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Abstract

The development of artificial intelligence demands that models incrementally up-
date knowledge by Continual Learning (CL) to adapt to open-world environments.
To meet privacy and security requirements, Continual Unlearning (CU) emerges as
an important problem, aiming to sequentially forget particular knowledge acquired
during the CL phase. However, existing unlearning methods primarily focus on
single-shot joint forgetting and face significant limitations when applied to CU.
First, most existing methods require access to the retained dataset for re-training or
fine-tuning, violating the inherent constraint in CL that historical data cannot be
revisited. Second, these methods often suffer from a poor trade-off between system
efficiency and model fidelity, making them vulnerable to being overwhelmed or
degraded by adversaries through deliberately frequent requests. In this paper, we
identify that the limitations of existing unlearning methods stem fundamentally
from their reliance on gradient-based updates. To bridge the research gap at its
root, we propose a novel gradient-free method for CU, named Analytic Continual
Unlearning (ACU), for efficient and exact forgetting with historical data privacy
preservation. In response to each unlearning request, our ACU recursively derives
an analytical (i.e., closed-form) solution in an interpretable manner using the least
squares method. Theoretical and experimental evaluations validate the superiority
of our ACU on unlearning effectiveness, model fidelity, and system efficiency.

1 Introduction

The development of Artificial Intelligence (AI) in open-world environments demands models capable
of continual updates in response to external requests throughout their lifespan [1, 2, 3]. Each update
can be either incremental or decremental. Incremental updates enable models to learn new tasks over
time, ideally without accessing previous data and without forgetting previous knowledge [4, 5, 6]. This
issue has been extensively studied within Continual Learning (CL), where the currently predominant
methods leverage pre-trained models to assist with feature extraction [7, 8, 9]. In contrast, decremental
updates focus on selectively erasing specific knowledge tied to certain data mainly for upholding the
granted “right to be forgotten”, as explored in the emerging field of machine unlearning [10, 11, 12].

Although many recent advances have shown progress in machine unlearning, most existing methods
focus solely on single-shot joint forgetting and require access to the historically retained dataset,
violating the requirements of CL [13, 14, 15, 16]. In practice, due to frequent triggers from various
legitimate or adversarial users, it is common to face multiple requests for Continual Unlearning (CU),
which necessitate the sequential removal of knowledge acquired during the CL phase, as shown in
Figure 1. Following the CL philosophy that online task data is discarded after training [13, 14, 15, 16],
the historically retained dataset is typically unavailable during the CU phase. Thus, the only available
information for each unlearning request is limited to the designated samples to be forgotten.
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Figure 1: Illustration of model state evolution under the CL and CU phases. The model begins
blank with no knowledge. As the CL phase progresses, the model incrementally acquires knowledge
from online tasks. After the CL phase, the CU requests are sequentially issued to remove particular
knowledge acquired during the CL phase. Since the online data from the CL phase is discarded after
training, only the designated samples to be forgotten can be accessible for each CU request.

Even if historical data are available and privacy concerns are ignored, frequent triggering of requests
during CU still poses a key challenge. Considering the cumulative effect of multiple requests, system
efficiency and model fidelity are key concerns for CU. However, existing unlearning methods often
exhibit a poor trade-off between these two indicators [10, 17, 18]. On the one hand, exact unlearning
methods typically rely on partial re-training using the retained dataset, which incurs substantial
computational and time overhead [18, 19, 20]. The accumulated inefficiency in CU creates a potential
vulnerability to Denial-of-Service (DoS) attacks, where a single forgetting target may be fragmented
into multiple frequent requests to overwhelm the system. On the other hand, relatively efficient
methods are often limited to approximate unlearning, which inevitably risks unintended removal of
valuable knowledge that ought to be preserved, thus compromising the model fidelity on non-forgotten
data [21, 22, 23]. Even minor compromises in model fidelity can accumulate and compound under
multiple requests, potentially leading to catastrophic degradation or even collapse of the model.

In summary, existing methods exhibit two prominent limitations in CU: (1) the prevailing reliance on
the historically retained data, and (2) the poor trade-off between system efficiency and model fidelity.
In this paper, we identify that the limitations of existing unlearning methods stem fundamentally from
their reliance on gradient-based model updates. Such updates render learning from data a complex,
entangled, and incremental process with inherent stochasticity, making the influence of data on the
model challenging to explicitly characterize, let alone exactly erase. It is precisely for this reason
that existing methods require access to the retained data for re-training or fine-tuning, as a means to
recover model fidelity. Many unlearning studies have recognized the limitations from gradient-based
updates, but few have attempted to fundamentally address this issue at its root [10, 24, 25].

Concurrently, the CL community has witnessed the emergence of gradient-free methods grounded
in analytic learning [15, 16, 26, 27, 28], which have been widely acknowledged for achieving state-
of-the-art performances [29, 30, 31, 32, 33]. The applications of analytic learning in CL provide a
timely and valuable opportunity for us to fundamentally address the identified challenges in CU by
circumventing gradient-based updates. Motivated by the preceding observations, we propose a novel
gradient-free method for CU, named Analytic Continual Unlearning (ACU), to achieve efficient and
exact forgetting while preserving the privacy of historical data. In our proposed ACU, we align with
the prevailing practice in CL by leveraging frozen pre-trained models as powerful gradient-free feature
extractors. In response to each unlearning request, our ACU can recursively derive the analytical (i.e.,
closed-form) solution based on the least squares method, achieving exact knowledge forgetting in an
efficient and interpretable manner. Our main contributions are summarized as follows:

1. We introduce a novel and practical problem, CU, which aims at sequentially removing the
knowledge acquired during the CL phase, without access to the historically retained dataset.

2. By identifying the fundamental limitations of existing methods in addressing CU, we propose
our ACU as a gradient-free method for efficient and exact forgetting with data privacy.

3. We theoretically validate that our ACU achieves exact unlearning using only the designated
samples to be forgotten per request, yielding an identical result to that from joint re-training
on the remaining dataset. This rare property aligns with the pursuit of responsible AI.

4. Extensive experiments on benchmark datasets demonstrate the superiority of our ACU over
other baselines regarding unlearning effectiveness, model fidelity, and system efficiency. In
particular, its advantages become even more pronounced in the frequent-request scenarios.
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2 Related Works

2.1 Machine Unlearning

Machine unlearning has emerged as a popular topic, aiming to delete specific data and eliminate the
corresponding influence on AI models [10, 12, 34]. This topic was originally motivated by the need
to meet privacy and regulatory requirements, and later expanded to include the removal of erroneous
or biased knowledge from toxic data [11, 35, 36, 37]. Existing unlearning methods typically assume
that the original model is trained in a centralized joint manner, with access to the retained data for
re-training or fine-tuning [10, 18, 22, 38]. Yet, this assumption is often impractical in open-world
environments, where models are trained in a CL fashion and historical data cannot be revisited.

Moreover, most unlearning methods suffer from a poor trade-off between system efficiency and model
fidelity, which is particularly problematic under the frequent unlearning requests of CU [36, 39, 40].
Specifically, existing methods for exact unlearning tend to incur substantial overhead [18, 19, 20],
while the approximate ones risk compromising model fidelity on non-forgotten knowledge [21, 22, 23].
In this context, a malicious user can fragment a single forgetting target into multiple frequent requests
to overwhelm or degrade the system [10]. Several studies have identified that the core challenge of
unlearning lies in gradient-based updates, which render the influence of data on the model a complex,
entangled, and incremental process with inherent stochasticity [10, 24, 25]. However, few efforts have
been made to fundamentally address this issue at its root by circumventing gradient-based updates.
In contrast, our ACU differs from existing work by introducing a novel gradient-free method, which
enables efficient and exact forgetting while preserving the privacy of historical data.

2.2 Analytic Learning

Analytic learning is a prominent gradient-free approach, initially developed to resolve challenges
related to gradients, such as the vanishing and exploding gradient problems [27, 26]. This approach is
also termed pseudoinverse learning, owing to its flexible application of matrix inversion [41, 42, 43].
A prime example of shallow analytic learning is the radial basis network, which utilizes least squares
estimation to train its parameters after performing a kernel transformation in the first layer [44].
Furthermore, by employing least squares methods to linearize the learning process of nonlinear
networks, multilayer analytic learning has seen widespread use in various applications [45, 46, 47, 48].

Earlier methods of analytic learning encountered significant memory limitations, as they required the
entire dataset to be processed in a single batch [49]. This challenge has been addressed through the
block-wise recursive Moore-Penrose inverse, which substitutes the traditional joint learning process
with a more efficient recursive approach [49]. Building on this improvement, analytic learning has
demonstrated state-of-the-art performance across a wide range of tasks [15, 16, 50, 51], particularly
within the field of CL [7, 26, 27, 28, 29, 30, 31, 32, 33]. In this paper, we build upon the recent
developments in analytic learning for CL, aiming to bridge the research gap in CU. By leveraging the
advantages of gradient-free updates, our ACU enables efficient and exact forgetting while preserving
historical data privacy, which presents a highly rare and nearly ideal property for CU.

3 Our Proposed ACU Method

In the CU phase, we aim at continuously erasing the influence of designated data on the model
in response to the online unlearning requests, where the data to be forgotten was previously used
for training during the CL phase. Thus, we consider the original model W0 to be trained in a CL
fashion, where all the training data is collectively denoted as D = {(xj , yj)}Nj=1, comprising a total
of N samples, with xj and yj representing the input and its corresponding label of the j-th sample.
Then, in the CU phase, the data designated for unlearning within the online requests are denoted as a
sequence of forgetting sets Ď = {Ď1, · · · , Ďi, · · · }, where Ďi ⊆ D and Ďi ∩ Ďi′ = ∅ for ∀i ̸= i′.
For each unlearning request i, we define the corresponding unlearned model as Wi. The goal of each
unlearning request is to make the model as close as possible to the one re-trained from scratch on
the retained set D̂i = D \

⋃i
k=1 Ďk (excluding all data to be forgotten), as if the unlearned data had

never been used in training. Notably, the retained set D̂i is inaccessible in practice, because the online
task data are all discarded once training is completed during the CL phase. Thus, the only available
information for each unlearning request i is limited to the designated samples to be forgotten, i.e., Ďi.
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Figure 2: The framework of our proposed ACU method.

3.1 Overview

Here, we adopt image classification as a representative example to show the workflow of our ACU.
Notably, our ACU is not limited to it and can be readily extended to a broader range of applications.
The model within our ACU consists of two key components: a gradient-free feature extractor and a
gradient-free analytic classifier. Specifically, the feature extractor is implemented using a frozen pre-
trained model, which has already become a predominant strategy in the field of CL [13, 14, 15, 16].
After determining the pre-trained backbone Backbone(·,Θ) and the one-hot function Onehot(·), the
feature and one-hot label of any data sample (xj , yj) ∈ D are extracted as follows.

fj = G(Backbone(xj ,Θ)), yj = Onehot(yj). (1)

Here, fj ∈ R1×dF and yj ∈ R1×dC represent the obtained feature vector and label vector, respectively,
where dF and dC represents the feature dimension and the total number of classes. The pre-trained
backbone serves as a feature extractor during the CL phase, and can be directly obtained from existing
models available on the Internet [8, 13]. The nonlinear mapping G(·) in (1) can be implemented using
techniques such as random projections or kernel functions to enhance the representational capacity of
features, a widely adopted practice in the CL community [7, 15, 16, 27]. Then, based on the extracted
features and labels, we embed a linear analytic classifier following the feature extractor. For any
analytic classifier Wi in the CU phase, the optimization objective is formulated by minimizing the
Mean Squared Error (MSE) with regularization over the retained set D̂i, as shown in (2).

Wi = argmin
W

∑
j:(xj ,yj)∈D̂i

∥yj − fjW∥2F + γ∥W∥2F. (2)

Specifically, when i = 0, we have D̂0 = D. In this case, W0 represents both the initial model of the
CU phase and the final model of the CL phase. Despite the classification task, we deliberately adopt
MSE over the commonly used Cross-Entropy (CE) in (2) to enable an analytical (i.e., closed-form)
solution, which is essential for enabling gradient-free model updates. We would like to clarify that the
primary advantage of the CE lies in its ability to facilitate convergence in the context of gradient-based
updates, which no longer holds in the context of gradient-free updates. In addition, the MSE has been
shown to yield comparable performance to the CE [52, 53], and has been widely used in CL [7, 27].

To continually forget the CL-obtained knowledge, we design a Knowledge Tracking Matrix to assist
the CU phase, as shown in Figure 2. Specifically, upon receiving each unlearning request i, our ACU
first extracts the labels and features of the corresponding forgetting set Ďi using (1). Subsequently,
we can recursively update the Knowledge Tracking Matrix Ti and the analytic model Wi to achieve
efficient and exact forgetting with historical data privacy preservation in a gradient-free manner.
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3.2 Analytic Knowledge Embedding

In this subsection, we focus on the analytic knowledge embedding during the CL phase, which serves
as the foundation for exact forgetting in the subsequent CU phase. Specifically, according to (2),
we can derive a analytical (i.e., closed-form) solution for the final model W0 ∈ RdF×dC based on
the least squares method, as shown in (3). This solution embeds all the knowledge acquired during
the CL phase and serves as the model initialization for the CU phase. The theoretical derivation for
transforming (2) into (3) is provided in Lemma 1 of Section 3.4.

W0 = (
∑

j:(xj ,yj)∈D
f⊤j fj + γI)−1

∑
j:(xj ,yj)∈D

f⊤j yj . (3)

Here, we do not delve into the details of how to obtain the final model W0 during the CL phase that
satisfies (3), as many state-of-the-art CL studies have already solved this problem [7, 26, 27, 30, 31].
Thanks to the analytical solution of (3), we can exactly characterize the influence of each data sample
on the model, which is nearly impossible in the context of gradient-based updates. Since we cannot
access the retained data during the CU phase, we design a Knowledge Tracking Matrix T0 ∈ RdF×dF

as an auxiliary tool to track the compressed influence of all retained data samples on the model:

T0 = (
∑

j:(xj ,yj)∈D
f⊤j fj + γI)−1. (4)

Notably, since the rank of our designed Knowledge Tracking Matrix is R ≤ dF ≪ N , it represents
a highly compressed trace of the historical examples and cannot be inverted to recover the original
dataset, thereby preserving historical data privacy. Specifically, although (4) represents a final
analytical expression for T0, it can be recursively computed during the CL phase according to the
online data stream, thereby eliminating the need to centrally store all data samples D. More details on
the feasibility of the recursive computation for T0 during the CL phase are provided in Appendix C.

3.3 Analytic Knowledge Forgetting

In this subsection, we introduce our ACU to forget the CL knowledge under the continually arriving
requests during the CU phase. Upon receiving the forgetting set Ďi associated with each unlearning
request i, we first extract the features and labels of the data samples to be forgotten using (1). Then,
based on the obtained features and labels, we sequentially update the Knowledge Tracking Matrix Ti

and the analytical model Wi. Specifically, Ti can be updated in a recursive manner as follows.

Ti = Ti−1 +Ti−1F̌
⊤
i (I− F̌iTi−1F̌

⊤
i )

−1F̌iTi−1, (5)

where F̌i = [fj ]j:(xj ,yj)∈Ďi
∈ R|Ďi|×dF denotes the forgetting feature matrix formed by vertically

stacking all feature vectors fj of all samples in the forgetting set Ďi. To better demonstrate the validity
of the recursive formula (5), we provide the general form of Ti and the detailed theoretical derivation
in Lemma 3 of Appendix A. Subsequently, leveraging the updated Knowledge Tracking Matrix Ti,
we aim to further update the analytical model Wi for exactly erasing the specified knowledge in Ďi.

Here, let’s delve deeper into the scenario from an Oracle perspective to understand what happens
when we conduct an unlearning request. Specifically, if we consider the optimal model that satisfies
(2), the unlearning request essentially corresponds to reducing the size of the retaining set. This
decremental update results in two effects: (1) the influence of the remaining samples is amplified,
and (2) the influence of the forgotten samples is erased. Inspired by this insight, in our ACU, we
recursively update the model Wi to achieve exact unlearning in an interpretable manner, as follows.

Wi = (I+Ti

∑
j:(xj ,yj)∈Ďi

f⊤j fj)Wi−1︸ ︷︷ ︸
Amplified Remaining Knowledge

− Ti

∑
j:(xj ,yj)∈Ďi

f⊤j yj︸ ︷︷ ︸
Forgotten Knowledge

. (6)

Here, the recursive formula (6) can be decomposed into two terms. Specifically, the former term
represents amplifying the influence of the existing data by multiplying the previous model Wi−1 by
a factor greater than I, and the factor used for amplification is related to the features to be forgotten.
Meanwhile, the latter term explicitly reflects the process of erasing the knowledge to be forgotten.
In both terms, the Knowledge Tracking Matrix Ti plays a role in adjusting knowledge. Theorem 1
of the subsequent Section 3.4 demonstrates that the model Wi updated via (6) is equivalent to the
re-trained model directly on the retained set D̂i, thereby verifying its ability for exact unlearning.
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Due to its gradient-free nature, the entire process of our ACU requires only forward-propagation
and lightweight matrix computation, without the need for back-propagation, significantly improving
system efficiency. In addition, since the historical knowledge is explicitly embedded in the analytical
expression, we can maintain model fidelity without re-training or fine-tuning on the retained dataset.
Moreover, the model within our ACU retains its optimal analytical form even after undergoing the
CU phase, which lays the foundation for subsequent CL phases. In other words, our ACU can readily
support alternating CL and CU phases, greatly expanding its practical application scope and potential.
For clarity, we provide the detailed procedures of our ACU in Algorithm 1 of the Appendix.

3.4 Theoretical Analyses

In this subsection, we thoroughly analyze the validity of our ACU. First of all, as the foundation of
our gradient-free ACU, we derive the analytical (i.e., closed-form) solution of (3) in Lemma 1 below.

Lemma 1: For any optimization problem of the following form:

Wi = argmin
W

∑
j:(xj ,yj)∈D̂i

∥yj − fjW∥2F + γ∥W∥2F. (7)

its analytical (i.e., closed-form) solution can be formulated as:

Wi = (
∑

j:(xj ,yj)∈D̂i

f⊤j fj + γI)−1
∑

j:(xj ,yj)∈D̂i

f⊤j yj . (8)

Proof. See Appendix A.

Then, we further prove that the model Wi updated recursively through our ACU by (6) is exactly
equivalent to the re-trained model directly on the retained set D̂i, as shown in Theorem 1 below.

Theorem 1: Consider the recursive updating formula for the analytic model:

Wi = (I+Ti

∑
j:(xj ,yj)∈Ďi

f⊤j fj)Wi−1 −Ti

∑
j:(xj ,yj)∈Ďi

f⊤j yj , (9)

where Ti is the Knowledge Tracking Matrix obtained by (5). The result of (9) is exactly equivalent to
that of (8), which corresponds to the optimal re-trained model obtained from the retained dataset D̂i.

Proof. See Appendix A.

Last but not least, we provide a comprehensive analysis of the system efficiency of our ACU in
Appendix B, covering the computational and storage overhead throughout the CU phase.

4 Experiments

4.1 Experimental Setup

Datasets & Settings. In our experiments, we comprehensively analyze the performance of our ACU
on two benchmark datasets: CIFAR-10 [54] and CIFAR-100 [54]. In practice, the base model, which
can be an open-source pre-trained model, is incrementally updated by CL to adapt to the open-world
environment. To align with real-world scenarios and avoid any overlap between the data used in the
pre-training phase and the continual learning phase, we partition the full dataset into three disjoint
subsets: one for obtaining the pre-trained base model (base samples), one for training the continual
learning model (CL training samples), and one for testing. Subsequently, we select a subset from
the CL training samples and partition it into 5 or 25 forgetting sets for CU. The specific dataset
partitioning strategy and model training strategy are detailed in Appendix E.1.

Baselines & Metrics. We compare our proposed ACU with a series of state-of-the-art unlearning
baselines, including Finetuning [17], L1-Sparsity [21], NegGrad [23], NegGrad+ [11], SCRUB [11],
WoodFisher [55], and RandomLabel [56]. Given the time infeasibility of existing exact unlearning
methods in the CU setting (e.g., taking more than 1.5 hours to process a single unlearning request), we
primarily adopt approximate unlearning methods for comparison. To ensure fairness, all baselines are
updated starting from the same base model for the CU requests. Additionally, we used the difference
from the optimal re-trained model, considering average accuracy, Membership Inference Attacks
(MIA) [57], and model parameters, to evaluate overall forgetting performance, the average accuracy
on the retained set and test set to evaluate fidelity, and the cumulative runtime to evaluate efficiency.
The detailed descriptions of the metrics and baselines are provided in Appendix E.2 and E.3.
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Table 1: Comparisons of the methods’ differences from the re-trained model regarding the model
parameters (L2 Norm), retained set accuracy, forgetting set accuracy, test set accuracy, and MIA
indicator. The bold and underlined results indicate the best and second-best performance, respectively.
All experiments are conducted three times, and the results are shown as Mean±Standered Deviation.

Dataset Method Privacy
∆Params ∆Retain ∆Forget ∆Test ∆MIA

K = 5 K = 25 K = 5 K = 25 K = 5 K = 25 K = 5 K = 25 K = 5 K = 25

CIFAR-10

Finetuning % 33.65±0.06 35.45±0.95 6.61±0.09 6.09±4.09 1.03±0.50 4.19±1.53 2.26±0.70 4.20±1.44 0.02±0.01 0.04±0.02

L1-Spare % 24.14±0.01 25.39±0.17 16.79±0.81 15.16±3.08 9.88±0.74 10.26±1.00 10.09±0.37 10.50±1.53 0.49±0.28 0.10±0.02

SCRUB % 28.12±0.00 34.34±3.56 1.17±0.09 15.42±5.23 8.48±0.49 6.85±4.54 0.07±0.05 8.19±4.01 0.09±0.01 0.07±0.05

WoodFisher % 28.30±0.00 57.12±0.35 1.57±0.01 89.58±0.07 10.02±0.19 79.23±0.15 0.51±0.04 79.23±0.00 0.09±0.00 0.01±0.00

RandomLabel % 27.45±0.01 26.75±0.90 2.21±0.32 3.26±2.11 0.92±0.51 2.47±1.02 2.40±0.39 3.89±0.26 0.01±0.00 0.03±0.00

NegGrad+ % 28.63±0.01 55.50±9.60 13.21±0.79 82.32±3.61 9.73±1.30 71.85±3.67 11.51±0.62 70.91±3.89 0.09±0.01 0.07±0.04

NegGrad " 28.30±0.00 28.31±0.00 6.06±0.02 24.85±1.30 1.57±0.51 14.82±1.52 6.55±0.03 20.20±0.66 0.02±0.00 0.15±0.01

ACU " 00.00±0.00 00.00±0.00 00.00±0.00 00.00±0.00 00.00±0.00 00.00±0.00 00.00±0.00 00.00±0.00 00.00±0.00 00.00±0.00

CIFAR-100

Finetuning % 58.92±0.03 61.80±2.94 12.03±0.23 15.55±2.81 1.27±0.57 4.03±4.36 0.30±0.09 4.72±4.09 0.02±0.01 0.04±0.04

L1-Spare % 44.93±0.00 45.64±0.72 29.36±1.84 30.17±9.19 11.85±1.03 14.86±0.71 13.55±1.98 15.33±1.69 0.12±0.02 0.15±0.01

SCRUB % 53.72±0.00 54.59±1.94 0.98±0.19 7.60±0.97 20.22±0.83 10.65±3.74 2.47±0.03 2.76±3.50 0.20±0.00 0.11±0.04

WoodFisher % 54.00±0.00 54.01±0.00 1.38±0.15 16.04±9.15 22.7±1.09 11.87±7.37 3.06±0.10 4.50±5.50 0.23±0.00 0.12±0.07

RandomLabel % 53.77±0.01 53.76±3.00 7.16±0.29 11.89±0.38 6.42±0.51 11.72±1.12 2.73±0.27 5.99±1.07 0.63±0.00 0.02±0.01

NegGrad+ % 53.82±0.00 54.76±0.60 1.09±0.10 11.02±7.59 9.65±0.67 15.07±6.74 0.62±0.35 9.95±3.09 0.10±0.00 0.05±0.07

NegGrad " 54.00±0.00 54.01±0.00 0.38±0.23 15.53±7.77 22.05±0.35 12.14±7.64 2.31±0.08 4.10±4.47 0.21±0.00 0.12±0.08

ACU " 00.00±0.00 00.00±0.00 00.00±0.00 00.00±0.00 00.00±0.00 00.00±0.00 00.00±0.00 00.00±0.00 00.00±0.00 00.00±0.00

4.2 Overall Analysis on Unlearning Effectiveness

To comprehensively assess the unlearning effectiveness of each method, we measured their deviations
from the re-trained model using several metrics: model parameters gap ∆Params, retained set accuracy
gap ∆Retain, forgetting set accuracy gap ∆Forget, test set accuracy gap ∆Test, and the MIA indicator gap
∆MIA. To examine the impact of different forgetting frequencies on unlearning effectiveness, we set
K = 5 and K = 25 to simulate varying numbers of unlearning requests. Each request was associated
with the retention of 400 data samples, ensuring control over other variables. Ideally, an effective
unlearning method should precisely eliminate the influence of the forgotten data from the model.
Therefore, the closer the post-unlearning model is to the corresponding re-trained model, the more
effective the unlearning method is considered to be. The metric ∆Params serves as a holistic indicator
that quantifies the overall parameter-level difference between the unlearned and re-trained models.
The metrics ∆Retain, ∆Forget, and ∆Test measure the performance gap on the retained set, forgotten set,
and test set, respectively. Meanwhile, ∆MIA is also an important measure for capturing differences in
output distributions between the unlearned and re-trained models in the context of privacy risk.

The experimental results on unlearning effectiveness are shown in Table 1. Thanks to its theoretical
guarantee of exact unlearning, our ACU achieves optimal zero values across all metrics, indicating
that the unlearned model produced by ACU is identical to the re-trained model. In contrast, due to the
baselines’ inherent reliance on approximate unlearning, they exhibit non-zero values across various
metrics. Notably, their performance tends to be inconsistent across different metrics of evaluation. For
example, on the CIFAR-100 dataset, Finetuning achieves favorable results on ∆Test and ∆Forget, yet
fails to maintain competitive performance on ∆Retain. This phenomenon is reasonable, as approximate
unlearning often entails trade-offs: insufficient unlearning may leave residual influence from the data
that should have been forgotten, while excessive unlearning may damage unrelated knowledge. Such
imbalances lead to partial effectiveness, i.e., strong performance on certain metrics, but degradation
on others. In comparison, our ACU can achieve exact unlearning without any trade-off, enabling it to
maintain optimal performance across all unlearning effectiveness metrics.

It is worth emphasizing that most baselines rely on revisiting the retained data for fine-tuning during
the CU phase, which essentially constitutes a form of cheating. Such a requirement is fundamentally
incompatible with practical CU scenarios, in accordance with the CL philosophy that online task
data is discarded after training. A rare baseline that does not require any access to the retained
set is NegGrad, which updates the model solely by applying reverse gradient descent on the small
forgetting set. However, due to the lack of access to the retained data, NegGrad exhibits relatively
poor performance across various evaluation metrics. In contrast, our ACU maintains its superior
performance in unlearning effectiveness without any access to historical data from the retained set.
Even under such unfairly disadvantaged conditions, our ACU still achieves notable superiority in
unlearning effectiveness, further highlighting the advantages of gradient-free unlearning.
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Figure 3: The dynamics analysis for a total of 25 CU requests.

(a) Retained set accuracy (b) Test set accuracy (c) Cumulative time cost

Figure 4: The dynamics analysis for a total of 50 CU requests.

4.3 Dynamics Analysis on Fidelity and Efficiency

In this subsection, we investigate the dynamics of each method during continual processing of CU
requests. Taking the CIFAR-100 dataset as an example, we analyze how the fidelity and efficiency
of various methods evolve. Specifically, we consider a scenario involving 25 unlearning requests
corresponding to a total of 10,000 data samples to be forgotten. For each method, we record its (a)
retained set accuracy, (b) test set accuracy, and (c) cumulative time cost, as illustrated in Figure 3.
From Figure 3 (a), we observe that the retained set accuracy of NegGrad, L1-Sparse, and WoodFisher
undergoes catastrophic degradation as CU requests accumulate. This degradation stems from the
fact that these methods, during their approximate CU processes, inevitably impair the knowledge
originally preserved in the retained set. In contrast, our ACU maintains relatively stable retained set
accuracy throughout the CU phase. Only four other baseline methods manage to preserve or slightly
improve their retained set accuracy, primarily due to fine-tuning with access to the retained data.

It is worth noting that the preservation of retained set accuracy by these baselines is achieved by
violating the constraint of not accessing historical data during the CU phase, which can be considered
a form of cheating. Moreover, such preserved accuracy of baselines on the retained set does not
necessarily mean genuine retention of non-forgotten knowledge, but rather reflects mere overfitting
on the retained set in fact. Figure 3 (b) provides further evidence that all the baselines exhibit a
progressive and substantial decline in test set accuracy as the number of CU requests increases,
despite some of them achieving relatively good retained set accuracy. It indicates that the seemingly
well-preserved retained set accuracy is merely superficial, resulting from overfitting to the retained
set, while the test set accuracy has already been severely compromised. These results underscore
that baseline methods, when confronted with continual unlearning, suffer from a catastrophic erosion
of model fidelity due to the unintended forgetting of knowledge that should have been retained. In
contrast, our ACU consistently achieves high and stable accuracy on both the retained set and test set.

In addition to fidelity, we also analyze the superiority of our ACU in terms of efficiency, as illustrated
in Figure 3 (c), where the Y-axis is presented on a logarithmic scale. Except for NegGrad, all other
baselines incur a significantly higher total time cost than our ACU (approximately 50 to 125 times),
even though these baselines are already considered relatively efficient among existing unlearning
methods. The efficiency advantage of NegGrad stems from the simplicity of its method, as it updates
the model solely by applying reverse gradient descent on the small forgetting set. However, its
simplicity also compromises its performance in terms of unlearning effectiveness and model fidelity,
as previously discussed. To provide readers with a point of reference, we also briefly discuss the
impracticality of re-training from an efficiency perspective in CU. Specifically, re-training the model
from scratch for each unlearning request would take approximately 1.5 hours per request (5400
seconds), resulting in a total of over 135,000 seconds for 25 requests (more than 10,000× slower than
our ACU). Thus, the inefficiency renders re-training entirely infeasible for real-world applications.
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Subsequently, we extend our analysis to a more challenging scenario involving a higher volume of
CU requests, examining how each method performs in terms of fidelity and efficiency. Specifically,
we keep the total number of samples to be forgotten fixed at 10,000 while doubling the number of
unlearning requests from 25 to 50, as presented in Figure 4. From the results, we observe a notably
catastrophic degradation in model fidelity for WoodFisher and NegGrad+, which was not observed in
Figure 3. This observation indicates that these baselines are sensitive to the number of CU requests
and may experience severe fidelity collapse when handling frequent requests. Meanwhile, in terms of
efficiency, increasing the number of requests also leads to varying degrees of additional time cost for
all methods. For our ACU, the cumulative time cost increases only moderately from 12.68 seconds
at 25 requests to 18.16 seconds at 50 requests, representing just a 1.43× increase. By comparison,
for instance, NegGrad+ sees its cumulative time cost rise sharply from 815.13 seconds to 2769.09
seconds, a surge of up to 3.40×. These results highlight that our ACU not only achieves superior
efficiency in both scenarios but also shows greater robustness to the number of CU requests.

4.4 Key Takeaways

Thanks to the employment of analytical solutions instead of gradient-based updates, our ACU achieves
exact unlearning, consistently attaining optimal performance across all unlearning effectiveness
metrics under various settings. In contrast, other methods can only reach suboptimal performance
and often face trade-offs, i.e., optimizing one metric at the expense of another. Considering the
dynamics of continually processing multiple CU requests, existing baselines suffer from catastrophic
degradation in model fidelity, with the extent of collapse worsening as the number of requests
increases. Although some baselines appear to preserve retained set accuracy, this is typically achieved
through fine-tuning with access to retained data, which violates the constraint of not accessing
historical data during the CU phase, constituting a form of cheating. As for unlearning efficiency, our
ACU also demonstrates significant superiority, achieving a 50–125× speedup over most baselines and
more than a 10,000× speedup compared to re-training from scratch. Moreover, the efficiency of our
ACU exhibits significantly greater robustness to increasing numbers of CU requests compared to the
baselines. In summary, our ACU achieves efficient and exact forgetting while preserving data privacy.
Its remarkable advantages in unlearning effectiveness, model fidelity, and system efficiency make it
particularly well-suited for the CU setting. The superiority of our ACU underscores the potential of
gradient-free methods for unlearning and can inspire further promising exploration in this direction.

5 Conclusion and Discussion

In this paper, we introduce a novel and practical problem, CU, which aims to sequentially forget the
knowledge acquired during the CL phase. Unlike prior unlearning settings that assume a centrally
trained model, CU follows the CL philosophy and operates under the more realistic constraint of
having no access to the historically retained dataset. We analyze the limitations of existing unlearning
methods in addressing CU and identify the root cause as their reliance on gradient-based updates.
Motivated by this insight, we propose ACU in an effort to fundamentally bridge the research gap and
overcome the limitations of existing methods by circumventing gradient-based updates. In response
to each unlearning request, our ACU iteratively derives the analytical (i.e., closed-form) model update
based on the least squares method. Through both theoretical and empirical evaluations, we validate
the superiority of our proposed ACU. As an initial attempt to incorporate analytic learning into the
field of unlearning, our ACU holds great potential in advancing the development of responsible AI.

The primary limitation of ACU is its reliance on a frozen pre-trained backbone for feature extraction,
without involving the unlearning of knowledge acquired during the pre-training phase. This design
choice is largely determined by the CU focus of this paper, which specifically aims to unlearn the
knowledge acquired during the CL phase. Since the frozen pre-trained backbone can be directly
obtained from publicly available sources with certified security and privacy guarantees, it is reasonable
for continual learners to ignore unlearning the backbone knowledge acquired during the pre-training
phase, leaving any potential modification requirements to the backbone provider. In addition, keeping
the pre-trained backbone frozen aligns well with recent state-of-the-art strategies in CL and helps
preserve the model fidelity. Nevertheless, it represents a promising future direction to extend our ACU
by exploring an adjustable backbone, enabling the unlearning of knowledge embedded within the
backbone during the CU phase. Last but not least, as unlearning embodies a key goal of responsible
AI, we include a detailed discussion on the broader societal impacts of our work in Appendix D.
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Table 2: Description of important notations

Notations Description

D The complete training dataset during the CL phase.
Ďi The forgetting dataset corresponding to the i-th unlearning request.
D̂i The retained dataset after removing the first i forgetting datasets from D.
fj The feature vector for the j-th data sample.
yj The label vector for the j-th data sample.
W0 The initial analytic model of the CU phase, i.e., the final model of the CL phase.
Wi The updated analytic model after processing the i-th unlearning requests.
Ŵi The re-trained model on the retained dataset D̂i.
Ti The Knowledge Tracking Matrix after processing the i-th unlearning requests.

Algorithm 1 Analytic Continual Unlearning

Input: W0, T0, and Ď = {Ď1, Ď2, · · · , ĎK}.
Output: The final model WK .

1: for each unlearning request i do
2: Extract features fj labels yj of the data samples within Ďi using (1).
3: Update the Knowledge Tracking Matrix to obtain Ti using (5).
4: Update the model to obtain Wi using (6).
5: Return: The final model WK .

A Appendix on Theoretical Analysis of System Validity

Here, we comprehensively analyze the validity of our ACU, theoretically proving that the results
obtained by our ACU are exactly equivalent to those of the re-trained model using the remained set.
First, we derived the closed-form solution of the optimization problem (2) in Lemma 1, thereby
obtaining the optimal initial model and the re-trained model.

Lemma 1: For any optimization problem of the following form:

Wi = argmin
W

∑
j:(xj ,yj)∈D̂i

∥yj − fjW∥2F + γ∥W∥2F. (10)

its analytical (i.e., closed-form) solution can be formulated as:

Wi = (
∑

j:(xj ,yj)∈D̂i

f⊤j fj + γI)−1
∑

j:(xj ,yj)∈D̂i

f⊤j yj . (11)

Proof. First, let us focus on the influence of each pair of fj and yj , which can be calculated as:

∥yj − fjW∥2F = Tr[(yj − fjW)⊤(yj − fjW)], (12)
where Tr(·) represent the trace of the matrix. Hence, the optimization function can be represented as:∑

j:(xj ,yj)∈D̂i

∥yj − fjW∥2F + γ∥W∥2F

=
∑

j:(xj ,yj)∈D̂i

Tr[(yj − fjW)⊤(yj − fjW)] + γ∥W∥2F

=
∑

j:(xj ,yj)∈D̂i

Tr[y⊤
j yj − 2W⊤f⊤j yj +W⊤f⊤j fjW] + γTr(W⊤W)

=
∑

j:(xj ,yj)∈D̂i

[Tr(y⊤
j yj)− 2Tr(W⊤f⊤j yj) + Tr(W⊤f⊤j fjW)] + γTr(W⊤W).

(13)

Subsequently, we calculate the derivative of the optimization function, which can be calculated as:
∂

∂W
(
∑

j:(xj ,yj)∈D̂i

∥yj − fjW∥2F + γ∥W∥2F) = 2
∑

j:(xj ,yj)∈D̂i

(f⊤j fjW − f⊤j yj) + 2γW.

(14)
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To derive the analytical solution Wi, we set the derivative to zero and obtain:

2
∑

j:(xj ,yj)∈D̂i

(f⊤j fjWi − f⊤j yj) + 2γWi = 0

⇐⇒
∑

j:(xj ,yj)∈D̂i

f⊤j fjWi −
∑

j:(xj ,yj)∈D̂i

f⊤j yj + γWi = 0

⇐⇒(
∑

j:(xj ,yj)∈D̂i

f⊤j fj + γI)Wi =
∑

j:(xj ,yj)∈D̂i

f⊤j yj .

(15)

Since
∑

j:(xj ,yj)∈D̂i
f⊤j fj + γI is positive-definite for γ > 0, we can further obtain:

Wi = (
∑

j:(xj ,yj)∈D̂i

f⊤j fj + γI)−1
∑

j:(xj ,yj)∈D̂i

f⊤j yj . (16)

■

Second, we further prove the validity of our updating formula for the Knowledge Tracking Matrix.
Specifically, we provide detailed proof of the Woodbury Matrix Identity in Lemma 2. Subsequently,
based on Lemma 2, we present the analytical expression of the Knowledge Tracking Matrix and
theoretically prove the validity of its updating formula (5) in Lemma 3.

Lemma 2 (Woodbury Matrix Identity): For matrices A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×m, and
D ∈ Rn×n, if A and C are both reversible, we can derive the following expression:

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1. (17)

Proof. Firstly, we multiply the right-hand side of the equation A+BCD by A−1:

(A+BCD)A−1 = I+BCDA−1. (18)

Then we right-multiply it by B

(A+BCD)A−1B = B+BCDA−1B. (19)

Since C is reversible, we can obtain:

(A+BCD)A−1B = BC(C−1 +DA−1B). (20)

Therefore, we can represent BC as

BC = (A+BCD)A−1B(C−1 +DA−1B)−1. (21)

Substituting it into A+BCD, we can obtain

A+BCD = A+ (A+BCD)A−1B(C−1 +DA−1B)−1D. (22)

So (18) can be rewritten as

(A+BCD)A−1 = I+ (A+BCD)A−1B(C−1 +DA−1B)−1DA−1. (23)

Then we left-multiply it by (A+BCV)−1:

A−1 = (A+BCD)−1 +A−1B(C−1 +DA−1B)−1DA−1. (24)

Finally, we can transfer items to obtain

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1. (25)

■

Based on Lemma 2, we can further theoretically prove the validity of our updating formula for the
Knowledge Tracking Matrix (5) as follows:

Lemma 3: Consider the Recursive update formula for the Knowledge Tracking Matrix:

Ti = Ti−1 +Ti−1F̌
⊤
i (I− F̌iTi−1F̌

⊤
i )

−1F̌iTi−1, (26)
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where
F̌i = [fj ]j:(xj ,yj)∈Ďi

∈ R|Ďi|×dF , T0 = (
∑

j:(xj ,yj)∈D
f⊤j fj + γI)−1. (27)

The detailed analytical expression for the updated result Ti is:

Ti = (
∑

j:(xj ,yj)∈D̂i

f⊤j fj + γI)−1. (28)

Proof. Here, we use mathematical induction to prove this theorem in detail. Specifically, we
demonstrate that the initial Knowledge Tracking Matrix T0 satisfies (28). Next, assuming any Ti

satisfies (28), we prove that the updated Knowledge Tracking Matrix Ti+1 derived from (26) also
satisfies (28). The detailed proof process is as follows:

(1) Base Case: According to (27), the initial Knowledge Tracking Matrix is calculated as:

T0 = (
∑

j:(xj ,yj)∈D
f⊤j fj + γI)−1. (29)

Clearly, T0 satisfies the form of (28), meaning that the initial Knowledge Tracking Matrix T0 satisfies
the required condition.

(2) Inductive Step: For any Ti satisfying (28), the corresponding updated Ti+1 obtained via (26)
can be calculated as:

Ti+1 = Ti +TiF̌
⊤
i+1(I− F̌i+1TiF̌

⊤
i )

−1F̌i+1Ti. (30)

According to Lemma 2, we can obtain:

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1. (31)

Let A = T−1
i , B = (−F̌⊤

i+1), C = I, and D = F̌i+1, we can further obtain:

(T−1
i − F̌⊤

i+1F̌i+1)
−1 = Ti +TiF̌

⊤
i+1(I− F̌i+1TiF̌

⊤
i+1)

−1F̌i+1Ti. (32)

Substituting (32) into (30), we can obtain:

Ti+1 = (T−1
i − F̌⊤

i+1F̌i+1)
−1. (33)

According to (28), Ti can be calculated as:

Ti = (
∑

j:(xj ,yj)∈D̂i

f⊤j fj + γI)−1. (34)

Since D̂i+1 and D̂i satisfy:

D̂i+1 = D \
i+1⋃
k=1

Ďk = (D \
i⋃

k=1

Ďk) \ Ďi+1 = D̂i \ Ďi+1, (35)

we can further obtain:

Ti+1 = (T−1
i − F̌⊤

i+1F̌i+1)
−1

= (T−1
i −

∑
j:(xj ,yj)∈Ďi

f⊤j fj)
−1

= (
∑

j:(xj ,yj)∈D̂i

f⊤j fj + γI−
∑

j:(xj ,yj)∈Ďi

f⊤j fj)
−1

= (
∑

j:(xj ,yj)∈D̂i+1

f⊤j fj + γI)−1.

(36)

Clearly, the Wi+1 obtained via (26) also satisfies the form of (28).

(3) Conclusion: By induction, all Knowledge Tracking Matrices recursively updated through (26)
and (27) satisfy (28), thereby theoretically proving the validity of this update formula.

■
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Third, based on Lemma 1 and Lemma 3, we theoretically establish the validity of our ACU in
Theorem 1, demonstrating that the model Wi obtained recursively via our ACU is exactly equivalent
to the re-trained model Ŵi derived from the remained set D̂i.

Theorem 1: Consider the recursive updating formula for the analytic model:

Wi = (I+Ti

∑
j:(xj ,yj)∈Ďi

f⊤j fj)Wi−1 −Ti

∑
j:(xj ,yj)∈Ďi

f⊤j yj , (37)

where Ti is the Knowledge Tracking Matrix obtained by (5). The result of (37) is exactly equivalent
to that of (8), which corresponds to the optimal re-trained model obtained from the retained set D̂i.

Proof. Here, we perform a series of equivalence transformations based on (8) to derive (37), thereby
proving that the result obtained by our ACU is exactly equivalent to the optimal re-trained model.
According to (8), the re-trained model obtained using the remained set D̂i is:

Wi = (
∑

j:(xj ,yj)∈D̂i

f⊤j fj + γI)−1
∑

j:(xj ,yj)∈D̂i

f⊤j yj

= (
∑

j:(xj ,yj)∈D̂i

f⊤j fj + γI)−1(
∑

j:(xj ,yj)∈D̂i−1

f⊤j yj −
∑

j:(xj ,yj)∈Ďi

f⊤j yj)

= Ti(
∑

j:(xj ,yj)∈D̂i−1

f⊤j yj −
∑

j:(xj ,yj)∈Ďi

f⊤j yj)

= Ti

∑
j:(xj ,yj)∈D̂i−1

f⊤j yj −Ti

∑
j:(xj ,yj)∈Ďi

f⊤j yj .

(38)

By intuitively comparing (37) and (43), it remains to further analyze Ti

∑
j:(xj ,yj)∈D̂i−1

f⊤j yj , which
we denote as Hi for clarity. According to (5), Hi can be further expressed as:

Hi = Ti

∑
j:(xj ,yj)∈D̂i−1

f⊤j yj

= (Ti−1 +Ti−1F̌
⊤
i (I− F̌iTi−1F̌

⊤
i )

−1F̌iTi−1)
∑

j:(xj ,yj)∈D̂i−1

f⊤j yj

= Ti−1

∑
j:(xj ,yj)∈D̂i−1

f⊤j yj +Ti−1F̌
⊤
i (I− F̌iTi−1F̌

⊤
i )

−1F̌iTi−1

∑
j:(xj ,yj)∈D̂i−1

f⊤j yj

= Wi−1 +Ti−1F̌
⊤
i (I− F̌iTi−1F̌

⊤
i )

−1F̌iTi−1

∑
j:(xj ,yj)∈D̂i−1

f⊤j yj

= Wi−1 +Ti−1F̌
⊤
i (I− F̌iTi−1F̌

⊤
i )

−1F̌iWi−1.
(39)

Let Gi = −F̌iTi−1F̌
⊤
i , we can obtain:

I− (I+Gi)
−1Gi

=I− (I+Gi)
−1(I+Gi − I)

=I− [(I+Gi)
−1(I+Gi)− (I+Gi)

−1I]

=I− I+ (I+Gi)
−1I

=(I+Gi)
−1.

(40)

By substituting (40) into (39), we can obtain:

Hi = Wi−1 +Ti−1F̌
⊤
i (I− F̌iTi−1F̌

⊤
i )

−1F̌iWi−1

= Wi−1 +Ti−1F̌
⊤
i (I+Gi)

−1F̌iWi−1

= Wi−1 +Ti−1F̌
⊤
i [I− (I+Gi)

−1Gi]F̌iWi−1

= Wi−1 +Ti−1F̌
⊤
i [I− (I− F̌iTi−1F̌

⊤
i )

−1(−F̌iTi−1F̌
⊤
i )]F̌iWi−1

= Wi−1 + [Ti−1 +Ti−1F̌
⊤
i (I− F̌iTi−1F̌

⊤
i )

−1F̌iTi−1]F̌
⊤
i F̌iWi−1

= Wi−1 +TiF̌
⊤
i F̌iWi−1.

(41)

That is,
Ti

∑
j:(xj ,yj)∈D̂i−1

f⊤j yj = Wi−1 +TiF̌
⊤
i F̌iWi−1. (42)
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Since F̌i denotes the forgetting feature matrix formed by vertically stacking all feature vectors fj in
the forgetting set Ďi, it follows that

F̌⊤
i F̌i =

∑
j:(xj ,yj)∈D̂i

f⊤j fj . (43)

Finally, by substituting (42) and (43) into (43), we can further obtain:

Wi = Ti

∑
j:(xj ,yj)∈D̂i−1

f⊤j yj −Ti

∑
j:(xj ,yj)∈Ďi

f⊤j yj

= Wi−1 +TiF̌
⊤
i F̌iWi−1 −Ti

∑
j:(xj ,yj)∈Ďi

f⊤j yj

= Wi−1 +Ti

∑
j:(xj ,yj)∈D̂i

f⊤j fjWi−1 −Ti

∑
j:xj∈Ďi

f⊤j yj

= (I+Ti

∑
j:(xj ,yj)∈D̂i

f⊤j fj)Wi−1 −Ti

∑
j:(xj ,yj)∈Ďi

f⊤j yj .

(44)

■

B Appendix on Theoretical Analysis of System Efficiency

Here, we comprehensively analyze the computational overhead and storage overhead of our ACU,
thereby demonstrating its outstanding system efficiency. The detailed analyses are as follows:

(1) The computational overhead: For each unlearning request i, we need to execute (5) to update
the Knowledge Tracking Matrix and execute (6) to update the model, thereby obtaining Ti and Wi.
Since F̌i ∈ R|Ďi|×dF , Ti−1 ∈ RdF×dF , and Wi−1 ∈ RdF×dC , the computational complexities of
calculating Wi and Ti are O(dF

3 + |Ďi|dF2 + |Ďi|2dF + |Ďi|3) and O(dF
3 + (|Ďi| + dC)dF

2 +
|Ďi|dCdF), respectively. Therefore, the overall complexity for each unlearning request i can be
calculated as O(dF

3 + (|Ďi|+ dC)(dF
2 + |Ďi|dF) + |Ďi|3).

(2) The storage overhead: When processing continuously arriving unlearning requests, our ACU
only needs to store the current model and the Knowledge Tracking Matrix, without requiring access
to or storage of any samples from the remained set. Since Wi ∈ RdF×dC Ti ∈ RdF×dF , the overall
storage complexity can be calculated as O(dF

2 + dCdF).

C Appendix on Recursive Computation for CL Phase

Here, we demonstrate how to recursively compute the Knowledge Tracking Matrix during the CL
phase according to the continual learning request stream, without storing any historical samples. For
clarity, the continually arriving learning sets within the CL phase are denoted as {D̃1, D̃2, · · · , D̃M},
where D̃p represents the learning set associated with the learning request p and D =

⋃M
p=1 D̃p. For

each learning request p, we define the corresponding updated Knowledge Tracking Matrix as Tp−M ,
and the final Tp−M within the CL phase is exactly the initial T0 within the CU phase.

Upon receiving each learning set D̃p, we first extract the features to obtain {fj |(xj , yj) ∈ D̃p} using
(1). Subsequently, analogous to the recursive update formula within the CU phase (5), the Knowledge
Tracking Matrix Tp−1−M can be updated in a recursive manner as follows:

Tp−M = Tp−M−1 −Tp−M−1F̃
⊤
i (I+ F̃iTp−M−1F̃

⊤
i )

−1F̃iTp−M−1, (45)

where F̃p = [fj ]j:(xj ,yj)∈D̃p
∈ R|D̃p|×dF represents the learning feature matrix formed by vertically

stacking {fj |(xj , yj) ∈ D̃p} in the learning set D̃i. Furthermore, as a special case, the initial T−M is
computed as T−M = (γIdF×dF

)−1. Next, by recursively executing (45) across all learning requests,
we obtain the final T0 within the CL phase without storing any historical data.

Finally, in Lemma 4, we prove that the final result T0 exactly satisfies (48), and further demonstrate
in detail that the analytical expression of each resulting Tp−M coincides exactly with that obtained
using (5) in the CU phase. Consequently, the Knowledge Tracking Matrix can be recursively updated
using (45) for learning requests and (5) for unlearning requests, thereby enabling seamless integration
with both CL and CU phases.
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Lemma 4: Consider the recursive update formula for the Knowledge Tracking Matrix:

Tp−M = Tp−1−M −Tp−1−M F̃⊤
p (I+ F̃pTp−1−M F̃⊤

p )
−1F̃pTp−1−M , (46)

where
F̃p = [fj ]j:(xj ,yj)∈D̃p

∈ R|D̃p|×dF , T−M = (γIdF×dF)
−1. (47)

The resulting final T0 satisfies (4). More specifically, the detailed analytical expressions for each
updated result Tp−M are as follows:

Tp−M = (
∑

j:(xj ,yj)∈
⋃p

k=1 D̃k

f⊤j fj + γI)−1. (48)

Proof. Here, we provide the detailed proof using mathematical induction. Specifically, we first prove
that the initial T−M , i.e., the base case, satisfies (48). Subsequently, we demonstrate that for any
Tp−1−M satisfying (48), the corresponding updated Tp−M obtained through (46) also satisfies (48).
Finally, we prove that the final T0 obtained using (46) in the CL phase satisfies (4).

(1) Base Case: According to (47), the initial T−M is calculated as:

T−M = (γIdF×dF
)−1 = (

∑
j:(xj ,yj)∈∅

f⊤j fj + γI)−1. (49)

Clearly, T−M satisfies the form of (48), meaning that the base case satisfies the required condition.

(2) Inductive Step: By substituting A = T−1
p−1−M , B = F̃⊤

p , C = I, and D = F̃p into (17) of
Lemma 2, we can obtain:

(T−1
p−1−M + F̃⊤

p F̃p)
−1 = Tp−1−M −Tp−1−M F̃⊤

p (I+ F̃pTp−1−M F̃⊤
p )

−1F̃pTp−1−M . (50)

Therefore, for any Tp−1−M satisfying (48), the corresponding updated Tp−M obtained through (46)
can be calculated as:

Tp−M = Tp−1−M −Tp−1−M F̃⊤
p (I+ F̃pTp−1−M F̃⊤

p )
−1F̃pTp−1−M

= (T−1
p−1−M + F̃⊤

p F̃p)
−1.

(51)

Substituting (48) into (51), we can obtain:

Tp−M = (
∑

j:(xj ,yj)∈
⋃p−1

k=1 D̃k

f⊤j fj + γI+ F̃⊤
p F̃p)

−1

= (
∑

j:(xj ,yj)∈
⋃p

k=1 D̃k

f⊤j fj + γI)−1.
(52)

Clearly, Tp−M also satisfies (48), meaning that the inductive step satisfies the required condition.

(3) Conclusion: By induction, all Knowledge Tracking Matrices recursively updated through (46)
and (47) can be represented as (49). Since D =

⋃M
p=1 D̃p, the final T0 obtained through the CL

phase can be calculated as:

T0 = TM−M = (
∑

j:(xj ,yj)∈
⋃M

k=1 D̃k

f⊤j fj + γI)−1 = (
∑

j:(xj ,yj)∈D
f⊤j fj + γI)−1, (53)

which satisfies (4) and proves the validity of our recursive update formula for the Knowledge Tracking
Matrix during the CL phase.

■

D Appendix on Broader Impact

Our work on CU advances the broader objective of responsible AI by enabling the removal of
erroneous, biased, or privacy-sensitive information from continually trained models, without com-
promising the historical data privacy. By achieving exact and efficient unlearning while preserving
privacy, our ACU addresses a critical gap in the CU landscape. As such, we do not anticipate any
direct negative societal impact arising from our work. Nevertheless, since our method leverages
open-source pre-trained models as feature extractors does not unlearn the knowledge acquired during
the pre-training phase, careful selection of compliant and trustworthy pre-trained models is essential.
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E Appendix for Experimental Details

E.1 Details on Datasets & Settings

Here, we provide a detailed description of the dataset settings used in our experiments. Each dataset
is partitioned into the base samples for training the pre-trained base model, the CL training samples
for the CL phase, and the test samples for testing. The CL training samples have a portion of the
training samples further selected as forgetting samples for CU. Specifically, both CIFAR-10 and
CIFAR-100 contain a total of 50,000 samples in their training sets, and 10,000 samples in their test
sets. We select 10,000 samples as base samples for training the pre-trained base model and utilize the
remaining 40,000 samples for CL training. Subsequently, we select 10,000 samples from these 40,000
training samples as forgetting samples, and partition them into 5 and 25 forgetting sets, respectively,
to simulate different CU scenarios. Additionally, all the training is applied to the data augmentations,
including the random cropping, random horizontal flipping. Specifically, both the pre-trained base
model and the original model are trained for 300 epochs using the SGD optimizer with the Cosine
half-cycle decay to adjust the learning rate. Specifically, the training process is with the learning rate
initialized at 0.5, a weight decay of 5× 10−4, a momentum of 0.9, and the batch size of 256. All of
the training is conducted on 6 Nvidia RTX 4090D GPUs with 90 vCPUs Intel(R) Xeon(R).

E.2 Details on Evaluation Metrics

Here, let’s focus on the evaluation metrics used in our experiment. Specifically, to comprehensively
analyze the superior performance of our ACU, we select multiple primary metrics: average accuracy,
MIA indicator, model parameters, and cumulative runtime. These metrics are detailed as follows:

• Average Accuracy: We measure the unlearned model’s accuracy across distinct datasets to
evaluate the unlearning performance, as detailed below:

– Test Set Accuracy: This metric measures the unlearned model’s performance on unseen
samples, reflecting its actual performance. Formally, the test set accuracy is calculated
as the average accuracy across the test set.

– Retained Set Accuracy: This metric measures the unlearned model’s performance on
the training samples that should be retained, indicating the extent to which the CU
compromises the model’s fidelity. Formally, the retained set accuracy is calculated as
the average accuracy across the corresponding retained set D̂i.

– Forgetting Set Accuracy: This metric measures the unlearned model’s performance
on the training samples that should be forgotten, indicating the extent to which the
unlearning request has been fulfilled. Formally, the forgetting set accuracy is calculated
as the average accuracy across all previously seen forgetting sets

⋃i
k=1 Ďk.

To more clearly illustrate the unlearning effectiveness, we also calculated the gaps in test set
accuracy, retained set accuracy, and forgetting set accuracy between each method and the
optimal re-trained model, denoted as ∆Retain, ∆Forget, and ∆Test, respectively.

• MIA Indicator Gap: The MIA indicator [57] is widely employed to evaluate the effective-
ness of unlearning. Specifically, the binary MIA classifier is trained to determine whether a
given sample was used during model training, using both the retained and test sets. The MIA
indicator gap is computed as the average accuracy of this MIA classifier across all previously
seen forgetting sets. Notably, due to the binary nature of the classifier, the MIA indicator gap
is not inherently better when lower, as an attacker could simply invert the binary classifier to
achieve high accuracy, thereby raising additional privacy concerns. Moreover, since samples
in the forgetting sets have never been exposed to the re-trained model, the accuracy of MIA
on this model represents the optimal result. Consequently, we adopt the MIA indicator gap
difference as our metric to evaluate the performance of each method, denoted as ∆MIA.

• Model Parameters Gap: More directly, we employ the model parameters gap to analyze
unlearning performance, which is calculated as the normalized difference between the
unlearned model parameters and those of the re-trained model, and denoted as ∆Params.

• Cumulative Runtime: To analyze unlearning efficiency, we measure the cumulative runtime
(seconds) of all methods for processing all unlearning requests.
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E.3 Details on Baselines

For the details of the machine unlearning, we provide a detailed description of the baselines used
in our experiments, along with their corresponding settings. Specifically, each selected baseline is
outlined as follows:

• Finetune [17]: This method leverages the phenomenon of catastrophic forgetting by simply
fine-tuning the model on the retained set, thereby diminishing the influence of the forgetting
set.

• L1-Sparsity [21]: This approach introduces weight sparsity into the unlearning process.
The model is fine-tuned on the retained set with an L1 regularization term.

• NegGrad [23]: Based on the intuitive idea of forgetting by increasing error, this method
forces the model to maximize the loss on the forgetting set. However, this may significantly
impair the overall model performance.

• NegGrad+ [11]: This method combines the principles of Finetune and NegGrad, aiming
to balance forgetting and performance retention by simultaneously maximizing the loss on
the forget set while minimizing it on the retain set.

• SCRUB [11]: Extending the NegGrad+ framework, this method recasts unlearning as a
student-teacher distillation problem. It minimizes the distributional discrepancy between the
student and teacher models on the retained set, while maximizing it on the forgetting set.

• WoodFisher [55]: This method aims to achieve (ϵ, δ)-forgetting by estimating the influence
of individual parameters and removing their contributions to the forgetting data.

The training configurations for each baseline are summarized as follows:

• Finetune: For each unlearning request, we trained the model on the retained set for 10
epochs with a learning rate of 1× 10−2.

• L1-Sparsity: For each unlearning request, we trained the model on the retained set for 10
epochs with a learning rate of 1× 10−2 and a sparsity-promoting regularization parameter
of 1× 10−3.

• NegGrad: For each unlearning request, we trained the model on the forgetting set for 5
epochs with a learning rate of 1× 10−3.

• NegGrad+: For each unlearning request, we trained the model on the forgetting set and
retained set for 10 epochs with a learning rate of 1× 10−3 and a weighting factor of 0.95 to
balance the two objects in the loss function.

• SCRUB: For each unlearning request, we trained the model on forgetting set and retained
set for 5 epochs with a learning rate of 1× 10−3, a temperature scale of 4, a max-steps of 4,
an α of 0.5, and γ of 0.5.

• WoodFisher: For each unlearning request, we updated the model weight by set the parameter
α for Woodfisher Hessian Inverse approximation with 0.2.

• RandomLabel: For each unlearning request, we trained the model on the relabeled forget-
ting set and the retained set for 10 epochs with a learning rate of 1× 10−3.

In our experiments, the hyperparameter settings as above refer to the relevant settings of the original
paper, and make some minor adjustments to adapt to the proposed CU scenario.
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