
ar
X

iv
:2

50
5.

12
29

6v
1

 [
cs

.C
R

]
 1

8
M

ay
 2

02
5

PoLO: Proof-of-Learning and Proof-of-Ownership at Once
with Chained Watermarking

Haiyu Deng1, Yanna Jiang1, Guangsheng Yu1, Qin Wang1,2, Xu Wang1,
Baihe Ma1, Wei Ni1,2, Ren Ping Liu1

1
University of Technology Sydney | 2

CSIRO Data61, Australia

ABSTRACT

Machine learningmodels are increasingly shared and outsourced,
raising requirements of verifying training effort (Proof-of-Learning,
PoL) to ensure claimed performance and establishing ownership
(Proof-of-Ownership, PoO) for transactions.Whenmodels are trained
by untrusted parties, PoL and PoO must be enforced together to en-
able protection, attribution, and compensation. However, existing
studies typically address them separately, which not only weakens
protection against forgery and privacy breaches but also leads to
high verification overhead.

We propose PoLO, a unified framework that simultaneously
achieves PoL and PoO using chained watermarks. PoLO splits the
training process into fine-grained training shards and embeds a ded-
icated watermark in each shard. Each watermark is generated using
the hash of the preceding shard, certifying the training process of
the preceding shard. The chained structure makes it computation-
ally difficult to forge any individual part of the whole training
process. The complete set of watermarks serves as the PoL, while
the final watermark provides the PoO. PoLO offers more efficient
and privacy-preserving verification compared to the vanilla PoL
solutions that rely on gradient-based trajectory tracing and inadver-
tently expose training data during verification, while maintaining
the same level of ownership assurance of watermark-based PoO
schemes. Our evaluation shows that PoLO achieves 99%watermark
detection accuracy for ownership verification, while preserving
data privacy and cutting verification costs to just 1.5–10% of tra-
ditional methods. Forging PoLO demands 1.1–4× more resources
than honest proof generation, with the original proof retaining over
90% detection accuracy even after attacks.

1 INTRODUCTION

As Machine Learning (ML) evolves, models are increasingly de-
veloped across distributed settings, exchanged between parties, and
outsourced to third-party providers [1]. This introduces a critical
need for verifying both the legitimacy of training efforts and right-
ful model ownership. For instance, in incentive-driven distributed
learning [2, 3], participants must prove that models are properly
trained to receive fair rewards. In ML marketplaces [4], buyers need
confidence that models are genuinely trained and transferable with-
out dispute. Similarly, in outsourced training [5, 6], organizations
must ensure that externally developed models are both authentic
and securely attributed.

The shift introduces a fundamental challenge:
How do we verify a model’s legitimacy in ML ecosystems?

Legitimacy in this context involves two facets: verifying training
effort and establishing rightful ownership [7]. This requires two
complementary mechanisms. Proof-of-Learning (PoL) ensures the

Figure 1: Why at once? PoL verifies training effort but lacks ownership
tracking, while PoO ensures ownership but fails to justify training efforts.
Separating PoL and PoO creates attribution risks and ownership conflicts.

claimed computational effort was genuinely invested, deterring
fraudulent claims. Proof-of-Ownership (PoO), often implemented
via watermarking, embeds verifiable ownership information to
create a tamper-resistant link to the rightful owner. Without PoL,
training claims are unverifiable; without PoO, ownership can be
misused, transferred, or stolen without recourse.

In this paper, we stress that PoL and PoO are intertwined and

must be jointly addressed to achieve a complete proof of legitimacy

(cf. Fig.1). Existing solutions have long viewed PoL and PoO as
separate verification mechanisms, leading to PoL becoming the
weakest link throughout the process:
• Heightened vulnerability, since existing PoL methods not only
require exposing intermediate training states and training data [8–
10], compromising privacy, but also remain prone to forgery,
where attackers can fabricate plausible but fraudulent training
trajectories to deceive verification [9, 10];
• High verification costs, as existing PoL schemes demand re-training
at each recorded snapshot [8–10], imposing substantial computa-
tional overhead and making large-scale verification impractical.
Simply stacking them, such as combining a conventional PoL

method with a standalone watermark, fails to provide a unified,
secure, and privacy-preserving proof of both training effort and
ownership.

Our goal is to integrate PoL and PoO into a unified framework
by validating training efforts with persistent ownership at once.
This presents a series of technical challenges with corresponding
research questions (RQs):
• RQ1: How can a PoO method be leveraged to achieve PoL? Existing
PoO methods rely on a single mature watermark embedded in
the final model, offering no protection during earlier training
stages and leaving intermediate versions unverified.
• RQ2: How can PoO-based PoL remain resilient to removal and

forgery? Existing watermarking schemes are vulnerable to be

https://arxiv.org/abs/2505.12296v1

forged, so a robust designmust ensure verifiable, tamper-resistant
ownership throughout training and in the final model.
To address these RQs, we propose a novel design, PoLO that

embeds chained watermarks throughout the training process. Each
watermark is deterministically derived using a hash function over
partial model weights and auxiliary parameters from the previous
training shard. This chaining securely links training phases and
embeds ownership information at every stage. Unlike static water-
marking, which tags only the final model, our method accumulates
verifiable ownership across the entire training trajectory. By re-
placing gradient-based tracking with chained watermarks, PoLO
ensures training effort and ownership verification while enhanc-
ing tamper resistance, preserving data privacy, and eliminating
redundant model recomputation.

We achieve it in a stepwise manner:
• We formalize the concept of Proof-of-Anything (PoX) (§2–§3) as
a unified framework for analyzing PoL and PoO. Inspired by
Proof-of-Work (PoW), PoX provides a structured basis for sys-
tematically evaluating PoL methods in design, efficiency, and
security. Through this lens, we identify key limitations in exist-
ing PoL approaches, including inefficient proof generation, high
verification costs, fragmented security, and privacy risks. Our
findings highlight the need for an integrated solution that verifies
both training effort (i.e., PoL) and ownership (i.e., PoO) efficiently
and securely, motivating the design of PoLO.
• We introduce PoLO (§4), a novel method that unifies PoL and
PoO through chained watermarks. The model trainer embeds
watermarks throughout training, updating them iteratively using
a hash function with partial weights. This creates a tamper-proof
chain encoding both training effort and ownership, allowing veri-
fiers to validate PoL and PoO in a single step. The final watermark
preserves the cumulative training history, enabling verification
without separate ownership checks or data exposure. By replac-
ing PoL’s reliance on gradient trajectories with cryptographically
secure hashing, PoLO enhances privacy, eliminates dataset access,
and reduces computational costs by removing redundant verifi-
cations. Verifiers can efficiently confirm both training integrity
and ownership by checking any point in the watermark chain,
providing a scalable and practical model verification solution.
• We conduct extensive experiments (§5) using ResNet, VGG, and
BERT models on CIFAR10, TinyImageNet, and AG News datasets.
We implement watermarking schemes with varying sizes to gen-
erate PoLO proofs, compare verification overhead with tradi-
tional PoL methods, and test resilience against two novel proof
forgery attacks. Results show that PoLO achieves 99%watermark
detection accuracy for ownership verification while fully preserv-
ing training data privacy. Verification requires only 1.5–10% of
computational overhead compared to traditional PoL methods.
Forging PoL proofs against PoLO demands 1.1–4 times more re-
sources than legitimate PoLO generation, with the original proof
maintaining over 90% detection accuracy even after attacks.

2 FORMALIZING CONCURRENTWORKS

We provide the formalization of PoX as a unified framework for
analyzing PoL and PoO, outlining their core concepts and concur-
rent works. Tab.5 summarizes the notations.

Table 1: Comparison with existing PoL.

Ownership Security Privacy Low Ov.

① ② ③ ④ ⑤ ⑥ ⑦ ⑧

PoL (GD, Vanilla) [8–10] ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗

PoL (hash) [11] ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗

PoL (zkp) [12] ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✓

PoLO (ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Notations: ✓ for attack-resistance/property-held; ✗ vice versa; Ov. for overhead.
① Avoid unauthorized use? ② (Prevent) Reverse reconstruction attacks?
③ Synthetic trajectory attacks? ④ Verification loophole attacks?
⑤ Avoid data sharing? ⑥ Defend against gradient leakage?
⑦ Proof generation? ⑧ Verification?

2.1 Proof-of-Anything and Proof-of-Learning

Definition 1 (Proof-of-anything, PoX). A prover 𝒫 sends a proof P
to a verifier 𝒱 , where the resources required for verifying whether 𝒫
satisfies a certain condition Ψ is negligible compared to the computa-

tional overhead incurred during the generation of P. The core of this
verification process is a function Θ, which is irreversible in the sense

that its output cannot be practically reproduced without complete

knowledge of its input 𝜒 , nor can a proof P(𝜒 ′,Ψ,Θ) = P(𝜒,Ψ,Θ) be
forged when 𝜒 ′ ≠ 𝜒 .

Proof-of-work. PoW [13, 14] adheres to the definition of PoX
and predates its broader abstraction. PoW was one of the earli-
est frameworks widely used in decentralized ledger technologies
(DLT) [15, 16] to demonstrate the feasibility of proofs tied to com-
putationally expensive tasks, such as solving cryptographic puzzles,
that satisfy a specific condition Ψ in terms of difficulty. In PoW, the
function Θ is a cryptographic hash that transforms input (e.g., the
𝑡-th block body) into an output that is computationally infeasible
to invert, ensuring irreversibility. In contrast, verifying the proof is
efficient, requiring only one evaluation of Θ to check whether the
output satisfies the condition Ψ.
Proof-of-(more). In addtion to computational resources (i.e., puz-
zles in PoW), a variety of physical or virtual resources can also
serve as measurable bases for proofs, including holdings (proof-
of-stake, PoS) [17, 18], time (proof-of-elapsed-time, PoET) [19, 20],
storage (proof-of-space/bandwith) [21, 22], and repuatation (proof-
of-authority, PoA) [23, 24]. In each of these cases, the verification
function Θ typically aligns closely with its input 𝜒 .

Definition 2 (Proof-of-Learning, PoL). A prover 𝒫 constructs a

PoL proof P by recording the complete training trajectory of machine

learning model𝑊𝑇 with P := (𝑊𝑡 ,B𝑡 , 𝐴𝑡)𝑇𝑡=0 where𝑊𝑡 denotes model

weights at the 𝑡-th epoch, B𝑡 ⊆ 𝒟 the training batches, and 𝐴𝑡

auxiliary training parameters. The verification condition Ψ requires

∥𝑊𝑡+1−Θ(𝑊𝑡 ,B𝑡)∥≤𝜖 for all 𝑡 , whereΘ is the model training function.

Gradient-based PoL. Gradient-based PoL (Vanilla PoL) [8] in-
stantiates Definition 2 through iterative parameter updates via
Θ(𝑊𝑡 ,B𝑡) =𝑊𝑡 − 𝜂∇ℒ(𝑊𝑡 ,B𝑡), where 𝜂 is learning rate and ℒ the
loss function. The proof P consists of consecutive weight snapshots
(𝑊𝑡 ,𝑊𝑡+1) and data batches B𝑡 used for each update. Subsequent
studies have revealed vulnerabilities in this approach including
synthetic trajectory attacks [9] and gradient matching exploits [10],
driving the need for enhanced verification mechanisms.
Hash-based PoL. To enhance computational efficiency and reduce
communication complexity, Zhao et al. [11] introduce an authen-
tication and verification protocol that achieves a better balance

2

between computational overhead and security. In this scheme, the
prover 𝒫 generates a proof P during the model training process
by saving the intermediate weight parameters𝑊𝑡 as the input 𝜒
to the function Θ. Here, Θ is instantiated as a hash function ℎ(𝑊𝑡)
to ensure irreversibility. During verification, the verifier 𝒱 recal-
culates the hash value ℎ(𝑊𝑡) from the intermediate weights𝑊𝑡

provided by 𝒫 and compares it to the original hash in the proof. To
confirm the training progression, 𝒱 retrains the model from𝑊𝑡−1
and checks whether the resulting state matches𝑊𝑡 by evaluating
the hash value, which serves as the condition Ψ.

This method preserves proof integrity and mitigates synthetic
trajectory attacks by enforcing exact hash matching for intermedi-
ate states. However, it remains essentially an enhanced version of
vanilla PoL and lacks the ability to verify current ownership. Like
vanilla PoL, it depends on sharing data samples B for retraining in
order to regenerate intermediate weights, raising serious privacy
concerns and incurring significant computational overhead. More-
over, it suffers from a key limitation: the recomputed weights are
unlikely to exactly match those produced during original training.
As a result, even with correct retraining, hash mismatches may
occur, rendering the verification process unreliable.

ZK-PoL. Zero-knowledge cryptographic commitments have been
integrated into PoL to enhance privacy. ZK-PoL methods [12, 25]
verify the training process in zero knowledge, ensuring the model is
derived from the training data and a random seed. This requires the
prover to work proportionally to the number of iterations, proving
training efforts and resource use, thus promoting fairness for parties
with limited resources. By verifying the entire process, the verifier
ensures adherence to the training procedure. The protocol can be
expressed as P((𝜎𝑊𝑡

, 𝜎𝑊𝑡+1 ,B𝑡 , 𝑝B𝑡 , 𝜋𝑡 , 𝜋𝑡+1),Ψ,Θ), where B𝑡 , the
raw data batch, is revealed to the verifier alongwith its Merkle proof
𝑝B𝑡 . While model weight commitments 𝜎𝑊𝑡

and 𝜎𝑊𝑡+1 help avoid
exposing rawweights, verifying 𝑝B𝑡 necessitates disclosing B𝑡 itself.
Although dataset inclusion and sumcheck proofs are performed
separately, they jointly complete the verification cycle. As a result,
raw data batches are repeatedly exposed during verification, raising
significant privacy concerns. With randomized data partitioning,
prolonged verification over many iterations may gradually leak
large portions or even the entirety of the committed dataset 𝒟,
compromising data confidentiality.

While this ZK-PoL effectively demonstrates the training process
and resource consumption, it faces significant privacy and efficiency
challenges. Revealing raw data batches over multiple iterations al-
lows the verifier to incrementally reconstruct the entire committed
dataset 𝒟, breaching data confidentiality. With prolonged verifi-
cation, the random selection of partitions by the prover further
increases the risk of exposing the entirety of𝒟. Additionally, proof
generation for each iteration often exceeds 15 minutes, making
the protocol impractical for large-scale or frequent verifications.
Although ZK-PoL aligns with our PoL objectives by validating train-
ing effort, its reliance on sharing raw data and high computational
overhead severely limit its scalability and real-world applicability.

Existing PoL methods face several critical challenges (cf. Tab.1).
One significant limitation is the high verification cost, as verify-
ing training correctness requires recomputing intermediate model

states or retraining from stored snapshots, making large-scale verifi-
cation impractical. Privacy concerns are also pressing, as the recom-
puting process in existing PoL methods require sharing training
data during verification. On the security front, existing PoL remains
susceptible to various forgery attacks, such as synthetic trajectory
and adversarial example-base verification loopholes, which allow
adversaries to manipulate proofs and bypass verification.

Our method enhances PoL in efficiency, privacy, and security by
embedding hash-based chained watermarks during training. This
allows for verification through watermark validation alone, elimi-
nating the need to share training data and reducing computational
overhead. The design also strengthens resistance against adversar-
ial attacks, making it harder to forge PoL proofs. Additionally, our
method uses watermarks to verify training efforts and establish
model ownership within the same framework, addressing a crucial
gap in existing PoL methods, as explored below.

2.2 Proof-of-Ownership

PoL ensures authenticity and traceability in model development.
However, in a model marketplace, PoL alone cannot establish le-
gal ownership, which is essential for determining “who actually
owns the model.” As a result, PoL fails to resolve the “whom to
pay” issue in model trading. Authorship disputes require a full PoL
verification process, imposing significant computational overhead.
In contrast, model ownership is legal constructs governed by in-
tellectual property laws, granting developers exclusive rights to
control the model’s usage, distribution, and modification [26]. A
complete ownership proof can provide a more efficient means to
address such disputes, complementing PoL’s technical validation
to ensure comprehensive protection for machine learning models
against both attribution disputes and unauthorized use.

Definition 3 (Proof-of-Ownership (PoO)). A valid ownership proof

is defined as P𝑜 (𝑊𝑡 ,𝒟, 𝐴,Λ,Ψ) for a model owner acting as the prover

𝒫 . This is constructed using a neural network with weights𝑊𝑡 at

epoch 𝑡 , trained on dataset 𝒟 under specified training settings 𝐴

(including hyperparameters, model architecture, optimizer, and loss

functions). During training, the prover 𝒫 embeds personalized own-

ership information Λ into the model. To verify ownership, a condition

Ψ is evaluated on the model weights𝑊𝑇 at the final epoch 𝑇 .

The embedded ownership information Λ needs to exhibit a high
degree of robustness, ensuring that Λ remains extractable or de-
tectable for verification even after undergoing adversarial mod-
ifications, such as model fine-tuning, pruning, and overwriting
attacks [27, 28]. This robustness guarantees the integrity of owner-
ship verification, making it resistant to common attacks aimed at
removing or obfuscating embedded ownership information.
Watermarking.Watermarking, is a type of PoO technique devel-
oped to protect multimedia content such as images [29], text [30],
and videos [31] by embedding unique identifiers into the con-
tent. Uchida et al. [32] propose embedding watermarks into model
weights via a regularization term added to the training loss, forming
the EDNN scheme. The watermark Λ is embedded into weights𝑊
during training, and later extracted as Λ̂ for verification by checking
if Δ(Λ, Λ̂) satisfies condition Ψ. HufuNet [33] embeds a tailored
autoencoder into the DNN, using the encoder as the watermark

3

and preserving the decoder for ownership verification. RIGA [34]
introduces a GAN-based approach where the model acts as a gener-
ator producing watermarked weights, aided by a discriminator and
an embedder network. FedIPR [35] extends these ideas to federated
learning, allowing all clients to embed ownership into the global
model for copyright protection [36].

Our method is designed to be compatible with all embedded
watermarking methods for achieving PoO. By embedding a given
watermark into the model parameters, we strongly associate the
watermark with the model’s training process, allowing for the
verification of PoL through watermark verification.

3 SYSTEM OVERVIEW

Problem definitions.Arguably, existing PoLmethods fail to address

scenarios where models are outsourced or exchanged for monetary as-

sets. Current PoL methods assume that the entity providing the PoL
proof is the model owner, making them unsuitable for outsourced
training where ownership and training efforts may belong to differ-
ent entities [5]. In ML marketplaces, current PoL methods cannot
support ownership transfer, which prevents PoL from verifying
rightful ownership when models are bought, sold, or reassigned [4].

Existing PoL methods become the weakest link when simply stack-

ing PoL and PoO. Those solutions [9, 12] are increasingly inefficient.
The effort invested outweighs practical outcomes threefold.
• The training function Θ in PoL is inherently less reliable than
the cryptographic hash functions used as Θ in PoW. Adversar-
ial patterns may compromise the irreversibility of the training
process [9], enabling spoofing attacks to forge training paths.
• The condition Ψ in PoL is defined as the model distance between
intermediate weights, weaker than the difficulty metric in PoW.
• Maintaining a dynamic distance threshold to counter spoofing
attacks adds further complexity. While techniques like ZKPs
have been explored for securely sharing inputs [12], their real-
world application remains constrained by high resource costs. It
necessitates sharing the dataset with verifiers in most designs.
Our method instantiates the irreversible function Θ using a cryp-

tographically secure hash function to chain the training path, trans-
forming it from a simple GD trajectory into a rigorously linked
sequence of watermarks–leveraging PoO to achieve PoL. Each step
is securely linked to the previous one through model watermarks,
establishing a structured verification path. This redefines the con-
dition Ψ–the criterion for validating a PoL proof–by incorporating
the robustness of PoO, making it a more practical and resilient
metric against attacks. Moreover, this design preserves data privacy
by eliminating dataset sharing with verifiers, significantly reducing
communication overhead. PoLO also integrates the efficiency of
existing watermarking techniques [32] with the undetectability
properties of more advanced schemes [34].
Definition 4. (PoLO): A PoLO proof for a prover 𝒫 is defined as

P((𝑊𝑥−1,𝑊𝑥),Ψ,Θ), which verifies the training of the 𝑥-th shard

𝑠𝑥 within a model iteration partitioned into 𝑆 shards. The proof is

considered valid if the ownership information Λ𝑥 , extracted from the

DP-protected final weight𝑊𝑥 of 𝑠𝑥 , satisfies the condition Ψ. Specifi-

cally, this requires verifying that Λ𝑥 matches the expected value Λ̂𝑥 ,

where Λ̂𝑥 is computed using the hash-based function Θ over the prior

shard’s weight𝑊𝑥−1.

Architecture. PoLO features a chain-based embedded watermark
structure to generate PoL with no need to share any training data
and with superior resilience against gradient spoofing attacks [10].
Specifically, multiple watermarks are embedded throughout the
model training iterations, forming a chain-based structure. Real-
izing the unique watermark embedded at a specific point in the
chain requires a hash operation based on the knowledge of the
model weights from the previous point. This ensures that an at-
tacker intending to forge the watermark at any point would also
need to forge all preceding watermarks in the chain, which incurs
a computational cost equivalent to retraining a new model.

The amount of effort put into the learning is reflected by the
number of shards formed throughout the iteration. The process of
embedding each watermark naturally forms a shard, representing
one point in the watermark chain. This indicates a sequential order
between each shard. The size of a shard can vary to meet the ac-
curacy threshold required to form a valid watermark. The weights
of the final model within shard 𝑠𝑥 can be regarded as a checkpoint
model, reflecting the model performance.
Entities. Our PoLO consists of two primary entities:
• Prover (𝒫) is the original owner and trainer of a model, responsi-
ble for training the model, embedding watermarks, and generat-
ing proofs. As a prover, the prover provides verifiable evidence of
both training effort and model ownership, ensuring the integrity
and authenticity of the proof.
• Verifier (𝒱) is responsible for evaluating the validity of proofs by
verifying the embedded watermarks and assessing the model’s
main task performance. As both the issuer and evaluator of the
main task, the verifier ensures that the prover has completed the
required workload (i.e., PoL) and retains legitimate ownership
of the model (i.e., PoO). To enforce fair verification, the verifier
maintains a public test dataset for performance assessment and
sets a watermark detection rate threshold. Based on the verifica-
tion results, 𝒱 determines rewards for successful validation and
penalties for fraud proofs.

Workflow in sketch.We focus on the procedures ofmodel training
and model challenging by presenting the interactive steps between
a prover and a verifier.
• Step-1 (§4.1).Aprover𝒫 trains hismodel duringwhich a number
of watermarks are embedded to form a watermark-chain. This
indicates that the published version of the model is bound to be
watermarked by the final point of the chain.
• Step-2 (§4.2.1). A verifier 𝒱 issues a challenge to the prover,
requesting verification of a randomly selected shard 𝑠𝑥 .
• Step-3 (§4.2.1). 𝒱 requires to send the model weights of the
checkpoint models of shards 𝑠𝑥 and 𝑠𝑥−1.
• Step-4 (§4.2.2). 𝒱 computes the expected embedded watermark
for 𝑠𝑥 using the information shared from the owner, and then
verifies that whether the checkpoint model of 𝑠𝑥 is watermarked
by the computed watermark.
• Step-5 (§4.2.3). The verification result is sent back to 𝒫 . 𝒱 de-
cides whether to repeat the same process for further preceding
shards, depending on the requirement of the security level.

Player model. Three types of players are considered.
• Rational prover. The prover functions as both the model owner,
holding full rights to its creation and usage, and the PoL prover,

4

Figure 2: PoLO design: The verifier shares a secret nonce with the prover to initialize watermark parameters (Λ1, 𝑘1, 𝑌) for the first shard 𝑠1. Prior to
watermark embedding, the model owner computes the watermark Λ𝑥−1 and its corresponding embedding key 𝑘𝑥−1 for shard 𝑠𝑥 using a hash function H(·)
over the previous model𝑊𝑥−1, auxiliary information, and the secret nonce. During training, Λ𝑥−1 is embedded into the model using 𝑘𝑥−1, while monitoring
the watermark detection rate 𝜂. Once 𝜂 exceeds the threshold 𝜂𝐺 , DP noise is applied to enhance robustness against inference attacks. Training proceeds to
the next shard with new Λ𝑥 and 𝑘𝑥 . The process continues until the model converges.

responsible for proving the authenticity and integrity of the train-
ing process. A rational prover acts in a way that maximizes their
utility. While they do not compromise the integrity of model
training or watermark embedding, they may attempt to falsify
reported workloads to gain additional rewards.
• Honest-but-curious verifier. The verifiers act as auditors, re-
sponsible for challenging and validating the PoL provided by the
prover to assess whether they deserve rewards based on their
contributions to model training. To achieve this, the verifiers use
a public test dataset to evaluate the model performance on the
main training task. They also manage system settings, such as
accuracy thresholds for watermarks in each shard and the size
of the embedded watermark. Although the verifiers operate hon-
estly and do not interfere with the verification process, they are
curious and may attempt to infer the provers’ private training
data from the information contained within PoL.
• Malicious attackers. The attackers seek to exploit the system
through various attacks, including:
◦ Training forgery (addressed in §4.3.1). The attacker may fabri-
cate a fraudulent PoL to falsely represent a legitimate training
process, such as by forging training trajectories or interpolating
intermediate states, aiming to falsely claim training efforts.
◦ Ownership theft (addressed in §4.3.2). The attacker may attempt
to steal or misuse themodel by targeting its watermark through
attacks such as fine-tuning [37], pruning [38], removal [39], or
overlapping [40], aiming to falsely claim model ownership.
◦ Inference attacks (addressed in §4.3.3). The attacker may exploit
the information contained in the published model to infer the
provers’ private training data.

4 DESIGN OF POLO

PoLO is a unified framework that integrates PoL and PoO through
a chained watermarking mechanism. This section outlines its de-
sign and verification process (cf. Figs.2–3), and explains how PoLO
enables fair workload validation, strong ownership protection, and
robustness against adversarial attacks, while preserving the in-
tegrity of the model’s primary task performance.

4.1 Training with Chained Watermarking

The core of PoLO is the chained watermarkingmechanism, which
ensures progressive proof accumulation while maintaining model
integrity, directly addressing RQ1 by binding ownership verifica-
tion to the training process. Our framework links each training
phase to its previous state, preventing forgery or tampering.

In PoLO, a shard is a verifiable segment of the training process
that comprises one or more consecutive epochs. While an epoch
represents a full pass over the training data, a shard is defined based
on the successful embedding of a watermark, which may require
multiple epochs to complete. This design ensures that verification
is aligned with meaningful training effort rather than fixed epoch
boundaries. Let 𝑇𝑥 denote the set of epochs contained in the 𝑥-th
shard 𝑠𝑥 . PoLO partitions training into shards, enabling verifiable
proof of training effort. The prover’s training process with chained
watermarking in PoLO consists of the following key steps:
Chained watermark generation. To ensure cryptographic link-
age between successive training phases, PoLO derives the water-
mark Λ𝑥 for shard 𝑠𝑥 from the final weights𝑊𝑥−1 of the previous
shard 𝑠𝑥−1. This chained watermarking mechanism guarantees that
each watermark is uniquely bound to its predecessor, preventing
adversaries from fabricating or modifying individual watermarks
without reconstructing the entire sequence.

Initialization begins with a verifier-provided nonce, which the
prover uses to generate the initial watermark parameters: the first
watermark Λ1, the embedding key 𝑘1 for shard 𝑠1, and a selec-
tion matrix 𝑌 that specifies the embedding positions within model
weights. The matrix 𝑌 is fixed and reused across all shards to en-
sure consistency and verifiability. For each shard 𝑠𝑥 , both 𝑌 and the
embedding key 𝑘𝑥 are deterministically derived from the verifier-
provided secret nonce 𝜇:

𝑌 = WMPosition(𝜇),
Λ𝑥 , 𝑘𝑥 = WMGen(ℋ𝑥), KeyGen(ℋ𝑥) with

ℋ𝑥 = H(𝑊𝑥−1, 𝑥, 𝜇, 𝑖𝑑𝒫),
(1)

where WMPosition(·), WMGen(·) and KeyGen(·) are determin-
istic functions, and all randomness stems from the nonce 𝜇 and

5

identity 𝑖𝑑𝒫 . This ensures only the legitimate prover can produce
valid watermarks and embedding keys, while the shard index 𝑥

enforces sequential linkage across training. The use of a nonce fixed
by the verifier prevents adversaries from precomputing or guessing
valid parameters.

Since modifying any single shard would invalidate all subsequent
watermarks, attackers cannot selectively alter or remove a water-
mark without regenerating the entire chain, nor can they forge
valid watermarks without reconstructing the full training sequence.
This chained construction establishes a strong cryptographic bind-
ing, guaranteeing the authenticity of PoLO and ensuring that the
training process remains verifiable and resistant to manipulation.
Watermark embedding in model training. During the training
of 𝑠𝑥 , the prover 𝒫 selects specific layers in the model to embed
a unique watermark Λ𝑥 . The watermark Λ𝑥 is embedded into all
model weights𝑊𝑡𝑥 ,∀𝑡𝑥 ∈ 𝑇𝑥 , gradually forming the weights𝑊𝑡𝑥
of the final epoch in 𝑠𝑥 where Λ𝑥 has been successfully embedded.
This process uses a secret key 𝑘𝑥 to perform the embedding:

𝑊𝑡𝑥 = arg min
𝑊
(𝑙𝑤 (𝑊) + 𝜆𝑙Λ (𝑊))

���
𝑊0=𝑊𝑥−1

+ 𝛿𝑊 , (2)

where 𝛿𝑊 = E(𝑊𝑥−1,Λ𝑥 , 𝑘𝑥 , 𝑌) is a watermark embedding pertur-
bation using the previous final weights𝑊𝑥−1, the watermark Λ𝑥 ,
a key 𝑘𝑥 , and a selection matrix 𝑌 that determines the positions
for embedding the watermark Λ𝑥 , is added to𝑊trained. This final
adjustment yields the watermarked weights𝑊𝑡𝑥 =𝑊trained + 𝛿𝑊 .

This embedding process is dynamically monitored, with training
continuing until the watermark detection rate 𝜂, which is computed
using the following based on Hamming distance [41]:

𝜂 = 1 −
∑𝑛
𝑖 (C(𝑊𝑡𝑥 , 𝑌 , 𝑘𝑥) [𝑖] ≠ Λ𝑥 [𝑖])

𝑛
, (3)

reaches a predefined threshold 𝜂𝐺 (i.e., 𝜂 ≥ 𝜂𝐺). Therein, C(·) is the
watermark extraction function and 𝑛 is the size of Λ𝑥 . By enforcing
this controlled, sufficient embedding process, PoLO ensures owner-
ship traceability while preserving the main task’s performance.
Differential privacy protection and shard formation. PoLO
applies differential privacy (DP) by randomly selecting a subset
of weights from the non-watermarked region𝑊𝑡𝑥 \ {𝑊𝑡𝑥𝑌 } and
injecting noise. This selective DP mechanism introduces statisti-
cal uncertainty, protecting sensitive training information in non-
watermarked areas from gradient leakage [42], while preserving
the ownership integrity carried by the embedded watermark. The
point of successful watermark embedding, denoted as𝑊𝑡𝑥 , yields a
DP-protected version𝑊 DP

𝑡𝑥
, which marks the completion of shard

𝑠𝑥 . Therefore, we refer to this checkpoint model as𝑊𝑥 that serves
as a secure and verifiable training checkpoint, ensuring tamper
resistance and preserving privacy throughout each phase.

𝑊𝑥 =𝑊 DP
𝑡𝑥

=𝑊𝑡𝑥 + DP(𝜀, 𝑍,𝑊𝑡𝑥), (4)

where 𝑡𝑥 = max𝑡𝑥 ∈𝑇𝑥 (𝑡𝑥) and𝑊𝑡𝑥 represents the model weights at
the last epoch of 𝑠𝑥 . The term DP(𝜀, 𝑍,𝑊𝑡𝑥) denotes the addition of
𝜀-DP noise to the subset of weights in𝑊𝑡𝑥 specified by a selection
matrix 𝑍 for DP. The storage of𝑊𝑥 marks the completion of shard
𝑠𝑥 , allowing the training process to transition to the next phase.
Iterative training with watermark propagation. The new wa-
termarkΛ𝑥+1, derived fromH(·), is then embedded into the training

of shard 𝑠𝑥+1, continuing the chained watermarking process. This
cycle repeats until the model either converges to a stable state or
meets the performance objectives of the main task. With each itera-
tion in PoLO, the previous watermark propagates forward, ensuring
strong sequential dependency across shards. This incremental ac-
cumulation of watermarks makes removal or modification attacks
impractical, as any tampering would require reconstructing the
entire sequence while preserving model performance. By enforcing
hash-based chaining and progressive watermark propagation, PoLO
provides a cryptographically verifiable proof of both training effort
and ownership, making it highly resistant to tampering, removal,
or synthetic trajectory attacks.
Ownership transfer. In scenarios requiring ownership transfer,
such as ML marketplaces [4, 43] and outsourced training [5], an
additional fine-tuning shard is appended to the training process to
reassign ownership. Specifically, a new or modified owner identifier
𝑖𝑑𝒫 ′ is used to generate a fresh watermark Λ𝑆+1 based on the latest
model𝑊𝑆 . This watermark is then embedded through fine-tuning,
producing a new model instance 𝑊𝑆+1 that remains tied to the
rightful owner while preserving the integrity of existing PoLO
proofs. The resulting PoLO not only verifies the legitimacy of the
final model owner but also retains the entire historical chain of
PoO and PoL, ensuring full traceability.

4.2 Verification in PoLO

The verification mechanism in PoLO is designed to ensure train-
ing effort accountability and ownership authenticity by validating
both the watermark chain and the model performance. The verifier
𝒱 assesses the prover’s PoLO proof P by sequentially verifying the
stored DP-protected model checkpoints and their extracted water-
marks from the latest shard to the earliest. In PoLO, verification is
performed at the shard level, rather than per epoch, ensuring that
provers cannot exaggerate their training workload while maintain-
ing a provable, tamper-resistant sequence of training. The verifier
can selectively challenge any shard to verify both training efforts
and ownership.

4.2.1 Generating proof. When the verifier𝒱 requests validation
for shard 𝑠𝑥 , the prover 𝒫 provides the necessary components, in-
cluding the DP-protected model weights𝑊𝑥 and𝑊𝑥−1 from shards
𝑠𝑥 and 𝑠𝑥−1, respectively. Additionally, 𝒫 provides the hash func-
tion H(·) to derive the watermark Λ𝑥 and the secret key 𝑘𝑥 from
𝑊𝑥−1 using the verifier-recorded secret nonce 𝜇, along with the
function that deterministically derives the watermarked weight
selection matrix 𝑌 from the same nonce. These components allow
the verifier to validate both the model’s integrity and the sequential
linkage of watermarks (cf. Algorithm 1 in Appendix B).

Unlike existing PoL [8–12] that require the prover 𝒫 to disclose
training data for verification, PoLO ensures that verification can
be conducted without exposing any training data to the verifier
𝒱 . Our design significantly enhances data privacy, eliminating the
risk of unintended data leakage while still allowing the verifier to
assess both training effort and ownership authenticity.

4.2.2 Verifying proof. The verification begins by assessing if
the model checkpoint𝑊𝑥 meets the expected performance criteria
on the public test dataset associated with the main task. The verifier

6

Figure 3: The verification of chained watermarking for PoL: ① (veri-
fier) requests verification for shard 𝑥 ; ② (prover) sends checkpoints𝑊𝑥−1
and𝑊𝑥 ; ③ (verifier) derives the selection matrix𝑌 from the locally recorded
nonce 𝜇 associated with the prover, if 𝑌 has not already been obtained. Us-
ing the received checkpoints, the verifier then derives the watermark Λ𝑥

and the extraction key 𝑘𝑥 from𝑊𝑥−1, also based on 𝜇, and finally extracts
the watermark Λ̂𝑥 from𝑊𝑥 using 𝑘𝑥 and 𝑌 ; ④ (verifier) validates the wa-
termark and main task accuracy; ⑤ (verifier) returns the result and repeats
for earlier shards if needed.

𝒱 evaluates the model against the test dataset to ensure that the
training process has led to meaningful task-specific improvements,
which aligns with the practical requirement that only sufficiently
accurate models are considered valuable in ML marketplaces [4].
If𝑊𝑥 fails to meet the expected accuracy threshold, the proof is
rejected immediately, and the prover 𝒫 incurs penalties. This pre-
vents provers from embedding watermarks in arbitrarily generated
models without properly completing the training process.

Once the model passes the main task performance evaluation,
the verifier 𝒱 proceeds to chained watermark verification. First,
the verifier reconstructs the watermarked weight selection matrix
𝑌 , expected watermark Λ𝑥 and the key 𝑘𝑥 for shard 𝑠𝑥 using the
stored DP-protected weights from shard 𝑠𝑥−1 (cf. Equation 1). This
confirms that the watermark Λ𝑥 must have been generated from
𝑊𝑥−1 and cannot be arbitrarily forged or altered.

The verifier 𝒱 then extracts Λ̂𝑥 from the checkpoint model𝑊𝑥

using the selection matrix 𝑌 and the secret key 𝑘𝑥 :

Λ̂𝑥 = C(𝑊𝑥 , 𝑌 , 𝑘𝑥). (5)

By comparing Λ̂𝑠 with the watermark Λ𝑠 derived from Equation 1,
the verifier 𝒱 determines whether the watermark detection rate
exceeds the predefined threshold 𝜂𝐺 . The watermark detection rate
of the 𝑥-th shard is computed based on the following:

𝜂𝑥 = 1 −
∑𝑛
𝑖 (Λ̂𝑥 [𝑖] ≠ Λ𝑥 [𝑖])

𝑛
. (6)

If the extracted watermark satisfies 𝜂𝑥 ≥ 𝜂𝐺 , the PoLO proof is
accepted. Otherwise, the verification fails due to potential tamper-
ing, watermark removal, or inconsistency in the PoLO proof (cf.
Algorithm 2 in Appendix B).

4.2.3 Cumulating security confidence. To reinforce the integrity
of the PoLO proof, the verifier 𝒱 may conduct backward verifica-
tion by recursively validating previous shards, moving from 𝑠𝑥 to
𝑠𝑥−1, 𝑠𝑥−2, and so forth, until a sufficiently verifiable proof chain is
established. Since each watermark is cryptographically linked to its
predecessor, backward verification prevents partial proof forgery.

No malicious prover can manipulate only recent checkpoints while
leaving earlier training shards unverifiable.

Upon successful verification, the verifier 𝒱 can determine the
correct rewards for the prover based on the number of validated
shards 𝑆 and the performance on themain task. A higher final model
accuracy on the test set results in greater rewards, incentivizing
provers to optimize model performance continuously. Moreover,
each shard serves as a verifiable unit of training effort, making
the total compensation directly proportional to the number of rec-
ognized shards 𝑆 . This shard-based reward mechanism prevents
provers𝒫 from inflating their reported training workload by falsely
claiming an excessive number of epochs for watermark embedding.
Such manipulation would not only fail to contribute to the main
task but also undermine the fairness of reward allocation, making
an epoch-based system impractical.

The number of shards 𝑆 primarily depends on the number of
training epochs required for watermark embedding. A higher learn-
ing rate enables faster watermark embedding, leading to more
shards. However, an excessively high learning rate in later training
stages can hinder the model’s ability to further improve its accuracy
on the main task. Since rewards are determined by both the number
of validated shards and the final model accuracy, a rational prover
will strategically balance the learning rate to maximize both shard
count and accuracy, achieving optimal rewards.

The verification mechanism in PoLO provides strong security
guarantees. The chained watermarks ensure that forging a valid
PoLO proof requires reconstructing the entire training sequence
while preserving the model performance, making forgery compu-
tationally infeasible. Modifying any single shard invalidates all
subsequent watermarks, rendering selective tampering impractical.
Moreover, the shard-based verification strategy ensures fairness
by tying rewards to the number of validated shards, preventing
provers 𝒫 from inflating their workload claims. This security foun-
dation also extends naturally to collaborative scenarios involving

multiple users (cf.Appendix G), where PoLO can cryptographically
attribute and verify the contribution of each party in relay-style
training pipelines.

4.3 Security and Privacy Analysis

By combining hash-based watermark chaining, backward ver-
ification, and shard-level performance checks, PoLO offers a ro-
bust framework where training effort and ownership are provable,
tamper-resistant, and cryptographically verifiable. Given the adver-
sarial models (cf. §3), we now address RQ2 by showing how PoLO
unifies PoL and PoO while preserving security and privacy. Key
takeaways are summarized in Appendix F.

4.3.1 Training efforts. PoLO addresses a range of adversarial
behaviours that aim to manipulate or falsify the training process.
Forging PoLO. PoLO introduces a chained watermarking frame-
work, where each shard’s watermark is securely linked to the previ-
ous shard’s output via a hash function H(·). This chaining enforces
that any tampering or forgery attempt requires reconstructing
the entire sequence of valid watermarks while maintaining main
task performance. Leveraging the immutability of cryptographic
hashes, PoLO ensures that proof forgery is computationally infea-
sible, thereby preserving the integrity of verification.

7

Exaggerated workload claims. A rational prover might attempt
to inflate training workload by embedding excessive watermarks
to artificially increase the number of reported epochs. PoLO coun-
ters this by enforcing verification at the shard level, where each
shard represents a complete, verifiable training unit defined by
successful watermark embedding. The number of shards depends
on the learning rate: higher rates speed up embedding, reducing
epochs per shard and increasing shard count, but may harm main
task performance. Since rewards are based on both the number of
verified shards and model accuracy, the prover is incentivized to
balance these factors by choosing an optimal learning rate.

A rational prover may attempt to exaggerate training effort by
inflating the number of reported shards without performing the
required computation. With full access to model parameters, the
prover could forge watermarked weights by either (1) anticipat-
ing the expected watermark Λ𝑥+1 for shard 𝑠𝑥+1 and crafting a
corresponding embedding key 𝑘𝑥+1 without actual training, or (2)
embedding known watermarks into low-impact weights using a
manipulated selection matrix 𝑌 , allowing extraction without gen-
uine model updates. To prevent forgery, PoLO derives 𝑘𝑥+1 from a
hash of the previous shard’s output and a verifier-provided nonce
𝜇, ensuring only genuine training and access to the nonce can yield
valid keys. The selectionmatrix𝑌 is also deterministically generated
from this nonce, binding watermark placement to verifier-specified
positions. This tightly links watermark embedding to real training
effort, making shard inflation both computationally infeasible and
economically unviable.

4.3.2 Ownership. PoLO is compatible with existing embedded
watermarking techniques and does not compromise their inher-
ent security guarantees. On the contrary, the chaining structure
introduced by PoLO can enhance robustness against certain attack
vectors, such as watermark forgery, by cryptographically binding
each watermark to prior authenticated states.

Unauthorized use andmodel theft. To counter unauthorized use
and model theft, PoLO integrates seamlessly with various model
watermarking techniques, enabling strong ownership verification
and resilience against watermark-related attacks. By incorporating
advanced watermarking methods, such as RIGA watermarking [34]
and FedIPR [35], PoLO ensures that embedded watermarks remain
stealthy, attack-resistant, and robust against removal attempts and
adversarial modifications. These techniques provide strong owner-
ship proof in PoLO, effectively deterring unauthorized distribution
and tampering while maintaining the integrity of the model.

Ownership evasion via watermark stripping. In PoLO, the pres-
ence of a valid watermark is a prerequisite for establishing model
ownership. This is particularly critical in scenarios such as ML
marketplaces or outsourced training, where models are exchanged
or transferred across entities. In our setting, models without verifi-
able watermark traces are treated as illegitimate and thus ineligible
for use, resale, or transfer. As a result, simple watermark removal
attacks become ineffective—stripping the watermark severs the
model’s ownership proof, rendering it unverifiable and valueless.

4.3.3 Dataset privacy. PoLO inherently enhances data privacy
by eliminating the need for provers to share their training data with

verifiers during the validation process. Unlike existing PoL mecha-
nisms that rely on dataset disclosures for proof verification, PoLO
ensures that verifiability is achieved solely through DP-protected
model checkpoints and chained watermarks. To further safeguard
against privacy inference attacks related to gradient leakage, PoLO
incorporates DP mechanisms at each shard’s completion. By ap-
plying DP protection to model weights, PoLO effectively prevents
verifiers and adversaries from inferring sensitive training data, pre-
serving the privacy of the prover’s dataset.

5 EXPERIMENTS

We implement and evaluate PoLO to demonstrate its practical
viability. Our experiments focus on three key aspects: compatibil-

ity (broad applicability), overhead (low computational costs), and
unforgeability (strong resistance to forgery).

5.1 Experimental Settings

To ensure comprehensive evaluation and broad applicability, we
conduct experiments across diverse model architectures and multi-
ple datasets. All experiments are performed on a dedicated micro-
server infrastructure, providing a standardized and controlled envi-
ronment for consistent model evaluation and comparison.
Implementation environment. The hardware configuration com-
prises two Intel Xeon Gold 6126 processors, each with 12 cores. The
server is equipped with 192GB of 2666MHz ECC DDR4-RAM, orga-
nized in six channels. Storage is handled by 2x1.2TB 10,000 RPM
SAS II hard drives configured in Raid 1. The computational power
is enhanced by two NVIDIA Tesla V100 GPUs, each featuring 5,120
CUDA cores, 640 Tensor cores, and 32GB of dedicated memory. The
operating system running on this setup is 64-bit Ubuntu 18.04. This
robust hardware environment supports extensive data processing
and complex computational tasks required for the research.
Datasets. Our evaluation includes four datasets: three focused on
image classification tasks and one dedicated to text classification.
• CIFAR-10 is a dataset with 60,000 color images (32 × 32 pixels)
across 10 classes, split into 50,000 training and 10,000 test images.
• CIFAR-100 includes 60,000 color images (32 × 32 pixels) across
100 classes, with 50,000 for training and 10,000 for testing. Each
image has fine and coarse labels.
• TinyImageNet has 200 classes, each with 500 training, 50 vali-
dation, and 50 test images, totaling 100,000 training images, all
resized to 64 × 64 pixels.
• AG News is a text classification dataset with 120,000 training
samples and 7,600 test samples in 4 categories.

Model architectures.We employ a variety of established deep neu-
ral networks: AlexNet [44], ResNet18 and ResNet34 [45],WideRes-

Net [46], VGG16 [47], TextCNN [48], and MiniBert [49]. AlexNet
offers simplicity and effectiveness for image classification; ResNet
models leverage residual connections to train deeper networks;
WideResNet improves performance by increasing layerwidth.VGG16
is known for its depth and strong performance in visual tasks.
TextCNN captures n-gram features via 1D convolutions for text
classification, whileMiniBert, a lightweight transformer, learns con-
textualized word embeddings through masked language modeling
and next sentence prediction.

8

Table 2: The comparison of shard rate |𝑠 | , main task performance 𝐴𝑐𝑐𝑚𝑎𝑖𝑛 , and PoLO generation time (+training), using different watermarks.

Watermark
methods

Watermark
size(bits) Training

CIFAR-10
AlexNet

CIFAR-10
ResNet18

CIFAR-100
ResNet18

CIFAR-100
WideResNet

TinyImageNet
VGG16

TinyImageNet
ResNet34

AG News
TextCNN

AG News
MiniBert

RIGA [34]

2048
|𝑠 |(%) 37.07 37.62 38.61 35.83 74.51 73.08 43.64 64.15

𝐴𝑐𝑐𝑚𝑎𝑖𝑛(%) 89.22 91.89 74.81 72.83 73.00 72.46 91.04 91.88
Time(s) 990.74 1618.78 1707.59 9357.71 25051.72 7332.32 1070.12 2573.38

1024
|𝑠 |(%) 64.04 64.60 71.29 63.48 96.15 96.15 71.29 93.07

𝐴𝑐𝑐𝑚𝑎𝑖𝑛(%) 88.94 91.96 74.93 72.96 73.33 73.31 90.94 92.06
Time(s) 1066.78 1861.62 1681.42 8968.80 24934.03 7238.95 1067.23 2687.89

512
|𝑠 |(%) 87.74 92.08 86.79 87.74 96.15 96.15 74.29 95.05

𝐴𝑐𝑐𝑚𝑎𝑖𝑛(%) 89.54 92.22 75.18 72.64 73.91 73.22 90.65 91.82
Time(s) 993.12 1783.50 1798.00 8433.43 25442.66 6775.54 1051.52 2486.51

EDNN [32]

2048
|𝑠 |(%) 35.64 35.64 35.64 36.27 70.00 70.00 37.62 47.06

𝐴𝑐𝑐𝑚𝑎𝑖𝑛(%) 89.88 92.07 74.32 72.65 73.61 71.89 90.29 91.71
Time(s) 880.91 1518.95 1689.89 8423.67 24492.53 6955.89 896.11 2333.33

1024
|𝑠 |(%) 39.17 45.54 45.54 44.12 83.00 78.00 46.60 60.00

𝐴𝑐𝑐𝑚𝑎𝑖𝑛(%) 89.67 91.55 73.98 72.86 73.91 72.01 90.78 91.99
Time(s) 923.03 1493.05 1708.98 7876.67 24342.67 7501.34 956.65 2435.32

512
|𝑠 |(%) 57.27 60.95 52.00 54.24 96.00 96.00 61.39 73.79

𝐴𝑐𝑐𝑚𝑎𝑖𝑛(%) 89.89 91.62 73.89 72.16 73.30 71.88 90.56 91.89
Time(s) 949.75 1711.73 1665.76 7966.58 24689.07 7683.83 998.02 2534.32

FedIPR [35]

2048
|𝑠 |(%) 40.78 40.59 58.00 32.67 70.00 80.39 65.69 35.64

𝐴𝑐𝑐𝑚𝑎𝑖𝑛(%) 88.92 91.79 74.67 72.93 73.23 71.99 90.32 91.43
Time(s) 993.91 1779.48 1594.15 9330.49 25089.67 6941.68 1050.88 2691.72

1024
|𝑠 |(%) 74.26 86.27 67.33 88.12 92.31 96.15 71.29 69.31

𝐴𝑐𝑐𝑚𝑎𝑖𝑛(%) 89.38 91.43 74.30 71.54 74.30 71.76 90.37 91.87
Time(s) 996.87 1693.35 1643.65 8901.83 24810.68 6891.76 994.08 2499.38

512
|𝑠 |(%) 92.08 93.14 81.37 91.18 96.15 96.15 94.12 93.14

𝐴𝑐𝑐𝑚𝑎𝑖𝑛(%) 89.04 92.10 74.09 72.01 73.87 72.01 90.50 91.87
Time(s) 1004.12 1750.65 1674.89 9354.67 25102.65 7354.67 1059.54 2652.31

• A larger shard rate |𝑠 | means less time spent embedding watermarks, indicating weaker security but reduced waste of intra-shard training effort, as effort is
accounted for at the shard level regardless of how much is invested within each shard.

We use AlexNet and ResNet18 for CIFAR-10, ResNet18 and
WideResNet for CIFAR-100, VGG16 and ResNet34 for TinyIma-
geNet, and TextCNN and MiniBERT for AG News. All models are
trained with SGD (momentum 0.9), using dataset-specific learning
rates: 0.1 for CIFAR-10/100, 0.05 for TinyImageNet, and 0.005 for AG
News. A uniform batch size of 256 is used across all experiments.

Attack settings. Assuming the attacker 𝒜 has access to all check-
point models𝑊𝑥 , they could potentially forge a PoLO proof P′ .
To evaluate the robustness of PoLO against forgery attempts, we
implemented two distinct attack strategies.
• Overhaul Fine-tuning Attack (OFA).OFA combines fine-tuning [37]
and watermark removal [39]. Given access to checkpoint models
but not the legitimate keys (𝑘𝑥 , 𝑌), the attacker 𝒜 attempts to
forge illicit proofs P′ by fine-tuning all model weights to erase
the authentic proof P. Since watermark locations are unknown,
full-model fine-tuning is necessary–partial updates are insuf-
ficient to disrupt the chained watermark structure [37]. When
training data is available,𝒜 additionally embeds fake watermarks
Λ
′
𝑥 during fine-tuning to overwrite legitimate ones. To balance

cost and impact, five fine-tuning rounds are applied for 2048-bit
watermarks, and three rounds for 1024-bit and 512-bit versions.
• Weight Manipulation Attack (WMA). WMA is analogous to prun-
ing [38] and watermark overlap [40] techniques. In the absence
of training data access, the attacker𝒜may attempt to manipulate

specific weight parameters (similar to pruning-based attacks) to
embed their illicit watermarks Λ′𝑥 into each intermediate model.
The𝒜 predetermines their Λ′𝑥 and embedding keys, manipulates
the appropriate weight values, and replaces certain weights in
the intermediate model with these values.

If the attacker 𝒜 can forge a proof P′ with lower computational
overhead than generating a legitimate proof P while successfully
corrupting the original watermarksΛ𝑥 , such a forged proof P

′ could
potentially pass the verification process.

Evaluation metrics.We consider the following three metrics, in
which comprehensive comparisons with baselines are conducted.

• Compatibility evaluates the applicability of various watermark-
ing schemes for PoLO implementation by assessing the work
transition efficiency, measured as the shard rate |𝑠 | = shards

epochs . An
optimal shard rate falls within the range 0 < |𝑠 | < 1, indicating
efficient shard generation relative to training epochs.
• Overhead evaluates computational efficiency in two aspects: (1)
the additional computational cost to generate PoLO should be
minimal compared to the intensive demands of themodel training
process itself, and (2) the computational overhead required to
verify a PoLO’s correctness must be substantially lower than that
needed to generate it, ensuring practical verification.

9

Table 3: The comparison between PoLO and existing PoL in terms of the time consumption of PoLO generation (+training) and verification.

Watermark
size(bit) Time (s) Methods

CIFAR-10
AlexNet

CIFAR-10
ResNet18

CIFAR-100
ResNet18

CIFAR-100
WideResNet

TinyInageNet
VGG16

TinyInageNet
ResNet34

AG News
TextCNN

AG News
Bert

2048

Training Baseline 970.45 1598.37 1691.38 9340.34 25031.45 7312.89 1052.38 2551.45

Training+P gen
(v.s.) P gen

PoLO 990.74/20.29 1618.78/20.41 1707.59/16.21 9357.91/17.57 25051.72/20.27 7332.32/19.43 1070.12/17.74 2573.38/21.93
PoL (Vanilla) 975.33/4.88 1603.47/5.10 1695.58/4.20 9343.83/3.49 25035.45/4.00 7316.12/3.23 1055.23/2.85 2556.15/4.70
PoL (hash) 979.13/8.68 1604.67/6.30 1696.78/5.40 9347.43/7.09 2504.65/11.20 7317.42/4.53 1056.63/4.25 2557.55/6.10

P verify
PoLO 83.37 75.96 82.73 211.06 342.17 135.43 44.54 56.29

PoL (Vanilla) 891.99 1530.55 1612.91 9132.82 24693.31 7180.73 1010.71 2495.89
PoL (hash) 895.79 1531.75 1614.10 9136.42 24700.51 7182.03 1012.11 2497.29

1024

Training Baseline 1043.32 1832.45 1653.78 8945.56 24910.32 7215.56 1040.67 2653.75

Training+P gen
(v.s.) P gen

PoLO 1066.78/23.46 1861.62/29.17 1681.42/27.64 8968.80/23.24 24934.03/23.71 7238.95/23.39 1067.23/26.56 2687.89/34.14
PoL (Vanilla) 1047.57/4.25 1837.13/4.68 1658.59/4.81 8948.85/3.29 24914.52/4.20 7219.32/3.76 1044.31/3.64 2658.57/4.82
PoL (hash) 1051.37/8.05 1838.32/5.88 1659.78/6.00 8952.45/6.89 24921.71/11.40 7220.61/5.57 1045.71/5.04 2659.97/6.22

P verify
PoLO 157.60 149.07 149.63 380.86 456.77 172.15 67.90 78.57

PoL (Vanilla) 887.03 1688.14 1509.04 8566.07 24455.79 7045.22 974.43 2580.03
PoL (hash) 890.83 1689.34 1510.24 8569.67 24462.98 7046.51 975.83 2581.43

512

Training Baseline 963.13 1754.67 1763.65 8402.83 25419.39 6751.64 1023.67 2451.54

Training+P gen
(v.s.) P gen

PoLO 993.12/29.99 1783.50/28.83 1798.00/34.35 8438.43/35.60 25442.66/23.27 6775.54/23.90 1051.52/27.85 2486.51/34.97
PoL (Vanilla) 967.13/4.00 1756.94/2.27 1768.85/5.20 8407.34/4.51 25425.03/5.64 6754.39/2..75 1026.55/2.88 2456.71/5.17
PoL (hash) 970.93/7.80 1758.14/3.47 1770.05/6.40 8410.94/8.11 25432.23/12.84 6755.69/4.05 1027.95/4.28 2458.43/6.57

P verify
PoLO 193.79 213.85 188.58 495.44 445.18 167.15 76.69 81.88

PoL (Vanilla) 768.41 1541.18 1580.35 7912.02 24975.89 6587.29 949.88 2374.87
PoL (hash) 722.21 1542.38 1581.55 7915.62 24983.09 6588.59 951.28 2376.27

• The baseline in this table refers to pure model training without applying any PoL or PoO techniques.
• PoL (hash) [11] follows a similar PoL process to that of PoL (Vanilla) [8–10], with the key difference being the hash computation, which takes only a negligible amount of time.
• PoL (zkp) [12] incurs around 15 mins of proof generation time per iteration on VGG-11 with CIFAR-10 (excluding training time); in contrast, PoLO completes proof generation for
all iterations in ∼ 20s on VGG-16 with TinyImageNet.

• Unforgeability evaluates whether the computational overhead
required to forge a PoLO proof P′ surpasses that of generating
a legitimate proof P, while simultaneously verifying that any
forgery attempt results in the destruction of the legitimate proof
P. A forged proof P′ can only pass verification if both these
conditions are satisfied.

5.2 Experimental Results

Experiments are based on three main metrics–compatbility, over-
head, and unforgeability (more minor metrics are discussed in Ap-

pendixC and D) to validate the superiority of PoLO compared with
existing PoL methods under the OFA and WMA attack settings.

5.2.1 Compatibility. The PoLO framework exhibits strong ver-
satility by supporting diverse watermarking schemes, including
RIGA [34], EDNN [32], and FedIPR [35]. This flexibility allows for
generating PoLO proofs P while establishing ownership using dif-
ferent watermarking strategies. During training, the convergence
of embedded watermarks reflects training progress, with their con-
vergence speed closely tied to weight update dynamics. Each wa-
termark shard quantifies the training effort, serving as verifiable
evidence of computation invested. To assess the computational
efficiency of PoLO, we use shard rate |𝑠 | as the key metric. To evalu-
ate watermarking compatibility, we conduct experiments by using
three distinct watermarking schemes to generate PoLO proof P.
For each scheme, we test three watermark sizes: 2048 bits, 1024
bits, and 512 bits. Our evaluation metrics included the shard rate
|𝑠 |, main task accuracy 𝐴𝑐𝑐𝑚𝑎𝑖𝑛 , and the total computational time
required for training and P generation.

As shown in Tab.2, |𝑠 | varied significantly, ranging from 32.67%
to 96.15%. A clear inverse relationship is observed between wa-
termark size and |𝑠 |, where a shorter watermark size results in a
proportionally higher |𝑠 | across all watermarking schemes. This
trend is particularly evident in the TinyImageNet dataset, which

consistently exhibited higher |𝑠 | under all watermarking configura-
tions. Notably, the 𝐴𝑐𝑐𝑚𝑎𝑖𝑛 values remained stable across different
watermarking approaches, with minimal deviation from baseline
model performance (cf. Fig.6 in Appendix D). Furthermore, the
total computational time for training and P generation remained
relatively unchanged across different watermarking schemes, indi-
cating that computational overhead remains consistent regardless
of the chosen watermarking method.

Takeaway (high compatibility). PoLO supports a wide
range of watermarking schemes, while maintaining stable
main task accuracy and consistent computational overhead,
enabling seamless integration into different implementa-
tion without compromising performance.

5.2.2 Overhead. A critical consideration in our evaluation is
ensuring that P generation does not impose substantial computa-
tional overhead beyond baseline model training costs. Furthermore,
for practical implementation, the verification overhead must be
significantly lower than P generation costs. To validate the effi-
ciency of our proposed PoLO framework, we conduct comparative
analyses against traditional PoL schemes [8–12] and baseline train-
ing approaches. Our experimental setup incorporates three distinct
watermark sizes for PoLO generation. To maintain experimental
rigor and ensure fair comparison, we standardize computational
resources and parameter settings across all trials. The verification
process is designed to validate each intermediate P, providing a
comprehensive assessment of the framework’s efficiency.

Tab.3 compares the computational overhead of PoLO with con-
ventional PoL methods, focusing on P generation and verification
time. PoLO incurs only modest overhead when integrated into
training; for example, on CIFAR-10 with AlexNet and a 512-bit wa-
termark, it takes 993.12 seconds versus 963.13 seconds for baseline

10

(a) AlexNet_CIFAR10_2048 (b) ResNet18_CIFAR10_2048 (c) ResNet18_CIFAR100_2048 (d) WideResNet_CIFAR100_2048

(e) VGG16_TinyImageNet_2048 (f) ResNet34_TinyImageNet_2048 (g) TextCNN_AG News_2048 (h) MiniBert_AG News_2048

Figure 4: The 𝐴𝑐𝑐𝑚𝑎𝑖𝑛 comparison of the two P forge attacks with baseline - PoLO. The number followed by the dataset is the watermark size. In each
subplot, the vertical lines perpendicular to the x-axis represent the completion times for each shard.

training–a 3.11% increase. In contrast, conventional PoL methods
require generation time nearly identical to baseline training.

The efficiency of PoLO is most apparent during verification,
which takes significantly less time than generation. As shown in
Tab.3, the lowest verification-to-generation ratio is achieved with
VGG16 on TinyImageNet, requiring only 1.3–1.8% of the generation
time. Across all models, this ratio stays below 13%. In contrast,
conventional PoL methods require verification times nearly equal
to generation, with overheads reaching up to 98%. Furthermore,
PoLO introduces only modest overhead during P generation by
integrating watermarking into training. While this slightly extends
runtime compared to baseline training, the increase is minimal and
justified. In contrast, traditional PoL methods store intermediate
models and datasets separately, keeping P generation time roughly
equal to standard training time.

Takeaway (faster and privacy-preserving verification).

With similar proof generation time, PoLO reduces verifi-
cation time to as low as 1.3–1.8%, compared to up to 98%
in conventional PoL schemes. By eliminating the need to
retrain intermediate models, PoLO achieves efficient, scal-
able, and privacy-preserving verification.

5.2.3 Unforgeability. To evaluate resistance against forgery at-
tacks, we conduct experiments using both OFA andWMA strategies.
For consistency, identical computational resources are allocated
across all attack scenarios. The legitimate PoLO-protected model
embeds 2048-bit watermarks, while attackers attempted to embed
illicit watermarks of varying sizes (2048, 1024, and 512 bits). We
assess the effectiveness of these attacks based on three key metrics:
computational overhead, post-attack detection rate 𝜂 of legitimate
watermark, and main task accuracy 𝐴𝑐𝑐𝑚𝑎𝑖𝑛 . For the OFA strategy,
attackers utilized the RIGA embedding methodology to embed il-
licit watermarks while attempting to compromise legitimate ones.
The attack process involved fine-tuning all model weights with a
reduced learning rate [50] (0.1 × the original) to simultaneously

embed the illicit watermark and disrupt the legitimate one. For
the WMA strategy, attackers adopted a more precise strategy by
constructing specific weights based on their illicit watermark and
key parameters, then selectively replacing targeted weights in the
model with these computed values.

Fig.4 shows the impact of PoLO forgery attacks across different
shard stages, while Fig.7 in Appendix E provides additional results
for illicit watermark sizes of 1024 and 512 bits. The watermark
embedding speed (shard changing rate) is sensitive to the learning
rate. Fig.4 shows that the shard indices lines (vertical blue lines)
vary in density every 30 epochs due to the scheduled learning rate
decay by a factor of ten [51]. Models under WMA exhibit notice-
able instability, with 𝐴𝑐𝑐𝑚𝑎𝑖𝑛 fluctuating significantly during the
attack. This degradation causes the forged proof P̂ to fail verifica-
tion. In contrast, OFA maintains a comparable 𝐴𝑐𝑐𝑚𝑎𝑖𝑛 to that of
the legitimate PoLO-protected model.

However, Tab.4 shows that OFA is highly resource-intensive,
especially for models with high |𝑠 |. For instance, on VGG16 with
TinyImageNet, OFA takes nearly five times longer than generating
a legitimate PoLO. Despite the high cost, the legitimate watermark
remains largely intact, with detection rates (𝜂) ranging from 64.27%
to 98.47%, making OFA-based forgery both costly and ineffective.
In contrast, WMA incurs much lower computational overhead–
ranging from 11.32 to 344.94 seconds–compared to the 990.74 to
25,442.66 seconds required for legitimate PoLO proof generation.
However, it is equally ineffective. The detection rate of legitimate
watermarks remains consistently above 90%, reaching as high as
99.81%. As shown in Fig.4, the resulting performance instability fur-
ther indicates that WMA fails to compromise watermark integrity,
rendering it an ineffective PoLO forgery method.

These results reflect the intrinsic nature: OFA demands full fine-
tuning across epochs, leading to costs comparable to or exceeding
legitimate training, which undermines its economic viability. At-
tackers face a trade-off between effectiveness and efficiency: in-
creasing fine-tuning enhances watermark removal but inflates cost,
while reducing it saves resources at the expense of attack success.

11

Table 4: The time consumption, legitimate watermark detection rate 𝜂, and 𝐴𝑐𝑐𝑚𝑎𝑖𝑛 of launching attacks under different watermark sizes.

Watermark
size(bits)

PoLO

forgery attacks

CIFAR-10
AlexNet

CIFAR-10
ResNet18

CIFAR-100
ResNet18

CIFAR-100
WideResNet

TinyInageNet
VGG16

TinyInageNet
ResNet34

AG News
TextCNN

AG News
MiniBert

2048

Time(s)
PoLO 990.74 1618.78 1707.59 9357.91 25051.72 7332.32 1070.12 2573.38

launch OFA 1696.91 2723.17 2381.83 15498.77 113771.31 30420.92 2275.26 7954.11
launch WMA 56.51 62.04 64.37 218.91 344.94 158.55 11.33 30.46

𝜂(%)
PoLO 99.24 99.02 99.07 99.07 99.46 99.71 99.21 99.41

launch OFA 93.62 77.82 77.52 96.83 86.37 75.27 69.84 78.09
launch WMA 98.31 94.17 94.75 99.78 95.78 95.75 91.48 96.61

𝐴𝑐𝑐𝑚𝑎𝑖𝑛(%)
PoLO 89.22 91.89 74.81 72.83 73.00 72.46 91.04 91.88

launch OFA 87.47 91.72 70.00 69.84 73.91 71.94 90.37 91.45
launch WMA 47.52 80.37 36.84 46.56 43.25 39.81 58.69 55.20

1024

Time(s)
PoLO 1066.78 1861.62 1681.42 8968.8 24934.03 7238.95 1067.23 2687.89

launch OFA 1136.86 2106.95 1802.52 9355.78 61437.63 17808.86 1355.37 4545.51
launch WMA 52.21 62.98 63.66 208.04 343.46 148.24 11.32 30.33

𝜂(%)
PoLO 99.02 99.12 99.51 92.21 100.00 100.00 99.22 99.32

launch OFA 96.93 82.28 75.91 98.43 92.23 84.11 73.52 64.53
launch WMA 97.01 94.34 95.41 99.81 95.08 94.21 92.69 96.11

𝐴𝑐𝑐𝑚𝑎𝑖𝑛(%)
PoLO 88.94 91.96 74.93 72.96 73.33 73.31 90.94 92.06

launch OFA 87.45 91.68 69.15 69.38 73.65 72.00 90.36 91.62
launch WMA 39.07 79.30 34.35 40.52 45.31 31.09 61.19 58.96

512

Time(s)
PoLO 993.12 1783.50 1798.00 8433.43 25442.66 6775.54 1051.52 2486.51

launch OFA 1077.32 1839.35 1967.88 9369.91 61578.36 18359.39 1355.33 4575.48
launch WMA 52.71 66.92 63.92 206.76 341.63 144.61 11.39 30.42

𝜂(%)
PoLO 99.20 99.22 99.21 99.41 100.00 100.00 100.00 99.81

launch OFA 96.98 75.03 75.99 98.47 84.24 63.52 79.67 64.27
launch WMA 96.35 93.25 92.84 99.79 96.08 93.95 91.15 93.47

𝐴𝑐𝑐𝑚𝑎𝑖𝑛(%)
PoLO 89.54 92.22 75.18 72.64 73.91 73.22 90.65 91.82

launch OFA 87.49 91.80 69.61 69.41 73.76 72.17 90.38 91.60
launch WMA 40.50 79.51 38.88 40.86 37.97 38.41 65.39 65.19

• For launching attacks, a smaller 𝜂 indicates greater attack effectiveness against the legitimate watermark, while a higher 𝐴𝑐𝑐𝑚𝑎𝑖𝑛 reflects better fidelity
to the main task performance (i.e., less impact on accuracy).

WMA avoids training entirely by directly altering weights, but
suffers from imprecise targeting of watermark positions and desta-
bilizing effects on 𝐴𝑐𝑐𝑚𝑎𝑖𝑛 due to untrained modifications.

Takeaway (robust against forgery with practical cost

barriers). Both OFA andWMA fail to remove PoLO’s legiti-
mate watermark–OFA incurs up to 5× the proof generation
cost with detection rates still between 64.27% and 98.47%,
while WMA is cheaper but also ineffective, with detection
rates consistently above 90%.

6 CONCLUDING REMARKS

We introduced PoLO, a unified framework that integrates PoL
and PoO through chained watermarking, addressing key limitations
of existing approaches. In response to RQ1, we leveraged PoO to
achieve PoL by embedding evolving watermarks throughout train-
ing, ensuring ownership is persistently linked to the entire training
process rather than just the final model. For RQ2, we replaced
gradient-based PoL proofs with cryptographic hash chains, making
the proof tamper-resistant and resilient to fine-tuning, pruning, re-
moval, and overlap attacks. Unlike traditional methods that expose
training data or require costly recomputation, PoLO supports effi-
cient, privacy-preserving verification. Experiments show that PoLO
achieves 99% watermark detection accuracy, reduces verification
overhead to 1.5–10% of conventional PoL methods, and requires

1.1–4× more effort to forge than to generate legitimately–while
retaining over 90% detection accuracy even after attacks. These
results demonstrate PoLO’s effectiveness as a secure, efficient, and
privacy-aware solution for model verification.

REFERENCES

[1] Joost Verbraeken, Matthijs Wolting, Jonathan Katzy, Jeroen Kloppenburg, Tim
Verbelen, and Jan S Rellermeyer. A survey on distributed machine learning. ACM
Computing Surveys (CSUR), 53(2):1–33, 2020.

[2] Peng Sun, Xu Chen, Guocheng Liao, and Jianwei Huang. A profit-maximizing
model marketplace with differentially private federated learning. In IEEE Confer-

ence on Computer Communications (INFOCOM), pages 1439–1448, 2022.
[3] Guangsheng Yu, Xu Wang, Caijun Sun, Qin Wang, Ping Yu, Wei Ni, and Ren Ping

Liu. Ironforge: An open, secure, fair, decentralized federated learning. IEEE

Transactions on Neural Networks and Learning Systems (TNNLS), 36(1):354–368,
2025.

[4] Jiasi Weng, Jian Weng, Chengjun Cai, Hongwei Huang, and Cong Wang. Golden
grain: Building a secure and decentralized model marketplace for mlaas. IEEE
Transactions on Dependable and Secure Computing (TDSC), 19(5):3149–3167, 2022.

[5] Lingchen Zhao, Qian Wang, Cong Wang, Qi Li, Chao Shen, and Bo Feng. Veriml:
Enabling integrity assurances and fair payments for machine learning as a service.
IEEE Transactions on Parallel and Distributed Systems (TPDS), 2021.

[6] Guangsheng Yu, Yanna Jiang, Qin Wang, Xu Wang, Baihe Ma, Caijun Sun, Wei
Ni, and Ren Ping Liu. Split unlearning. ACM SIGSAC Conference on Computer

and Communications Security (CCS), 2025.
[7] Yuechen Xie, Jie Song, Mengqi Xue, Haofei Zhang, Xingen Wang, Bingde Hu,

Genlang Chen, and Mingli Song. Dataset ownership verification in contrastive
pre-trained models. International Conference on Learning Representations (ICLR),
2025.

[8] Hengrui Jia, Mohammad Yaghini, Christopher A Choquette-Choo, Natalie
Dullerud, Anvith Thudi, Varun Chandrasekaran, and Nicolas Papernot. Proof-of-
learning: Definitions and practice. In IEEE Symposium on Security and Privacy

(SP), pages 1039–1056. IEEE, 2021.

12

Table 5: List of Notations

Notation Definition

P Proof-of-Anything (PoX) proof
𝒫/𝒱/𝒜 Prover/Verifier/Attacker

Θ Irreversible function with input 𝜒
Ψ Verification condition required for proof validity
𝑡 The 𝑡 -th training epoch out of𝑇 total epochs
𝑊𝑡 Model weights at epoch 𝑡

B𝑡 Data batch sampled from dataset 𝒟 at epoch 𝑡

𝐻𝑡 , 𝐴𝑡 Signature and auxiliary info at epoch 𝑡

Λ Ownership information embedded in the model
𝑠𝑥 The 𝑥-th shard out of 𝑆 shards
𝑇𝑥 Set of epochs in 𝑠𝑥 ,

⋃𝑆
𝑥=1𝑇𝑥 = {1, 2, . . . ,𝑇 },

and𝑇𝑥 ∩𝑇𝑥 ′ = ∅ for 𝑥 ≠ 𝑥 ′

𝑡𝑥 The 𝑡 -th training epoch, which belongs to shard 𝑠𝑥
𝑡𝑥 The 𝑡 -th training epoch, which is the final epoch of shard 𝑠𝑥
𝑊𝑥 The checkpoint model of shard 𝑠𝑥
Λ𝑥 Embedded watermark in 𝑠𝑥

𝑘𝑥 Embedding key for Λ𝑥

𝑌 Selection matrix for weights in𝑊𝑡𝑥 , 𝑡𝑥 ∈ 𝑇𝑥 , used for Λ𝑥

𝑍 Selection matrix for weights subject to the DP obfuscation
𝜇𝑥 Unique secret nonce used in hash computation
𝜂 Watermark detection rate

E(·)/C(·) Watermark embedding/extraction function
𝑙𝑤 (·) The loss function for main task
𝑙Λ (·) The loss function for embedding ownership information
𝜀 The privacy budget of differential privacy (DP)

[9] Rui Zhang, Jian Liu, Yuan Ding, Zhibo Wang, Qingbiao Wu, and Kui Ren. “ad-
versarial examples” for proof-of-learning. In IEEE Symposium on Security and

Privacy (SP), 2022.
[10] Congyu Fang, Hengrui Jia, Anvith Thudi, Mohammad Yaghini, Christopher A.

Choquette-Choo, Natalie Dullerud, Varun Chandrasekaran, and Nicolas Papernot.
Proof-of-learning is currently more broken than you think. In IEEE European

Symposium on Security and Privacy (EuroSP), 2023.
[11] Zishuo Zhao, Zhixuan Fang, Xuechao Wang, Xi Chen, and Yuan Zhou. Proof-of-

learning with incentive security. arXiv preprint arXiv:2404.09005, 2024.
[12] Kasra Abbaszadeh, Christodoulos Pappas, Jonathan Katz, and Dimitrios Pa-

padopoulos. Zero-knowledge proofs of training for deep neural networks. In
ACM SIGSAC Conference on Computer and Communications Security (CCS), page
4316–4330, 2024.

[13] Markus Jakobsson and Ari Juels. Proofs of Work and Bread Pudding Protocols

(Extended Abstract), pages 258–272. 1999.
[14] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone proto-

col: Analysis and applications. Annual International Conference on the Theory and
Applications of Cryptographic Techniques (EUROCRYPT), pages 281–310, 2015.

[15] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Satoshi

Nakamoto, 2008.
[16] Vitalik Buterin et al. Ethereum white paper. GitHub repository, 1:22–23, 2013.
[17] Peter Gaži, Aggelos Kiayias, and Dionysis Zindros. Proof-of-stake sidechains. In

IEEE Symposium on Security and Privacy (SP), pages 139–156, 2019.
[18] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.

Ouroboros: A provably secure proof-of-stake blockchain protocol. In Annual

International Cryptology Conference (CRYPTO), pages 357–388, 2017.
[19] Lin Chen, Lei Xu, Nolan Shah, Zhimin Gao, Yang Lu, and Weidong Shi. On

security analysis of proof-of-elapsed-time (poet). In Stabilization, Safety, and

Security of Distributed Systems, pages 282–297, 2017.
[20] Huibo Wang, Guoxing Chen, Yinqian Zhang, and Zhiqiang Lin. Multi-certificate

attacks against proof-of-elapsed-time and their countermeasures. In Network

and Distributed System Security (NDSS) Symposium, 2022.
[21] Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, and Krzysztof

Pietrzak. Proofs of space. In Annual International Cryptology Conference

(CRYPTO), pages 585–605, 2015.
[22] Tal Moran and Ilan Orlov. Simple proofs of space-time and rational proofs of

storage. In Annual International Cryptology Conference (CRYPTO), pages 381–409,
2019.

[23] Parinya Ekparinya, Vincent Gramoli, and Guillaume Jourjon. The attack of the
clones against proof-of-authority. In Network and Distributed System Security

(NDSS) Symposium, 2020.
[24] QinWang, Rujia Li, QiWang, Shiping Chen, and YangXiang. Exploring unfairness

on proof of authority: Order manipulation attacks and remedies. In ACM on Asia

Conference on Computer and Communications Security (AsiaCCS), pages 123–137,
2022.

[25] Gefei Tan, Adrià Gascón, Sarah Meiklejohn, Mariana Raykova, Xiao Wang, and
Ning Luo. Founding zero-knowledge proofs of training on optimum vicinity.
Cryptology ePrint Archive, 2025.

[26] Yilin Sai et al. Is your AI truly yours? leveraging blockchain for copyrights,
provenance, and lineage. arXiv preprint arXiv:2404.06077, 2024.

[27] Xinyun Chen, Wenxiao Wang, Chris Bender, Yiming Ding, Ruoxi Jia, Bo Li,
and Dawn Song. REFIT: A unified watermark removal framework for deep
learning systems with limited data. In ACM Asia Conference on Computer and

Communications Security (AsiaCCS), page 321–335, 2021.
[28] Huajie Chen, Tianqing Zhu, Chi Liu, Shui Yu, and Wanlei Zhou. High-frequency

matters: Attack and defense for image-processing model watermarking. IEEE
Transactions on Services Computing (TSC), 17(4):1565–1579, 2024.

[29] Jie Zhang, Dongdong Chen, Jing Liao, Zehua Ma, Han Fang, Weiming Zhang,
Huamin Feng, Gang Hua, and Nenghai Yu. Robust model watermarking for
image processing networks via structure consistency. IEEE Transactions on

Pattern Analysis and Machine Intelligence (TPAMI), 2024.
[30] Aiwei Liu, Leyi Pan, Yijian Lu, Jingjing Li, Xuming Hu, Xi Zhang, Lijie Wen,

Irwin King, Hui Xiong, and Philip Yu. A survey of text watermarking in the era
of large language models. ACM Computing Surveys (CSUR), 57(2):1–36, 2024.

[31] Xiyang Luo, Yinxiao Li, Huiwen Chang, Ce Liu, Peyman Milanfar, and Feng
Yang. Dvmark: A deep multiscale framework for video watermarking. IEEE

Transactions on Image Processing (TIP), 2023.
[32] Yusuke Uchida, Yuki Nagai, Shigeyuki Sakazawa, and Shin’ichi Satoh. Embedding

watermarks into deep neural networks. In International Conference on Multimedia

Retrieval (ICML), page 269–277, 2017.
[33] Peizhuo Lv, Pan Li, Shengzhi Zhang, Kai Chen, Ruigang Liang, Hualong Ma,

Yue Zhao, and Yingjiu Li. A robustness-assured white-box watermark in neural
networks. IEEE Transactions on Dependable and Secure Computing (TDSC), 2023.

[34] Tianhao Wang and Florian Kerschbaum. Riga: Covert and robust white-box
watermarking of deep neural networks. In Proceedings of the Web Conference

(WWW), 2021.
[35] Bowen Li, Lixin Fan, Hanlin Gu, Jie Li, and Qiang Yang. Fedipr: Ownership

verification for federated deep neural network models. IEEE Transactions on

Pattern Analysis and Machine Intelligence (TPAMI), 45(4):4521–4536, 2022.
[36] Shuo Shao, Wenyuan Yang, Hanlin Gu, Zhan Qin, Lixin Fan, and Qiang Yang.

Fedtracker: Furnishing ownership verification and traceability for federated
learning model. IEEE Transactions on Dependable and Secure Computing (TDSC),
2024.

[37] Xinyun Chen, Wenxiao Wang, Chris Bender, Yiming Ding, Ruoxi Jia, Bo Li, and
Dawn Song. Refit: A unified watermark removal framework for deep learning sys-
tems with limited data. InACMAsia Conference on Computer and Communications

Security (AsiaCCS), page 321–335, 2021.
[38] Wenwen Gu. Watermark removal scheme based on neural network model

pruning. In International Conference on Machine Learning and Natural Language

Processing (MLNLP), page 377–382, 2023.
[39] Tianhao Wang and Florian Kerschbaum. Attacks on digital watermarks for deep

neural networks. In IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), 2019.
[40] Yiyang Luo, Ke Lin, Chao Gu, Jiahui Hou, Lijie Wen, and Ping Luo. Lost in

overlap: Exploring watermark collision in LLMs. arXiv preprint arXiv:2403.10020,
2024.

[41] Haozhe Chen, Hang Zhou, Jie Zhang, Dongdong Chen, Weiming Zhang, Kejiang
Chen, Gang Hua, and Nenghai Yu. Perceptual hashing of deep convolutional
neural networks for model copy detection. ACM Transactions on Multimedia

Computing, Communications and Applications (TOMM), 19(3):1–20, 2023.
[42] Wenqi Wei and Ling Liu. Gradient leakage attack resilient deep learning. IEEE

Transactions on Information Forensics and Security (TIFS), 17:303–316, 2022.
[43] Guangsheng Yu, Qin Wang, Caijun Sun, Lam Duc Nguyen, HMN Bandara, and

Shiping Chen. Maximizing NFT incentives: References make you rich. arXiv
preprint arXiv:2402.06459, 2024.

[44] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifica-
tion with deep convolutional neural networks. Advances in Neural Information

Processing Systems (NeuIPS), 2012.
[45] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-

ing for image recognition. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 770–778, 2016.
[46] Sergey Zagoruyko. Wide residual networks. arXiv preprint arXiv:1605.07146,

2016.
[47] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.
[48] Yoon Kim. Convolutional neural networks for sentence classification. In Pro-

ceedings of the Conference on Empirical Methods in Natural Language Processing

(EMNLP), pages 1746–1751, 2014.
[49] Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language

understanding. arXiv preprint arXiv:1810.04805, 2018.

13

Algorithm 1 PoLO generation
Require: D (dataset), 𝜇/𝑖𝑑 (secret nonce and identity information), 𝜀 (privacy budget

of DP), 𝑡𝑚𝑎𝑥 (maximum training iterations), key: 𝑍 (Selection matrix for weights
subject to the DPmethod),𝜂𝐺 (the threshold for successful watermark embedding),
𝑙Λ (watermark embedding regularizers).

Ensure: PoLO proof P
1: 𝑊0 , 𝜇, 𝑥 ⊲ initial model, and shard number.
2: Initialize Λ1, 𝑘1 = WMGen(ℋ1),KeyGen(ℋ1) ,
3: whereℋ𝑥 = H(𝑊𝑥 , 𝑥 + 1, 𝜇, 𝑖𝑑𝒫) , and 𝑥 = 1.
4: 𝑌 = WMPosition(𝜇) . ⊲ selection matrix for weights used for Λ
5: while (¬ converging) ∨ (𝑡𝑚𝑎𝑥 is reached) do ⊲ loop until convergence
6: 𝑊𝑡𝑥 = arg min𝑊 (𝑙𝑤 (𝑊) + 𝜆𝑙Λ (𝑊)) |𝑊0=𝑊𝑥−1 + 𝛿𝑊
7: where 𝛿𝑊 = E(𝑊𝑥−1,Λ𝑥 , 𝑘𝑥 , 𝑌) ⊲ update the model weights

8: 𝜂 = 1 −
∑𝑛
𝑖 (C(𝑊𝑡𝑥 ,𝑌 ,𝑘𝑥) [𝑖]≠Λ𝑥 [𝑖])

𝑛
⊲ update watermark detection rate

9: if 𝜂 ≥ 𝜂𝐺 then

10: 𝑊𝑥 =𝑊𝑡𝑥 + DP(𝜀, 𝑍,𝑊𝑡𝑥) ⊲ apply DP noise
11: Save𝑊𝑥

12: Λ𝑥+1, 𝑘𝑥+1 = WMGen(ℋ𝑥),KeyGen(ℋ𝑥)
13: 𝑥+ = 1
14: else 𝑊𝑥−1 =𝑊𝑡𝑥 ⊲ move to the next epoch within the current shard 𝑠𝑥
15: end if

16: end while

17: RETURN P ∈ {𝑊1,𝑊2, ...,𝑊𝑆 }

[50] Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph Keshet.
Turning your weakness into a strength: Watermarking deep neural networks by
backdooring. In USENIX Security Symposium (USENIX Sec), 2018.

[51] Xidong Wu, Feihu Huang, Zhengmian Hu, and Heng Huang. Faster adaptive
federated learning. In Proceedings of the AAAI Conference on Artificial Intelligence

(AAAI), volume 37, pages 10379–10387, 2023.

APPENDIX

A NOTATION

Tab.5 summaries the notations used throughout the paper.

B ALGORITHM OF THE FRAMEWORKS

The proof generation process and verification process of PoLO
(§4.1–§4.2) can be found from Algorithms 1&2.
Proof generation. Algorithm 1 details the procedure for PoLO
proof generation. The algorithm starts with an initial model𝑊0
and computes the first watermark Λ1 and embedding key 𝑘1 using
a hash function H(·), which incorporates the prover’s identity 𝑖𝑑𝒫 ,
a secret verifier-provided nonce 𝜇, and the shard index 𝑥 .

Training proceeds in a loop over epochs, where in each iteration,
the model is updated through standard training combined with
watermark embedding. The watermark Λ𝑥 is embedded into se-
lected weights of𝑊𝑡𝑥 at each epoch 𝑡 ∈ 𝑇 using a secret embedding
key 𝑘𝑥 and a selection matrix 𝑌 . The watermark detection rate 𝜂
is dynamically computed after each epoch to assess whether the
embedded watermark has reached the desired robustness thresh-
old 𝜂𝐺 . Once satisfied, differential privacy protection is selectively
applied to a subset of the non-watermarked weights using another
selection matrix 𝑍 , and the resulting model𝑊𝑥 is stored as the final
checkpoint of shard 𝑠𝑥 . A new watermark Λ𝑥+1 for the next shard is
then computed using the DP-protected model𝑊𝑥 and the chained
hashing mechanism, ensuring that each watermark is cryptograph-
ically linked to its predecessor. This process continues iteratively
until the max training epoch 𝑡𝑚𝑎𝑥 and watermark quality 𝜂𝐺 are
simultaneously satisfied.

Algorithm 2 PoLO verification
Require: P ∈ {𝑊1,𝑊2, ...,𝑊𝑆 } (PoLO proof), 𝜇/𝑖𝑑 (secret nonce and identity in-

formation), D𝑡 (public test dataset), 𝜂𝐺 (the threshold of similarly between the
hashed and extracted watermarks).

Ensure: “Fail” or “Success”.
1: Choose 𝑖 ∈ {𝑆 − 1, 𝑆 − 2, ..., 1} ⊲ 𝒱 choose the shards to end the verification
2: 𝒱 receives P ∈ {𝑊1,𝑊2, ...,𝑊𝑆 }, and 𝜇/𝑖𝑑 from 𝒫
3: 𝑌 = WMPosition(𝜇) . ⊲ recover the selection matrix for watermark
4: for 𝑥 ← 𝑆, 𝑆 − 1, ..., 𝑖 do ⊲ verification loop
5: ˆ𝐴𝑐𝑐𝑚𝑎𝑖𝑛 = Test(𝑊𝑥 ,D

𝑡) ⊲ test the model main task accuracy
6: Λ𝑥 , 𝑘𝑥 = WMGen(ℋ𝑥−1),KeyGen(ℋ𝑥−1)
7: where ℋ𝑥−1 = H(𝑊𝑥−1, 𝑥, 𝜇, 𝑖𝑑𝒫) ⊲ calculate the watermark from the
8: previous model by H(·)
9: Λ̂𝑥 = C(𝑊𝑥 , 𝑌 , 𝑘𝑥) ⊲ extract the current watermark

10: 𝜂𝑥 = 1 −
∑𝑛
𝑖
(Λ̂𝑥 [𝑖]≠Λ𝑥 [𝑖])

𝑛
⊲ calculate the watermarks similarity

11: if
ˆ𝐴𝑐𝑐𝑚𝑎𝑖𝑛 does not meet the expectation then

12: RETURN “Fail”, break
13: if 𝜂𝑥 < 𝜂𝐺 then

14: RETURN “Fail”, break
15: end for

16: RETURN “Success”

In our implementation, we set 𝜂𝐺 = 0.99, ensuring strong water-
mark robustness while maintaining training efficiency. The final
output of the algorithm is a PoLO proof P. This guarantees traceable
and tamper-resistant proof of training effort and model ownership.

Proof verification.Algorithm 2 outlines the verification process of
PoLO, which aims to validate both training efforts and model own-
ership by ensuring the integrity of the chained watermark sequence
and the model’s performance 𝐴𝑐𝑐𝑚𝑎𝑖𝑛 . The verifier 𝒱 operates at
the shard level, rather than at the epoch level, enabling efficient
and tamper-resistant assessment. The 𝒱 initiates the verification
process by selecting a stopping shard index 𝑖 ∈ {𝑆 − 1, 𝑆 − 2, ..., 1}
from the submitted PoLO proof P, which contains a sequence of
DP-protected models {𝑊1,𝑊2, ...,𝑊𝑆 }, and some information to
generate the watermark Λ and embedding key 𝑘 .
• Main task accuracy validation. The model𝑊𝑥 is evaluated
on the public test dataset D𝑡 to measure the main task accu-
racy ˆ𝐴𝑐𝑐𝑚𝑎𝑖𝑛 . If the ˆ𝐴𝑐𝑐𝑚𝑎𝑖𝑛 does not meet the expectation, the
verification fails, and the proof is rejected.
• Watermark consistency verification. 𝒱 reconstructs the ex-
pected watermark Λ𝑥 and the extraction key 𝑘𝑥 (same as the
embedding key) from the prior model checkpoint𝑊𝑥−1 using
the hash function H(·), and extracts the current watermark Λ̂𝑥

from𝑊𝑥 using the extraction key 𝑘𝑥 and selection key 𝑌 . It then
computes the watermark similarity score 𝜂𝑥 by calculating the
Hamming similarity between Λ𝑥 and Λ̂𝑥 . If 𝜂𝑥 < 𝜂𝐺 , the verifi-
cation fails.
This verification process is backward, allowing the 𝒱 to check a
sequence of earlier shards progressively (from 𝑆 − 1 to 1). This
chained structure ensures that each watermark is cryptographi-
cally bound to its predecessor, preventing partial proof forgery
or selective model manipulation. If all selected shards pass the
checks, the proof is accepted and verification returns “Success”.
This mechanism demonstrates PoLO’s resilience against tamper-
ing, ensuring verifiable training effort and ownership integrity
while maintaining computational efficiency.

14

(a) AlexNet_CIFAR10 (b) ResNet18_CIFAR10 (c) ResNet18_CIFAR100 (d) WideResNet_CIFAR100

(e) VGG16_TinyImageNet (f) ResNet34_TinyImageNet (g) TextCNN_AG News (h) MiniBert_AG News

Figure 5: The 𝜂 of the last 1-6 intermediate shards’ watermark attempts to be extracted from the last shard models.

(a) AlexNet_CIFAR10 (b) ResNet18_CIFAR10 (c) ResNet18_CIFAR100 (d) WideResNet_CIFAR100

(e) VGG16_TinyImageNet (f) ResNet34_TinyImageNet (g) TextCNN_AG News (h) MiniBert_AG News

Figure 6: Comparison of the main accuracy across different architectures and datasets with and without PoLO.

C EFFORT IRRECOVERABILITY FOR

ATTACKERS

In the generation of PoLO, each new watermark shard com-
pletely overwrites the watermark embedded in the previous shard,
rather than layering additional watermark information. This design
ensures that watermarks from earlier shards become irretrievable
from the final model—even when the same embedding keys (𝑘𝑥)
and selection positions are reused.

To evaluate this overwrite effect, we attempt to extract the last
1–6 shard watermarks from the final trained model using the same
embedding parameters. A watermark detection rate 𝜂 close to 50%–
equivalent to random guessing—indicates that a watermark is no
longer present in the model and thus unrecoverable. For experimen-
tal consistency, we used fixed embedding positions and a uniform
512-bit watermark size across all shards. As shown in Fig.5, wa-
termark detection for the most recent shard (last-1) remains near-
perfect (𝜂 ≈ 100%) across different models and datasets, confirming
successful extraction. However, detection rates drop sharply to

around 50% for earlier shards (last-2 through last-6), demonstrating
that later training fully overwrites prior watermark information.

This overwrite mechanism plays a vital role in PoLO’s security.
Even if an attacker gains access to the watermark embedding key 𝑘
and position 𝑌 in the released model, they can at most forge own-
ership of that specific model. They cannot extract or claim earlier
wwatermarks—hence, they cannot prove the training effort. This
makes PoLO resistant to forgery and enables the training effort itself
to act as auxiliary evidence for ownership, further strengthening
PoO verification.

D FIDELITY

Our fidelity study examines how PoLO affects various models,
specifically focusing on the impact of watermarks and DP noise on
model performance. We evaluate multiple neural network architec-
tures (AlexNet, ResNet18,WideResNet, VGG16, ResNet34, TextCNN,
and MiniBert) across diverse datasets (CIFAR-10, CIFAR-100, Tiny-
ImageNet, and AG News). For PoLO settings, we employ a 512-bit

15

(a) AlexNet_CIFAR10_1024 (b) AlexNet_CIFAR10_512 (c) ResNet18_CIFAR10_1024 (d) ResNet18_CIFAR10_512

(e) ResNet18_CIFAR100_1024 (f) ResNet18_CIFAR100_512 (g) WideResNet_CIFAR100_1024 (h) WideResNet_CIFAR100_512

(i) VGG16_TinyImageNet_1024 (j) VGG16_TinyImageNet_512 (k) ResNet34_TinyImageNet_1024 (l) ResNet34_TinyImageNet_512

(m) TextCNN_AG News_1024 (n) TextCNN_AG News_512 (o) MiniBert_AG News_1024 (p) MiniBert_AG News_512

Figure 7: The 𝐴𝑐𝑐𝑚𝑎𝑖𝑛 comparison of the two P forge attacks with baseline - PoLO. The number followed by the dataset is the watermark size. In each
subplot, the vertical lines perpendicular to the x-axis represent the completion times for each shard.

watermark size and test different DP noise levels (𝜀 = 0.5, 1, 5) as
well as no DP noise, while baseline models are trained without
watermarks or DP noise.

Fig.6 presents a thorough comparative analysis of performance
between PoLO and baseline models spanning various architectures
and datasets. Our experimental findings reveal that incorporating
watermarks and DP noise has minimal impact on model perfor-
mance relative to the baselines. The most notable performance
impact is observed in the ResNet34 architecture trained on Tiny-
ImageNet1 with 𝜀 = 0.5, yet this decline remained modest at under
2%. Remarkably, all other model configurations maintained perfor-
mance within 0.5% of their baseline counterparts, regardless of the
DP noise level applied.

This minimal performance impact can be attributed to the abun-
dance of local optima within neural networks. When watermarks
and DP noise are embedded, the model’s optimization process may
simply converge to a different yet equally effective local optimum,
maintaining near-optimal performance. The comprehensive fidelity
1We use the top-5 accuracy as the metric to measure the𝐴𝑐𝑐𝑚𝑎𝑖𝑛 for TinyImageNet.

evaluation demonstrates that our chained watermarking approach
in PoLO preserves model utility while successfully implementing
PoL, thus establishing PoLO as a viable and practical scheme.

E UNFORGEABILITY (MORE)

Fig.7 shows howOFA andWMAattacks affect themodel𝐴𝑐𝑐𝑚𝑎𝑖𝑛

when forging PoLO proofs using illicit watermarks of 1024 and
512 bits. Our experimental analysis reveals an intriguing pattern:
regardless of the illicit watermark size, OFA-based forgery attempts
initially yield higher 𝐴𝑐𝑐𝑚𝑎𝑖𝑛 than legitimate PoLO models during
early shard stages. However, this advantage diminishes in later
stages, where OFA models’ 𝐴𝑐𝑐𝑚𝑎𝑖𝑛 converges to match that of
legitimate PoLO models. This behavior can be attributed to OFA’s
fine-tuning approach. During early stages when the model hasn’t
fully converged, fine-tuning across all weights can enhance model
𝐴𝑐𝑐𝑚𝑎𝑖𝑛 . As the model approaches convergence in later stages,
additional fine-tuning ceases to yield performance improvements.

WMA attacks, however, exhibit markedly different characteris-
tics, producing significant 𝐴𝑐𝑐𝑚𝑎𝑖𝑛 fluctuations post-attack. WMA

16

attacks result in severe degradation of model accuracy, which con-
sequently causes the forged PoLO P̂ proof to fail verification. This
instability stems from WMA’s direct weight modification strategy,
where it calculates and substitutes weight values based on the illicit
watermark. The model’s performance stability depends critically on
how well these modified weights integrate with the unchanged por-
tions of the network. When integration is successful, performance
remains stable; when it fails, the model’s functionality deteriorates
substantially, leading to pronounced𝐴𝑐𝑐𝑚𝑎𝑖𝑛 variations. These dra-
matic fluctuations in 𝐴𝑐𝑐𝑚𝑎𝑖𝑛 serve as a distinctive signature of
WMA attack attempts.

F TAKEAWAYS: Q&A—SECURITY THREATS

AND DEFENSES IN POLO

To enhance transparency and clarity, we address common threat
scenarios against the PoLO framework and explain how each is
mitigated by our design.

F.1 External Malicious Attackers

Q1:What if an attacker fine-tunes the final released model

and claims it as theirs? (the OFA strategy)

A1: PoLO embeds watermarks across chained shards, meaning a
valid claim requires proving ownership of all previous shards. As the
attacker does not know the watermark’s embedding position, they
must fine-tune across a wide range of model layers. The process is
computationally expensive, especially since the attacker not only
inserts his watermark but also erases a legitimate one. The cost
of such an attack is comparable to (exceeds) the cost of legitimate
training, making it economically impractical.

Q2: What if an attacker blindly inserts their watermark

into the model and claims ownership? (the WMA strategy)

A2: Randomly embedding a watermark without regard for model
integrity is likely to degrade performance on the main task. Dur-
ing verification, the verifier uses a test dataset to validate model
accuracy. Any performance degradation from unauthorized water-
marking will result in failed verification.

Q3: What if the attacker tries to guess the embedding key

𝑘𝑥 that aligns with the watermark Λ𝑥 in shard 𝑠𝑥 to forge a

PoLO proof?

A3: Both the watermark and embedding key are deterministically
derived from a cryptographic hash over the previous shard, identity
information, and a verifier-provided secret nonce 𝜇. This nonce
is unknown to the attacker during training and only revealed at
verification. Without knowing 𝜇, the attacker cannot precompute
the correct key or watermark, rendering attacks ineffective.

Q4: What if the attacker just wants to remove the water-

mark without embedding their own?

A4: In our setting, only models carrying valid PoO information
are considered valuable and eligible for exchange in marketplaces
or for earning rewards in incentive-driven distributed learning
scenarios. If an attacker clones a legitimate model and removes its
watermark, the model becomes unverifiable and thus unqualified
for use or trade. Meanwhile, the original, watermark-protected
model remains valid and publicly available, rendering the attacker’s
effort meaningless and unrewarded.

Q5: Can an attacker infer training data from public check-

points using membership inference attacks?

A5: To mitigate inference attacks, we apply DP to the final model
of each shard. A randomized subset of non-watermarked weights is
perturbed with DP noise, making it statistically difficult to reverse-
engineer the training dataset while preserving watermark integrity
and model performance.

Q6: What if an attacker gains access to the embedding key

𝑘𝑆 and selection matrix 𝑌 for the final (released) model?

A6: Even with full knowledge of 𝑘𝑆 and 𝑌 , the attacker can at
most forge ownership of the final model checkpoint. They cannot
recover or claim watermarks from earlier shards, since each new
shard overwrites the previous one at fixed positions. This prevents
attackers from proving training efforts, which are cryptographically
chained across shards. In fact, this property allows PoLO to use
effort proof as auxiliary evidence for ownership, reinforcing PoO.
Moreover, it enables clean ownership transfer: a new owner can
append a new shard with a fresh watermark, extending the chain.

F.2 Rational (Self-Interested) Provers

Q7: What if a prover tries to forge 𝑘𝑥 to finalize a shard

without performing actual training, inflating the number of

claimed shards for higher rewards?

A7: Since 𝑘𝑥 is deterministically derived from a hash involving
a verifier-provided secret nonce 𝜇 (alongside previous weights and
identity), the prover cannot arbitrarily select 𝑘𝑥 without knowing
or controlling 𝜇. This linkage ensures that a valid watermark can
only be embedded through legitimate training progression.

What if a prover picks an “inactive” layer for watermark

embedding that doesn’t affect performance, letting the wa-

termark be extracted regardless of training quality?

A8: To prevent this, we do not allow provers to choose the
embedding position or secret nonce arbitrarily. Instead, the veri-
fier—considered to be honest-but-curious—generates and provides
the nonce at registration time, which is then verifiably included in
the hash computation. This design mimics a regulated environment,
akin to obtaining a business license before model training begins,
ensuring all work is bound to an approved watermarking path.

F.3 Honest-but-Curious Verifier

Q9: Can a verifier infer sensitive training data from the

checkpoints provided during verification?

A9: No. The final model of each shard is protected via DP, which
adds calibrated noise to non-watermarked weights. This ensures
that even an honest-but-curious verifier is hard to execute mem-
bership inference attacks or extract sensitive training data.

F.4 Watermark schemes

Q10: Why PoLO uses embedded watermarks instead of

backdoor-based watermarks

A10: PoLO adopts watermarking methods that embed ownership
information directly into model weights, rather than relying on
backdoor-based triggers. This is crucial for ensuring that water-
mark embedding is inherently tied to the training process—allowing
watermark detection rates to reflect actual training effort. Backdoor-
based schemes decouple watermarking from training. An attacker

17

can implant a trigger into a pre-trained model without performing
meaningful training, making forgery cheap and breaking PoL guar-
antees. In contrast, embedded watermarking requires legitimate
weight updates to achieve detectable watermark signals, ensuring
that only genuine training yields a valid proof. This tight integra-
tion makes it computationally impractical to forge ownership or
training effort without investing comparable resources, preserving
PoLO’s core security and accountability goals.

G EXTENSION: COLLABORATIVE RELAY

TRAINING ACROSS MULTIPLE USERS

PoLO’s chained watermarking framework naturally extends to
collaborative relay training scenarios, such as split learning (SL) [6],
where a model is sequentially trained by multiple users—common
in research consortia, cross-institutional collaborations, and multi-
party development pipelines. In these settings, each participant
must be individually accountable for their training contribution,
while the final model owner must demonstrate legitimate inheri-
tance of all prior efforts.

A real-world use case arises in collaborative medical AI develop-
ment, where hospitals contribute to training a shared diagnostic
model on sensitive patient data. For example, Hospital A trains a
base model on its dataset and passes it to Hospital B, which contin-
ues training on a different cohort, and so on. When the model is
eventually deployed or sold, the chain of training must be provably
authentic and tamper-resistant, and each hospital’s contribution
should be fairly attributed.

In the multi-user scenario, each participant𝒫𝑚 is responsible for
training a specific shard 𝑠𝑥 and embedding a user-specific water-
mark Λ𝑥,𝑚 . This watermark and its corresponding embedding key
𝑘𝑥,𝑚 are deterministically derived using the participant’s identity
and prior shard information:

Λ𝑥,𝑚, 𝑘𝑥,𝑚 = WMGen(ℋ𝑥,𝑚), KeyGen(ℋ𝑥,𝑚) with
ℋ𝑥,𝑚 = H(𝑊𝑥−1,𝑚, 𝑥, 𝜇𝑚, 𝑖𝑑𝒫𝑚

), (7)

where 𝑖𝑑𝒫𝑚
uniquely identifies the contributor, 𝜇𝑚 is the verifier-

provided secret nonce assigned for each 𝒫𝑚 , and𝑊𝑥−1,𝑚 denotes
the prior model state. While the watermarked weight selection
matrix 𝑌𝑚 for participant 𝒫𝑚 is derived from the same verifier-
provided secret nonce 𝜇𝑚 by:

𝑌𝑚 = WMPosition(𝜇𝑚). (8)
This design ensures that both the watermark and embedding key
are tightly bound to the participant’s contribution and the training
trajectory. Once the watermark Λ𝑥,𝑚 reaches sufficient robustness
and the model passes differential privacy protection, the resulting
model state is finalized as𝑊𝑠 , serving as a verifiable checkpoint in
the collaborative PoLO proof chain.

The design preserves core properties in multi-user settings:
• Effort verifiability is ensured per user through uniquely embedded
watermark shards tied to individual training contributions.
• Ownership traceability is inherently linked to each contributor’s
identity and training history, enabling precise attribution across
the collaborative process.
• Tamper resistance is enforced through cryptographic hash chain-
ing across shards, making it infeasible for later participants to
forge or overwrite earlier contributions.

• Forgery prevention is achieved by deterministically generating
both the watermark and embedding key via WMGen and Key-
Gen, with all randomness derived from a secret nonce 𝜇𝑚 . This
nonce remains hidden during training and is only revealed during
verification, making it infeasible for adversaries to fabricate valid
watermarks or keys without access to the original shard’s secret.

Impact. Supportingmulti-user training represents amajor advance-
ment over prior single-user PoL designs. In practical scenarios such
as FL/SL, multi-tenant model development, or outsourced R&D
pipelines, training is often distributed across multiple entities. Con-
ventional PoLmethods treat training as a single, continuous process,
lacking identity binding or shard-level isolation. Consequently, con-
tributions are aggregated into one undifferentiated proof tied to
the final model, making it impossible to attribute individual efforts.
Without cryptographic linkage between contributors and training
segments, downstream parties can falsely claim full authorship by
presenting the final model and regenerating a PoL proof—effectively
hijacking earlier contributions.

By contrast, PoLO ensures that each party’s contribution is veri-
fiably recorded and cryptographically bound to their identity. The
use of chained watermarking with identity-tagged keys prevents
any participant from forging or overwriting previous contribu-
tions, thus making the proof tamper-resistant and fully auditable.
This elevates PoLO from a proof mechanism for isolated training
to a general-purpose provenance layer for collaborative machine
learning, enabling new use cases in auditability, licensing, and
cross-organization model governance.

ETHICS CONSIDERATIONS AND COMPLIANCE

WITH OPEN SCIENCE POLICY

Our experiments are conducted on a local testing platform using
open-source libraries and public datasets, without connecting to
any external or live systems. These experiments do not involve
any issues related to animals, human beings, the environment,
healthcare, or military factors. As of this writing, these studies have
not had real-world impact as they have only been utilized in our
experiments. Consequently, we have addressed numerous ethical
considerations in our experimental design, strictly adhering to the
ethical principles outlined in the Menlo Report.

We confirm that authors are expected to openly share their ar-
tifacts by default if this paper is settled in academic venues. This
aligns with the community’s commitment to transparency, repro-
ducibility, and collaborative advancement. We recommend that
anyone involved in reviewing this paper who is interested in ac-
cessing the source codes should reach out to the authors via private
email. The authors are willing to provide access upon request, while
maintaining the anonymity and integrity of the review process.

18

	Abstract
	1 Introduction
	2 Formalizing Concurrent Works
	2.1 Proof-of-Anything and Proof-of-Learning
	2.2 Proof-of-Ownership

	3 System Overview
	4 Design of PoLO
	4.1 Training with Chained Watermarking
	4.2 Verification in PoLO
	4.3 Security and Privacy Analysis

	5 Experiments
	5.1 Experimental Settings
	5.2 Experimental Results

	6 Concluding Remarks
	References
	A Notation
	B Algorithm of the Frameworks
	C Effort Irrecoverability for Attackers
	D Fidelity
	E Unforgeability (More)
	F Takeaways: Q&A—Security Threats and Defenses in PoLO
	F.1 External Malicious Attackers
	F.2 Rational (Self-Interested) Provers
	F.3 Honest-but-Curious Verifier
	F.4 Watermark schemes

	G Extension: Collaborative Relay Training Across Multiple Users

