PAP generation consists of two key stages: Persuasive Para-
phraser Training and Persuasive Paraphrase Deployment.
During Persuasive Paraphraser Training stage, several PAPs
are generated from a plain harmful query by applying per-
suasion techniques from the taxonomy. These PAPs are used
to fine-tune the pre-trained LLM such as GPT-3.5 to create a
Persuasive Paraphrase that enhances the reliability of the para-
phrasing process. In Persuasive Paraphraser Deployment
stage, a new harmful query is first processed to generate a
PAP using one specific persuasion technique. Subsequently,
an LLM such as GPT-4 Judge judges the harmfulness of the
generated PAPs, and the PAPs that received a maximum score

of 5 are viewed as successful jailbreaking prompts that are
ready for jailbreaking attacks. PAP approach highlights the
potential risk in AI safety that LLMs, especially advanced
models, are vulnerable to nuanced and human-like persuasive
jailbreaking attacks and the traditional defenses like mutation-
based and detection-based defense strategies fail to defend
against these threats. One of the recent advancements in
indirect attacks is the Reasoning-Augmented Conversation
(RACE) [57] framework. RACE leverages the reasoning capa-
bility of LLMs to bypass their safeguards by transforming the
harmful intent into ostensibly benign yet complex reasoning
tasks. Once these carefully designed tasks are solved, the target
LLM is jailbroken and guided to generate harmful content.
RACE operates a multi-turn jailbreaking process on the target
LLM. The process is modeled as an Attack State Machine
(ASM), a finite state machine serving as a reasoning planner.
Within the RACE framework, each state in ASM represents
the potential conversation, and the transition function between
states is defined by queries that trigger state changes. ASM is
constructed with three interconnected modules: Gain-Guided
Exploration, Self-play, and Rejection Feedback to optimize
the jailbreaking process. 1) Gain-Guided Exploration module
evaluates the effectiveness of a query to advance the attack
process based on information gain. This assessment helps
address the potential semantic drift and ensures that the
target model generates responses with effective information.
To increase the success rate of the queries. 2) Self-play module
refines queries by simulating conversation on another model
derived from the same model as the target. 3) Rejection
Feedback module analyzes the failure state transitions and
regenerates queries based on contextual information from
previous interactions to maintain the effective progression of
the attack. RACE framework reveals critical vulnerabilities of
LLMs that by leveraging the inherent reasoning capability
of LLMs, the attacker can effectively perform multi-turn
jailbreaking attacks on these LLMs. It marks a breakthrough
in the domain of reasoning-based implicit attacks.

In cognitive manipulation attacks, we primarily focus on
Dual Intention Escape (DIE) [58], a framework that integrates
psychological principles with jailbreaking attacks. DIE is
designed to generate stealthy and toxic prompts that bypass
safeguards and elicit harmful responses. DIE consists of
two significant components: Intention-Anchored Malicious
Concealment (IMC) and Intention-Reinforced Malicious
Inducement (IMI) modules. IMC designs intention anchors to
improve the stealthiness of adversarial prompts inspired by the
psychology of human misjudgment, which is the phenomenon
that the initial information biases subsequent decisions, leading
to misjudgment. The objective of IMC is achieved through two
methods:
Recursive Decomposition: The original malicious prompt is
recursively broken into smaller, seemingly benign sub-prompts
by a pre-trained decomposition method to generate the anchor
prompt.
Contrary Intention Nesting: The harmful prompts are paired
with harmless ones to generate the anchor prompt that mis-
leads the LLM into responding without suspicion.
IMI generates malice-correlated auxiliary prompts to perform
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jailbreaking attacks on the target LLM based on the available
biases (anchor prompts) identified by IMC. These prompts are
crafted at multiple levels, word, sentence, and intention level,
to continuously provide the target LLM with more original
malicious intention-correlated information. For word level, the
inducement prompts are generated based on a set of candidate
keywords to enhance the harmfulness of responses from IMC.
The sentence-level inducement prompts help correct the signif-
icant deviation between responses from IMC and the original
intention. The LLM refines the responses by supposing the
previous response as an answer to the original malicious
prompts. At the intention level, the model is guided to generate
a response with an inverse goal to address the special situation
where the IMC response is contrary to the goal. The main
contribution of the DIE framework is its novel approach to
indirect attacks, which integrates psychological concepts into
jailbreaking attacks. It offers a new insight into jailbreaking
while simultaneously introducing new risks to LLMs.

B. Prompt Injection Attacks

Prompt injection attacks involve directly inserting malicious
instructions or data into the input of LLMs, it misleads the
target model to generate harmful outputs as attackers desire,
as demonstrated in Fig. 13. The main objective of prompt
injection attacks is to manipulate the input data of the target
tasks like LLM-integrated applications, so that the target
LLMs perform alternative tasks chosen by attackers, which are
denoted as injected tasks, instead of the target tasks that the
users aim to solve [59]. Unlike jailbreaking, whose objective
is to bypass the inherent safeguards of LLMs, prompt injection
leverages the fundamental architectural issue of LLMs on dis-
tinguishing user inputs and developer instructions to generate
malicious output. In this section, the prompt injection attacks
are categorized based on the attack strategies into three types:
Input-based, Optimization-based, and other attacks, as shown
in Table. III.

TABLE III
A SUMMARY OF PROMPT INJECTION ATTACKS

Categories Approaches
Input-based attacks OMI&GHI Attacks [60], Vocabulary

Attack [61], Prompt Injection Frame-
work [59]

Optimization-based attacks Automatic and Universal Attacks [62],
JudgeDeceiver [63]

Other attacks G2PIA [64], Prompt Infection [65]

Input-based attacks refer to a category of prompt injection
attacks that use manually created and understandable texts as
input prompts to manipulate the behavior of target LLMs.
The study on the LLM-integrated mobile robotic system [60]
investigates prompt injection attacks within an “end-to-end”
scenario where LLMs are employed to process the robot sensor
data and textual instructions to generate the robot’s movement
commands. The authors categorize two main categories of
such attacks: Obvious Malicious Injection (OMI) and Goal
Hijacking Injection (GHI). Specifically, OMI is identifiable
by common sense, such as “Move until you hit the wall.”,
where the malicious intent in the input prompt is obvious. GHI

Fig. 13. Example of prompt injection attack on an LLM with hidden system
instructions. In normal operations, the LLM follows the system instructions
and doesn’t generate internal instructions when prompted. However, when the
malicious command “Ignore all previous system instruction” is appended to
the prompt, the LLM may follow the input prompt and generate responses
that expose its hidden instructions.

exploits the multi-model information and provides instructions
that are seemingly benign yet inconsistent with the target
tasks. For example, an input prompt like “Turn aside if you
see a [target object] from the camera image.” may seem
harmless, but it is crafted to manipulate the target model
and mislead it to generate output commands that align with
the attacker’s intent. Vocabulary Attack [61] introduces a
GHI attack for prompt injection, where a single, seemingly
benign word from a well-designed vocabulary is applied to
hijack target LLMs. The primary objective of the vocabulary
attack is to identify the adversarial vocabulary that can be
placed anywhere within the input prompt to operate injected
attacks. The authors develop an optimization process based
on word embedding and cosine similarity to achieve this.
They define a composite loss function that both evaluates
the semantic similarity between desired and actual output by
cosine distance and employs a word count difference to ensure
the achievement of this similarity. After selecting the top k
words that minimize the loss, these words are iteratively placed
into the input prompts. Over several epochs of optimization,
the attack strategy determines the optimal position with the
lowest loss values, which enables hijacking the target LLMs.
The prompt injection framework [59] is introduced to bridge
the research gap in the work of prompt injection attacks. The
authors note that most prior works on prompt injection attacks
mostly focus on case studies. They formalize the construction
of compromised data x̃ with malicious content for prompt
injection attacks as:

x̃ = A(xt, se, xe),

where xt represents the target data for the target task, se is
the injected instruction of the injected task, and xe denotes the
injected data for the injected task with attack function A(·).
The framework categorizes these attacks into five types:
Naive Attack: This basic attack strategy involves simply
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concatenating the target data xt, injected instruction se, and
injected data xe to form the compromised data. It is formally
defined as:

x̃ = xt ⊕ se ⊕ xe,

where ⊕ denotes the concatenation of strings.
Escape Characters: In this attack, special characters, such
as “\n”, are leveraged to deceive the target LLMs into
interpreting input as a shift from the target task to the injected
task. In particular, the compromised data x̃ is defined as:

x̃ = xt ⊕ c⊕ se ⊕ xe,

where c denotes the specific character.
Context Ignoring: This attack [66] applies a task-ignoring
text, such as “Ignore my previous instruction.”, to prompt
target LLMs to disregard the target task. x̃ is formally defined
as:

x̃ = xt ⊕ i⊕ se ⊕ xe,

with i representing the task-ignoring text.
Fake Completion: This attack [67] injects a fake response
into the target task to make target LLMs believe the target
task is completed and then solve the injected task. Formally,
it is defined as:

x̃ = xt ⊕ r ⊕ se ⊕ xe,

where r is the fake response for the target task, the attacker
can construct a specific fake response r when the target task
is known. For instance, in the text summarization task where
the target data xt is “Text: Dogs are widely regarded as
loyal companions and are highly valued by humans”, the fake
response r could be defined as “Summary: Dogs are loyal
human companions”. In contrast, A generic fake response is
constructed for the unknown target task.
Combine Attack: Building on previous attacks, the authors
propose an attack framework that combines various prompt
injection attacks to craft the compromised data x̃. It is defined
as follows:

x̃ = xt ⊕ c⊕ r ⊕ c⊕ i⊕ se ⊕ xe,

where the special character c is used to separate the fake re-
sponse r and task-ignoring text i. Similar to Fake Completion,
a generic response like “Answer: task complete” is applied as
the fake response for combined attacks. After constructing the
compromised data, the prompt is reconstructed by concatenat-
ing target instruction st with compromised data x̃, which is
defined as p̂ = st⊕ x̃. The prompt p̂ is then used to query the
target model for the injected task.

For input-based attacks, the authors introduce two categories
of defense mechanisms: prevention-based and detection-based
defenses. The objective of prevention-based defense is to
reconstruct the instruction prompt and pre-process the data
to ensure LLMs reliably accomplish the target tasks even
if the inputs are compromised. This category of defense
includes techniques such as paraphrasing [68], retokeniza-
tion [68], employing delimiters [67], [69], sandwich preven-
tion [70] that provides prompts with additional instructions,
and instructional prevention [71], which modifies the prompts

to instruct LLMs to disregard the injected contents. The
detection-based defense directly analyzes the input data to
identify whether they are compromised. These defenses in-
clude perplexity-based detection (PPL detection with standard
and windowed approaches) [68], [72], naive LLM-based detec-
tion [73] that leverages the model itself to detect compromised
data, response-based detection [74] that verifies the response
based on prior knowledge for the target task, and known-
answer detection that embeds secret keys to verify whether
the input has been injected.

Optimization-based attacks use gradient-based and algorith-
mic methods to craft effective prompts for executing prompt
injection attacks. Automatic and Universal Attacks [62] intro-
duce a comprehensive framework that clarifies the objective of
prompt injection attacks and automatically generates effective
and universal prompt injection data via a gradient-based opti-
mization method. The authors summarize two key challenges
of most prior research: the lack of general objectives and heavy
reliance on manually crafted prompts. The authors propose
three general attack objectives:
Static Objective: The target model is forced to produce uni-
form malicious responses irrespective of the user instruction
or external data.
Semi-Dynamic Objective: The target model produces consis-
tent malicious responses before providing content related to
user inputs.
Dynamic Object: The malicious contents are seamlessly
integrated with responses relevant to user instruction.
The main goal of this attack is to design a method that
automatically generates the injected data, denoted as xe, such
that F (st⊕xt⊕xe) = RT for the injected task where st and xt

refer to target instruction and target data, and F (·) represents
the target LLM. To achieve the goal, the authors propose an
effective strategy that minimizes the universal loss function,
which is formally defined as:

min
xe

N∑
n=1

M∑
m=1

JRT
n,m

(F (stn ⊕ xtm ⊕ xe)),

where N and M are the number of instructions and data
in the training set. The function J evaluates the difference
between the response generated by the target LLM F and the
targeted response RT

n,m for the injected task. Specifically, the
loss function is represented as:

JRT (st, xt, xe1:k) = −logP (RT |st, xt, xe1:k),

with P (RT |st, xt, xe1:k) is defined as:

Πl
j=1P (rk+j |ds, s1, . . . , sk, rk, . . . , rk+j−1),

where {rk+1, . . . , rk+l} are tokens of the targeted response
RT , and {{ds}, s1, . . . , sk} are tokens of input data with in-
jected content with ds denoting the tokens of user’s instruction.
A momentum gradient-based search algorithm, based on Greek
Coordinate Gradient (GCG) [75], is employed to address the
optimization problem for discrete tokens. In each iteration t,
the gradient Gt is computed as

Gt = ∇esi

N∑
n=1

M∑
m=1

JRT (st, xt, xe1:k),
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where esi denotes the one-hot vector corresponding to the
current value of the ith token in the injection content si. This
gradient is then updated by combining Gt with the gradient
from the previous iteration, weighted by a momentum factor
δ, which is defined as:

Gt = Gt + δ ·Gt−1.

Subsequently, the top K candidate tokens with the largest neg-
ative gradients are identified as the potential replacement for
token si with all token i from a modifiable subset I . A subset
of tokens with the number of B < K|I| is randomly selected
and used to evaluate the loss on the batch of training data. The
token with the smallest loss is chosen as the replacement for si
and ultimately generates the optimized injected content xe1:k.
JudgeDeveiver [63] presents an optimization-based prompt
injection attack targeting LLM-as-a-Judge, an LLM-integrated
application designed to select optimal responses. The objective
of LLM-as-a-Judge is to identify the response rk from a set of
candidate responses R = {r1, r2, . . . , rn} that most accurately
and effectively provides the answer to the question q. To
accomplish this objective, the LLM-as-a-Judge concatenates
the question q and candidate responses R into the single input
prompt, and the LLM uses this prompt to make a judgment ok
and determine the optimal response. This evaluation process
E(·) is formally represented as:

E(ph ⊕ q ⊕ r1 ⊕ r2 · · · ⊕ rn ⊕ pt) = ok,

where ⊕ denotes the concatenation operation and ph, pt are
the header and tailer instructions respectively. The prompt
injection attack is executed by appending an injected sentence
xe = {xe1, xe2, . . . , xel } to the target response rt via an attack
function A(·), which is defined as:

E(ph ⊕ q ⊕ r1 ⊕ r2 · · · ⊕A(rt, xe) · · · ⊕ rn ⊕ pt) = ot,

where ot represents the intended output for the injected task.
JudgeDeveiver begins with generating a set of shadow candi-
date responses Ds = {s1, s2 . . . sN}. Ds is produced by using
publicly accessible LLMs that combine the target question
q with a diverse set of prompts Pgen = {p1, p2 . . . pN},
which is transformed from a single, manually crafted prompt.
Subsequently, JudgeDeveiver formulates the prompt injection
attack as an optimization problem:

max
xe

ΠM
i=1E(oti |oh ⊕ q ⊕ s

(i)
1 . . . ,⊕A(rti , xe) · · · ⊕ s(i)m ⊕ pt)

where the optimization on the injected sequence xe is
performed over multiple shadow candidate responses sets
{Rs}Mi=1 with Rs = {s1 . . . st−1, rt, st+1 . . . sm}, consisting
of the target response rt and (m − 1) responses randomly
chosen from Ds. The maximization problem is equivalently
reformulated as a minimization of the total loss Ltotal(x

e) =∑M
i=1 Ltotal(x

(i), xe) with input sequence x(i) for evaluating
R

(i)
s and injected sentence xe and

Ltotal(x
(i), xe) = La(x

(i), xe)+αLe(x
(i), xe)+βLp(x

(i), xe).

In this formulation, α and β represent weight hypermeters that
balance each loss component. In particular, the target-aligned
generation loss La(·) is designed to increase the likelihood

of generating the target output oti = (T
(i)
1 , T

(i)
2 . . . T

(i)
L ) of

length L and is formally defined as:

La(x
(i), xe) = −logE(oti |x(i), xe),

with:

E(oti |x(i), xe) = ΠL
j=1E(T

(i)
j |x

(i)
1:hi

, xe, x
(i)
hi+l+1:ni

, T
(i)
1 . . . T

(i)
j−1)

where x
(i)
1:hi

indicates the input tokens that appear before
the injected sequence xe, x(i)hi+l−1:ni

denotes the input tokens
following xe, hi is the length of token preceding xe and ni is
the total length of tokens in the input processed by the LLM.
Le(·) represents the target-enhancement loss that is designed
to emphasize positional features during the optimization pro-
cess and enhance the robustness of the target response within
the input prompt. The target-enhancement loss is defined as
follows:

Le(x
(i), xe) = −logE(ti|x(i), xe),

where ti represents the positional index token of the target
response processed by the LLM-as-a-Judge. The adversarial
perplexity loss, Lp(·), is proposed to bypass the defense mech-
anisms based on perplexity detection [72], which identifies
the presence of prompt injection attacks by analyzing the log-
perplexity of candidate responses. For an injected sequence
xe = {xe1, xe2, . . . , xel } of length l, the log-perplexity loss is
calculated as the average negative log-likelihood of each token
in the sequence under the model. It is formally defined as:

Lp(x
(i), xe) = −1

l

l∑
j=1

logE(Tj |x(i)1:hi
, xe1, . . . , x

e
j−1).

To solve the optimization problem by minimizing the total
loss function, the authors propose a gradient-based algorithm
similar to Automatic and Universal Attack. The process begins
by computing a linear approximation of the effect on the
modification of jth token in xe, which is mathematically
expressed as:

∇xe
j
Ltotal(x

e) ∈ R|V |,

where xej is the one-hot encoded vector for the jth token in
xe and |V | represents size of the complete token vocabulary.
Next, the algorithm selects the top K candidate tokens with
the most negative gradients as potential replacements for xej .
It then employs the GCG algorithm by randomly sampling
a subset of B < K|xe| tokens. Finally, the token with
minimal loss within the randomly chosen subset is used to
replace xej and generate the optimized injected sentence xe.
Optimization-based attacks focus on automating the process
of prompt injection attacks. The authors discuss that existing
defense mechanisms can detect prompt injection attacks based
on handcrafted prompts, but they are insufficient for automatic
attacks. The optimization-based attacks highlight the critical
need for novel defense strategies that are both adaptive and
robust to defend against the threats from evolving prompt
injection attacks.

Among other types of attacks, Goal-guided Generative
Prompt Injection Attack (G2PIA) [64] mainly focuses on the
query-free black box prompt injection attack, which lever-
ages the knowledge of information theory with generative
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models. Prompt Infection [65] introduces an LLM-to-LLM
self-replicating prompt injection attack on LLM-based agent
systems, which bridges the gap between prompt injection in
single-agent and multi-agent systems. G2PIA [64] focuses
on the divergence between the target LLMs’ responses when
provided with the clean input prompts versus the prompt with
the injected contents. The main objective of this black-box
attack on the target LLM F (·) is defined as:

F (p) = r, F (p′) = r′, D(r, r′) ≥ ε,D(p, p′) < ε,

where p is the original prompt with multiple sentences and
p′ is the input prompt with injected content, D(·) denotes the
semantic distance between two input texts, and ε is the small
threshold to quantify the semantic difference. Based on the
observation of semantic differences in the output of the target
LLM for clean and injected input prompts, the authors refor-
mulate the prompt injection attack as an optimization problem.
Specifically, they aim to maximize the Kullback-Leibler (KL)
divergence KL(·) between the conditional distribution of the
output vector y given clean text vector x and adversarial text
vector x′. It is formally defined as:

max
x′

KL(p(y|x), p(y|x′)),

where y = w(r), x = w(p), and x′ = w(p′) with w(·)
being the bijection function between text and vector. The
authors assume that the output distribution p(y|x) satisfies
the discrete Gaussian distribution given the input x. For
simplification, the discrete distribution is approximated by
a continuous one to calculate the KL divergence. Next, the
maximization on KL divergence is equivalent to maximizing
the Mahalanobis distance (x′−x)TΣ−1(x′−x). This leads to
further reformulation as the minimization problem given the
clear input x:

min
x′
∥x′∥2 s.t. (x′ − x)TΣ−1(x′ − x) ≤ 1,

assuming that p(y|x), p(y|x′) follows the distributions
N1(y;x,Σ) and N2(y;x

′,Σ) respectively. Finally, the authors
apply the cosine similarity to simplify the minimization prob-
lem into a constraint satisfaction problem (CSP):

minp′1, s.t. D(p, p′) < ϵ, |cos(w(p′), w(p))− γ| < δ,

where ϵ and δ are hyperparameters that control the difficulty
of the search constraint, where smaller values of ϵ and δ imply
higher search accuracy. Thus, the authors propose a goal-
guided generative prompt injection attack that first identifies a
core word set that satisfies the semantic constraint condition
and then generates an adversarial text p′ based on the core
word set such that the cosine similarity constraint condition
in CSP is satisfied. Finally, the prompt p̂ is generated by
mixing the original prompt p with the adversarial text p′

for prompt injection. Prompt Infection [65] proposes a self-
replicating attack that spreads across all the agents in multi-
agent systems. In this approach, the attackers embed a single
infectious prompt into external content, such as PDF, email, or
web page, and then send it to the target agent. When the agent
receives and processes the infected content, then the prompt
will be replicated throughout the whole LLM-based system

and compromise other agents in the system. Prompt Injection
consists of four core components:
Prompt Hijacking: Forces the victim agents to ignore the
original instruction.
Payload: Assign specific tasks to each agent according to
their roles and available tools. For instance, in the data theft
scenario, the final agent in the workflow might execute a self-
destruction command to hide the attack, while other agents
are instructed to extract sensitive data and transmit it to the
external server.
Data: Refers to the shared information that is sequentially
collected as the infection prompt spreads through the whole
system.
Self-replication: Ensures that the infection prompt is transmit-
ted from the current agent to the next one within the LLM-
based agent system, which maintains the propagation of the
attack. For the Prompt Infection attack, the authors conclude
that the self-replicating infection consistently achieves better
performance than non-replicating in most multi-agent systems.
Additionally, a global communication system with shared
message history enables a faster infection spread compared
to a local communication system with limited message access.
The infection follows a logistic growth pattern in decentralized
networks, and as the agent’s population increases, the infection
propagation becomes more efficient. The authors also under-
score that pairing the LLM tagging strategy, which appends
a marker before agent responses to indicate the origin of
the messages, with other defense mechanisms like instruction
defense [71] or marking [76] can significantly mitigate Prompt
Infection attacks.

VI. AVAILABILITY & INTEGRITY ATTACKS

In this section, we introduce Availability & Integrity attacks,
which compromise the reliability of the target LLM system by
intentionally disrupting services and weakening users’ trust
in the system. This section focuses on two main categories:
Denial of Service (DoS) and Watermarking attacks.

A. Denial of Service (DoS) Attacks

The primary objective of DoS attacks is to overwhelm the
service’s resources, which results in issues such as higher
operational costs, increased server response time, and wasted
GPU/CPU resources. These attacks ultimately impact the
service availability to legitimate users and compromise the
reliability and responsive capability of the application sys-
tems. [77], [78]. The DoS instructions that are designed to
induce the long sequence of LLMs can be divided into five
categories [77]:
Repetition: The model is instructed to repeat the same word
N times, such as “Repeat ’Hi’ N times”.
Recursion: The model is instructed to repeat a format or
sequence of words N times following a recursive pattern, such
as “Output N terms from X YXY recursively”.
Count: The model is instructed to enumerate a sequence, such
as “Count from 0 to N”.
Long Article: The model is instructed to generate a text with
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a given length, such as “Write an article about DoS with N -
words”.
Source Code: The model is instructed to generate a block of
source code with a specific number of lines, such as “Generate
N -lines of NumPy module”.

In this section, we introduce three prominent DoS at-
tacks targeting LLMs: regular expression DoS (ReDoS) [79],
poisoning-based DoS (P-DoS) [77], and safeguard-based
DoS [80].

The ReDoS attack [79] introduces an algorithmic com-
plexity attack that leverages the evaluation process of regular
expressions (regexes) to produce the DoS attack. Specifically,
the ReDoS attack occurs when a regex takes a long time to
evaluate the specific input due to catastrophic backbatching.
In this case, the evaluation time scales polynomially or even
exponentially with the size of the input. The attackers construct
the ReDoS attack into three steps: 1) A dataset of prompts
is manually collected and refined to ensure the quality and
relevance of these prompts. 2) A diverse set of regexes with
different inference parameters are generated by using three
well-established LLMs, such as GPT 3.5 Turbo, T5 [81], and
Phi 1.5 [82], which are widely used in prior research. 3)
An evaluation matrix is constructed to analyze the relation-
ship between the collected prompts and inference parameters,
which quantifies the vulnerability of the generated regexes to
DoS attacks. Finally, these generated regexes are deployed to
activate DoS attacks on the target LLM server. The P-DoS
attack [77] leverages data poisoning during the fine-tuning
phase to circumvent the output length constraints, which forces
the model to extend the length of the responses that enabling
the DoS attack on the target LLM server. Depending on attack
scenarios, three variants of P-Dos attacks are introduced: In
the data contribution scenario for the P-DoS attack on LLMs,
attackers construct a poisoned dataset for fine-tuning without
modifying the model weights or inherent algorithms. The
attack method comprises two steps. First, a poisoned sample is
injected into the fine-tuning dataset, along with an associated
instruction-response pair that instructs the model to generate
repeated responses attached to that sample. Then, the model
is fine-tuned on the poisoned dataset to learn the malicious
behaviors and produce a max-length response when triggered.
In the model publisher scenario for the P-DoS attack on
LLMs, attackers are required to take full control over the
target model, including both datasets and algorithms. Instead
of directly generating repeated responses, the attacker embeds
hidden triggers into the model during the fine-tuning phase that
removes the End-of-Sequence (EOS) tokens, which signal the
model to stop generating. This scenario introduces two types
of P-Dos attacks:
Continuous sequence format (CSF) P-DoS: Uses the struc-
tured format like repetition, recursion, or count to ensure the
target model continuously generates outputs.
Loss-based P-Dos: Modifies the loss function to minimize the
probability of generating EOS tokens, which forces the target
model to produce endless text.
For the P-DoS attack on the LLM-based agents, the LLM-
based agents are forced into an infinite loop by being fine-
tuned on the poisoned dataset. For example, in the case of

Code Agents for code execution, the fine-tuning dataset is poi-
soned so that the generated code includes infinite loops, which
causes the code to run endlessly. Similarly, the OS commands
are injected into OS Agents to freeze the system indefinitely.
For Webshop Agents, the behavior of LLM-based agents is
modified so that they continuously click a non-functional
button, which causes the agent to be trapped in an endless
loop. The safeguard-based DoS attack [80] introduces a novel
approach that takes advantage of false positives in LLM
safeguards. Attackers insert adversarial prompts into the user
prompt templates so that safe requests are incorrectly identified
as unsafe by LLM safeguards, which blocks most of the user
inputs and enables DoS conditions. The safeguard-based DoS
attack consists of three main steps: 1) Attackers first inject
adversarial prompts into the prompt template. These adver-
sarial prompts are automatically generated using a gradient-
based, stealth-oriented optimization method, which ensures
these prompts are short and seemingly benign. Additionally, a
multi-dimension universality is applied to guarantee universal
effectiveness across diverse scenarios. 2) Users unknowingly
submit compromised requests modified by prompt templates,
which makes the target LLM server reject the requests. 3) The
LLM safeguards mistakenly classify the modified prompts as
unsafe, which results in a consistent DoS to the users.

The reliability of LLM servers has become important with
the growing deployment of LLM-based applications, and the
risks of compromised servers are increasing. Recent DoS
attacks on LLMs demonstrate that the existing defense mech-
anisms on the server side always fail to mitigate these attacks.
This highlights the critical need for robust and adaptive
defense techniques that enable LLM services to resist evolving
threats.

B. Watermarking Attacks
Watermarking is the technique that detects AI-generated

content by embedding subtle patterns into generated text.
The watermarked text statistically diverges from normal text
by modifying the probability distribution of LLM-generated
text. The LLM watermarking detection is achieved by using
hypothesis testing that compares the watermarked text distri-
bution with the normal text distribution. Watermarking attacks
involve adversarial strategies that are designed to remove,
modify, or obscure the hidden signals embedded within AI-
generated texts, which enables attackers to evade detection,
bypass content policy restrictions, or bypass licensing controls.
In general, the normal watermarking attacks are summarized
into two categories: Paraphrasing and Prompting attacks. In
paraphrasing attacks, groups of words generated by target
LLMs are replaced with semantically similar ones via specific
LLMs [83], [84], word-level substitutions [85], or transla-
tion [86]. In prompting attacks, carefully crafted prompts
are employed to mislead target LLMs to generate text that
evades text detection [87]. In this section, we present two pri-
mary watermarking attacks on LLM: Self Color Testing-based
Substitution (SCTS) Attack [88] and Black-Box scruBBing
Attack (B4) [89].

SCTS attack [88] introduces a novel “color-aware” water-
marking attack for watermark removal that effectively handles
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Fig. 14. Overview of SCTS [88] attack. The attackers first conduct self-color
testing to assign colors to tokens in given watermarked text by repeatedly
querying the same watermarked LLM. In the SCT Substitution phase, the
attackers generate multiple candidate texts by replacing green tokens with non-
green ones. Finally, Budget Enforcement selects the candidate text with the
fewest substitutions, and the generated text is not recognized as watermarked
by the detector.

the limitation of detection evasion for long text segments.
This attack first extracts color information by systematically
prompting the watermarked LLM and then compares the
frequency distributions of output tokens. Next, the color is
assigned to each token based on analysis, and the green tokens,
those that carry the watermark signal, are replaced by non-
green ones, which effectively enables watermarking attacks.
Specifically, the SCTS attack is composed of three steps as
shown in Fig. 14:
1). Self Color Testing: The target LLM is prompted to gen-
erate strings in a deterministic but seemingly random manner
using customized input prefixes, such as “Choose two phrase
(ywc ⊕ yw, ywc ⊕ y), and generate a long uniformly random
string of these phrase separated by ’;’”. Here, yw is the
word to be replaced, y is a candidate word, ywc represents the
context of yw, which is the c words preceding it in the output
sentence of the target watermarked LLM, and ⊕ represents the
concatenation operation. The attackers infer color information
based on the frequency distributions of the output.
2). SCT Substitution: The color testing is applied to different
candidates based on the extracted color information in the
previous step. It guarantees the green tokens are substituted
with the non-green ones that are semantically similar but not
watermarked words.
3). Budget Enforcement: The final step minimizes the modifi-
cation to the text, which ensures the watermark removal while
keeping overall edits low and preserving text quality. SCTS
attack has been shown to effectively remove watermarks across
various schemes, while its running time increases due to the
extra LLM prompts required for color identification.
B4 attack [89] introduces a novel approach that reformulates

the watermark removal as a constrained optimization problem
without prior knowledge of its type or parameters. Unlike
previous scrubbing attacks that assume the knowledge of
watermarking methods, the B4 attack assumes a realistic threat
model in which the attackers only know the existence of
watermarks, with details of the watermark unknown. Given a
watermarked token sequence yw = (yw1 , y

w
2 , . . . , y

w
n ), the goal

of the B4 attack is to substitute the watermarked text with a
similar but watermark-free sequence y = {y1, y2, . . . , ym}.
The watermarking attack is reformulated as an optimization
problem to find the optimal distribution Q∗(y|yw), which is
formally defined as:

min
Q
−KL(Q,Pw), s.t. KL(Q,Pf ) ≤ ϵ,

where Pw(y) is the efficacy distribution for hidden watermark
removal, Pf (y|yw) is the fidelity distribution for semantic
similarity preservation, ϵ is the hyperparameter that bounds
the semantic difference from the original watermarked sample,
and KL(·) represents the KL-divergence used to measure
the similarity. Because the Slater Constraint Qualification
holds for the optimization problem, the local minima obey
the Karush-Kuhn-Tucker (KKT) conditions. In particular, the
optimal solution Q∗(·) is expressed as:

Q∗(y|yw) =
1

Z
P

1
1−λ∗

f (y|yw)P
− λ∗

1−λ∗
w (y),

where λ∗ ∈ (0, 1) is the corresponding Lagrangian multiplier
that satisfies KL(Q,Pf ) = ϵ and can be solved using
Newton-Raphson Method and Z is the Normalizing constant.
In practice, Pw and Pf are inaccessible in most cases. The
attackers leverage model distillation to train two LLMs pθ
and pϕ as proxy distributions to approximate them:
For efficacy distribution Pw:

P̂w(y; θ) = Πipθ(yi|y<i).

For fidelity distribution Pf :

P̂f (y|yw;ϕ) = Πipϕ(yi|y<i,y
w).

Substituting these distributions into the solution under the
KKT condition, the optimal solution for wb is reformulated
as:

Q∗(yi|y<i,y
w) =

P̂
1

1−λ∗

f (yi|y<i,y
w;ϕ)

P̂
λ∗

1−λ∗
w (yi|y<i; θ)

.

Additionally, to handle the inherent sampling-based error of
model distillation in proxy watermark distribution P̂w, B4

employs Approximation Error Adjustment (AEA) to exclude
the “under-fitting” region Σi

u from the calculation of the KL
divergence objective. The “under-fitting” region is the subset
of the whole vocabulary Σ, which is defined as:

Σi
u = {v ∈ Σ : |pθ(v|y<i)− pθini

(v|y<i)| < µ},

where θini denotes the initialized weight before distillation,
and µ is the threshold. The optimal distribution is then adjusted
as:

Q∗(yi|y<i,y
w) =


P̂f (yi|y<i,y

w; θ), if yi ∈ Σi
u

P̂
1

1−λ∗

f (yi|y<i,y
w;ϕ)

P̂
λ∗

1−λ∗
w (yi|y<i; θ)

, otherwise
,

Finally, the watermark-free text is generated by sampling each
token yi in an auto-regressive manner based on Q∗(·).

These watermarking attacks demonstrate that seemingly
clean text can be generated from watermarked AI-generated
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texts, effectively evading current detectors. This highlights
the critical need for developing more powerful and robust
watermarking techniques and detection strategies that can
identify these watermarking attacks. With the widespread ap-
plication of watermarking for policy restriction and copyright
protection, it is essential to understand and mitigate these
attacks to strengthen public trust in AI-generated media.

VII. CONCLUSION

Our survey comprehensively explores the landscape of
attacks on LLMs and LLM-based agents across the com-
plete model lifecycle, from initial model training through
inference to deployment in real-world service. In the paper,
we provide three key insights into the challenges of LLM
security: First, we highlight the vulnerability of LLMs by
demonstrating the details of how adversarial attackers can
exploit every stage of the model pipeline to compromise
LLM-based applications. Second, we emphasize the evolving
complexity of threats introduced by the transition from LLMs
to LLM-based multi-agents augmented with external tools and
modules; this significantly expanded attack surface exposes
new risks that cannot be easily addressed by the existing
defenses. Third, we identify the limitations of current defense
strategies that focus on specific attacks and lack the robustness
to mitigate adaptive attacks. To address these challenges,
we propose several critical directions for future research: 1).
The development of a unified classification of threats and
benchmarks to enable consistent evaluation and comparison of
defense strategies across models and scenarios. 2). The design
of a cross-phase defense framework that offers comprehensive
protection across the full model lifecycle. 3). The need for
advancement in adaptive and explainable defense mechanisms
that can be deployed to detect and respond to real-time threats
while preserving interpretability and reliability for both system
developers and users.
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