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Abstract

We introduce a novel framework for differentially private (DP) statistical estimation via data trun-
cation, addressing a key challenge in DP estimation when the data support is unbounded. Traditional
approaches rely on problem-specific sensitivity analysis, limiting their applicability. By leveraging
techniques from truncated statistics, we develop computationally efficient DP estimators for exponential
family distributions, including Gaussian mean and covariance estimation, achieving near-optimal sample
complexity. Previous works on exponential families only consider bounded or one-dimensional families.
Our approach mitigates sensitivity through truncation while carefully correcting for the introduced bias
using maximum likelihood estimation and DP stochastic gradient descent. Along the way, we establish
improved uniform convergence guarantees for the log-likelihood function of exponential families, which
may be of independent interest. Our results provide a general blueprint for DP algorithm design via
truncated statistics.
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1 Introduction

In an era of data-driven decision-making, differential privacy (DP) has become the gold standard for privacy-
preserving statistical analysis, ensuring that the inclusion or exclusion of any individual’s data does not
significantly alter outcomes [DMN+06]. DP has seen widespread adoption, including in the U.S. Census
Bureau’s data releases [Abo18] and industry applications [EPK14], due to its rigorous guarantees balancing
privacy and utility.

Over the past two decades, research has produced private estimation methods for mean estimation [Smi11],
regression [She17], and hypothesis testing [GLR+16]. Techniques like the Laplace and Gaussian mecha-
nisms [DMN+06], differentially private empirical risk minimization [CMS11], and DP-SGD [ACG+16] have
enabled privacy-preserving machine learning.

Despite this long line of work, a key limitation remains: there is no general-purpose computationally
efficient framework for differentially private statistical estimation, when the support of the data is unbounded,
e.g., Rd. In such cases, bounding the sensitivity of the statistical estimators is a very challenging task
and existing methods require case-specific sensitivity analyses, making their broad application challenging.
Without a good bound on the sensitivity of an estimator, it is impossible to obtain good DP mechanisms with
utility-privacy tradeoffs.

Data Truncation. One natural approach to reducing sensitivity—and thereby improving privacy-utility
trade-offs—is to artificially truncate the data, ensuring that extreme values do not unduly influence the
estimation process. Truncation directly controls sensitivity, which is crucial in DP settings where privacy
guarantees depend on bounding the worst-case impact of a single data point. While this technique provides a
compelling solution to the challenge of sensitivity control, it introduces a new issue: bias. Truncation distorts
the underlying distribution, leading to inaccurate estimates if not properly corrected. This raises an important
question:

Can we leverage techniques from truncated statistics to develop a principled framework
for reducing sensitivity in differentially private statistical estimation?

The study of truncated statistics has a long history, with recent results providing efficient methods
for estimating distributions and regression models under truncation. Notably, works such as Daskalakis,
Gouleakis, Tzamos, et al. [DGT+18] have developed polynomial-time algorithms for estimating Gaussian
parameters from truncated samples, overcoming computational barriers. However, despite the rich theory of
truncated statistics, its potential for designing differentially private estimators remains largely unexplored. In
this work, we take a step in this direction by introducing a principled approach that integrates differential
privacy with statistical methods designed for truncated data. A novel consequence of our work is the first
efficient DP algorithm for estimating the parameters of unbounded high-dimensional exponential
families.

1.1 Contributions

Our main conceptual contribution is a method for private statistical estimation using truncation. Using this
paradigm, we design the first algorithm for privately estimating the parameter of unbounded high-dimensional
exponential family distributions. As special cases, we recover algorithms for Gaussian mean and covariance
estimation with near-optimal sample complexities.

We write m to denote the dimension of the parameters/sufficient statistics of an exponential family
distribution qθ parameterized by θ, and d to denote the dimension of the distribution. Let ε, δ ∈ (0, 1) denote
the approximate-DP parameters and α ∈ (0, 1) denote the accuracy parameter. We design the following
efficient (ε, δ)-DP algorithms that outputs:
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• (See Theorem 3.1) an estimate θ̂ for the parameter of an exponential family distribution qθ⋆ such that
∥θ̂ − θ⋆∥ ≤ α with sample complexity that is linear in m and proportional to 1/ε, 1/α2, and 1/αε.

• (See Theorem 4.1) an estimate µ̂ for the mean of a Gaussian N (µ⋆, I) such that ∥µ̂ − µ⋆∥ ≤ α with
sample complexity that is linear in d and proportional to 1/ε, 1/α2, and 1/αε.

• (See Theorem 4.2) an estimate Σ̂ for the covariance of a Gaussian N (0,Σ⋆) such that
∥I − (Σ⋆)−

1
2 Σ̂(Σ⋆)−

1
2 ∥F ≤ α with sample complexity that scales as d2 and is proportional to 1/ε, 1/α2,

and 1/αε.

In particular, Theorem 3.1 is the first efficient algorithm for privately estimating unbounded high-dimensional
exponential families. All prior works consider only bounded or one-dimensional/one-parameter cases (see
related works in Section 1.2). Theorems 4.1 and 4.2 demonstrate the sample efficiency of our method by
recovering the optimal sample complexities for the specific case of Gaussian estimation.

Technical Contributions. The key idea in obtaining our private estimator for exponential families is to
only access data after truncating to an appropriate bounded survival set. Then, folklore techniques suffice to
estimate the parameters of the truncated distribution. This raises two issues: 1) there may be bias introduced
by the truncation and 2) how can we choose the survival set?

In Sections 3.2 to 3.5, we first assume we are given a bound R = O(1) on the radius of the norm of the true
parameter so that one straightforward choice for the survival set is the ball of radius O(

√
m) about the origin.

Then we address 1) by using stochastic gradient descent (SGD) on the truncated negative log-likelihood
function L over a carefully chosen projection set K to ensure strong convexity. The true parameter is a
minimizer of L. However, to satisfy privacy, we must use DP-SGD, which requires making multiple passes
over the data. This raises further issues since each truncated sample only provides a single unbiased gradient
estimate. We overcome this by instead optimizing the empirical log-likelihood L̃, which necessitates a
uniform convergence result to ensure that the empirical minimizer remains close to the population minimizer.

Shah, Shah, and Wornell [SSW21] also derived a uniform convergence result for exponential families
but their proof does not immediately handle truncation. Furthermore, they require O(1/α4) samples, which
would lead to sub-optimal sample complexity for Gaussian mean and covariance estimation. Our proof
overcomes this limitation by first showing that θ̃⋆ ∈ K lies in the projection set of L̃ after O(1) samples.
Hence L̃ actually satisfies a Polyak-Lojasiewicz (PL) condition, which leads to uniform convergence at
O(1/α2) samples.

To address 2), we observe that simply estimating the parameter of the truncated distribution yields a
constant-distance warm start. In Appendices B.6 and B.7, we remove the need for a prior by adapting a
standard bounding box algorithm for the parameter of the truncated distribution that attains a O(poly(m))-
distance warm start. This is adapted from a folklore algorithm for Gaussian estimation that we generalize to
truncated exponential families. Next, to avoid unnecessary poly(m)-dependence in the sample complexity,
we further refine this to an O(1)-distance warm start by adapting a Gaussian estimation algorithm of Biswas,
Dong, Kamath, et al. [BDK+20] that we generalize to truncated exponential families.

Finally, in Section 4, we show that we can derive algorithms for Gaussian mean and covariance estimation
from our general algorithm for exponential families. However, to avoid linear dependence on the condition
number, we adapt a recursive Gaussian preconditioning algorithm by Biswas, Dong, Kamath, et al. [BDK+20]
which we again generalize to the setting of truncated Gaussians.

1.2 Related Works

DP Exponential Family Estimation. Prior works on privately estimating the parameter of exponential
families focus either on asymptotic guarantees [FWS20], bounded exponential families [BS18], or one-
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dimensional/one-parameter exponential families [BS18; MSU22]. In contrast, our algorithms can handle
unbounded high-dimensional multi-parameter exponential families.

DP Gaussian Estimation. The first sample-optimal DP Gaussian mean/covariance estimation algorithms
were due to Aden-Ali, Ashtiani, and Kamath [AAK21], who attains rates of Õ( d

α2 + d
αε +

log(1/δ)
ε ) and

Õ( d
2

α2 + d2

αε +
log(1/δ)

ε ), respectively. However, their algorithms require exponential running time. Recent
transformations from robust algorithms to private algorithms obtained the same optimal sample complexities
for mean estimation [HKM22] and covariance estimation [HKM+23] in polynomial time. See Hopkins,
Kamath, Majid, et al. [HKM+23, Table 1, Table 2] for a detailed summary of prior algorithmic results. The
sample complexities are tight up to logarithmic factors [KV18; KMS22; Nar24; PH24].

The private Gaussian estimation algorithms of Karwa and Vadhan [KV18] and Biswas, Dong, Kamath,
et al. [BDK+20] are also relevant as we adapt them for truncated exponential families. Note that due to the
bias introduced by the truncation step, directly running the adaptations on truncated samples yields biased
estimates. However, we show that these biased estimates suffice as warm starts/preconditioners.

DP Empirical Risk Minimization. A related line of work develops methods to solve empirical risk
minimization problems (see e.g. Bassily, Smith, and Thakurta [BST14] and references therein). This line of
work only handles the sensitivity problem that we describe above when the support of the input distribution is
bounded. In the problem of learning exponential families that we explore in this paper, these assumptions are
often violated and this is one illustration of the importance of the methods that we propose.

Truncated Statistics. The recent seminal work of Daskalakis, Gouleakis, Tzamos, et al. [DGT+18]
developed the first polynomial-time algorithms for estimating Gaussian parameters from truncated samples
within a given survival set. This has led to a flurry of developments, including generalizations to truncated
exponential families [LWZ23; LMZ24], truncated Gaussian estimation with unknown survival sets [KTZ19;
LMZ24], truncated regression [DGT+19; DRZ20; DSY+21], and truncated linear dynamics [Ple21].

2 Preliminaries

We include the standard preliminaries for differential privacy in Appendix A.

2.1 Notation

We write d for the dimension of the ambient space, m for the dimension of the sufficient statistic for an
exponential family distribution qθ parameterized by θ, ε, δ for the privacy parameters, and α, β for the
accuracy, failure probability parameters. We typically use ρ ∈ (0, 1) to indicate the survival probability when
truncating a distribution to a survival set S ⊆ Rd. For R > 0, we use BR(x) to denote the closed Euclidean
ball of radius R about x, or BR(X ) to denote the union of closed Euclidean balls of radius R about x ∈ X .
B−R(X ) := {x ∈ X : BR(x) ⊆ X} denotes R-interior of the argument. We let Sd denote the set of d× d
real-symmetric matrices. For A,B ∈ Sd, we write A ≺ B,A ⪯ B to denote the positive definite and positive
semi-definite relations. Sd+ indicates the subset of positive semi-definite matrices.

2.2 Neighboring Truncated Datasets

Our guiding principle for designing private algorithms is to discard outlier samples that fall outside some
survival set1 S to obtain bounded sensitivity. However, given an algorithm A that is differentially private on

1Daskalakis, Gouleakis, Tzamos, et al. [DGT+18] also referred to this as the truncation set
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truncated samples, it is not clear how to reason about the privacy guarantees when we first truncate a dataset
and feed it to A, since the truncated datasets may no longer be neighboring. Specifically, let D′ be obtained
from the dataset D by modifying an entry. Then, depending on whether the modified entry falls in S, the
truncated datasets DS , D

′
S fall into one of three categories: Either 1) D′

S = DS , 2) D′
S can be obtained from

DS by modifying an entry, or 3) D′
S can be obtained from DS by adding/deleting an element.

Below, we formally state the guarantees of a preprocessing procedure we employ in addition to truncation
and defer its proof to Appendix A.3.

Lemma 2.1. Fix n ≥ 1 and let N ∈ N. Let D ∈ Rd×N be an N -sample dataset, D′ ∈ Rd×N be obtained
from D by modifying a single entry, and S ⊆ Rd. Write DS , D

′
S to denote the datasets obtained from D,D′

by discarding entries that fall outside of S. There is a preprocessing algorithm A such that

(i) A(D′
S) ∈ Sn can be obtained from A(DS) ∈ Sn by modifying a single element,

(ii) for any (ε, δ)-DP algorithm B with respect to neighboring truncated datasets, the composition
B(A(DS)) is (ε, δ)-DP with respect to neighboring (untruncated) datasets D,D′, and

(iii) if D is sampled i.i.d. from some distribution p such that p(S) =: ρ, then A(D) contains i.i.d. samples
from the truncated distribution pS with probability 1− β, provided N = Ω(n log(1/β)

ρ ).

Throughout this work, we only work with truncated distributions with constant survival mass ρ ≥ Ω(1).
Thus in light of Lemma 2.1, it suffices to analyze the privacy and sample complexity of datasets from
the truncated distribution and then incur a sample complexity blowup of O(log(1/β)) for the untruncated
distribution while maintaining the privacy guarantees. From hereonforth, we do not distinguish between
the sample complexity of truncated and untruncated samples, but it is understood that we perform this
preprocessing to obtain truncated samples. See e.g. Algorithm 3.1 for an explicit example.

2.3 Exponential Families

Exponential families form a fundamental class of probability distributions that unify and generalize many
statistical models, including the Gaussian, Bernoulli, and Poisson distributions [Bro86]. Their structured
mathematical form provides a natural framework for efficient statistical inference, enabling widespread
applications in machine learning, information theory, and Bayesian statistics [WJ08].

In this paper, we consider absolutely continuous exponential family distributions over Rd

qθ(x) = h(x) exp
(
θ⊤T (x)−Υ(θ)

)
,

where h : Rd → R+ is the base measure, T : Rd → Rm is a sufficient statistic,
Υ(θ) = log

∫
x h(x) exp

(
θ⊤T (x)

)
dx is the log-partition function that ensures qθ integrates to 1, and

θ ∈ H := {θ : A(θ) <∞} is the natural parameter of the distribution.
It is not hard to see that H is convex. We write Θ ⊆ H to be a closed, convex subset of the natural

parameter space. As we illustrate in Section 4 for Gaussians, it may be necessary to restrict ourselves to Θ in
order to obtain useful properties such as strong convexity of the NLL function.

Statistical Assumptions. We now state some common statistical assumptions for estimating (truncated)
exponential families. Remark that these are necessary assumptions that appear even in the non-private
literature for exponential families [BFS+19; SSW21; LWZ23; LMZ24]. Moreover, these assumptions hold
for a variety of common distributions such as exponential distributions, Weibull distributions, continuous
Bernoulli distributions, and continuous Poisson distributions [LWZ23, Appendix B].
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Assumption 2.2 (Statistical Assumptions).

(S1) (Bounded Condition Number) λI ⪯ Covx∼qθ [T (x), T (x)] ⪯ I for every θ ∈ Θ. (e.g. isotropic
Gaussian satisfies this with λ = 1)

(S2) (Interiority) θ⋆ is in the η-interior B−η(Θ) of Θ for some η ∈ (0, 1], i.e. Bη(θ
⋆) ⊆ Θ.

(S3) (Log-Concavity) Each qθ, θ ∈ Θ is a log-concave distribution (e.g. isotropic Gaussian)

(S4) (Polynomial Sufficient Statistics) T (x) is a polynomial of given constant degree k = O(1) (e.g. k = 1
for isotropic Gaussian).

Some remarks about the statistical assumptions are in order.
We can relax Assumption (S1) to λI ⪯ Cov[T (x), T (x)] ⪯ ΛI by rescaling the sufficient statistics

T ′(x)← T (x)/
√
Λ if necessary. Then the condition number becomes Λ/λ. In order to obtain computationally

efficient algorithms, some assumptions on the spectrum of Cov[T (x), T (x)] are made even for non-privately
learning exponential families [SSW21]. Typically, as in the case of Gaussians (Appendix C.4), it is possible
to precondition the distribution so that λ = Ω(1). Hence we think of λ as being a constant bounded away
from 0.

Assumption (S2) is usually easy to satisfy just by “blowing up” Θ by η (e.g. Appendices C.1 and C.3
for Gaussians). Thus throughout this work, we think of η as a small constant bounded away from 0.
Assumptions (S1) and (S2) together imply a subexponential concentration inequality on the sufficient statistic
T (x) for x ∼ qθ⋆ (Proposition A.8).

Assumptions (S3) and (S4) together imply an anti-concentration result of polynomials under log-concave
measures [CW01]. This is a crucial ingredient in deriving computationally efficient algorithms for truncated
statistics which appears even in the most basic case of learning truncated Gaussians [DGT+18]. Alternatively,
we may assume that the sufficient statistics belong to a class of functions that satisfy anti-concentration. For
simplicity of exposition, we focus on the case where T (x) is a polynomial.

Computational Tasks. In order to efficiently implement our algorithms, we will need access to a few
problem-specific subroutines. We emphasize that these are standard computational tasks and specify how
they can be achieved in the case of Gaussian mean and covariance estimation in Appendices C.1 and C.3.

Assumption 2.3 (Computational Subroutines).

(C1) (Projection Acess to Convex Parameter Space) There is a poly(m)-time projection oracle to Θ ∋ θ⋆.

(C2) (Sample Access to Log-Concave Distribution) For every θ ∈ Θ, we can (approximately) sample from
qθ in poly(d)-time.

(C3) (Moment-Matching Oracle) There is an oracle MomentMatch such that given some τ ∈ Rm, the
oracle returns some θ ∈ Θ such that Ex∼qθ [T (x)] = τ (approximately) holds in poly(m)-time.

We also comment on the problem-specific computational subroutines required by our algorithm.
For simple convex sets like Rm, half-spaces, Euclidean balls, or hypercubes, there are simple subroutines

to compute the convex projection onto them. For general convex bodies, it suffices to assume access to a
separation oracle in order to call on the ellipsoid method [GLS88] and implement a projection oracle. Thus
Assumption (C1) is typically not a strong condition. Moreover, our algorithm may require taking projections
onto the intersections of closed convex sets which occur when we iteratively reduce the domain of the feasible
region. This can be efficiently implemented via Djikstra’s algorithm [BD86; WP24].
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There are efficient algorithms to sample from log-concave distributions under additional regularity
conditions on qθ [Che24] or when the support is a convex body [LV07]. Thus Assumption (C2) is not a
stringent concern.

Finally, there are closed-form solutions for Assumption (C3) in many scenarios such as the standard
parameterization of Gaussian distributions as an exponential family. In general, a moment matching oracle can
be implemented by solving a maximum-likelihood estimation (MLE) problem, which is a convex optimization
problem with efficient solutions (see e.g. Lee, Wibisono, and Zampetakis [LWZ23]).

2.4 The Negative Log-Likelihood Function (NLL)

Here we recall some facts about the negative log-likelihood function (NLL) for an exponential family. Let qθ
denote the density of an exponential family distribution parameterized by θ and ℓ(θ;x) := − log qθ(x) be
its single sample NLL. It can be shown (see e.g. Busa-Fekete, Fotakis, Szörényi, et al. [BFS+19]) that the
derivative and Hessian (also known as Fisher information) of the NLL for a single sample x ∼ qθ⋆ are given
by

∇θℓ(θ;x) = Ey∼qθ [T (y)]− T (x) , ∇2
θℓ(θ;x) = Covy∼qθ [T (y), T (y)] ⪰ 0 .

Thus the gradient and Hessian of the population NLL L(θ) = Ex∼qθ⋆ [ℓ(θ;x)] are as follows:

∇θL(θ) = Ey∼qθ [T (y)]− Ex∼qθ⋆ [T (x)] , ∇2
θL(θ) = Covy∼qθ [T (y), T (y)] ⪰ 0 .

As an example, let qθ denote the density function of a member of some exponential family and qSθ denote the
density truncated to the set S. For any S ⊆ Rd, we see that the gradient and Hessian of the empirical NLL
L̃(θ) = L̃(θ;x(1), . . . , x(n)) := 1

n

∑n
i=1− log qSθ (x

(i)) for n truncated samples have the following form

∇θL̃(θ) = Ey∼qSθ
[T (y)]− 1

n

n∑
i=1

T (x(i)) , ∇2
θL(θ;x) = Covy∼qθ [T (y), T (y)] ⪰ 0 .

Note that under Assumption (S1), both the (untruncated) population and empirical NLL are convex, 1-smooth,
and λ-strongly convex over Θ.

3 Privately Estimating Exponential Families via Truncation

Our main result is an efficient truncation-based algorithm for privately learning an exponential family from
samples.

Theorem 3.1. Let ε, δ, α, β ∈ (0, 1) and suppose the statistical assumptions hold (Assumption 2.2) and
computational subroutines exist (Assumption 2.3). There is an SGD-based (ε, δ)-DP algorithm such that
given samples from qθ⋆ , outputs an estimate θ̂ satisfying ∥θ̂ − θ⋆∥ ≤ α with probability 1− β. Moreover, the

algorithm has sample complexity n = Õ(m log(1/ηβδ)
λ2ε

+ m log(1/β)
λ4η4α2 + eO(1/λ2)m log(1/βδ)

λ2αε
) and time complexity

poly(n,m, d).

The exponential dependence on λ is an artifact of existing truncated statistics methods [LMZ24]. More-
over, polynomial dependence on 1/λ is necessary even when using vanilla SGD to estimate Gaussian
parameters. However, for many important exponential families such as Gaussians, this can be mitigated by
preconditioning the samples so that λ = Θ(1). We demonstrate how to do this for Gaussians in Section 4.2
(Theorem 4.2).

Remark 3.2 (Robustness against Existing Truncation). All of our algorithms only access samples after a
preprocessing truncation step. Thus the guarantees of our algorithms all hold if, instead of having sample
access to an exponential family, we are only given access to samples which have already undergone truncation
to an arbitrary but known survival set.
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Pseudocode. Our main DP-SGD subroutine can be found in Algorithm 3.1.

Algorithm 3.1: DP-SGD with Truncation
Input: N -sample dataset D, desired truncated samples n, privacy parameters ε, δ ∈ (0, 1), survival

set S, truncated sensitivity ∆ > 0, warm-start θ(0) ∈ Rm, accuracy α ∈ (0, 1), step-size
function γ(t) : Z+ → R+, projection set K

Output: estimator θ̂ for θ⋆

1 DS ← {x ∈ D : x ∈ S}
2 DS ← DS ∪

{
x
(i)
dummy : i ∈ [n− |DS |]

}
▷ Fill with dummy elements if there are less than n

elements
3 DS ← DS [1 : n] ▷ Only keep first n elements if there are more than n
4 Shuffle DS uniformly at random

5 σ2 ← 32∆2 log(n/δ) log(1/δ)
ε2

▷ Taken from Bassily, Smith, and Thakurta [BST14] (Theorem 3.4)
6 for iteration t = 1, . . . , n2 do
7 x ∼ DS sampled with replacement
8 y ∼ qS

θ(t−1) ▷ Rejection sampling using sampling oracle (Assumption (C2))
9 g(t) ← T (x)− T (y) ▷ Gradient computation (Lemma 3.7)

10 ξ ∼ N (0, σ2I)

11 θ(t) ← θ(t−1) − γ(t)[g(t) + ξ]

12 θ(t) ← projK(θ(t))

13 return θ(n
2)

3.1 Technical Overview

Algorithmically, we first truncate the input dataset to a carefully chosen survival set, which bounds sensitivity
but introduces bias for naïve estimators such as the sample mean. Then, we use DP-SGD (Algorithm 3.1) to
minimize the truncated NLL function. This allows us to correct for the bias introduced by the truncation.

For the sake of modularity, we first present our algorithm under the simplifying condition where we are
given a R = O(1)-distance warm-start and later adapt standard DP estimation tools to obtain R = O( log(

1/ρ)
λ )

in Appendices B.6 and B.7.

Condition 3.3. We are given θ(0) ∈ Θ and τ (0) = Ex∼q
θ(0)

[T (x)] ∈ Rm such that θ⋆ ∈ BR(θ
(0)) for some

given 1 ≤ R = O(1).

We emphasize that Condition 3.3 is only stated to simplify our exposition. It is completely removed in
Appendices B.6 and B.7 by adapting standard DP Gaussian estimation tools to the truncated exponential
family setting.

We use the following analysis of DP-SGD due to Bassily, Smith, and Thakurta [BST14].2

Theorem 3.4 (Theorem II.1 and Theorem II.4 in [BST14]). Let ε, δ ∈ (0, 1). Suppose F (w) = 1
n

∑n
i=1 fi(w)

is a sum of λ-strongly convex functions over a closed convex set K ⊆ Rm. Suppose further that we are
2The original theorem statement is for a deterministic gradient oracle under a Lipschitz condition. It is not hard to see that the

same statement holds for an unbiased stochastic gradient oracle with bounded norm.
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given stochastic gradient oracles gi for ∇fi satisfying ∥gi∥ ≤ G for all i ∈ [n]. Then there is an (ε, δ)-DP
algorithm that outputs some ŵ ∈ K satisfying

E[F (ŵ)]− min
w∈K

F (w) ≤ O

(
mG2 log2(n/δ) log(1/δ)

n2λε2

)
.

The algorithm runs DP-PSGD for T = Θ(n2) iterations with step-size 1
λt at iteration t and calls the gradient

oracle T times in total.

In the rest of this section, we provide the details for the estimation algorithm of Theorem 3.1 and its proof
of correctness. As mentioned, our main workhorse is Theorem 3.4. Sections 3.2 to 3.6 addresses how we
satisfy the assumptions of Theorem 3.4 and preprocess the input to attain the desired sample complexity. This
is summarized in further detail below.

• Section 3.2 constructs the survival set SSGD of samples and feasible projection set K of the parameters
(Lemma 3.5). Our goal is to ensure that K contains the true parameter and that the truncated NLL
function remains strongly convex over K.

• For technical reasons, we cannot achieve optimal rates when optimizing the population NLL and
must instead optimize the empirical NLL. Section 3.3 details this reasoning and proves a uniform
convergence property which ensures that the minimizer of the empirical NLL remains a good estimate
of the true parameter (Lemma 3.6).

• Section 3.4 addresses how to obtain unbiased estimates of the gradient of the empirical NLL as well as
analyzes the norm of the estimates (Lemma 3.7). The latter is a necessary quantity that appears in the
DP-SGD analysis (Theorem 3.4).

• Section 3.5 applies Theorem 3.4 to derive the guarantees of our DP-SGD subroutine (Algorithm 3.1)
and shows how to recover θ⋆ (Lemma 3.8).

• Finally, Section 3.6 brings together all the ingredients along with suitable adaptations of standard DP
preprocessing tools to prove our main Theorem 3.1.

3.2 Strong Convexity (Survival & Projection Sets)

As mentioned in Section 3.1, one sufficient condition for recovering parameters with SGD via Theorem 3.4 is
strong convexity. In this section, we specify the truncation operation we impose and show that the truncated
NLL is strongly convex over a carefully chosen projection set as long as the survival set has mass ρ ≥ Ω(1).

Let θ(0), τ (0) be as in the simplifying Condition 3.3 and define

K := B2R(θ
(0)) ∩Θ , SSGD :=

{
x ∈ Rd : ∥T (x)− τ (0)∥ ≤

√
m

1− ρ
+ 2R

}
.

Lemma 3.5. Suppose the statistical assumptions (Assumption 2.2)3 and the simplifying Condition 3.3 hold.
Let L̃ denote the empirical NLL over truncated samples with survival set SSGD. Then for any θ ∈ K,
∇2L̃(θ) ⪰ λe−O(R2)I = Ω(λ)I .

The proof of Lemma 3.5 is deferred to Appendix B.1. Crucially, we rely on an anti-concentration
inequality due to Carbery and Wright [CW01] restated by Lee, Wibisono, and Zampetakis [LWZ23] (Propo-
sition B.3).

3We only use Assumptions (S1), (S3) and (S4) but state all the statistical assumptions for simplicity of presentation.
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3.3 Uniform Convergence of Empirical Likelihood

Having confirmed the strong convexity property necessary to apply Theorem 3.4, we move on to the
algorithmic details. Specifically, Theorem 3.4 requires making multiple passes of the data. However, this is
problematic as each data point only provides a single unbiased estimate of the gradient of the population NLL.
We avoid this complication by instead optimizing the empirical NLL, for which each data point provides
an unlimited number of unbiased gradient estimates. This requires a uniform convergence type of result to
ensure that the empirical minimizer is close to the population minimizer.

Lemma 3.6. Suppose the statistical assumptions (Assumption 2.2) and simplifying Condition 3.3 hold. Let
θ̃⋆ be the minimizer of the n-sample empirical NLL for qSSGD

θ⋆ over K. Then we have ∥θ̃⋆ − θ⋆∥2 ≤ α with

probability 1− β given that n ≥ Ω( (m+R2) log(1/β)
λ2η4α2 ).

Lemma 3.6 strengthens prior uniform convergence results [SSW21], which require Ω(1/α4) samples, and
may be of independent interest. Its proof is deferred to Appendix B.2.

3.4 Computing Stochastic Gradients

The previous subsection ensures that we can run DP-SGD for the required number of iterations as per
Theorem 3.4. We now address how to compute gradients within each iteration. Similar to previous works
on truncated statistics [DGT+18], We are able to obtain unbiased stochastic gradients via a simple rejection
sampling procedure.

Lemma 3.7. Assume the statistical assumptions (Assumption 2.2) and simplifying Condition 3.3 hold. Fix
a sample x ∼ qSSGD

θ⋆ and assume we have access to a sampling oracle for y ∼ qθ (Assumption (C2)). The
following holds:

(i) There is an an unbiased stochastic gradient estimate g(θ) for ∇ℓ(θ;x).

(ii) With probability 1− β, the estimator calls the sampling oracle O(log(1/β)/ρ) times.

(iii) The gradient estimate satisfies ∥g(θ)∥2 ≤ G := O(
√
m+R) with probability 1.

The proof of Lemma 3.7 is deferred to Appendix B.3.

3.5 DP Empirical Risk Minimization

Now that we are equipped with strong convexity (Lemma 3.5) and bounded gradients (Lemma 3.7) for the
necessary number of iterations (Lemma 3.6), we can apply the DP-SGD analysis (Theorem 3.4) to show the
following result, whose formal proof is deferred to Appendix B.4.

Lemma 3.8. Let ε, δ, α, β ∈ (0, 1). Suppose the statistical assumptions hold (Assumption 2.2), the computa-
tional subroutines exist (Assumption 2.3), the simplifying Condition 3.3 hold, and that we have sample access
to qθ⋆ . Let θ̃⋆ denote the minimizer of the n-sample empirical NLL for qSSGD

θ . Algorithm 3.1 is an (ε, δ)-DP
algorithm that outputs an estimate θ̂ ∈ Θ such that E[∥θ̂ − θ̃⋆∥2] ≤ α2. Moreover, Algorithm 3.1 has sample

complexity n = Õ( e
O(R2)(m+R

√
m) log(1/δ)

λαε ) and poly(m,n, d) running time.

Remark 3.9 (High-Probability Guarantees; See Corollary B.4). By using a clustering trick by Daskalakis,
Gouleakis, Tzamos, et al. [DGT+18] and taking sufficient samples for uniform convergence to hold
(Lemma 3.6), we obtain a high-probability guarantee for estimating the true underlying parameter θ⋆.

We defer the exact statement of Corollary B.4 and its proof to Appendix B.5.
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3.6 Proof of Theorem 3.1

In Sections 3.2 to 3.5, we require a constant distance warm start to θ⋆ (Condition 3.3) in order to obtain
optimal sample complexity using DP-SGD on the truncated empirical NLL function. This can be removed by
adapting standard DP Gaussian warm-start algorithms to truncated exponential families, which we present
in Appendices B.6 and B.7 (Lemmas B.5 and B.8). While running the adaptations on truncated data yields
biased estimates, such estimates still suffice as a warm start.

Our end-to-end algorithm first obtains a O( log(
1/ρ)
λ )-distance warm-start via Lemmas B.5 and B.8.

Then, we use DP-SGD to address the bias introduced by the truncation involved in the rough estima-
tions (Corollary B.4). This yields a proof of Theorem 3.1 with the desired sample and time complexity

Õ(m log(1/ηβδ)
λ2ε

+ m log(1/β)
λ4η4α2 + eO(1/λ2)m log(1/βδ)

λ2αε
) .

4 Private Gaussian Estimation

In order to contextualize our results, we instantiate our general algorithm from Theorem 3.1 for the well-
studied case of Gaussian estimation and demonstrate that we can recover the known optimal sample complex-
ities up to logarithmic factors. We emphasize that the first polynomial-time algorithms with optimal sample
complexity were achieved by Hopkins, Kamath, and Majid [HKM22] and Hopkins, Kamath, Majid, et al.
[HKM+23], and this section demonstrates that we can recover the optimal sample complexities with our
more general algorithmic framework.

4.1 Private Gaussian Mean Estimation

We first study Gaussian mean estimation. That is, there is an underlying d-dimensional data-generating
distribution N (µ⋆, I) to which we have sample access. We would like to privately estimate µ⋆.

In Appendix C.1, we verify that the statistical and computational assumptions (Assumptions 2.2 and 2.3)
hold for Gaussian mean estimation, leading to the following corollary of Theorem 3.1.

Theorem 4.1. Let ε, δ, α, β ∈ (0, 1). There is an (ε, δ)-DP algorithm such that given samples from a
Gaussian distribution N (µ⋆, I), outputs an estimate µ̂ satisfying ∥µ̂ − µ⋆∥ ≤ α with probability 1 − β.
Moreover, the algorithm has sample complexity n = Õ(d log(

1/βδ)
ε + d log(1/β)

α2 + d log(1/βδ)
αε ) and running time

poly(n, d).

4.2 Private Gaussian Covariance Estimation

We next specialize our algorithm to the case of Gaussian covariance estimation. That is, there is an underlying
d-dimensional data-generating distribution N (0,Σ⋆) to which we have sample access. We would like to
estimate Σ⋆ ∈ Sd+ under differential privacy constraints, where Sd+ denotes the space of d×d positive-definite
matrices.

Theorem 4.2. Let ε, δ, α, β ∈ (0, 1) and suppose that λI ⪯ Σ⋆ ⪯ ΛI . There is an (ε, δ)-DP algo-
rithm such that given samples from a Gaussian distribution N (0,Σ⋆), outputs an estimate Σ̂ satisfying
∥I − (Σ⋆)−

1
2 Σ̂(Σ⋆)−

1
2 ∥F ≤ α with probability 1 − β. Moreover, the algorithm has sample complexity

n = Õ(d
1.5 log(Λ/λβδ)

ε + d2 log(1/βδ)
ε + d2 log(1/β)

α2 + d2 log(1/βδ)
αε ) and running time poly(n, d).

We present the proof of Theorem 4.2 in Appendix C.2. In addition to verifying the statistical and computational
assumptions, we also need a private preconditioning algorithm in order to avoid polynomial dependence on
the condition number Λ/λ. We present a preconditioner adapted from the work of Biswas, Dong, Kamath, et al.
[BDK+20] in Appendix C.4. The adapted algorithm essentially estimates the covariance of the truncated
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Gaussian distribution, which will be a biased estimate of original covariance but suffices to precondition the
samples.

5 Conclusion & Future Work

We introduce a novel paradigm of private algorithm design through truncation and demonstrate its versatility
by designing the first efficient algorithm for estimating unbounded high-dimensional exponential families.
We further demonstrate its sample efficiency by recovering the optimal sample complexities for standard
private statistical tasks such as Gaussian mean and covariance estimation. Our methods may enable more
practical and scalable deployment of privacy-preserving data analysis tools in settings where extreme data
values are common but privacy is critical.

It would be interesting to see further applications of truncated statistic techniques in private algorithm
design, such as regression [DGT+19; DRZ20; DSY+21] and linear dynamics [Ple21].
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A Deferred Preliminaries

A.1 Differential Privacy

We first recall the following preliminaries from differential privacy.

Definition A.1 (Differential Privacy; Dwork, McSherry, Nissim, et al. [DMN+06]). Given ε > 0 and
δ ∈ (0, 1), a randomized algorithm A : X n → Y is (ε, δ)-DP if, for every pair of neighboring datasets
D,D′ ∈ X n that differ by a single entry (i.e. neighboring datasets) and for all subsets U of the output space,

Pr[A(D) ∈ U ] ≤ eε · Pr
[
A(D′) ∈ U

]
+ δ .

A fundamental tool in designing DP algorithms is the Gaussian mechanism. We write D ∼ D′ to denote
two neighboring datasets.

Proposition A.2 (Gaussian Mechanism; Dwork and Roth [DR14]). Let f : X n → Rd be an arbitrary
function d-dimensional with ℓ2-sensitivity ∆2(f) := maxD∼D′∥f(D)− f(D′)∥. For any ε, δ ∈ (0, 1), the
mechanism that outputs f(D) + ξ where ξ ∼ N (0, σ2I) is (ε, δ)-DP for

σ ≥ 2∆2(f) ln(1.25/δ)

ε
.

An important property of differential privacy is that performing computation on a privatized output cannot
lose additional privacy:

Theorem A.3 (Post-Processing; Dwork and Roth [DR14]). LetM be an (ε, δ)-DP mechanism and g be any
arbitrary random mapping. Then g(M(·)) is (ε, δ)-differentially private.

Moreover, multiple computations on a dataset incur privacy cost in a natural manner.

Theorem A.4 (Simple Composition; Dwork and Roth [DR14]). LetM1 andM2 be (ε1, δ1) and (ε2, δ2)-DP
mechanisms, respectively. Then the (adaptive) compositionM2(·,M1(·)) is (ε1 + ε2, δ1 + δ2)-DP.

On the other hand, executing a private mechanism on disjoint partitions of the same dataset does not incur
any additional privacy cost.

Theorem A.5 (Parallel composition of differential privacy; McSherry [McS09]). LetM be an (ε, δ)-DP
mechanism and D1, . . . , Dk be k disjoint subsets of the dataset D. Then the mechanism that outputs
(M(D1), . . . ,M(Dk)) is (ε, δ)-DP.

A.2 Concentration Inequalities

Theorem A.6 (Lemma 1 in Laurent and Massart [LM00]). Let Z ∼ N (0, I). Then with probability 1− β,

∥Z∥22 ≤ d+
√
2d log(1/β) + 2 log(1/β) .

Recall a centered random variable X is said to be (ν2, 1/η)-subexponential if

E[eλX ] ≤ exp

(
ν2λ2

2

)
for all |λ| ∈ (0, η). If Xi is (ν2i , 1/ηi)-subexponential for i ∈ [n], then it is well-known [Wai19, Section 2.1.3]
that its sum

∑
iXi is (ν2, 1/η)-subexponential for

ν :=

√∑
i

ν2i ,
1

η
:= max

i

1

ηi
.

Subexponential variables enjoy the following concentration properties.
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Proposition A.7 (Proposition 2.9 in [Wai19]). For a (ν2, 1/η)-subexponential variable X ,

Pr [X ≥ t] ≤

{
e−

t2

2ν2 , t ∈ (0, ν2η),

e−
tη
2 , t ≥ ν2η.

and

Pr [X ≤ −t] ≤

{
e−

t2

2ν2 , t ∈ (0, ν2η),

e−
tη
2 , t ≥ ν2η.

A specific example is the subexponentiality of the sufficient statistics of exponential families.

Proposition A.8 (Claim 1 in [LWZ23]). Suppose Assumptions (S1) and (S2) hold. Then for any unit vector
u ∈ Rm and x ∼ qθ⋆ , u⊤(Ey∼qθ⋆ [T (y)]− T (x)) is (1, 1/η)-subexponential (cf. Appendix A.2).

A useful concentration result for bounded vectors is the following.

Theorem A.9 (Vector Bernstein Inequality; Lemma 18 in [KL17]). Let X(1), . . . , X(n) be independent
random vectors with common dimension d satisfying the following for all i ∈ [n]:

(i) E[X(i)] = 0

(ii) ∥X(i)∥ ≤ R

(iii) E[∥X(i)∥2] ≤ G2

Let X := 1
n

∑n
i=1X

(i). Then for any α ∈ (0,G2/R),

Pr[∥X∥ ≥ α] ≤ exp

(
−α2n

8G2
+

1

4

)
.

For covariance estimation, we also require the following spectral concentration bound for symmetric
Gaussian matrices.

Theorem A.10 (Corollary 2.3.6 in Tao [Tao12]). Let Y be a random d × d symmetric matrix Y with
Yij ∼ N (0, σ2). For d sufficiently large, there are absolute constants C, c > 0 such that for all t ≥ C,

Pr
[
∥Y ∥2 > tσ

√
d
]
≤ C exp(−ctd) .

A.3 Omitted Proofs from Section 2.2

We now restate and prove the guarantees of our preprocessing algorithm.

Lemma 2.1. Fix n ≥ 1 and let N ∈ N. Let D ∈ Rd×N be an N -sample dataset, D′ ∈ Rd×N be obtained
from D by modifying a single entry, and S ⊆ Rd. Write DS , D

′
S to denote the datasets obtained from D,D′

by discarding entries that fall outside of S. There is a preprocessing algorithm A such that

(i) A(D′
S) ∈ Sn can be obtained from A(DS) ∈ Sn by modifying a single element,

(ii) for any (ε, δ)-DP algorithm B with respect to neighboring truncated datasets, the composition
B(A(DS)) is (ε, δ)-DP with respect to neighboring (untruncated) datasets D,D′, and

(iii) if D is sampled i.i.d. from some distribution p such that p(S) =: ρ, then A(D) contains i.i.d. samples
from the truncated distribution pS with probability 1− β, provided N = Ω(n log(1/β)

ρ ).
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Pseudocode. See Line 1 to Line 4 of Algorithm 3.1.

Proof. We wish to produce two neighboring datasets of size n by discarding points that lie outside of the
survival set.
Proof of (i): We first analyze the relationship between neighboring datasets after the initial truncation.
Suppose D′ is obtained from D by modifying x ∈ D to y ∈ D′, then DS , D

′
S fall into one of three cases:

I) If x, y /∈ S, then DS = D′
S .

II) If x, y ∈ S, then D′
S can be obtained from DS by modifying x to y, i.e. they are again neighboring

datasets.

III) If |S ∩ {x, y}| = 1, then D′
S can be obtained from DS by adding or deleting an element.

We focus on the more challenging Case III). Without loss of generality, suppose that x /∈ S and y ∈ S so that
D′

S is obtained from DS by adding y. If |DS | < |D′
S | ≤ n, A picks any data-independent xdummy ∈ S and

add copies of xdummy to the truncated dataset until there are n elements. ThenA(D),A(D′) are neighboring
n-sample datasets with elements from S. Otherwise, if n ≤ |DS | < |D′

S |, A keeps the first n datapoints
of the truncated dataset so that there are again n elements. Then A(D),A(D′) are once again neighboring
n-sample datasets with elements from S, regardless of which entry of the dataset differs between D,D′. Note
that in either scenarios, we need to enforce the dataset size by adding or deleting elements, but never both.

Cases I), II) are more clear as they are already neighboring datasets and the additional processing does
not change this fact.
Proof of (ii): Next, we analyze the privacy guarantees of the composition B(A(DS)). This essentially follows
from (i), as A(DS),A(D′

S) can be obtained from each other as sets by modifying one element. The only
subtle difference is that in case III) above, prior to the shuffling step, the order of entries is possibly not
“aligned”, i.e. there could be more than one index i ∈ [n] where A(DS)i ̸= A(D′

S)i. The extra shuffling
step in Line 4 of Algorithm 3.1 ensures that under a suitable coupling of A(DS),A(D′

S), they are always
neighboring datasets, i.e. there is only a single index i⋆ such that A(DS)i⋆ ̸= A(D′

S)i⋆ . We can take this
coupling to be the one where every element in A(DS) ∩ A(D′

S) is always shuffled to the same index. Then
the privacy of B(A(DS)) follows by the privacy guarantees of B.
Proof of (iii): We finish by analyzing the utility guarantees. By a concentration inequality for sums of

geometric random variables [Jan18, Corollary 2.4], for N = Ω(n log(1/β)
ρ ), it holds with probability 1− β that

there are at least n samples that remain after the preprocessing step. Conditioned on this, the preprocessing
simply deletes some possibly additional samples from pS but does not add dummy points and the output is as
desired.

B Omitted Proofs from Section 3

B.1 Proof of Lemma 3.5

We now restate and prove Lemma 3.5.

Lemma 3.5. Suppose the statistical assumptions (Assumption 2.2)4 and the simplifying Condition 3.3 hold.
Let L̃ denote the empirical NLL over truncated samples with survival set SSGD. Then for any θ ∈ K,
∇2L̃(θ) ⪰ λe−O(R2)I = Ω(λ)I .

The proof relies on the following facts from the truncated statistics literature.
4We only use Assumptions (S1), (S3) and (S4) but state all the statistical assumptions for simplicity of presentation.
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Proposition B.1. Suppose that Assumption (S1) and Condition 3.3 hold. Then for any θ ∈ K,
qθ(SSGD) ≥ ρ = Ω(1) .

Proof of Proposition B.1. From elementary probability,

Ex∼qθ

[
∥T (x)− Ey∼qθ [T (y)]∥

2
]
= tr (Covx∼qθ [T (x), T (x)]) ≤ m.

Then qθ puts ρ mass on the set

Sθ :=

{
x : ∥T (x)− Ey∼qθ [T (y)]∥ ≤

√
m

1− ρ

}
.

Let f denote the population NLL function with respect to θ(0) so that ∇f(θ(0)) = 0. By Assumption (S1),
∇2f ⪯ I over K. Thus for any θ ∈ BR(θ

(0)) ∩Θ,

∥Ey∼qθ [T (y)]− Ex∼q
θ(0)

[T (x)]∥ = ∥∇f(θ)∥

= ∥∇f(θ)−∇f(θ(0))∥
≤ ∥θ − θ(0)∥ (By 1-smoothness of f )

≤ R.

This ensures that Sθ ⊆ SSGD so that qθ(SSGD) ≥ ρ = Ω(1).

Proposition B.2 (Lemma 3.4 in [LWZ23]). Suppose Assumption (S1) holds. Then for any θ, θ′ ∈ Θ and
S ⊆ Rd, qθ′(S) ≥ qθ′(S)

2 · exp
(
−3

2∥θ − θ′∥2
)
.

Proposition B.3 (Lemma 3.2 in [LWZ23]). Fix θ ∈ Θ. Suppose Assumptions (S1), (S3) and (S4) holds and

S ⊆ Rd satisfies qθ(S) > 0. Then Covy∼qSθ
[T (y), T (y)] ⪰ 1

2

(
qθ(S)
4Ck

)2k
λI , where C > 0 is some absolute

constant.

We are now ready to prove Lemma 3.5.

Proof of Lemma 3.5. By Condition 3.3, K certainly contains θ⋆. In particular, Proposition B.1 en-
sures that we have qθ⋆(SSGD) ≥ ρ = Ω(1). An application Proposition B.2 allows us to deduce
that qθ puts Ω(qθ⋆(SSGD)

2) = Ω(ρ2) mass on SSGD for every θ ∈ K. But then by Proposition B.3,

Cov
y∼q

SSGD
θ

[T (y), T (y)] ⪰ 1
2

(
ρ2e−6R2

4Ck

)2k

λI , concluding the proof.

B.2 Proof of Lemma 3.6

We now prove Lemma 3.6, whose statement is copied below for convenience.

Lemma 3.6. Suppose the statistical assumptions (Assumption 2.2) and simplifying Condition 3.3 hold. Let
θ̃⋆ be the minimizer of the n-sample empirical NLL for qSSGD

θ⋆ over K. Then we have ∥θ̃⋆ − θ⋆∥2 ≤ α with

probability 1− β given that n ≥ Ω( (m+R2) log(1/β)
λ2η4α2 ).

Proof. The sufficient statistics of qSSGD
θ⋆ has radius r = O(

√
m+R) by construction. We can thus apply a

vector Bernstein inequality (Theorem A.9) to see that for any α ∈ (0, 1),

Pr

[∥∥∥∥∥Ey∼qθ⋆ [T (y)]−
1

n

n∑
i=1

T (x(i))

∥∥∥∥∥ ≥ α

]
≤ exp

(
−α2n

8r2
+

1

4

)
.
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Let c > 0 be the constant guaranteed by Lemma 3.5 such that L̃ is cλ-strongly convex over K. We have
∥∇L̃(θ⋆)∥ ≤ cλη2/4r with probability 1− β/2 given that

n ≥ Ω

(
(m+R2) log(1/β)

λ2η4

)
.

But then by strong convexity,

cλ

2
∥θ̃⋆ − θ⋆∥2 ≤ L̃(θ̃⋆)− L̃(θ⋆)︸ ︷︷ ︸

≤0

+⟨∇L̃(θ⋆), θ⋆ − θ̃⋆⟩ ≤ cλη2

4r
· 2r .

Thus ∥θ̃⋆−θ⋆∥ ≤ η. By an application of the triangle inequality, this ensures that ∥θ̃⋆−θ(0)∥ ≤ R+η ≤ 2R
so that θ̃⋆ ∈ K.

Conditioned on θ̃⋆ ∈ K and using the fact that L̃ is strongly convex over K, we see that L̃ in fact satisfies
a cλ-PL inequality:

1

2cλ
∥∇L̃(θ⋆)∥2 ≥ L̃(θ⋆)− L̃(θ̃⋆) ≥ cλ

2
∥θ⋆ − θ̃⋆∥2 .

We have ∥∇L̃(θ⋆)∥ ≤ cλα with probability 1− β/2 provided that

n ≥ Ω

(
(m+R2) log(1/β)

λ2α2

)
.

In particular, ∥θ⋆ − θ̃⋆∥ ≤ α. This concludes the proof.

B.3 Proof of Lemma 3.7

We now restate and prove Lemma 3.7.

Lemma 3.7. Assume the statistical assumptions (Assumption 2.2) and simplifying Condition 3.3 hold. Fix
a sample x ∼ qSSGD

θ⋆ and assume we have access to a sampling oracle for y ∼ qθ (Assumption (C2)). The
following holds:

(i) There is an an unbiased stochastic gradient estimate g(θ) for ∇ℓ(θ;x).

(ii) With probability 1− β, the estimator calls the sampling oracle O(log(1/β)/ρ) times.

(iii) The gradient estimate satisfies ∥g(θ)∥2 ≤ G := O(
√
m+R) with probability 1.

Proof. Fix a sample x ∼ qSSGD
θ⋆ . Given a sampling oracle to qθ, we can perform rejection sampling to

obtain y ∼ qSSGD
θ . Then we have stochastic access to ∇θL̃ given by g(θ) := T (y) − T (x). Moreover,

∥T (x)− T (y)∥ ≤ ∥T (x)− τ (0)∥+ ∥T (x)− τ (0)∥ ≤ O(
√
m+R) by the choice of SSGD. Hence we have

a deterministic bound ∥g(θ)∥ ≤ G := O(
√
m+R) on the norm of the stochastic gradient.

B.4 Proof of Lemma 3.8

we now restate and prove Lemma 3.8.

Lemma 3.8. Let ε, δ, α, β ∈ (0, 1). Suppose the statistical assumptions hold (Assumption 2.2), the computa-
tional subroutines exist (Assumption 2.3), the simplifying Condition 3.3 hold, and that we have sample access
to qθ⋆ . Let θ̃⋆ denote the minimizer of the n-sample empirical NLL for qSSGD

θ . Algorithm 3.1 is an (ε, δ)-DP
algorithm that outputs an estimate θ̂ ∈ Θ such that E[∥θ̂ − θ̃⋆∥2] ≤ α2. Moreover, Algorithm 3.1 has sample

complexity n = Õ( e
O(R2)(m+R

√
m) log(1/δ)

λαε ) and poly(m,n, d) running time.

21



Pseudocode. See Algorithm 3.1 for the pseudocode. We note that the main difference from standard
applications of DP-SGD is the initial truncation step which discards samples that fall outside of the survival
set S. This provides an easy bound on the sensitivity of the gradient, but requires optimizing the truncated
NLL as opposed to the regular NLL in order to address the bias introduced by the initial truncation step.

Analysis. Applying Theorem 3.4 yields a proof of Lemma 3.8.

Proof of Lemma 3.8. We know that L̃ : K → R is λe−O(R2)-strongly convex by Lemma 3.5. Moreover,
Lemma 3.7 guarantees that we have stochastic gradients with bounded norm G = O(

√
m+R). Let θ̂ be the

output of Theorem 3.4. We see that it satisfies

E[∥θ̂ − θ̃⋆∥2] ≤ O

(
eO(R2)(m2 +mR2) log2(n/δ) log(1/δ)

λ2n2ε2

)
.

Thus in order to reduce the expected squared distance to (α/16)2, it suffices to take

n ≥ Ω

(
eO(R2)(m+R

√
m) log(n/δ)

√
log(1/δ)

λαε

)
.

This concludes the proof.

B.5 Proof of High-Probability Estimation

Here, we state and prove the high-probability version of Lemma 3.8.

Corollary B.4. Let ε, δ, α, β ∈ (0, 1). Suppose Assumption 2.2, Assumption 2.3, and Condition 3.3 hold
and that we have sample access to qSSGD

θ⋆ . There is an (ε, δ)-DP algorithm that outputs an estimate θ̂ ∈
Θ such that ∥θ̂ − θ⋆∥2 ≤ α2 with probability 1 − β. Moreover, the algorithm has sample complexity

n = Õ

(
(m+R2) log(1/β)

λ2η4α2 + eO(R2)(m+R
√
m) log(1/βδ)

λαε

)
and poly(m, d, n) running time.

Proof. Similar to Daskalakis, Gouleakis, Tzamos, et al. [DGT+18], we perform a boosting trick. Consider
the output θ̃ of a single execution of Algorithm 3.1. By Lemma 3.8 and Markov’s inequality, ∥θ̃− θ̃⋆∥2 ≥ α/4
with probability at most 1/4. By a multiplicative Chernoff bound, repeating v = O(log(1/β)) independent
executions of Algorithm 3.1 ensures that at least 2/3 of the outputs θ̃(1), . . . , θ̃(v) are α/4-close to θ̃⋆. Now,
any of the 2/3 outputs are within α/2 distance to each other, Hence by outputting any of the v points, say θ̂,
that is within α/2 distance with at least v/2 of the other points ensures that it is within a distance of α from θ̃⋆

with probability 1− β.
Furthermore, by Lemma 3.6, we have that ∥θ̃⋆ − θ⋆∥ ≤ α given that

n ≥ Ω

(
(m+R2) log(1/β)

λ2η4α2

)
.

Boosting increases the sample complexity by a factor of O(log(1/β)). Note that there is no additional
privacy loss since we can think of the algorithm as running on v disjoint chunks of the dataset (Theorem A.5).
Thus we require

n ≥ Ω̃

(
(m+R2) log(1/β)

λ2η4α2
+

eO(R2)(m+R
√
m) log(n/δ)

√
log(1/δ) log(1/β)

λαε

)
.

This concludes the proof.

22



B.6 Recursive Warm-Start

We now present a simple recursive method that obtains a O( log(
1/ρ)
λ )-distance warm start with logarithmic

dependence on the prior radius R. The algorithm is adapted from the work of Biswas, Dong, Kamath, et al.
[BDK+20] for Gaussians. Similar to the rest of our work, our algorithm only requires truncated sample access
to an exponential family and thus generalizes the work of Biswas, Dong, Kamath, et al. [BDK+20] from
Gaussians to truncated exponential families. In Appendix B.7, we will see how to obtain a poly(m)-distance
warm-start without any prior, thus completely removing the dependence on R.

Lemma B.5. Suppose that the exponential family has bounded covariances (Assumption (S1)) and that we
have access to a moment matching oracle (Assumption (C3)). Algorithm B.1 is an (ε, δ)-DP algorithm such
that given samples from qθ⋆ and a prior parameter θ(0) such that ∥θ(0) − θ⋆∥ ≤ R, outputs some θ̂ and
τ̂ = Ex∼pθ̂

[T (x)] such that ∥θ̂ − θ⋆∥ ≤ O( log(
1/ρ)
λ ) with probability 1 − β. Moreover, the algorithm has

sample complexity n = Õ
(
m log(R/β)

λ2 + m log(R/βδ)
λε

)
and running time poly(m,n, d).

The proof of the result above is deferred to Appendix B.6. We emphasize Lemma B.5 requires only truncated
sample access for an exponential family. While there are private warm-start algorithms for Gaussians, it is
not clear if their guarantees hold for truncated exponential families.

Pseudocode. See Algorithm B.1 for pseudocode of the warm-start algorithm. We remark that it is a
straightforward adaptation of the Gaussian estimation algorithm from Biswas, Dong, Kamath, et al. [BDK+20]
to the case of truncated exponential families. However, the adaptation only provides a constant-distance
warm start since the initial truncation step introduces bias.

Algorithm B.1: Recursive Warm-Start
Input: dataset D, number of desired samples n, privacy parameters ε, δ ∈ (0, 1), initial prior

θ(0) ∈ Rm, initial expected sufficient statistic τ (0) = Ex∼q
θ(0)

[T (x)], initial distance R > 0,
survival probability ρ ∈ (0, 1)

Output: estimator θ̂ for θ⋆ and τ̂ = Ex∼θ̂[T (x)]

1 ε′ ← ε
log(R/

√
m)+1

2 δ′ ← δ
log(R/

√
m)+1

3 σ ← O
(
(R+

√
m) log(1/δ′)
nε′

)
4 for i = 0, . . . , v = log(R/

√
m) do

5 Swarm,2−iR ← {x ∈ Rd : ∥T (x)− τ (i)∥ ≤
√
m

1−ρ + 2−iR}
6 Produce n truncated samples x(1), . . . , x(n) from DSwarm,2−iR

▷ (Lemma 2.1)

7 τ ← 1
n

∑n
j=1 T (x

(j)) ▷ sensitivity ∆ = O(2
−iR+

√
m

n )

8 ξ ∼ N (0, σ2I)

9 τ (i+1) ← τ + ξ ▷ Gaussian mechanism (Proposition A.2)

10 θ(v+1) ← MomentMatch(τ (v+1)) ▷ (Assumption (C3))

11 return θ(v+1), τ (v+1)

Analysis. Once again, the idea is to impose a truncation about the samples so that we can work with a
bounded random variable. However, we need to ensure that the survival set is chosen to have constant mass.
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Similar to Section 3.2, we consider the survival set

Swarm,2−iR ←
{
x ∈ Rd : ∥T (x)− τ (i)∥ ≤

√
m

1− ρ
+ 2−iR

}
,

where we iteratively shrink the prior distance with each iteration i.
Once we have an estimate of the bounded mean of some truncated distribution, we use the following fact

to translate that back into an estimate of the true underlying expected sufficient statistic.

Proposition B.6 (Corollary 3.8 in [LWZ23]). Let θ ∈ Θ. Suppose Assumption (S1) holds and that qθ(S) > 0.
Then

∥Ey∼qSθ
[T (y)]− Ex∼qθ [T (x)]∥ ≤ O

(
log

(
1

qθ(S)

))
.

Proposition B.6 ensures that an good estimate of the truncated expected sufficient statistic is already a
constant distance warm-start. However, in order to avoid O(R)-dependence on the prior radius, we iteratively
refine our estimate. The following lemma analyzes the guarantees of one iteration of Algorithm B.1.

Lemma B.7. Suppose Assumptions (S1) and (C3) holds. There is an (ε, δ)-DP algorithm such that given
truncated samples from q

Swarm,R

θ⋆ and a prior parameter θ(0) of distance at most R ≥ Ω(
√
m), estimates θ⋆

up to distance α/λ for α ∈ (Ω(log(1/ρ)), R) with probability 1 − β. Moreover, the algorithm has sample
complexity

O

(
R2 log(1/β)

α2
+

R
√
m log(1/δ) log(1/β)

αε

)
.

Proof. By a vector Bernstein inequality (Theorem A.9), taking

n ≥ Ω

(
R2 log(1/β)

α2

)
samples ensure that the sample sufficient statistic is at most α/4-distance from the expectation of the truncated
sufficient statistic with probability 1− β/2. By standard Gaussian concentration inequalities (Theorem A.6),
taking

n ≥ Ω

(
R
√
m log(1/δ) log(1/β)

αε

)
ensures the gaussian mechanism (Proposition A.2) adds noise of magnitude O(σ

√
m log(1/β)) ≤ α/4 with

probability 1 − β/2. By Proposition B.6, this is then at most O(log(1/ρ)) = O(1)-distance from the true
expected sufficient statistic. Thus our estimate is distance at most α from the true expected sufficient statistic
given the constant lower bound on α is sufficiently large. By the λ-strong convexity of the (untruncated) NLL
function, the updated prior output by the moment matching oracle is α/λ-distance from θ⋆.

We are now ready to prove Lemma B.5.

Proof of Lemma B.5. Repeating the one-step algorithm from Lemma B.7 log(R/
√
m) times ensures with

iteratively halved accuracy parameters α = λ2−iR yields an estimate of the prior parameter of distance
O(
√
m). This incurs a sample complexity blowup of Õ(log(R)) for a total sample complexity of

Õ

(
log(R/β)

λ2
+

√
m log(1/δ) log(R/β)

λε

)
.

We can then apply the one-step algorithm one last time but with α = O(log(1/ρ)). This incurs an additional
sample complexity of

O

(
m log(1/β) +

m log(1/δ) log(1/β)

ε

)
.

We can re-use samples for each repetition. By simple composition (Theorem A.4), it suffices to incur another
Õ(log(R)) blow-up in sample complexity to preserve privacy.
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B.7 Coarse Bounding Box

As the final ingredient, we derive a private bounding box algorithm for θ⋆ that translates to a O(
√
m/λ)-

distance warm start. Combined with Appendix B.6, this completely removes the need for the simplifying
Condition 3.3 from Sections 3.2 to 3.5.

The basis is a folklore result for Gaussians whose guarantees are stated by Karwa and Vadhan [KV18]
but follows from prior works [DMN+06; BNS16; Vad17]. In particular, the idea is to learn an ℓ∞ ball about
Ex∼qθ⋆ [T (x)] by executing a private histogram algorithm on each of the coordinates. Translating the ℓ∞ ball
to a Euclidean ball about θ⋆ yields a O(

√
m)-distance warm-start. Lemma B.8 formalizes this idea. We in

fact present a more general bounding box algorithm for truncated exponential families. For now, we can take
the survival set to be all of Rd with survival mass ρ = 1.

Lemma B.8. Suppose the exponential family has bounded covariances (Assumption (S1)), interiority
(Assumption (S2)), and we have access to a moment-matching oracle (Assumption (C3)). Further suppose
we are given truncated samples from qSθ⋆ with survival mass ρ. There is an (ε, δ)-DP algorithm that outputs

some θ̂ and τ̂ = Ex∼pθ̂
[T (x)] such that ∥θ̂ − θ⋆∥ ≤ Õ

(√
m

ηλ log
(

1
ρβδε

))
with probability 1− β. Moreover,

the algorithm has sample complexity n = Õ
(
m log(1/βδ)

ε

)
and running time poly(m,n, d).

The proof of Lemma B.8 is deferred to Appendix B.7. As with all other algorithms we present, Lemma B.8
requires only truncated sample access for an exponential family.

We note that past works considered the multi-dimensional Gaussian case [NSV16], but Lemma B.8 is the
first to handle truncated exponential families.

Pseudocode. See Algorithm B.2 for pseudocode. As mentioned, it is a straightforward adaption of the
Gaussian bounding interval algorithm stated by Karwa and Vadhan [KV18] to the multi-dimensional truncated
exponential family case.

Algorithm B.2: Bounding Box

Input: truncated dataset D = {x(1), . . . , x(n)}, privacy parameters ε, δ ∈ (0, 1), bin length s
Output: estimator θ̂ for θ⋆ and τ̂ = Ex∼θ̂[T (x)]

1 for coordinate i = 1, . . . ,m do
2 [a, a+ s]← bin with largest estimated mass from the output of

PrivateHistogram(x
(1)
i , . . . , x

(n)
i , s, ε/m, δ/m) ▷ (Proposition B.9)

3 τ̂i ← a+ s/2

4 θ̂ ← MomentMatch(τ̂)

5 return θ̂, τ̂

Analysis. The bounding box algorithm crucially relies on a private histogram algorithm whose guarantees
are stated by Karwa and Vadhan [KV18] but follows from the works of Dwork, McSherry, Nissim, et al.
[DMN+06], Bun, Nissim, and Stemmer [BNS16], and Vadhan [Vad17].

Proposition B.9 (Histogram Learning; Lemma 2.3 in [KV18]). Consider any countable distribution, say
p : Z → R+, privacy parameters ε, δ ∈ (0, 1/n), error α > 0, and confidence β ∈ (0, 1). There is an
(ε, δ)-DP algorithm PrivateHistogram that outputs estimates p̃i such that given

n =
8 log(4/βδ)

εα
+

log(4/β)

2α2
,
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samples from p, then

(i) ∥p̃− p∥∞ ≤ α with probability at least 1− β and

(ii) Pr[argmaxk p̃k = j] ≤ npj .

We are now equipped to derive our rough estimation algorithm.

Theorem B.10. Let X be a random vector such that the i-th centered coordinate Xi − E[Xi] is (1, 1/η)-
subexponential for some η ∈ (0, 1) and assume we have access to truncated samples from some survival set
S with mass ρ > 0. Discretize the real line using bins of length s defined below.

n :=
8 log(4/βδ)

ε
+

log(4/β)

2
, s :=

log(2n/ρβ)

2η
.

Run the (ε, δ)-histogram learner (Proposition B.9) on bins of length s using the i-th coordinate of n i.i.d.
truncated samples and output the bin with the largest empirical mass along with its two adjacent bins. Then
with probability at least 1 − β, this interval of length 3s contains the untruncated mean E[Xi] of the i-th
coordinate.

Proof. Without loss of generality, consider the first coordinate X1. By Proposition A.7,

Pr
x∼X
{|x1 − E[x1]| ≥ t} ≤ 2 exp

(
− t

2η

)
.

But for any event E , we have Prx∼XS [E ] ≤ 1
ρ Prx∼X [E ]. Hence

Pr
x∼XS

{|x1 − Ex∼X [x1]| ≥ t} ≤ 2

ρ
exp

(
− t

2η

)
.

Thus with probability 1− β,

|x1 − Ex∼X [x1]| ≤
log(2/ρβ)

2η
.

We claim that with probability 1 − β, the central bin must contain a point within distance s of E[X].
Indeed, Let J ⊆ Z be the indices of bins which lie beyond distance s of E[X]. Then

∑
j∈J pj ≤ β/n by the

choice of s. Thus by Proposition B.9, the probability of outputting any such bin as the central bin is at most
β.

Since the central bin must contain a point within distance s of E[X], then by the definition of the bin
length, the union of the central bin along with its adjacent bins must contain E[X], as desired.

We are now ready to prove Lemma B.8.

Proof of Lemma B.8. Privacy follows from the privacy of PrivateHistogram (Theorem B.10) and
simple composition (Theorem A.4).

Consider a single coordinate from the sufficient statistic of a single sample x ∼ qθ⋆ , say T (x)1 without
loss of generality. Proposition A.8 assures us that T (x)1 − E[T (x)1] is (1, 1/η)-subexponential under the
true measure qθ⋆ . Thus the assumptions of Theorem B.10 hold and PrivateHistogram outputs an
interval containing E[T (x)1]. Repeating this procedure with different coordinates from the same dataset
yields an estimate τ̂ of E[T (x)] with O(s) ℓ∞-error or O(s

√
m) ℓ2-error. By the λ-strong convexity of

the (untruncated) population NLL for qθ⋆ , MomentMatch (Assumption (C3)) returns some θ̂ such that
∥θ̂ − θ⋆∥ ≤ O(s

√
m/λ) as desired.
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C Omitted Details from Section 4

C.1 Verifying Assumptions from Section 4.1

The isotropic Gaussian density function is given by

p(x;µ) =
1

(2π)d/2
exp

(
−1

2
∥x− µ∥2

)
=

1

(2π)d/2
exp

(
−1

2
∥x∥2

)
exp

(
µ⊤x− 1

2
∥µ∥2

)
.

Thus the parameter is given by the mean θ = µ and the sufficient statistic is taken to be the identity T (x) = x.
We take Θ = Rd.

Statistical Assumptions. We first check that Assumption 2.2 holds.

(S1) (Bounded Condition Number) For any µ ∈ Rd, the covariance ofN (µ, I) is the identity matrix. Hence
λ = 1.

(S2) (Interiority) There is a ball of radius 1 about every µ ∈ Rd.

(S3) (Log-Concavity) Each N (µ, I), µ ∈ Rd is a log-concave distribution.

(S4) (Polynomial Sufficient Statistics) T (x) is a polynomial of degree k = 1.

Computational Tasks. Next we describe how to implement the subroutines specified in Assumption 2.3.

(C1) (Projection Acess to Convex Parameter Space) We take Θ = Rd so that the convex projection is the
identity function.

(C2) (Sample Access to Log-Concave Distribution) We can sample z ∼ N (0, I) and µ+ z is a sample from
N (µ, I).

(C3) (Moment-Matching Oracle) If E[T (x)] = τ , then the corresponding parameter is simply µ = τ .

C.2 Proof of Theorem 4.2

We now restate and prove Theorem 4.2.

Theorem 4.2. Let ε, δ, α, β ∈ (0, 1) and suppose that λI ⪯ Σ⋆ ⪯ ΛI . There is an (ε, δ)-DP algo-
rithm such that given samples from a Gaussian distribution N (0,Σ⋆), outputs an estimate Σ̂ satisfying
∥I − (Σ⋆)−

1
2 Σ̂(Σ⋆)−

1
2 ∥F ≤ α with probability 1 − β. Moreover, the algorithm has sample complexity

n = Õ(d
1.5 log(Λ/λβδ)

ε + d2 log(1/βδ)
ε + d2 log(1/β)

α2 + d2 log(1/βδ)
αε ) and running time poly(n, d).

By scaling if necessary, we can work under the simplifying condition that λI ⪯ Σ⋆ ⪯ 1
8I for some

λ ∈ (0, 1/8). In Lemma C.2, we will see how to precondition the distribution so that λ = Ω(1).
We begin by verifying that Assumptions 2.2 and 2.3 hold in Appendix C.3, leading to the following

corollary of Theorem 3.1.

Lemma C.1. Let ε, δ, α, β ∈ (0, 1) and suppose λI ⪯ Σ⋆ ⪯ 1
8I . There is an (ε, δ)-DP algo-

rithm such that given samples from a Gaussian distribution N (0,Σ⋆), outputs an estimate M̂ satisfy-
ing ∥M̂ − (Σ⋆)−1∥F ≤ α with probability 1 − β. Moreover, the algorithm has sample complexity

n = Õ

(
d2 log(1/βδ)

λ2ε
+ d2 log(1/β)

λ4α2 + eO(1/λ2)d2 log(1/βδ)
λ2αε

)
and time complexity poly(n, d).
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As mentioned, we require a private preconditioning algorithm to avoid polynomial dependence on 1/λ.
We extend one such algorithm for Gaussians due to Biswas, Dong, Kamath, et al. [BDK+20] to the case of
truncated Gaussians.

The idea is to truncate the data to a centered ball of radius
√
d

1−ρ to preserve ρ survival mass and then apply
the following lemma.

Lemma C.2. Let ε, δ, α, β ∈ (0, 1) and assume λI ⪯ Σ⋆ ⪯ 1
8I . Algorithm C.1 is an (ε, δ)-DP algorithm

such that given samples from a truncated Gaussian distribution N (0,Σ⋆, S) with survival probability
ρ > 0, outputs an estimate Σ̂ satisfying Ω(ρ2)I ⪯ (Σ⋆)−

1
2 Σ̂(Σ⋆)−

1
2 ⪯ O(log(1/ρ))I with probability 1− β.

Moreover, the algorithm has sample complexity n = Õ
(
d1.5 log(1/λρβδ)

ε

)
and runnning time poly(n, d).

We present the proof of Lemma C.2 in Appendix C.4. By combining Lemmas C.1 and C.2, we obtain a
proof of Theorem 4.2.

Proof of Theorem 4.2. By Lemma C.2, after truncating to B√
m

1−ρ

(0), Algorithm C.1 yields a constant error

estimate of the true covariance matrix. By Lemma C.1, preconditioning further samples and executing
the general algorithm for Gaussian covariances as an exponential family (Theorem 3.1) yields the desired
result.

C.3 Verifying Assumptions from Appendix C.2

As a reminder, we work under the simplifying condition that λI ⪯ Σ⋆ ⪯ 1
8I . Let |M | denote the determinant

of a square matrix M . Let M = Σ−1 denote the precision matrix of N (0,Σ). The zero-mean Gaussian
density function parameterized by M is given by

p(x;M) =
1

(2π)d/2|M |−1/2
exp

(
−1

2
x⊤Mx

)
.

The exponential family parameter is given by the precision matrix θ = M and the sufficient statistic is taken
to be T (x) = −1

2xx
⊤. We take the closed convex parameter space Θ = {M ∈ Sd+ : 7I ⪯M ⪯ 2

λI}.

Statistical Assumptions. Once again, we must verify that the Assumption 2.2 is satisfied in order to apply
Theorem 3.1. We require the following result by Lee, Mehrotra, and Zampetakis [LMZ24].

Proposition C.3 (Lemma 9.1 in [LMZ24]). Let λ,Λ denote the smallest and largest eigenvalues of the
covariance matrix Σ = M−1 ≻ 0. Then

min(λ2,
√
λ)

4
· I ⪯ Covx∼pM [T (x), T (x)] ⪯ 7max(λ,Λ2) .

We are now ready to perform the verification.

(S1) (Bounded Condition Number) By Proposition C.3, for any M ∈ Θ, the Fisher information is spectrally
lower bounded by Ω(λ2) and upper bounded by 1.

(S2) (Interiority) For M⋆ = (Σ⋆)−1 ∈ Θ, any M ′ ∈ B1(M) satisfies

7I ⪯M ′ ⪯ (1/λ + 1)I ⪯ 2

λ
I .

Hence M ′ ∈ Θ and we can take η = 1.

(S3) (Log-Concavity) Each N (0,M−1),M ∈ Θ is a log-concave distribution.

(S4) (Polynomial Sufficient Statistics) T (x) = −1
2xx

⊤ is a polynomial of degree k = 2.
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Computational Tasks. We also describe how to implement the computational subroutines from Assump-
tion 2.3.

(C1) (Projection Acess to Convex Parameter Space) For any symmetric matrix M ∈ Sd , its projection onto
Θ can be computed by solving a semi-definite program.

(C2) (Sample Access to Log-Concave Distribution) We can sample z ∼ N (0, I) and Σ
1
2µ is a sample from

N (0,Σ).

(C3) (Moment-Matching Oracle) If E[−1
2xx

⊤] = Σ, then the corresponding parameter is simply θ =
−1

2Σ
−1.

C.4 Proof of Lemma C.2

Below, we restate and prove Lemma C.2.

Lemma C.2. Let ε, δ, α, β ∈ (0, 1) and assume λI ⪯ Σ⋆ ⪯ 1
8I . Algorithm C.1 is an (ε, δ)-DP algorithm

such that given samples from a truncated Gaussian distribution N (0,Σ⋆, S) with survival probability
ρ > 0, outputs an estimate Σ̂ satisfying Ω(ρ2)I ⪯ (Σ⋆)−

1
2 Σ̂(Σ⋆)−

1
2 ⪯ O(log(1/ρ))I with probability 1− β.

Moreover, the algorithm has sample complexity n = Õ
(
d1.5 log(1/λρβδ)

ε

)
and runnning time poly(n, d).

We emphasize that all algorithms we present require only truncated sample access for an exponential
family. While there are private preconditioning algorithms without any dependence on Λ/λ, it is not clear if
their guarantees hold for truncated samples.

Pseudocode. See Algorithm C.1 for pseudocode of the preconditioning algorithm. As mentioned, it is
a straightforward adaptation of the Gaussian covariance estimation algorithm of Biswas, Dong, Kamath,
et al. [BDK+20], with the main difference being the initial truncation step. Due to the bias introduced by
truncation, this adapation is only able to achieve a constant-error approximation.

Analysis. We are given truncated sample access to a zero-mean Gaussian distribution and would like to
privately learn its second moment up to constant relative spectral error.

Our proof requires the following facts about truncated statistics.

Proposition C.4 (Lemma 5 in Daskalakis, Gouleakis, Tzamos, et al. [DGT+18]). Let ΣS denote the
covariance of the truncated Gaussian N (0,Σ, S) with survival mass ρ > 0. The following hold.

(i) maxi∈[n]∥Σ− 1
2x(i)∥ of n truncated samples x(i) is O

(√
d log

(
nd
ρβ

))
with probability 1− β.

(ii) The empirical covariance Σ̂S of n truncated samples satisfies (1− α)ΣS ⪯ Σ̂S ⪯ (1 + α)ΣS with
probability 1− β whenever n ≥ Ω̃

(
d log2(1/ρβ)

α2

)
.

The following result allows us to relate the covariance matrix of a truncated Gaussian with its original
covariance.

Proposition C.5 (Lemma 6 in [DGT+18]). Let Σ⋆
S denote the covariance matrix of the truncated Gaussian

distribution N (0,Σ⋆, S) with survival mass ρ > 0. Then

Ω(ρ2)I ⪯ (Σ⋆)−
1
2Σ⋆

S(Σ
⋆)−

1
2 ⪯ O(log(1/ρ))I.

We are now equipped to prove Lemma C.2.
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Proof of Lemma C.2. Privacy follows by the guarantees of the Gaussian mechanism (Proposition A.2) and
simple composition (Theorem A.4).

Following the presentation of Biswas, Dong, Kamath, et al. [BDK+20], we can assume without loss of
generality we know that I ⪯ Σ⋆ ⪯ κI . This can be achieve by scaling the data by 1/

√
λ and taking κ = 1/λ.

Then by Proposition C.5, Ω(ρ2)I ⪯ Σ⋆
S ⪯ O(κ log(1/ρ))I . We begin with the preconditioner A0 := 1√

κ
I .

Assume inductively that we have Ai−1 such that

Σ⋆
S ⪯ (A(i−1))−1Σ⋆

S(A
(i−1))−1 ⪯ (2− 2−i+1)Σ⋆

S + κ2−i+1I .

We would like to output some A(i) that satisfies the above induction hypothesis.
By Proposition C.4, the relative spectral error of the sample covariance is at most 1/8 with probability

1− β
Ω(log(κ)) when

n ≥ Ω̃(d log(κ/ρβ)).

Similarly, by Theorem A.10, the error due to the noise Y added for privacy is at most 1/8 with probability
1− β

Ω(log(κ)) when

σ ≤ O

(
1√

d log(κ/β)

)
⇐⇒ n ≥ Ω

(
d1.5 log(κ/ρβ)

√
ln(1/δ)

ε

)
.

The rest of the inductive step are simple calculations that can be found in Biswas, Dong, Kamath, et al.
[BDK+20, Appendix B.3, arXiv version]. The only difference is that we replace the two spectral norm
concentration bounds that Biswas, Dong, Kamath, et al. [BDK+20] used with the two listed above. After
v = O(log(κ)) iterations and conditioning on the concentration bounds, the inductive hypothesis implies that

1

3
I ⪯ A(v−1)Σ⋆

SA
(v−1) ⪯ I .

Finally, we pay a multiplicative spectral error of poly(ρ) when translating the guarantees of the estimate
of the truncated covariance to the true covariance.

We remark that Ashtiani and Liaw [AL22, Theorem 5.4, arXiv version] give a polynomial-time (ε, δ)-DP
algorithm to estimate the covariance up to constant error and with sample complexity that is independent
of the condition number. However, it is not clear that their algorithm works without change for truncated
Gaussians, unlike the rest of our results (see Remark 3.2).
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Algorithm C.1: Recursive Preconditioning
Input: n-sample truncated dataset D, privacy parameters ε, δ ∈ (0, 1), initial spectral lowerbound

bound λ, survival probability ρ ∈ (0, 1)
Output: estimator Σ̂ for covariance matrix Σ⋆

1 κ′ ← O
(
log(1/ρ)
λρ2

)
2 ε′ ← ε

log(κ′)

3 δ′ ← δ
log(κ′)

4 σ ← O

(
d
√

log(1/δ′) log(nd/ρβ)

nε′

)
5 R← Õ(

√
d log(nd/ρβ))

6 A(0) ← 1√
κ′ I

7 for i = 0, . . . , v := O(log(κ′)) do
8 w(j) ← A(i)x(j) for j ∈ [n] ▷ ∥w(j)∥ ≤ R w.h.p.
9 w(j) ← projBR(0)(w

(j)) for j ∈ [n]

10 Z ← 1
n

∑
j w

(j)(w(j))⊤ ▷ sensitivity ∆ = Õρ,β(d/n)

11 Y ← Gaussian matrix with symmetric entries Yij ∼ N (0, σ2)

12 Z(i+1) ← S + Y ▷ Gaussian mechanism (Proposition A.2)
13 U ← Z(i+1) + 1

4I

14 A(i+1) ← U− 1
2A(i)

15 return (Av−1))−1Z(v)(A(v−1))−1
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