
ar
X

iv
:2

50
5.

12
21

0v
1

 [
cs

.C
R

]
 1

8
M

ay
 2

02
5

Nonmalleable Progress Leakage

ETHAN CECCHETTI∗, University of Wisconsin–Madison, USA

Information-flow control systems often enforce progress-insensitive noninterference, as it is simple to un-

derstand and enforce. Unfortunately, real programs need to declassify results and endorse inputs, which

noninterference disallows, while preventing attackers from controlling leakage, including through progress

channels, which progress-insensitivity ignores.

This work combines ideas for progress-sensitive security with secure downgrading (declassification and

endorsement) to identify a notion of securely downgrading progress information. We use hyperproperties

to distill the separation between progress-sensitive and progress-insensitive noninterference and combine

it with nonmalleable information flow, an existing (progress-insensitive) definition of secure downgrading,

to define nonmalleable progress leakage (NMPL). We present the first information-flow type system to allow

some progress leakage while enforcing NMPL, and we show how to infer the location of secure progress

downgrades. All theorems are verified in Rocq.

1 INTRODUCTION
Information flow control (IFC) is a powerful tool for enforcing information security. The most

common guarantee is noninterference, which prohibits a program’s more-sensitive inputs from

influencing—interfering with—its less-sensitive outputs [Goguen and Meseguer 1982]. Different

requirements give rise to different formulations, the most popular being progress-insensitive non-
interference (PINI)—which allows the program’s termination behavior to leak information—and

progress-sensitive noninterference (PSNI)—which does not. While PSNI provides stronger security,

enforcing it requires extreme limits on any program construct that may not terminate, including

simple while loops, leading many tools to enforce PINI instead.

Unfortunately, PINI is unsuitable in many real systems for two opposite reasons. First, noninter-

ference is too restrictive. Many applications need untrusted inputs to sometimes influence decisions

and allow controlled release of outputs derived using secrets. Second, the termination channel

left open by progress-insensitivity allows arbitrary leakage, in theory in a single run [Askarov

et al. 2008], or easily across multiple runs if the system automatically restarts when hanging. This

leakage makes PINI too permissive in the presence of active attackers.

Applications mixing secrets with code from untrusted sources provide an illustrative example.

Arden et al. [2012] suggest IFC types to enforce security in such a setting, but nontermination poses

a concern. Consider the pseudocode in Figure 1 for a mobile app that displays nearby attractions

on a map, revealing only the user’s region to the server. IFC types can ensure that the application-

supplied buildMap does not send loc to the server, only region , but there remain termination

channels. Lines 1 or 2 might hang due to poor signal, revealing precise location details. Line 5 could

hang benignly, due to a code bug or a non-responsive server, or maliciously, in an attempt to reveal

loc through a termination channel.

An application might reasonably choose to accept unlikely and minimal leakage due to poor

signal and ignore the app server hanging, which leaks nothing, but disallow the last, malicious,

option. Unfortunately, enforcing PSNI would break the application, disallowing the minimal poor-

signal leakage, while enforcing only PINI would allow the malicious progress leakage. This work

shows how to differentiate these termination channels, formally define the desired restriction, and

enforce it with a type system.

∗
Work done in part while author was at the University of Maryland.

Author’s address: Ethan Cecchetti, University of Wisconsin–Madison, Madison, Wisconsin, USA, cecchetti@wisc.edu.

HTTPS://ORCID.ORG/0000-0001-7900-8328
https://orcid.org/0000-0001-7900-8328
https://arxiv.org/abs/2505.12210v1

Ethan Cecchetti

1 loc = system.getLocation()
2 region = system.getRegion()
3 // Fetch attractions in region and loop
4 // over them, placing nearby ones on map
5 render(appCode.buildMap(loc, region))

Fig. 1. Pseudocode for app mapping nearby attractions.

To accomplish this goal, we turn to a long line of work generalizing noninterference to support

different notions of secure declassification and endorsement, known collectively as downgrad-
ing [Cecchetti et al. 2017, 2021; Chong and Myers 2006, 2008; Li and Zdancewic 2005; Mantel

and Sands 2004; Sabelfeld and Myers 2003b; Sabelfeld and Sands 2005; Soloviev et al. 2024; Waye

et al. 2015; Zdancewic and Myers 2001]. Unfortunately, these conditions are generally progress-

insensitive, at best suggesting enforcing a progress-sensitive variant by preventing any progress

leakage [Askarov and Myers 2011]. This solution, while effective, imposes the same constraints

as PSNI, either requiring all loop conditions to be fully public values [O’Neill et al. 2006; Volpano

and Smith 1997], or prohibiting any publicly visible operation after a loop with a non-public condi-

tion [Bay and Askarov 2020; Moore et al. 2012], making programming nearly untenable and failing

to address the above example.

To circumvent this crushing limitation, we allow programs to explicitly downgrade progress

information. Some prior work supports progress downgrades, but they either appeal to halting

oracles [Moore et al. 2012], making them unrealistic, quantify how much information leaks [Moore

et al. 2012], making them non-compositional, or provide intensional definitions of security based

on the authority of the declassifier [Bay and Askarov 2020]. Perhaps more importantly, they all

consider only confidentiality and are thus unable to create, or even express, restrictions on who can

influence the timing or content of declassifications, precisely what is needed to safely mix secrets

with code and inputs from untrusted sources.

This work addresses this shortcoming by defining progress-based variants of robust declas-

sification (RD) [Zdancewic and Myers 2001], and its extensions transparent endorsement and

nonmalleable information flow (NMIF) [Cecchetti et al. 2017], and showing how to restrict progress

downgrades to enforce them. These conditions constrain the impact of attackers on declassifications

and secrets on endorsements, exactly what is needed when combining secrets and untrusted code.

However, all existing enforcement mechanisms are progress-insensitive [Askarov and Myers 2011;

Cecchetti et al. 2017; Chong and Myers 2006; McCall et al. 2023; Myers et al. 2006], seriously limiting

their power to secure complex systems.

To build these conditions, we formalize leakage-free progress (LFP)—the distinction between PSNI

and PINI—as a hyperproperty [Clarkson and Schneider 2010]. Hyperproperties, or sets of sets of

traces, provide a framework for relating multiple executions of the same program, making them

ideal for defining complex information security properties. Our approach draws insights from

the definitions of LFP as well as RD and NMIF to define nonmalleable progress leakage (NMPL), a

progress-based variant of NMIF that separates progress-sensitive and progress-insensitive NMIF.

We also define the first information-flow type system to enforce NMPL without prohibiting

all progress leakage. This result shows that meaningful end-to-end security is achievable in the

presence of malicious code and data without imposing draconian restrictions on basic looping

constructs. For instance, it supports the desired policy in the mapping example above.

Finally, we leverage the static type system to infer progress downgrades. The inference procedure
is efficient, adds a minimal number of downgrades, and is sound and complete with respect to

Nonmalleable Progress Leakage

the type system—any program it produces is well-typed, and it will find a way to add well-typed

progress downgrades if one exists. The existence of such a procedure is a powerful result. It can

automatically verify that all progress leakage satisfies NMPL while identifying where leakage can

occur to support programmer audits.

The main contributions of this work are as follows.

• Section 3 defines LFP as a hyperproperty and generalizes it to define NMPL and progress-

sensitive NMIF.

• Section 4 defines a calculus and type system to enforce progress-sensitive NMIF and proves

it secure.

• Section 5 presents a sound, complete, and efficient procedure for inferring a syntactically

minimal placement of progress downgrade instructions within a program.

• All theorems in this paper have been mechanically verified in the Rocq Prover (formerly

Coq) [Rocq development team 2025], the first mechanized statements or proofs of RD and

NMIF of which we are aware. Section 6 gives an overview of the verification effort.

Section 7 presents related work and Section 8 concludes.

2 LABEL MODEL
Before defining new notions of security, we first describe the structure of our security policies. As

is standard, we express information flow policies through a set of labels L that form a preorder.

That is, there must be a reflexive and transitive ordering relation ⊑ (pronounced “flows-to”) where

ℓ1 ⊑ ℓ2 means that ℓ2 is at least as restrictive as ℓ1, so data with label ℓ1 may safely influence data

with label ℓ2.

Because the primary security conditions in this work—robust declassification, transparent en-

dorsement, and nonmalleable information flow (NMIF)—concern the interaction of confidentiality

and integrity, the labels must express both. Prior work accomplishes this goal by demanding a

distributive lattice over a set of principals representing their authority. A label is then an ordered

pair of the confidentiality authority and the integrity authority [Acay et al. 2021; Cecchetti et al.

2017; Chong and Myers 2006; Zagieboylo et al. 2019]. This structure is simple and creates an obvious

way to convert between confidentiality and integrity, which is necessary for defining and enforcing

security. However, it also forces the space of confidentiality labels and integrity labels to be the

same, limiting its applications.

This work extends NMIF-style definitions and results to a wider range of information-flow policy

spaces by decoupling the confidentiality policies C from the integrity policies I. Each must form a

preorder (denoted ⊑C and ⊑I , respectively), but the sets of policies need not be the same, or even

contain any overlapping elements. Intuitively, 𝑐 ⊑C 𝑐′ means the policy 𝑐′ demands at least as

much secrecy as 𝑐 , while 𝑖 ⊑I 𝑖′ means that 𝑖 is at least as trusted as 𝑖′. It is therefore safe to use

data labeled 𝑐 (or 𝑖) in a context expecting data labeled 𝑐′ (or 𝑖′). Labels are simply ordered pairs

L = C × I with ⊑ defined pointwise. We also require a least label ⊥ ∈ L such that ⊥ ⊑ ℓ for any

label ℓ .

Though confidentiality policies and integrity policies come from different spaces, we still need

a way to relate the two. We thus require mappings between them in both directions. Using the

language of Cecchetti et al. [2017], we call these the voice, ∇ : C → I, and the view, Δ : I → C.
The voice of a confidentiality policy 𝑐 represents the least trustworthy integrity level such that

everyone who can write to ∇(𝑐) can read 𝑐 . Similarly, the view of 𝑖 is the most secret confidentiality

level where everyone who can write 𝑖 can also read Δ(𝑖).
To formalize this intuition, the mappings must satisfy two properties. First, they must be anti-

monotonic. Since 𝑐1 ⊑C 𝑐2 means anyone who can read 𝑐2 can also read 𝑐1, any integrity level where

everyone can read 𝑐2 also guarantees everyone can read 𝑐1. In other words, ∇(𝑐2) ⊑I ∇(𝑐1). A

Ethan Cecchetti

dual argument holds for Δ. Second, 𝑖 ⊑I ∇(𝑐) means that anyone who can write to data labeled 𝑖

must be able to read data labeled 𝑐 . But 𝑐 ⊑C Δ(𝑖) means exactly the same thing! We therefore

require 𝑖 ⊑I ∇(𝑐) ⇐⇒ 𝑐 ⊑C Δ(𝑖). Together, these properties make (∇,Δ) an antitone Galois
connection [see e.g., Galatos 2007].

As in prior work [Acay et al. 2021; Zagieboylo et al. 2019], the voice and view combine to

form a reflection operator JJJJ

 : L → L that flips the confidentiality and integrity of a label:

JJJJ

 (𝑐, 𝑖) def

= (Δ(𝑖),∇(𝑐)). This simple construction extends the properties of ∇ and Δ to JJJJ

 , making JJJJ

an antitone Galois connection between L and itself: ℓ ⊑ JJJJ

 (ℓ ′) ⇐⇒ ℓ ′ ⊑ JJJJ

 (ℓ).
This reflection operator is critical for enforcing downgrade-tolerant security conditions. Prior

work has shown downgrading to be secure only when anyone who can influence the data can also

read it—𝑖 ⊑I ∇(𝑐) for data labeled (𝑐, 𝑖) [Acay et al. 2021; Cecchetti et al. 2017; Zagieboylo et al.

2019]. We will see in Section 4 that the same holds for downgrading progress. Since (∇,Δ) form an

antitone Galois connection, this requirement is equivalent to the label flowing to its own reflection.

Using the terminology of Zagieboylo et al. [2019], we refer to labels that fail this requirement as

compromised.

Definition 1 (Compromised Label [Zagieboylo et al. 2019]). A label ℓ is compromised if ℓ @ JJJJ

 (ℓ);
not everyone who can write to it can read from it. A label is non-compromised if ℓ ⊑ JJJJ

 (ℓ).

Further Generality. The results of this paper actually hold for an even more general structure

than the one described above. The labels L need only form an arbitrary preorder, without explicit

separation of confidentiality and integrity. Every pair of labels must have some lower bound, but

there need not be a global least element.
1
Finally, the reflection operator JJJJ

 simply needs to be

anti-monotonic, not an antitone Galois connection.

This added generality does not complicate the proofs, but it does complicate intuition. In fact,

I have yet to find a reasonable intuitive interpretation of the security results with a label model

that does not fit the separate confidentiality and integrity structure above. However, there is no

reason to constrain the technical result by the limits of the author’s imagination, so all formal

definitions and theorems are stated and proven in the more general model, except where explicitly

noted otherwise.

3 PROGRESS-SENSITIVE HYPERPROPERTIES
Progress-(in)sensitive security conditions generalize the classic notion of termination-(in)sensitive

security [Sabelfeld and Myers 2003a; Volpano and Smith 1997; Volpano et al. 1996]. They consider

traces of effectful programs and properly account for leakage during execution, even when programs

might not terminate. Existingwork on progress-sensitivity has primarily focused on noninterference

and models attacker knowledge by the set of possible initial memories consistent with the attacker’s

observations [Askarov et al. 2008; Askarov and Myers 2011; Askarov and Sabelfeld 2007; Bay and

Askarov 2020; Moore et al. 2012]. Progress-sensitive noninterference (PSNI) then requires that

the set of memories remain constant as the program executes—and the attacker observes more.

Progress-insensitive noninterference (PINI) is more permissive, requiring only that an attacker learn

no more from observing an event than from knowing the event exists. This formulation provides

a strong intuition for noninterference. However, its extensions to robust declassification either

treat confidentiality and integrity asymmetrically [Askarov and Myers 2011], making it unclear if it

extends to nonmalleable information flow, or assume traces identify syntactic downgrades [McCall

et al. 2023], requiring the language to track leakage for the definition to make sense.

1
If L is finite, pairwise lower bounds are equivalent to a global lower bound, but if L is infinite, pairwise bounds are weaker.

Nonmalleable Progress Leakage

We instead turn to hyperproperties [Clarkson and Schneider 2010], another framework commonly

used for information security conditions, including noninterference, robust declassification, and

nonmalleable information flow. A hyperproperty is a set of sets of traces, and various forms

of noninterference are classic examples of hyperproperties [e.g., Abate et al. 2019; Beutner and

Finkbeiner 2022; Clarkson and Schneider 2010; Sousa and Dillig 2016; Unno et al. 2021]. For instance,

PSNI—an attacker learning nothing—requires any two traces with public-equivalent inputs to look

the same at every point in execution, lest the adversary distinguish the inputs, thereby learning a

secret. Notably, while many information-security formalizations use hyperproperties, most are not

progress sensitive. They either ignore nonterminating programs entirely—resulting in progress-

and termination-insensitive security definitions—or require termination behaviors to match, but

ignore the effects of nonterminating programs, creating termination-sensitive definitions unsuitable
for effectful programs.

To formalize progress-sensitive security through hyperproperties, we view program behaviors

as traces. A trace 𝑡 must include the program’s inputs, denoted in(𝑡), and any visible effects the

program produces during execution. A trace may be either finite—if the execution terminates—or

infinite—if it diverges. We also require an equivalence relation ≈D on both inputs and finite prefixes

of traces, where 𝑝1 ≈D 𝑝2 means 𝑝1 is indistinguishable from 𝑝2 to a low observer D.

Many definitions separate “low” from “high” by a single label 𝐿—anything that flows to 𝐿 is “low”

and all other labels are “high”—we follow a more expressive approach and define security relative

to an arbitrary downward-closed set of labels D ⊆ L, which need not have a maximal element.

Labels in D are considered “low” while labels not in D are “high.”

These basic building blocks are sufficient to define our security properties. Section 4.5 below

shows one way to instantiate these primitives and enforce security.

3.1 Noninterference and Leakage-Free Progress
We begin with noninterference, partially to fill a minor gap in the space of hyperproperty-based

noninterference definitions, but primarily for expository reasons. The definition of nonmalleable

information flow, and thus nonmalleable progress leakage, builds directly on that of noninterference

while adding significant complexity.

The strongest condition, PSNI, is also the simplest to define. As described above, PSNI requires

two traces with indistinguishable inputs to produce indistinguishable executions. To formalize

that as a hyperproperty, recall that a hyperproperty is a set of sets of traces. PsNiD is then the

hyperproperty such that, for any set of traces 𝑇 ∈ PsNiD and any pair of traces 𝑡1, 𝑡2 ∈ 𝑇 , if those
traces have D-equivalent inputs—in(𝑡1) ≈D in(𝑡2)—then every observation in one trace must also

appear in the other, up to D-equivalence. In other words, an adversary who can see only data and

events with labels in D learns nothing from a full execution trace beyond what they could learn

from that execution’s input.

As is standard [Clarkson and Schneider 2010], we model observations as finite prefixes of a trace,

resulting in the following definition, where 𝑝 ≤ 𝑡 denotes that 𝑝 is a finite prefix of 𝑡 , and T is the
set of all possible traces.

PsNiD
def

= {𝑇 ⊆ T | ∀𝑡1, 𝑡2 ∈ 𝑇 . in(𝑡1) ≈D in(𝑡2) =⇒ ∀𝑝1 ≤ 𝑡1 . ∃𝑝2 ≤ 𝑡2. 𝑝1 ≈D 𝑝2}

Progress-insensitivity, by contrast, allows an attacker to gain information by learning an event

exists, but no additional information from seeing its contents [Askarov and Sabelfeld 2007]. The

hyperproperty must therefore allow traces to “stop early” from D’s perspective due to infinite

loops. When this happens, the trace 𝑡↑ with an infinite loop will appear to be a prefix of 𝑡↓, the one
without. When considering finite observations, we do not know, a priori, which trace is which.

Ethan Cecchetti

However, every prefix of 𝑡↑ must be indistinguishable from some prefix of 𝑡↓, and any sufficiently

short prefix of 𝑡↓ must be indistinguishable from a prefix of 𝑡↑.
To make this idea formal, given prefixes 𝑝1 and 𝑝2 of traces withD-equivalent inputs, we require

one of 𝑝1 and 𝑝2 to be D-equivalent to a prefix of the other. Letting 𝑝1 ≤D 𝑝2 denote that 𝑝1 is

indistinguishable from a prefix of 𝑝2—there is some 𝑝′
2
≤ 𝑝2 such that 𝑝1 ≈D 𝑝′

2
—we define PiNiD

as follows.

PiNiD
def

= {𝑇 ⊆ T | ∀𝑡1, 𝑡2 ∈ 𝑇 . in(𝑡1) ≈D in(𝑡2) =⇒ ∀𝑝1 ≤ 𝑡1, 𝑝2 ≤ 𝑡2 . (𝑝1 ≤D 𝑝2 ∨ 𝑝1 ≥D 𝑝2)}
Leakage-free progress. The distinction between PSNI and PINI is whether progress itself can

leak information. A program does not leak information through progress if, after any sequence of

events, the existence of another event reveals no further information about the program’s secret

inputs. More generally—including both confidentiality and integrity—the sequence of low (public

or trusted) events a program produces must entirely determine if another low event occurs. We call

this security property leakage-free progress (LFP) and present the first hyperproperty formalization

of it.

To capture the above intuition, begin with the same setup as in PINI: finite prefixes 𝑝1 ≤ 𝑡1
and 𝑝2 ≤ 𝑡2 from traces where in(𝑡1) ≈D in(𝑡2). If 𝑝1 appears to be a strict prefix of 𝑝2, denoted

𝑝1 <D 𝑝2, that means it is possible for an execution producing the D-visible events in 𝑝1 to visibly

progress—produce another D-visible event. Since LFP demands that the visible events determine

the progress behavior, 𝑡1 must progress, including some D-visible event beyond the end of 𝑝1. We

thus define LFP as follows, letting ProgD (𝑝, 𝑡) denote that trace 𝑡 has another D-visible event

beyond the end of prefix 𝑝 . Formally, ProgD (𝑝, 𝑡)
def

= ∃𝑝′ ≤ 𝑡 . 𝑝 <D 𝑝′,

LfpD
def

= {𝑇 ⊆ T | ∀𝑡1, 𝑡2 ∈ 𝑇, 𝑝1 ≤ 𝑡1, 𝑝2 ≤ 𝑡2 . 𝑝1 <D 𝑝2 =⇒ ProgD (𝑝1, 𝑡1)}
The requirement that in(𝑡1) ≈D in(𝑡2) is implicit here; the premise 𝑝1 <D 𝑝2 can only hold with

indistinguishable inputs.

Notably, the event 𝑡1 progresses with need not match that of 𝑡2; LFP allows leakage through the

content of events, just not their existence. A program that outputs its secret to a public channel and

then terminates satisfies LFP, as progress is not the leakage vector. On its own, LFP is therefore

unlikely to be a useful security condition, but it precisely defines the distinction between PINI, which

allows leakage only through progress, and PSNI, which disallows all leakage. Indeed, satisfying

PSNI is the same as satisfying both PINI and LFP.

Theorem 1. For any D ⊆ L, PsNiD = PiNiD ∩ LfpD .

These definitions are parameterized for a single attacker, but each extends simply to all attackers
by taking the intersection over all downward-closed sets D:

PsNi def

=
⋂

PsNiD PiNi def

=
⋂

PiNiD Lfp def

=
⋂

LfpD
Hypersafety and Hyperliveness. Hyperproperties are often divided into hypersafety, requiring
that bad things don’t happen, and hyperliveness, requiring that good things do happen. Non-

interference is a classic example of not just a hyperproperty, but specifically hypersafety [e.g.,

Abate et al. 2019; Beutner and Finkbeiner 2022; Sousa and Dillig 2016]. Indeed, the more common

progress-insensitive noninterference is hypersafety.
Progress-sensitive noninterference, however, is not. It is subset-closed, but it both prohibits bad

things—attackers cannot learn from events they see—and requires good things—both executions

make progress or both silently diverge. Every hyperproperty is the intersection of a hypersafety

property and a hyperlivness property [Clarkson and Schneider 2010], and the decomposition

of PsNi is precisely progress insensitivity and progress leakage: PiNi is hypersafety, while Lfp

Nonmalleable Progress Leakage

is hyperliveness. This decomposition and a similar note in Section 3.2, which are not stated as

theorems, are the only claims in this paper not verified in Rocq.

3.2 Robust Declassification
Robust declassification (RD) recognizes that many programs need to declassify information to

function, inherently violating noninterference. Instead, it prohibits an untrusted attacker from

influencing the timing or content of declassifications. Identifying influence requires multiple

program executions: two runs with different attacks must produce the same declassifications. This

idea seems to suggest a definition similar to noninterference, where traces with the same trusted

inputs must produce the same declassifications. Unfortunately, semantically, declassifications are

defined as (confidentiality) violations of noninterference, meaning detecting them requires two

executions with different secrets. Existing formalizations of RD therefore use four runs [Cecchetti

et al. 2017; Chong and Myers 2006; Myers et al. 2006], comparing two pairs of inputs where secret

inputs differ within a pair and an attack varies across the pairs.

These definitions model attacks by leaving holes in commands and inserting low-integrity

attacker code. To keep our hyperproperties language-agnostic, we instead vary untrusted values in

the initial input. These formulations produce equivalent guarantees for languages with conditional

branches when enforcement theorems quantify over all programs, as is the case for our example

language in Section 4.5. To model a hole with either of two attacks, simply hard code the attacks as

branches of an if statement conditioned on part of the low-integrity input not used elsewhere, and

vary only that value.

Defining Attackers. Making these ideas precise requires dividing confidentiality into “public” and

“secret” and integrity into “trusted” and “untrusted.” Prior approaches that demand confidentiality

and integrity be dual policy lattices require public labels—the attacker’s ability to read data—and

untrusted labels—the attacker’s ability to write data—to be the same policy sets [Acay et al. 2021;

Askarov and Myers 2011; Cecchetti et al. 2017; Chong and Myers 2006; McCall et al. 2023; Myers

et al. 2006; Zagieboylo et al. 2019]. Since our confidentiality and integrity policies may come from

disperate spaces (see Section 2), we require a more general definition. We bound an attacker’s

power by two downward-closed sets of labels, representing public and trusted policies, respectively,

and require only that the attacker can read any security level they can write; the view of untrusted

integrity must be public.

Definition 2 (Attacker). A pair of label setsA = (P,T) is an attacker if P = 𝑃 ×I and T = C ×𝑇
for downward-closed sets 𝑃 ⊆ C and 𝑇 ⊆ I such that Δ(𝑇) ⊆ 𝑃 .

Note that we could have required the voice of secret confidentiality be trusted—∇(𝑃) ⊆ 𝑇 . The
definitions are equivalent since (∇,Δ) form an antitone Galois connection.

Recall from Definition 1 that non-compromised labels—those where ℓ ⊑ JJJJ

 (ℓ)—aim to capture

labels where anyone who can influence the data can also read it. That means, for every attacker, a

non-compromised label should be either public—the attacker can read it—or trusted—the attacker

cannot write it—or both. Indeed, Definition 2 enforces this property.

Proposition 1. For any attacker (P,T) and any label ℓ ∈ L, if ℓ ⊑ JJJJ

 (ℓ), then ℓ ∈ P ∪ T .

As with the label model itself (Section 2), our theorems support a more general definition, requir-

ing only that P and T be downward-closed and satisfy Proposition 1. It is again unclear, intuitively,

what this more general structure represents. The proofs, however, rely only on Proposition 1, so

there is no reason to restrict the formalism.

Ethan Cecchetti

Defining Robust Declassification. This notion of an attacker allows us to formalize the above

intuition for RD that an attacker should have no influence over the timing or content of declassi-

fications. Prior definitions only reason about the behavior of terminating traces [Cecchetti et al.

2017; Chong and Myers 2006; Myers et al. 2006], making them not only progress-insensitive, but

entirely unable to reason about progress leaks. Their structure, however, provides useful intuition.

They require that, given any set of four traces 𝑡11, 𝑡12, 𝑡21, 𝑡22 with inputs 𝜎𝑖 𝑗 = in(𝑡𝑖 𝑗), if
(1) 𝜎11 ≈P 𝜎21 and 𝜎12 ≈P 𝜎22—(𝜎11, 𝜎21) and (𝜎12, 𝜎22) are the pairs of inputs varying secrets,

(2) 𝜎11 ≈T 𝜎12 and 𝜎21 ≈T 𝜎22—only the attack varies across the pairs, and

(3) all traces terminate,

then the second attack cannot leak secrets unless the first does as well. That is, 𝑡11 ≈P 𝑡21 implies

𝑡12 ≈P 𝑡22.

This formulation has two major shortcomings. First, it cannot reason about any divergent

programs or constrain progress leakage. Second, enforcing it requires prohibiting endorsement, as

endorsed data may safely influence future declassifications.

The key to solving both problems lies in explicitly considering partial executions and only

restricting declassification prior to any (semantic) endorsements. More formally, given any program

point in the first trace 𝑝 ≤ 𝑡11, if no (semantic) endorsements have occurred by 𝑝 and the first attack

cannot yet differentiate the secrets then the second attack must not leak information to that point.

Checking for semantic endorsements is simple: only consider prefixes in the second attack

𝑝12 ≤ 𝑡12 when 𝑝12 ≈T 𝑝 . If an endorsement has already occurred, there will be no such prefixes

and the condition will hold vacuously.

Checking if the first attack leaks nothing up to 𝑝 is more complicated for two reasons. First,

we must pick an appropriate definition for “leaks nothing.” One might assume that we should

use whatever notion of leakage we aim to constrain: a PSNI-like structure for constraining all

leakage, a PINI-like structure to allow progress leakage but nothing else, or an LFP-like structure

to prohibit only progress leakage. Unfortunately, using this approach for both attacks does not give

the desired result.

Consider the following program with a public–untrusted label for 𝑎 and secret labels for 𝑦 and 𝑧.

while 𝑎 = 𝑦 do skip ;
declassify 𝑧 to PublicTrusted

A progress-insensitive definition should ignore the progress leak in the first line, correctly identify

that the attacker cannot influence the second line, and consider this program (progress-insensitively)

robust. However, an RD definition using a progress-insensitive notion of leakage for the first attack—

the one used to check if leakage is allowed—would incorrectly classify the program. Given secrets𝑦1
and 𝑦2, the first attack could set 𝑎 = 𝑦1, sending 𝑡11 into an infinite loop and causing all leakage

in the first attack to stem from progress. The result would satisfy any progress-insensitive notion

of “leaks nothing.” However, a second attack where 𝑎 differs from both 𝑦1 and 𝑦2 would cause 𝑡12
and 𝑡22 to both execute line two, producing more direct (non-progress) leakage and appear insecure.

Sending the program into an infinite loop causes the attacker to (voluntarily) learn less than the

developer intended, and should be irrelevant to a progress-insensitive condition. Prior work rules

out such nontermination-based irrelevant attacks by demanding termination [Chong and Myers

2006; Myers et al. 2006]. The corresponding progress formulation would require the first attack to

progress beyond the current execution point 𝑝 for both secrets.

Such a condition ensures the first attack does exhibit a progress leak up to 𝑝 . When combined with

the existing PINI-style assumption, Theorem 1 tells us the attack cannot leak anything, regardless of

the channel; it must exhibit PSNI up to 𝑝 . We therefore require this condition directly and prohibit

Nonmalleable Progress Leakage

all leakage between 𝑡11 and 𝑡21. The definition of “leaks nothing” in the second attack, however,

determines the version of RD.

The second complication of considering leakage up to some prefix 𝑝 ≤ 𝑡11 is that 𝑝 is only meant

to limit the impact of endorsements. It is insufficient to simply require 𝑡21, the trace with the other

secret, match 𝑝 exactly. Consider the following program with the same labels as above.

(while 𝑦 do skip) ; 𝑎 B 5

All leakage in this program is robust, as the attack has no impact on the behavior. However, using

secret values 0 and 1, if 𝑝 ≤ 𝑡11 happens to not include the assignment to 𝑎—though it exists

in 𝑡11—𝑡21 could match it, and the requirement suggested above would demand the second attack

leak nothing, which is clearly false.

To handle this situation correctly, we formalize the intuition that the first attack satisfies PSNI

up to 𝑝 by requiring it to hold for every prefix of 𝑡11 that is T -equivalent to 𝑝 . Since 𝑎 is untrusted,

some 𝑝11 ≤ 𝑡11 includes the assignment and satisfies 𝑝11 ≈T 𝑝 , but 𝑡21 is stuck in an infinite loop,

so it has no prefix P-equivalent to 𝑝11. This more expansive premise recognizes the leakage in the

first attack, thereby allowing the same leakage to occur in the second.

Taking this structure and using PSNI as the notion of “leaks nothing” for the second attack gives

us a complete definition of progress-sensitive robust declassification (PSRD).

PsRd(P,T)
def

=
{
𝑇 ⊆ T | ∀𝑡11, 𝑡12, 𝑡21, 𝑡22 ∈ 𝑇 . nmif -eq-in(P,T) (𝑡11, 𝑡12, 𝑡21, 𝑡22)

=⇒ ∀𝑝 ≤ 𝑡11.
(
∀𝑝11 ≤ 𝑡11. 𝑝11 ≈T 𝑝 =⇒ ∃𝑝21 ≤ 𝑡21. 𝑝11 ≈P 𝑝21

)
=⇒

(
∀𝑝12 ≤ 𝑡12. 𝑝12 ≈T 𝑝 =⇒ ∃𝑝22 ≤ 𝑡22. 𝑝12 ≈P 𝑝22

)}
Here we use nmif -eq-in(P,T) to indicate that the initial states of all four traces properly correspond
to pairs of attacks and secrets, defined by the following equivalences.

nmif -eq-in(P,T) (𝑡11, 𝑡12, 𝑡21, 𝑡22)
def

=

in(𝑡11) in(𝑡21)

in(𝑡12) in(𝑡22)

≈P

≈P

≈≈ ≈T≈T

This definition follows exactly the intuition above. Take any four traces whose inputs match as

two pairs, with only secrets differing within a pair and only untrusted (attacker) inputs differing

between pairs. For every endorsement-alignment prefix 𝑝 ≤ 𝑡11 of one trace, if the first pair (attack)

leaks nothing up to 𝑝 , then neither does the second.

Like noninterference, this definition immediately extends to security against all attacks by taking

the intersection over the set A of all attackers: PsRd def

=
⋂
A∈A PsRdA .

Defining progress-insensitive robust declassification (PIRD) requires only changing the definition

of “leaks nothing” in the second attack. Instead of prohibiting leakage through any channel up to 𝑝 ,

PIRD allows leakage be due to progress. We use the same approach as PiNi and require the trace

prefixes appear as prefixes of each other to a public observer.

PiRd(P,T)
def

=
{
𝑇 ⊆ T | ∀𝑡11, 𝑡12, 𝑡21, 𝑡22 ∈ 𝑇 . nmif -eq-in(P,T) (𝑡11, 𝑡12, 𝑡21, 𝑡22)

=⇒ ∀𝑝 ≤ 𝑡11.
(
∀𝑝11 ≤ 𝑡11. 𝑝11 ≈T 𝑝 =⇒ ∃𝑝21 ≤ 𝑡21. 𝑝11 ≈P 𝑝21

)
=⇒

(
∀𝑝12 ≤ 𝑡12, 𝑝22 ≤ 𝑡22 . 𝑝12 ≈T 𝑝

=⇒ (𝑝12 ≤P 𝑝22 ∨ 𝑝12 ≥P 𝑝22)
)}

By changing the notion of leakage in the second attack instead to prohibit leakage through

progress, but allow leakage through event contents, we acquire a robust declassification analogue

Ethan Cecchetti

of LFP we call robust progress leakage (RPL).

Rpl(P,T)
def

=
{
𝑇 ⊆ T | ∀𝑡11, 𝑡12, 𝑡21, 𝑡22 ∈ 𝑇 . nmif -eq-in(P,T) (𝑡11, 𝑡12, 𝑡21, 𝑡22)

=⇒ ∀𝑝 ≤ 𝑡11.
(
∀𝑝11 ≤ 𝑡11. 𝑝11 ≈T 𝑝 =⇒ ∃𝑝21 ≤ 𝑡21. 𝑝11 ≈P 𝑝21

)
=⇒

(
∀𝑝12 ≤ 𝑡12, 𝑝22 ≤ 𝑡22. 𝑝12 ≈T 𝑝

=⇒ 𝑝22 <P 𝑝12 =⇒ ProgP (𝑝22, 𝑡22)
)}

As with noninterference, enforcing PSRD is equivalent to enforcing both PIRD and RPL.

Theorem 2. For any attacker A, PsRdA = PiRdA ∩ RplA .

Hypersafety and Hyperliveness. Much like PsNi, PsRd is subset-closed, but neither hypersafety

nor hyperliveness. Unlike noninterference, however, the progress insensitivity and progress leakage

split is not a decomposition into hypersafety and hyperliveness; PiRd is not hypersafety.

Formally, a hyperproperty 𝐻 is hypersafety if, for any trace set 𝑇 violating 𝐻 (𝑇 ∉ 𝐻), there is a

finite set {𝑝𝑖 } of finite prefixes such that (1) for each 𝑝𝑖 , there is some 𝑡𝑖 ∈ 𝑇 such that 𝑝𝑖 ≤ 𝑡𝑖 , and

(2) if 𝑇 ′ satisfies property 1, then 𝑇 ′ ∉ 𝐻 [Clarkson and Schneider 2010]. PiRdA does not satisfy

this requirement. Consider a set 𝑇★
of four traces, 𝑡11, 𝑡12, 𝑡21, and 𝑡22 where the trace inputs match

as required by PiRdA , 𝑡11 and 𝑡21 are infinite but contain no visible events at all, and 𝑡12 and 𝑡22
have different public-untrusted events—no traces contain trusted events. Here 𝑡11 and 𝑡21 leak no

information relative to each other, even through progress, but 𝑡12 and 𝑡22 do, meaning 𝑇★ ∉ PiRdA .
However, any finite prefix of 𝑡11 can be extended with some public-untrusted event, rendering the

PSNI-style premise false, creating a trace set that does satisfy PiRdA . This counterexample is not

verified in Rocq.

We leave decomposing these more complicated hyperproperties into hypersafety and hyperlive-

ness as future work.

3.3 Nonmalleable Information Flow
While RD constrains declassification based on integrity, recall that transparent endorsement (TE)

constrains endorsement based on confidentiality and prohibits endorsement of secret information.

As in the original formulation [Cecchetti et al. 2017], TE is precisely dual to RD, switching the roles

of the attacks and secrets.

This duality allows for immediate definitions of PsTeA , PiTeA , and transparent progress control,
TpcA , a prohibition on secrets influencing an attacker’s control over progress.

Tpc(P,T)
def

=
{
𝑇 ⊆ T | ∀𝑡11, 𝑡12, 𝑡21, 𝑡22 ∈ 𝑇 . nmif -eq-in(P,T) (𝑡11, 𝑡12, 𝑡21, 𝑡22)

=⇒ ∀𝑝 ≤ 𝑡11.
(
∀𝑝11 ≤ 𝑡11 . 𝑝11 ≈P 𝑝 =⇒ ∃𝑝12 ≤ 𝑡12. 𝑝11 ≈T 𝑝12

)
=⇒

(
∀𝑝12 ≤ 𝑡12, 𝑝22 ≤ 𝑡22. 𝑝12 ≈P 𝑝

=⇒ 𝑝22 <T 𝑝12 =⇒ ProgT (𝑝22, 𝑡22)
)}

Similarly, nonmalleable information flow is the intersection of RD and TE, immediately giving

progress-sensitive and insensitive definitions, and a definition of nonmalleable progress leakage,
NmPlA , the progress-only counterpart to NMIF.

PsNmifA
def

= PsRdA ∩ PsTeA PiNmifA
def

= PiRdA ∩ PiTeA NmPlA
def

= RplA ∩ TpcA

4 A CORE CALCULUS FOR SECURE PROGRESS LEAKAGE
We now describe a core calculus that securely constrains progress leakage without eliminating it.

The calculus is a simple imperative calculus with only numeric values. The syntax below contains

Nonmalleable Progress Leakage

[E-Stop]

⟨skip, 𝜎⟩
stp

−−→ ⟨stop, 𝜎⟩
[E-Assign]

⟨𝑒, 𝜎⟩ ⇓ 𝑛 𝑥 ∈ dom(𝜎)

⟨𝑥 B 𝑒, 𝜎⟩
a(𝑥,𝑛)
−−−−−→ ⟨skip, 𝜎 [𝑥 ↦→ 𝑛]⟩

[E-SeqStep]

⟨𝑐1, 𝜎⟩
𝛼−−→

〈
𝑐′
1
, 𝜎′

〉
𝑐′
1
≠ stop

⟨𝑐1 ; 𝑐2, 𝜎⟩
𝛼−−→

〈
𝑐′
1
; 𝑐2, 𝜎

′〉 [E-SeqSkip]

⟨skip ; 𝑐, 𝜎⟩ •−−→ ⟨𝑐, 𝜎⟩

[E-PDownStep]

⟨𝑐, 𝜎⟩ 𝛼−−→
〈
𝑐′, 𝜎′

〉
𝑐′ ≠ stop〈

pdownℓ 𝑐, 𝜎
〉 𝛼−−→

〈
pdownℓ 𝑐

′, 𝜎′
〉 [E-PDownSkip] 〈

pdownℓ skip, 𝜎
〉 pd(ℓ)
−−−−−→ ⟨skip, 𝜎⟩

Fig. 2. Selected operational semantic rules

the standard Imp commands plus pdown and stop.

𝑒 F 𝑛 | 𝑥 | 𝑒 ⊗ 𝑒
𝑐 F skip | 𝑥 B 𝑒 | 𝑐 ; 𝑐 | if 𝑒 then 𝑐 else 𝑐 | while 𝑒 do 𝑐 | pdownℓ 𝑐 | stop

The stop command signals whole program termination. It differs from skip, which indicates only

that a given operation has no more steps. Notably, stop should appear only on its own, does not

appear in the surface language, and can never be well-typed (see Section 4.2).

The pdown, or progress-downgrade, operation is the main addition to the language. It downgrades

(declassifies and endorses) control flow, and thus termination behavior. The command pdownℓ 𝑐

means: run 𝑐 , then explicitly declassify (or endorse) the termination behavior of 𝑐 to label ℓ .

To focus on progress leakage, we keep the calculus simple and omit data declassification and

endorsement instructions. Adding them with typing and semantic rules similar to pdown would

be straightforward and, while it would likely not hamper security, the proofs would become

considerably more involved.

4.1 Operational Semantics
The semantics of the core calculus is mostly standard. Expressions, which always terminate, use a

big-step semantics, and commands, which may diverge, use a small-step semantics. A semantic

configuration ⟨𝑐, 𝜎⟩ consists of a pair of a command 𝑐 (or expression 𝑒) and a memory 𝜎 , where

𝜎 : V ⇀ N is a partial function from variable names to values (natural numbers).

Figure 2 presents selected small-step operational semantics. The complete semantics can be

found in Appendix A. Note that both E-SeqStep and E-PDownStep require that the inductive step

not produce stop, ensuring that stop appears only for full program termination. Instead, E-SeqSkip

and E-PDownSkip proceed directly when there is a skip.
Each semantic step also produces an event that will form the elements of an execution trace. All

but three steps produce •, indicating no effects or information. E-Stop produces stp, indicating

that the program has terminated. E-Assign produces an assignment event, a(𝑥, 𝑛), indicating
that variable 𝑥 has been assigned value 𝑛. Finally, E-PDownSkip produces a progress downgrade

event, pd(ℓ), explicitly making visible to label ℓ that the program has reached this point in execution,

and therefore the body of the pdownℓ statement terminated.

4.2 Type System
The type system has different judgments for expressions and commands. Since all values are

numeric, the types are simply information-flow labels. Expression judgments take the form Γ ⊢ 𝑒 : ℓ ,

where Γ is a partial map from variable names to labels, and ℓ is a label, and mean that label ℓ is at

Ethan Cecchetti

[Variance]

Γ; pc′ ⊢ 𝑐 ⋄ nt′
pc ⊑ pc′ nt′ ⊑ nt

Γ; pc ⊢ 𝑐 ⋄ nt
[Skip]

Γ; pc ⊢ skip ⋄ nt
[Assign]

Γ(𝑥) = ℓ Γ ⊢ 𝑒 : ℓ
Γ; ℓ ⊢ 𝑥 B 𝑒 ⋄ nt

[If]

Γ ⊢ 𝑒 : pc
Γ; pc ⊢ 𝑐1 ⋄ nt Γ; pc ⊢ 𝑐2 ⋄ nt
Γ; pc ⊢ if 𝑒 then 𝑐1 else 𝑐2 ⋄ nt

[Seq]

Γ; pc
1
⊢ 𝑐1 ⋄ nt1 Γ; pc

2
⊢ 𝑐2 ⋄ nt2

pc
1
⊑ pc

2
nt1 ⊑ pc

2
nt1 ⊑ nt2

Γ; pc
1
⊢ 𝑐1 ; 𝑐2 ⋄ nt2

[While]

Γ ⊢ 𝑒 : pc Γ; pc ⊢ 𝑐 ⋄ pc
Γ; pc ⊢ while 𝑒 do 𝑐 ⋄ pc

[PDown]

Γ; pc ⊢ 𝑐 ⋄ nt
nt ⊑ JJJJ

 (nt) pc ⊑ ℓ

Γ; pc ⊢ pdownℓ 𝑐 ⋄ ℓ

Fig. 3. Typing rules for expressions and commands

least as restrictive as the security policy of any input to expression 𝑒 . That is, it is safe to treat 𝑒 as

having policy ℓ .

Command judgments take the form Γ; pc ⊢ 𝑐 ⋄ nt, where Γ is as before, and pc and nt are labels
used to constrain effects. The pc, or program counter, label is standard [Hirsch and Cecchetti 2021;

Sabelfeld and Myers 2003a], and it serves as both a lower bound on the visibility of a command’s

effects and a means of controlling implicit information flows. Flows can be either explicit, when
resulting from a direct assignment like 𝑥 B 𝑦, or implicit when stemming from control flow.

Consider the following program.

if 𝑦 then 𝑥 B 0 else 𝑥 B 1

This program only directly assigns constant values to 𝑥 , but the value of 𝑦 implicitly influences 𝑥 .

The pc label constrains these flows through two requirements: (1) the effects of an if statement

must be no more public than the condition, and (2) an assignment is an effect, meaning the pc must

flow to the label of the variable being assigned. Type-checking the above example then requires

Γ(𝑦) ⊑ pc and pc ⊑ Γ(𝑥), transitivity ensuring Γ(𝑦) ⊑ Γ(𝑥) and preventing information leakage.

The nt, or nontermination, label constraints progress leakage. It serves as an upper bound on

the sensitivity of termination behavior of 𝑐 . That is, anyone at or above nt may safely learn if 𝑐

terminates without leaking information.

Figure 3 presents the full type system. Variance formalizes the notion that pc is a lower bound
while nt is an upper bound. If 𝑐 only produces high effects and its termination behavior is only

influenced by low data, it is safe to treat it as if it may produce lower effects—pc ⊑ pc′—and has

termination influenced by higher data—nt′ ⊑ nt. Including this rule allows Assign, If, and While

to demand equality of labels, rather than flows, simplifying the presentation and analysis.

Skip and Assign leave nt unconstrained, as skip and assignments always terminate. Assign

constrains explicit flows by requiring Γ ⊢ 𝑒 : ℓ where ℓ is the label of the assigned variable. Since

assignments are effects, it also sets the pc bound at ℓ . If requires Γ ⊢ 𝑒 : pc, meaning the effects of

the branches must be bounded below by the label of the condition, completing the implicit flow

restriction. As if’s termination behavior is that of its branches, nt remains unchanged.

The other rules more directly constrain termination leakage. When sequentially composing

commands 𝑐1 ; 𝑐2, if 𝑐1 diverges, then 𝑐2 will never execute, meaning visible effects of 𝑐2 can leak

whether or not 𝑐1 terminated. To maintain security, Seq therefore requires the effects of 𝑐2 to be

bounded below by nt1. To ensure pc1 and nt2 correctly bound the composed command, pc
1
must be a

Nonmalleable Progress Leakage

lower bound on the effects of both 𝑐1 and 𝑐2—Γ; pc1 ⊢ 𝑐1 ⋄ nt1 and pc1 ⊑ pc
2
, respectively. Similarly,

nt2 must be an upper bound on their termination sensitivity—nt1 ⊑ nt2 and Γ; pc
2
⊢ 𝑐2 ⋄ nt2,

respectively.

While uses the same label for the condition, the pc, and nontermination labels for three reasons.

First, the premise Γ ⊢ 𝑒 : pc ensures that the guard can safely influence effects in the loop. Second,

requiring 𝑐 to type-check with a nontermination label of pc ensures that learning if 𝑐 terminates

does not leak more information than 𝑐’s own effects. This requirement is necessary because the

termination behavior of one execution of 𝑐 can influence whether or not 𝑐 executes again. Third,

both the loop condition and the termination behavior of 𝑐 can influence if the entire loop terminates.

Since both have label pc, the nontermination label of the entire loop is pc.
Lastly, PDown concerns explicit downgrades of progress information. Recall that E-PDownSkip,

when executed, directly reveals to label ℓ that the body of the pdownℓ statement terminated. As

a result, the termination behavior of pdownℓ 𝑐 leaks no additional information to anyone at or

above ℓ , so PDown sets the new nontermination label to ℓ .

Since pdownℓ creates a visible effect at ℓ , the pc must properly bound it: pc ⊑ ℓ . Despite having

a variance rule, this premise is a flow rather than an equality. Downgrading to pc and varying the

nontermination label to ℓ is semantically different from downgrading directly to ℓ . The former

releases information to pc, which may be lower than ℓ .

Enforcing NMIF requires restricting influence over both the content and timing of downgrades.

For a pdown instructions, the old nontermination label nt bounds what information might be

released, so we require it be non-compromised. Restricting the timing would normally involve

similarly checking the pc to avoid improper influence over the control flow. However, if Γ; pc ⊢ 𝑐⋄nt,
then either pc ⊑ nt or Γ; pc ⊢ 𝑐 ⋄ ℓ ′ for any ℓ ′. In the first case, the antimonotonicity of JJJJ

 together

with nt being non-compromised ensure pc ⊑ JJJJ

 (pc), making such a premise redundant. In the

second case, setting ℓ ′ = ℓ shows that there is no actual leakage to constrain.

Type Soundness. This type system satisfies the basic soundness property that well-typed programs

do not get stuck. Since the type system presumes a mapping Γ of variables names to labels and the

semantics operates over a memory 𝜎 , we require that all names referenced in Γ exist in 𝜎 .

Theorem 3 (Type Soundness). If Γ; pc ⊢ 𝑐 ⋄ nt, then for any memory 𝜎 where dom(Γ) ⊆ dom(𝜎), if
⟨𝑐, 𝜎⟩ −→∗ ⟨𝑐′, 𝜎 ′⟩, then either 𝑐′ = stop or ⟨𝑐′, 𝜎 ′⟩ can step.

4.3 Example Revisited
To see the use of these typing rules, and in particular pdown, we look at the attraction mapping

example from Section 1 using simple public/secret and trusted/untrusted policies. We assumed that

lines 1 and 2 could both hang due to signal failures, revealing precise location. The nontermination

label ntloc of both lines would be secret, but it would remain trusted, as the attacker cannot influence

the user’s location or the control flow to this point. Line 5 will contact the server—a publicly-visible

effect—requiring the pc label to be public.

With these labels, Seq rule would identify the potential progress leakage and require an explicit

declassification. Since ntloc is secret–trusted, it is not compromised, so PDown allows wrapping

lines 1 and 2 in pdown to public–trusted.

The code for line 5 comes from an untrusted source. To prevent it from modifying trusted

data, it must type-check with an untrusted pc. Importantly, if it contains a loop depending on

secrets—opening the attack we aim to prevent—While requires the nt label to be secret–untrusted—
a compromised label. PDown does not allow downgrading this compromised control flow, so

Seq ensures no later operation can create public or trusted effects. Embedded in a larger system,

this would inevitably fail to compile, identifying the dangerous termination channel. Requiring

Ethan Cecchetti

line 5 to type-check with a non-compromised nt label prevents attacker-controlled termination

leakage, but allows a benign loop over attractions to place nearby ones on a map, which has a

public–untrusted nt label.

4.4 Program Behavior and Indistinguishability
To prove the security of this calculus, we must first define traces and low-equivalence in this

setting. A trace consists of the program inputs, which we consider to be the initial memory 𝜎 , and

a possibly-infinite stream of events st. Command 𝑐 produces a trace (𝜎, st), denoted 𝑐 { (𝜎, st), if 𝑐
outputs precisely st when run with initial memory 𝜎 . That is, if ⟨𝑐, 𝜎⟩ terminates, then st is the
full list of events it produces, ending with stp. If ⟨𝑐, 𝜎⟩ diverges, then st is infinite and contains all

events emitted during the execution.

The set of all traces 𝑐 can produce is its behavior :

Behav(𝑐) def

= {𝑡 | 𝑐 { 𝑡}

Recall from Section 3 that our security hyperproperties assume an indistinguishability relation≈D
on finite trace prefixes that is parameterized by a downward-closed label set D representing low-

sensitivity policies. A finite trace prefix consists of an input—the initial memory—and a finite list of

events, so we need low-equivalence relations for each.

Two memories are D-equivalent if they contain the same values for locations with labels in D,

though they may differ elsewhere. Formalizing this idea requires labels for memory locations, so

we parameterize the equivalence on both D and a context Γ mapping locations to labels, as in the

type system.D-equivalence, denoted 𝜎1 �
Γ
D 𝜎2, then demands only that 𝜎1 and 𝜎2 agree on 𝑥 when

Γ(𝑥) ∈ D. Formally,

𝜎1 �
Γ
D 𝜎2

def

= ∀𝑥 . Γ(𝑥) ∈ D =⇒ 𝜎1 (𝑥) = 𝜎2 (𝑥).

Two finite sequences of events areD-equivalent if, atD, they appear to contain the same events

in the same order. We model a D-observer as being unable to gain information from internal steps,

signified by • events, and both assignments and progress downgrades at labels not in D. To make

this intuition precise, we define a silent-at-D predicate SilΓD (𝛼) as follows.

SilΓD (•)
Γ(𝑥) ∉ D

SilΓD (a(𝑥, 𝑛))
ℓ ∉ D

SilΓD (pd(ℓ))

Note two important design decisions. First, the termination event stp is always visible, regardless

of the label, formalizing that a progress-sensitive observer can always distinguish termination

from silent infinite loops. Second, all assignments to low memory locations are visible, providing a

strong security guarantee by modeling a powerful attacker that can continuously monitor public

areas in memory. Modeling explicit output is possible using distinguished memory addresses and

making more events silent, which cannot leak more information.

Equivalence of finite event sequences 𝑠1 and 𝑠2, denoted 𝑠1 ≊Γ
D 𝑠2, then simply ignores silent

events and requires the rest to be identical.

𝜖 ≊Γ
D 𝜖

𝑠1 ≊Γ
D 𝑠2

𝛼 · 𝑠1 ≊Γ
D 𝛼 · 𝑠2

𝑠1 ≊Γ
D 𝑠2

SilΓD (𝛼)
𝛼 · 𝑠1 ≊Γ

D 𝑠2

𝑠1 ≊Γ
D 𝑠2

SilΓD (𝛼)
𝑠1 ≊Γ

D 𝛼 · 𝑠2

We can now define equivalence of trace prefixes, also parameterized by Γ and suggestively

denoted ≈ΓD , by requiring the initial memories and event sequences both be equivalent. That is,

(𝜎1, 𝑠1) ≈ΓD (𝜎2, 𝑠2)
def

= 𝜎1 �
Γ
D 𝜎2 and 𝑠1 ≊Γ

D 𝑠2.

Nonmalleable Progress Leakage

Using these definitions of traces, prefixes, and equivalences is sufficient to state and prove the

security of our core calculus. Since our equivalences are all parameterized on Γ, we will write
PsNiΓ , and similarly for other hyperproperties, to indicate that we are using ≈Γ− as the equivalence
relation.

4.5 Proving Security
While this calculus and its type system are designed to enforce progress-sensitive NMIF, which

allows for controlled data leakage that violates noninterference, it remains useful to confirm that

explicit downgrades are the only way to violate noninterference. The omission of data downgrade

operations means all leakage should be through progress channels. We verify this by proving that

well-typed commands enforce PINI, which does not consider progress leakage.

Theorem 4 (Progress-insensitive NI). If Γ; pc ⊢ 𝑐 ⋄ nt, then Behav(𝑐) ∈ PiNiΓ .

While some progress leakage is allowed, it should only come through two channels explicit in

the type system: pdown instructions and programs with high nt labels. To eliminate leakage that

the type system tracks and reports in the nt labels, we can demand the command type-check with

a low nt label. To ensure that all remaining leakage arises from pdown instructions, we define a

notion of downgrade freedom from a downward-closed set D. Intuitively, a command that does not

downgrade from outside D—a “high” label—to inside D—a “low” label—should also enforce LFP,

and thus PSNI, at D. We formalize this lack of downgrading as follows.

Definition 3 (D-downgrade Freedom). The proof Γ; pc ⊢ 𝑐 ⋄ nt is D-downgrade free if, for every
subcommand pdownℓ 𝑐

′
, either ℓ ∉ D or the subproof of Γ; pc ⊢ 𝑐′ ⋄ nt′ has nt′ ∈ D.

D-downgrade freedom and a low nt label are together sufficient to prevent progress leakage,

proving that all leakage is properly accounted for. Together with Theorem 4, this guarantees PSNI.

Theorem 5 (D-downgrade-free PSNI). For any downward-closed label set D, if Γ; pc ⊢ 𝑐 ⋄ nt with
nt ∈ D and the typing proof is D-downgrade free, then Behav(𝑐) ∈ PsNiΓD .

Enforcing Nonmalleable Information Flow. For the same reason that Theorem 5 requires

nt ∈ D, a compromised nt label—which cannot be safely downgraded—signals potentially insecure

progress leakage. As a result, not every well-typed command enforces nonmalleable progress

leakage against every attacker. However, if nt ∈ P ∪ T for an attacker A = (P,T), then secret

influence has been safely declassified, attacker influence has been safely endorsed, or both. In each

case, progress leakage will be robust, guaranteeing security.

Theorem 6 (Low-nt Nonmalleable Progress Leakage). Given an attackerA = (P,T), if Γ; pc ⊢ 𝑐⋄nt
with nt ∈ P ∪ T , then Behav(𝑐) ∈ NmPlΓA .

Also recall that non-compromised labels are public, trusted, or both for every attacker (Proposi-

tion 1). Combined with Theorem 6, this provides the condition necessary to ensure security against

all attackers.

Theorem 7 (NMPL). If Γ; pc ⊢ 𝑐 ⋄ nt with nt ⊑ JJJJ

 (nt), then Behav(𝑐) ∈ NmPlΓ .

Because noninterference (in particular PiNi) is strictly stronger than the corresponding form

of NMIF (PiNmif), Theorems 2, 4, and 7 combine to show that all well-typed programs enforce

progress-sensitive NMIF.

Corollary 1 (Progress-Sensitive NMIF). If Γ; pc ⊢ 𝑐 ⋄nt with nt ⊑ JJJJ

 (nt), then Behav(𝑐) ∈ PsNmifΓ .

Ethan Cecchetti

5 INFERRING PROGRESS DOWNGRADES
One major advantage of enforcing security with a static type system is support for inference

procedures. To reduce programmer burden, they can omit explicit progress downgrades and instead

the compiler can infer their locations if any secure placement is possible. Downgrades are generally

considered sensitive operations requiring audits, but a constructive inference procedure can direct

the programmer to specific code points, minimizing manual effort. We now present such an

algorithm that is sound and complete with respect to the type system, highly efficient, and infers a

minimal set of downgrades.

5.1 Label Structure
The extreme generality of the label model in Section 2 is good for expressive power, but its lack of

structure makes using it for computations challenging. To make inference tractable, we require

somewhat more structure on the labels.

First, flows-to (⊑) must to be antisymmetric in addition to reflexive and transitive. There must

be binary meet (⊓) and join (⊔) functions that compute the greatest lower bound and least upper

bound of two labels, respectively. These changes make L a lattice. Second, along with the global

least label ⊥, we require a global greatest label ⊤ where ℓ ⊑ ⊤ for all ℓ ∈ L.

5.2 Inference Algorithm
The inference algorithm, pd-inf, consists of three parts. The first, elab, computes the minimum

label of an expression 𝑒 or determines that it cannot be typed. The second, pd-place, does most

of the work. It places the progress downgrades, or determines that no placement will generate

well-typed code. It also records auxiliary information that the third part, pd-lab-set, uses to set the

label on downgrades placed by pd-place.
The goal is to infer a secure placement of pdown instructions, slightly different than producing

any well-typed command. The type system guarantees progress-sensitive security only when the

nt label is non-compromised (see Section 4.5), so pd-inf places pdown statements such that the

resulting command is well-typed with a non-compromised nontermination label. Since pd-inf is
complete with respect to the type system (Theorem 9 below), if any such placement exists, it will

find one. Otherwise, the type system cannot prove that all of the program’s leakage is nonmalleable,

and pd-inf will fail, indicating this fact.

Expression Labels. Computing labels of expressions is straightforward. We parameterize elab on

a typing context Γ, and specify it as a partial function that is defined precisely when 𝑒 is well-typed.

It produces the most permissive (lowest) label consistent with the typing context. It is defined as

follows.

elabΓ (𝑥) = Γ(𝑥)
elabΓ (𝑛) = ⊥

elabΓ (𝑒1 ⊗ 𝑒2) = elabΓ (𝑒1) ⊔ elabΓ (𝑒2)
Downgrade Placement. The pd-place algorithm determines both the placement of pdown in-

structions and the nontermination label nt if inference is possible. It is also parameterized on Γ, and
is a partial function from a pc label and a command 𝑐 (free from progress downgrades) to a triple: a

partial command 𝑐 , a bound label 𝑏, and nt. A partial command is an intermediate data structure

with the same structure as a command, but without labels on pdown and with auxiliary label

information for control structures—conditionals, sequences, and loops. We write partial commands

in blue and with a tilde.

The bound label 𝑏 indicates how much the pc can rise before inference will fail. That is, no

pdown placement can allow 𝑐 to type-check in context Γ with a non-compromised nt label and

Nonmalleable Progress Leakage

pd-placeΓ (pc, skip) = (skip,⊤,⊥)
pd-placeΓ (pc, 𝑥 B 𝑒) = ℓ ← elabΓ (𝑒) ; assert pc ⊔ ℓ ⊑ Γ(𝑥) ; (𝑥 B̃ 𝑒, Γ(𝑥),⊥)

pd-placeΓ (pc, if 𝑒 then 𝑐1 else 𝑐2) = ℓ ← elabΓ (𝑒) ;
(𝑐1, 𝑏1, nt1) ← pd-placeΓ (pc ⊔ ℓ, 𝑐1) ;
(𝑐2, 𝑏2, nt2) ← pd-placeΓ (pc ⊔ ℓ, 𝑐2) ;
if nt1 ⊔ nt2 ⊑ JJJJ

 (nt1 ⊔ nt2) then
(if {ℓ } 𝑒 then 𝑐1 else 𝑐2, 𝑏1 ⊓ 𝑏2, nt1 ⊔ nt2)

else
(if {ℓ } 𝑒 then (pdown 𝑐1) else 𝑐2, 𝑏1 ⊓ 𝑏2, nt2)

pd-placeΓ (pc, 𝑐1 ; 𝑐2) = (𝑐1, 𝑏1, nt1) ← pd-placeΓ (pc, 𝑐1) ;
(𝑐2, 𝑏2, nt2) ← pd-placeΓ (pc, 𝑐2) ;
if nt1 ⊑ 𝑏2 then
(𝑐1 ;{nt1 } 𝑐2, 𝑏1 ⊓ 𝑏2, nt1 ⊔ nt2)

else
((pdown 𝑐1) ;{⊥} 𝑐2, 𝑏1 ⊓ 𝑏2, pc ⊔ nt2)

pd-placeΓ (pc,while 𝑒 do 𝑐) = ℓ ← elabΓ (𝑒) ; assert pc ⊔ ℓ ⊑ JJJJ

 (pc ⊔ ℓ) ;
(𝑐, 𝑏, nt) ← pd-placeΓ (pc ⊔ ℓ, 𝑐) ;
if nt ⊑ 𝑏 then
(while 𝑒 do{ℓ⊔nt} 𝑐, 𝑏 ⊓ JJJJ

 (pc ⊔ ℓ), nt ⊔ pc ⊔ ℓ)

else
(while 𝑒 do{ℓ } (pdown 𝑐), 𝑏 ⊓ JJJJ

 (pc ⊔ ℓ), pc ⊔ ℓ)

Fig. 4. Procedure for inferring types and pdown placement

a pc label above pc ⊔ 𝑏. This label is important for efficiency in the sequence and while cases.

Placing a progress downgrade around the first command or the loop body, respectively, can allow

the second command or loop body to use a more permissive pc. A naive algorithm would thus

make two recursive calls, one for each value of pc, resulting in exponential run time. The bound

label allows us to replace the second recursive call with a single flow check, drastically improving

efficiency.

Figure 4 presents the full pd-place algorithm. For skip, the bound label is ⊤ and nontermination

label of ⊥, since skip type-checks with any pc and nt. The assignment case is only slightly more

complex. It asserts that pc ⊔ ℓ ⊑ Γ(𝑥), as the command will never type-check if that flow does not

hold. If it does hold, pd-place sets 𝑏 = Γ(𝑥), as the pc cannot rise above that level and still produce

a valid typing proof, and nt = ⊥, as the command always terminates.

For conditionals, pd-place first determines the label ℓ of the condition, before making recursive

calls on both branches, using pc ⊔ ℓ as the pc label. Inference fails if the condition is ill-typed or

either recursive call fails. If they all succeed, the only remaining check is whether a downgrade is

required.

Without a downgrade, the nontermination label of the conditional will be nt1 ⊔ nt2, where nt1
and nt2 are the nontermination labels of the branches. If that join is non-compromised, no down-

grade is needed. If the join is compromised, a downgrade is required around one branch. Because

both nt𝑖 are outputs of pd-place, either nt𝑖 = ⊥ or pc ⊔ ℓ ⊑ nt𝑖 and both are non-compromised.

That means whenever nt1 ⊔ nt2 is compromised, neither label is ⊥, so pc ⊔ ℓ ⊑ nt𝑖 . Downgrading
the progress of either branch to pc ⊔ ℓ will therefore result in the entire if statement having a

non-compromised nt label, so we arbitrarily choose to downgrade the then branch. Some programs

Ethan Cecchetti

pd-lab-set(pc, skip) = skip

pd-lab-set(pc, 𝑥 B̃ 𝑒) = 𝑥 B 𝑒

pd-lab-set(pc, if {ℓ } 𝑒 then 𝑐1 else 𝑐2) = if 𝑒 then (pd-lab-set(pc ⊔ ℓ, 𝑐1))
else (pd-lab-set(pc ⊔ ℓ, 𝑐2))

pd-lab-set(pc, 𝑐1 ;{ℓ } 𝑐2) = pd-lab-set(pc, 𝑐1) ; pd-lab-set(pc ⊔ ℓ, 𝑐2)
pd-lab-set(pc,while 𝑒 do{ℓ } 𝑐) = while 𝑒 do pd-lab-set(pc ⊔ ℓ, 𝑐)

pd-lab-set(pc, pdown 𝑐) = pdownpc pd-lab-set(pc, 𝑐)

Fig. 5. Procedure for setting pdown labels

may also need to downgrade the termination behavior of the full if statement—and thus the else
branch. Inserting pdown into only the then branch preserves the ability to safely perform such a

larger downgrade while optimistically hoping it will be unnecessary.

For the conditional’s bound label, a higher pc must flow to both 𝑏1 and 𝑏2 for inference to succeed,

which corresponds precisely to a bound of their meet 𝑏1 ⊓ 𝑏2.
Sequential composition is where the bound label becomes important. Seq requires the pc of 𝑐2 to

be at least as high both the pc and nt labels of 𝑐1. In the absence of a downgrade, 𝑐2 must therefore

type-check with pc ⊔ nt1. A naive strategy would make a recursive call on 𝑐1 and then try to infer

downgrades for 𝑐2 with pc ⊔ nt1. If this inference on 𝑐2 fails, however, it may still be possible by

downgrading 𝑐1’s progress and infer downgrades on 𝑐2 using pc, requiring a second recursive call.

The bound label allows us to avoid this double recursive call and the resulting exponential

running time. Instead, pd-place makes one recursive call on each of 𝑐1 and 𝑐2 using pc for both.
If the nontermination label nt1 of 𝑐1 flows to the bound label 𝑏2 of 𝑐2, inference will still succeed

on 𝑐2 when run with pc ⊔ nt1, and no downgrade is needed. If nt1 @ 𝑏2, inference with pc ⊔ nt1
would fail and a progress downgrade is required.

Additionally, the partial command for sequence includes an auxiliary label. This label represents

the amount 𝑐2’s program counter must increase beyond pc in the typing proof.Without a downgrade,

this value is nt1. With a downgrade, no increase is required, so ⊥ suffices.

The while case first computes the label ℓ of the condition and asserts that pc ⊔ ℓ ⊑ JJJJ

 (pc ⊔ ℓ).
The nontermination label of the loop cannot be lower than pc ⊔ ℓ , so this check is needed to ensure

pd-place only outputs non-compromised nontermination labels. If the check passes, then it makes

a recursive call on 𝑐 using pc ⊔ ℓ . Since while loops can sequence 𝑐 with itself, we again need to

check if the first command’s nt label flows to the second’s bound. As both commands are the same,

this check becomes nt ⊑ 𝑏. As in the sequence case above, a downgrade is necessary if and only if

the flow does not hold.

The bound label for while is the meet of the recursively computed bound 𝑏 and JJJJ

 (pc ⊔ ℓ). The
first part captures the bound for the subcommand 𝑐 . The second part ensures that pc⊔ ℓ will remain

non-compromised even when raising the pc.
The nontermination label is either nt ⊔ pc ⊔ ℓ if there is no downgrade, as all three impact

termination, or pc ⊔ ℓ if a progress downgrade lowered the inner nontermination label.

Finally, we include an auxiliary label as in the sequence case. With no downgrade, the pc in the

body must rise by ℓ ⊔ nt, and with a downgrade, only ℓ .

Setting Downgrade Labels. For sequential composition, pd-place cannot determine the pc of 𝑐2
until after the recursive call completes (and similarly for loops). That means it does not have enough

information to set the labels on pdown instructions as it places them. Instead, it embeds auxiliary

Nonmalleable Progress Leakage

label information in its output, which pd-lab-set (Figure 5) uses on a second pass to set those labels.

For each command, it recursively executes on each sub-command, increasing the pc by the label

specified in the auxiliary information, and sets the label of each pdown command to the current pc
as it goes.

The full inference algorithm first runs pd-place and then pd-lab-set on its output.

pd-infΓ (pc, 𝑐) = (𝑐, 𝑏, nt) ← pd-placeΓ (pc, 𝑐) ; (pd-lab-set(pc, 𝑐), nt)

5.3 Soundness, Completeness, and Correctness
The inference algorithm is sound and complete with respect to the type system using only non-

compromised nontermination labels. Formally, soundness says that, if the algorithm succeeds, then

the resulting command is well-typed with a non-compromised nt label.

Theorem 8 (Sound Inference). If pd-infΓ (pc, 𝑐) = (𝑐′, nt), then Γ; pc ⊢ 𝑐′ ⋄ nt and nt ⊑ JJJJ

 (nt).

Intuitively, completeness says that, if there is any way to place pdown instructions such that the

resulting command is well-typed with a non-compromised nt label, then pd-inf will find one. To

formalize this intuition, we use a downgrade-erasure operation, denoted ⌊𝑐⌋ and defined as follows.
⌊skip⌋ = skip
⌊𝑥 B 𝑒⌋ = 𝑥 B 𝑒

⌊𝑐1 ; 𝑐2⌋ = ⌊𝑐1⌋ ; ⌊𝑐2⌋

⌊if 𝑒 then 𝑐1 else 𝑐2⌋ = if 𝑒 then ⌊𝑐1⌋ else ⌊𝑐2⌋
⌊while 𝑒 do 𝑐⌋ = while 𝑒 do ⌊𝑐⌋
⌊pdownℓ 𝑐⌋ = ⌊𝑐⌋

The formal definition of completeness is then as follows.

Theorem 9 (Complete Inference). For any command 𝑐 and label nt such that Γ; pc ⊢ 𝑐 ⋄ nt and
nt ⊑ JJJJ

 (nt), there is some 𝑐′ and nt′ such that pd-infΓ (pc, ⌊𝑐⌋) = (𝑐′, nt′).

Finally, pd-inf is correct in that it does not modify commands aside from possibly adding down-

grade instructions.

Theorem 10 (Correct Inference). If pd-infΓ (pc, 𝑐) = (𝑐′, nt), then 𝑐 = ⌊𝑐′⌋.

5.4 Efficiency and Minimality
The inference algorithm also aims to be efficient and only insert downgrades where necessary.

Achieving either goals is simple: inserting downgrades everywhere is efficient but not minimal,

while trying every combination of downgrades and selecting a minimal well-typed one is minimal

but highly inefficient. The pd-inf algorithm accomplishes both.

To remain efficient, pd-inf consists of two sequential linear passes: pd-place and pd-lab-set. In
each pass, the only operations that could impact performance are label operations (join, meet,

reflection, and flows-to checks).

For simple label models, like small finite lattices, these operations are constant time, producing

linear efficiency. More complicated label models may result in more overhead, but the structure of

the algorithm mitigates some concern. All flows-to checks query if a nontermination label—always

the join of (at most) linearly many labels—flows to a bound label—always the meet of (at most)

linearly many labels. Common security lattices, including subset lattices of permissions [Zeldovich

et al. 2011], and free distributive lattices over a set of principals [Arden et al. 2015; Myers and

Liskov 1998; Stefan et al. 2011] can run these checks very efficiently.

Minimality. Even nonmalleable downgrades represent possible points of data leakage or corruption,

so pd-inf aims to insert a minimal set. However, there are many ways to define “minimal.” Semantic

minimality—executing as few downgrades as possible—is appealing, but the semantically-minimal

set of downgrades for a program might not be statically well-defined; it could depend on the inputs.

Ethan Cecchetti

Instead, we achieve a local syntactic notion of minimality: removing any downgrade inserted

by pd-inf (without adding another elsewhere) will always be ill-typed. We formalize the idea of

“removing a downgrade” using a relation≼pd to denote that two commands have the same structure,

but one may have more syntactic downgrade instructions than the other and the pdown labels

may not match. We define ≼pd as the smallest structurally compatible preorder on commands—it is

reflexive, transitive, and admits structurally recursive rules like

𝑐′
1
≼pd 𝑐1 𝑐′

2
≼pd 𝑐2

𝑐′
1
;𝑐′

2
≼pd 𝑐1 ;𝑐2

—admitting the

following rules.

𝑐′ ≼pd 𝑐

𝑐′ ≼pd pdownℓ 𝑐

𝑐′ ≼pd 𝑐

pdownℓ ′ 𝑐
′ ≼pd pdownℓ 𝑐

Letting 𝑐 ≡pd 𝑐′ denote commands with identical structure—they are the same except for the labels

on pdown instructions—this relation allows us to formalize syntactic minimality.

Theorem 11 (Minimal Inference). If pd-infΓ (pc, 𝑐in) = (𝑐, nt), then for any command 𝑐′ where
𝑐′ ≼pd 𝑐 , if Γ; pc ⊢ 𝑐′ ⋄ nt′ with nt′ ⊑ JJJJ

 (nt′), then 𝑐′ ≡pd 𝑐 .

6 PROOF APPROACH AND ROCQ DETAILS
All theorems in this paper are mechanically verified in The Rocq Prover [Rocq development team

2025] and are available online [?]. We encode expressions and commands with a deep embedding

as inductive types and use option types to encode partial functions, including typing contexts,

memories, and pd-inf. We assume decidable equality for variable names, decidable set inclusion for

label sets and attackers in the security theorems, and decidable flows-to in the inference algorithm.

The proofs use the most general label model presented, but we verify that the less-general model

that explicitly separates confidentiality and integrity is actually a special case (see Section 2). There

are also minor differences in the definitions of D-equivalence of events and stores to make proofs

simpler, so we include definition equivalence proofs for each.

6.1 Proving Security
The proofs of noninterference (Theorems 4 and 5) and NMPL (Theorem 7) use the bridge-step

relation introduced by Bay and Askarov [2020], which defines a configuration emitting a D-visible

event. That is, ⟨𝑐, 𝜎⟩ takes one or more steps, where only the last one produces something visible

to D. Formally, bridge steps are defined by the following inductive relation.

⟨𝑐, 𝜎⟩ 𝛼−−→
〈
𝑐′, 𝜎′

〉
¬SilΓD (𝛼)

⟨𝑐, 𝜎⟩ ↷D𝛼
〈
𝑐′, 𝜎′

〉
⟨𝑐, 𝜎⟩ 𝛼 ′−−→

〈
𝑐′, 𝜎′

〉
SilΓD (𝛼

′)〈
𝑐′, 𝜎′

〉
↷D𝛼

〈
𝑐′′, 𝜎′′

〉
⟨𝑐, 𝜎⟩ ↷D𝛼

〈
𝑐′′, 𝜎′′

〉
A critical lemma shows that running one command with twoD-equivalent memories produces the

same bridge step unless one configuration silently diverges, in which case we can bound the visible

events and nontermination label.

Lemma 1 (Matching Bridge Step). For any command 𝑐 where Γ; pc ⊢ 𝑐 ⋄ nt and memories 𝜎1 and 𝜎2
where 𝜎1 �ΓD 𝜎2, if ⟨𝑐, 𝜎1⟩ ↷D𝛼

〈
𝑐′, 𝜎 ′

1

〉
, then either

• ⟨𝑐, 𝜎2⟩ ↷D𝛼
〈
𝑐′, 𝜎 ′

2

〉
with 𝜎 ′

1
�ΓD 𝜎 ′

2
, or

• ⟨𝑐, 𝜎2⟩ silently diverges—diverges without ever producing a D-visible event—and either 𝛼 = pd(ℓ)
or both 𝛼 = stop and nt ∉ D.

This lemma relies on a standard containment lemma.

Lemma 2 (Containment). Given any downward-closed set D, if Γ; pc ⊢ 𝑐 ⋄ nt with pc ∉ D and
⟨𝑐, 𝜎⟩ 𝛼−−→ ⟨𝑐′, 𝜎 ′⟩, then 𝜎 �ΓD 𝜎 ′ and either SilΓD (𝛼) or 𝛼 = stop.

Nonmalleable Progress Leakage

Nontermination. Since our theorems focus on distinguishing terminating executions from non-

terminating ones, their proofs rely on a similar differentiation. The proof of progress-sensitive

NMPL (Theorem 7) uses the following lemma.

Lemma 3 (While Trilemma). If a while loop is never stuck, then either (i) it terminates, or (ii) after
some finite number of iterations, the body diverges, or (iii) the body converges on every iteration, but
the loop executes infinitely many times.

This lemma is not provable in a constructive logic like Rocq; deciding which branch holds

requires solving the halting problem. Instead, we verify that it holds classically—ensuring logical

consistency—and take it as an axiom for the theorems.

A note on computability theory. Lemma 3 is not just undecidable, no recursive enumeration

procedure can determine the cause of nontermination and separate cases (ii) and (iii). One can,
however, recursively enumerate the loops satisfying (ii) using a halting oracle. Deciding the while

trilemma is thus under 0′′ [for background, see, e.g., Soare 2016]. Indeed, the Rocq proof of Lemma 3

uses the classical assumption exactly twice: once to separate terminating loops from divergent

ones, and a second time to differentiate the cause of nontermination.

6.2 Inference Properties
Recall from Section 5.2 that, pd-place returns a bound label 𝑏 in addition to a command and

nontermination label. The soundness and minimality of pd-inf rely on 𝑏 properly bounding how

much the pc can rise before inference fails. The following lemma formalizes this requirement.

Lemma 4 (Bound Validity). If pd-placeΓ (pc, 𝑐) = (𝑐′, 𝑏, nt), then for any non-compromised label ℓ ,
ℓ ⊑ 𝑏 if and only if pd-placeΓ (pc ⊔ ℓ, 𝑐) is defined.

Minimality also requires that the inferred nontermination label nt be the smallest possible label.

Lemma 5 (Least nt). If pd-infΓ (pc, 𝑐in) = (𝑐, nt), then for any 𝑐′ and nt′ if 𝑐′ ≡pd 𝑐 and Γ; pc ⊢ 𝑐′⋄nt′,
then nt ⊑ nt′.

7 RELATEDWORK
We now discuss prior work on progress-sensitive security, secure downgrading, and information-

security hyperproperties.

Progress-Sensitive Security. Early type-based enforcement of termination-sensitive noninter-

ference either limit loops to only execute in fully public environments (pc = ⊥) and have fully

public conditions [O’Neill et al. 2006; Volpano and Smith 1997] or operate in a pure 𝜆-calculus with

call-by-name semantics [Abadi et al. 1999]. These constraints led most work to target progress-

insensitive security. However, Askarov et al. [2008] show how progress channels can leak arbitrary

data in effectful languages, identifying a major risk of using progress-insensitive security with

active attackers.

Moore et al. [2012] provide a more precise type system similar to the one in Section 4.2. To

further relax the type system’s restrictions, they include a progress downgrade operation they

call cast. Notably, the type system does not restrict cast. Instead, there is one semantics that appeals

to a halting oracle and gets stuck if cast could leak anything, and a second that tracks a quantitative
leakage budget.

Bay and Askarov [2020] show how to define progress leakage as declassification in a progress-

sensitive context and introduce tini blocks much like our pdown. They consider only confidentiality
and bound declassifications by a separate notion of declassifier authority, with no ability to ensure

robustness.

Ethan Cecchetti

Secure Downgrading. Prior work on secure downgrades in IFC systems is extensive. Some

allow labels to specify what downgrades directly [Chong and Myers 2008; Li and Zdancewic

2005; Polikarpova et al. 2020]. Delimited release allows declassifications based on syntactic code

structure [Sabelfeld andMyers 2003b]. Intransitive information flow restricts flows based on policies

that may not be transitive [Mantel and Sands 2004; Pinsky 1995; Roscoe and Goldsmith 1999; van der

Meyden 2007]. None of these ideas use confidentiality and integrity to constrain each other, and so

cannot consider nonmalleability concerns.

The original formulation of robust declassification (RD) appears progress-sensitive, but gives no

suggestions for enforcement [Zdancewic and Myers 2001]. The first enforcement mechanisms limit

declassifications based on integrity levels, but both enforce only progress-insensitive definitions

of RD [Chong and Myers 2006; Myers et al. 2006]. Askarov and Myers [2011] use knowledge-

based formulations to define both progress-sensitive and progress-insensitive forms of RD, but

the definitions and enforcement are tailored to a four-point lattice and the only suggestion for

enforcing progress-sensitive RD is to eliminate progress leakage entirely. McCall et al. [2023]

provide a knowledge-based definition of RD for use in the challenging setting of reactive web

applications. Their definition is progress-insensitive and relies on trace events that track syntactic

downgrades, making it intensional and hard to generalize to languges that do not directly track

leakage.

Cecchetti et al. [2017] define transparent endorsement as the dual of RD, combine the two into

nonmalleable information flow, and present all three as hyperproperties. Their definition relies on

traces having matching public-trusted events, making it inherently progress-insensitive, and they

only enforce it in a fully terminating language. Soloviev et al. [2024] reformulate RD and NMIF

in modal logic using Kripke frames, including both progress-sensitive and progress-insensitive

formulations, but like the progress-sensitive RD definitions, there is no enforcement mechanism.

Information-Security Hyperproperties. Information-security conditions have been key ex-

amples of hyperproperties since their introduction. Clarkson and Schneider [2010] show how to

express multiple versions of noninterference as hyperproperties. One such notion is observational
determinism (OD) [McLean 1992; Roscoe 1995], which Zdancewic and Myers [2003] formulate

similarly to noninterference, with explicit consideration of trace prefixes. Clarkson and Schneider

present OD as a hyperproperty similar to our definition of PiNiD in Section 3.1.

A variety of tools aim to specify or verify security-oriented hyperproperties. Relational Hoare

Type Theory (RHTT) [Nanevski et al. 2011] allows for precise specification of 2-hypersafety

properties like noninterference. Cartesian Hoare Logic (CHL) [Sousa and Dillig 2016] generalizes

RHTT to arbitrary 𝑘-hypersafety properties for relational traces (input/output pairs). As our main

hyperproperties require considering intermediate trace prefixes of four traces, neither RHTT nor

CHL can represent them.

Other tools and techniques aim to verify various forms of hyperproperties [Beutner and Finkbeiner

2022; Coenen et al. 2019; Farzan and Vandikas 2019; Lamport and Schneider 2021; Unno et al. 2021],

with entirely different goals from this work. They aim to verify application-specific hyperproperties

(within a certain class), sometimes at great computational expense. This work identifies highly-

general security hyperproperties and enforces them through inexpensive type checking. I hope the

active research into verification will complement the results in this paper.

8 CONCLUSION
Information-flow control systems have long faced a tension between providing strong whole-

program security guarantees and supporting necessary programming constructs, like declassifi-

cation and loops. Noninterference is too restrictive, but uncontrolled downgrading complicates

Nonmalleable Progress Leakage

stating and proving security. Similarly, progress-insensitive security can leak arbitrary data to

attackers who can influence nontermination, but requiring loops to condition only on public data

makes many programs difficult to write.

To resolve this tension, we distilled the separation between progress-sensitivity and progress-

insensitivity into a new hyperproperty called leakage-free progress, and generalized it as non-
malleable progress leakage (NMPL), an adaptation of the intuitions of nonmalleable information

flow (NMIF) to secure progress channels. We explored how to enforce NMPL with a simple

information-flow type system, and finally we showed how to efficiently infer the locations of

necessary progress downgrade operations to aid developers or verify NMPL without explicit

annotations.

We hope these foundations will support more expressive and powerful security-typed languages

in the future. This work used an imperative core calculus without data downgrades to better

focus on the core contribution and simplify formalisms and proofs. Extending these ideas to more

practical languages would be valuable future work, with higher-order stateful languages posing a

particularly interesting challenge.

ACKNOWLEDGMENTS
This paper has only one author, but many people helped make it possible. Mike Hicks provided

direction about which questions would be most impactful. Leo Lampropoulos suggested a suitable

notion for minimality of the downgrade inference algorithm. Andrew K. Hirsch provided valuable

comments on the text and, along with Tej Chajed, helped work through multiple challenges in the

Rocq code. Additional thanks to Andrew C. Myers and Ashley Samuelson for help editing. Finally,

the shepherd and other anonymous reviewers provided valuable feedback and suggestions for

improving presentation.

REFERENCES
Martín Abadi, Anindya Banerjee, Nevin Heintze, and Jon Riecke. 1999. A Core Calculus of Dependency. In 26th ACM

SIGPLAN Symposium on Principles of Programming Languages (POPL ’99). https://doi.org/10.1145/292540.292555

Carmine Abate, Roberto Blanco, Deepak Garg, Cătălin Hriţcu, Marco Patrignani, and Jérémy Thibault. 2019. Journey

Beyond Full Abstraction: Exploring Robust Property Preservation for Secure Compilation. In 32nd IEEE Computer Security
Foundations Symposium (CSF ’19). https://doi.org/10.1109/CSF.2019.00025

Coşku Acay, Rolph Recto, Joshua Gancher, Andrew C. Myers, and Elaine Shi. 2021. Viaduct: An Extensible, Optimizing

Compiler for Secure Distributed Programs. In 42nd ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’21). https://doi.org/10.1145/3453483.3454074

Owen Arden, Michael D. George, Jed Liu, K. Vikram, Aslan Askarov, and Andrew C. Myers. 2012. Sharing Mobile

Code Securely with Information Flow Control. In 33rd IEEE Symposium on Security and Privacy (S&P ’12). https:

//doi.org/10.1109/SP.2012.22

Owen Arden, Jed Liu, and Andrew C. Myers. 2015. Flow-Limited Authorization. In 28th IEEE Computer Security Foundations
Symposium (CSF ’15). https://doi.org/10.1109/CSF.2015.42

Aslan Askarov, Sebastian Hunt, Andrei Sabelfeld, and David Sands. 2008. Termination-Insensitive Noninterference Leaks

More Than Just a Bit. In 13th European Symposium on Research in Computer Security (ESORICS ’08). https://doi.org/10.

1007/978-3-540-88313-5_22

Aslan Askarov and Andrew C. Myers. 2011. Attacker Control and Impact for Confidentiality and Integrity. Logical Methods
in Computer Science (LMCS) 7, 3 (Sept. 2011). https://doi.org/10.2168/LMCS-7(3:17)2011

Aslan Askarov and Andrei Sabelfeld. 2007. Gradual Release: Unifying Declassification, Encryption and Key Release Policies.

In 28th IEEE Symposium on Security and Privacy (S&P ’07). https://doi.org/10.1109/SP.2007.22

Johan Bay and Aslan Askarov. 2020. Reconciling progress-insensitive noninterference and declassification. In 33rd IEEE
Computer Security Foundations Symposium (CSF ’20). https://doi.org/10.1109/CSF49147.2020.00015

Raven Beutner and Bernd Finkbeiner. 2022. Software Verification of Hyperproperties Beyond 𝑘-Safety. In 34th International
Conference on Computer Aided Verification (CAV ’22). https://doi.org/10.1007/978-3-031-13185-1_17

]rocq-artifact Ethan Cecchetti. [n. d.]. Nonmalleable Progress Leakage Rocq Proofs. https://zenodo.org/records/15384760.

https://doi.org/10.5281/zenodo.15384760

https://doi.org/10.1145/292540.292555
https://doi.org/10.1109/CSF.2019.00025
https://doi.org/10.1145/3453483.3454074
https://doi.org/10.1109/SP.2012.22
https://doi.org/10.1109/SP.2012.22
https://doi.org/10.1109/CSF.2015.42
https://doi.org/10.1007/978-3-540-88313-5_22
https://doi.org/10.1007/978-3-540-88313-5_22
https://doi.org/10.2168/LMCS-7(3:17)2011
https://doi.org/10.1109/SP.2007.22
https://doi.org/10.1109/CSF49147.2020.00015
https://doi.org/10.1007/978-3-031-13185-1_17
https://doi.org/10.5281/zenodo.15384760

Ethan Cecchetti

Ethan Cecchetti, Andrew C. Myers, and Owen Arden. 2017. Nonmalleable Information Flow Control. In 24th ACM Conference
on Computer and Communication Security (CCS ’17). https://doi.org/10.1145/3133956.3134054

Ethan Cecchetti, Siqiu Yao, Haobin Ni, and Andrew C. Myers. 2021. Compositional Security for Reentrant Applications. In

42nd IEEE Symposium on Security and Privacy (S&P ’21). https://doi.org/10.1109/SP40001.2021.00084

Stephen Chong and Andrew C. Myers. 2006. Decentralized Robustness. In 19th IEEE Computer Security Foundations Workshop
(CSFW ’06). https://doi.org/10.1109/CSFW.2006.11

Stephen Chong and Andrew C. Myers. 2008. End-to-End Enforcement of Erasure and Declassification. In 21st IEEE Computer
Security Foundations Symposium (CSF ’08). https://doi.org/10.1109/CSF.2008.12

Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. Journal of Computer Security (JCS) 18, 6 (2010), 1157–1210.
https://doi.org/10.3233/JCS-2009-0393

Norine Coenen, Bernd Finkbeiner, César Sánchez, and Leander Tentrup. 2019. Verifying Hyperliveness. In 31st International
Conference on Computer Aided Verification (CAV ’19). https://doi.org/10.1007/978-3-030-25540-4_7

Azadeh Farzan and Anthony Vandikas. 2019. Automated Hypersafety Verification. In 31st International Conference on
Computer Aided Verification (CAV ’19). https://doi.org/10.1007/978-3-030-25540-4_11

Nikolaos Galatos. 2007. Residuated Lattices: An Algebraic Glimpse at Substructural Logics. Elsevier Sience.
Joseph A. Goguen and José Meseguer. 1982. Security Policies and Security Models. In 3rd IEEE Symposium on Security and

Privacy (S&P ’82). https://doi.org/10.1109/SP.1982.10014

Andrew K. Hirsch and Ethan Cecchetti. 2021. Giving Semantics to Program-Counter Labels via Secure Effects. Proceedings
of the ACM on Programming Languages 5, POPL, Article 35 (Jan. 2021), 29 pages. https://doi.org/10.1145/3434316

Leslie Lamport and Fred B. Schneider. 2021. Verifying Hyperproperties With TLA. In 34th IEEE Computer Security Foundations
Symposium (CSF ’21). https://doi.org/10.1109/CSF51468.2021.00012

Peng Li and Steve Zdancewic. 2005. Downgrading Policies and Relaxed Noninterference. In 32nd ACM SIGPLAN Symposium
on Principles of Programming Languages (POPL ’05). https://doi.org/10.1145/1040305.1040319

Heiko Mantel and David Sands. 2004. Controlled Declassification Based on Intransitive Noninterference. In 2nd Asian
Symposium on Programming Languages and Systems (APLAS ’04). https://doi.org/10.1007/978-3-540-30477-7_9

McKenna McCall, Abhishek Bichhawat, and Limin Jia. 2023. Tainted Secure Multi-Execution to Restrict Attacker Influence.

In 30th ACM Conference on Computer and Communication Security (CCS ’23). https://doi.org/10.1145/3576915.3623110

John McLean. 1992. Proving Noninterference and Functional Correctness Using Traces. Journal of Computer Security (JCS)
1, 1 (Jan. 1992), 37–57. https://doi.org/10.3233/JCS-1992-1103

Scott Moore, Aslan Askarov, and Stephen Chong. 2012. Precise Enforcement of Progress-Sensitive Security. In 19th ACM
Conference on Computer and Communication Security (CCS ’12). https://doi.org/10.1145/2382196.2382289

Andrew C. Myers and Barbara Liskov. 1998. Complete, Safe Information Flow with Decentralized Labels. In 19th IEEE
Symposium on Security and Privacy (S&P ’98). https://doi.org/10.1109/SECPRI.1998.674834

Andrew C. Myers, Andrei Sabelfeld, and Steve Zdancewic. 2006. Enforcing Robust Declassification and Qualified Robustness.

Journal of Computer Security (JCS) 14, 2 (2006), 157–196. https://doi.org/10.3233/JCS-2006-14203

Aleksandar Nanevski, Anindya Banerjee, andDeepakGarg. 2011. Verification of Information Flow andAccess Control Policies

with Dependent Types. In 32nd IEEE Symposium on Security and Privacy (S&P ’11). https://doi.org/10.1109/SP.2011.12

Kevin R. O’Neill, Michael R. Clarkson, and Stephen Chong. 2006. Information-Flow Security for Interactive Programs. In

19th IEEE Computer Security Foundations Workshop (CSFW ’06). https://doi.org/10.1109/CSFW.2006.16

Sylvan Pinsky. 1995. Absorbing covers and intransitive non-interference. In 16th IEEE Symposium on Security and Privacy
(S&P ’95). https://doi.org/10.1109/SECPRI.1995.398926

Nadia Polikarpova, Deian Stefan, Jean Yang, Shachar Itzhaky, Travis Hance, and Armando Solar-Lezama. 2020. Liquid

Information Flow Control. Proceedings of the ACM on Programming Languages 4, ICFP, Article 105 (Aug. 2020), 30 pages.
https://doi.org/10.1145/3408987

Rocq development team. 2025. The Rocq Prover. https://rocq-prover.org/ Version 8.20.1.

A.W. Roscoe. 1995. CSP and determinism in security modelling. In 16th IEEE Symposium on Security and Privacy (S&P ’95).
https://doi.org/10.1109/SECPRI.1995.398927

Andrew W. Roscoe and Michael H. Goldsmith. 1999. What is Intransitive Noninterference?. In 12th IEEE Computer Security
Foundations Workshop (CSFW ’99). https://doi.org/10.1109/CSFW.1999.779776

Andrei Sabelfeld and Andrew C. Myers. 2003a. Language-Based Information-Flow Security. IEEE Journal on Selected Areas
in Communications 21, 1 (Jan. 2003), 5–19. https://doi.org/10.1109/JSAC.2002.806121

Andrei Sabelfeld and Andrew C. Myers. 2003b. A Model for Delimited Information Release. In International Symposium on
Software Security. https://doi.org/10.1007/978-3-540-37621-7_9

Andrei Sabelfeld and David Sands. 2005. Dimensions and Principles of Declassification. In 18th IEEE Computer Security
Foundations Workshop (CSFW ’05). https://doi.org/10.1109/CSFW.2005.15

Robert I. Soare. 2016. Turing Computability: Theory and Applications. Springer. https://doi.org/10.1007/978-3-642-31933-4

https://doi.org/10.1145/3133956.3134054
https://doi.org/10.1109/SP40001.2021.00084
https://doi.org/10.1109/CSFW.2006.11
https://doi.org/10.1109/CSF.2008.12
https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.1007/978-3-030-25540-4_7
https://doi.org/10.1007/978-3-030-25540-4_11
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1145/3434316
https://doi.org/10.1109/CSF51468.2021.00012
https://doi.org/10.1145/1040305.1040319
https://doi.org/10.1007/978-3-540-30477-7_9
https://doi.org/10.1145/3576915.3623110
https://doi.org/10.3233/JCS-1992-1103
https://doi.org/10.1145/2382196.2382289
https://doi.org/10.1109/SECPRI.1998.674834
https://doi.org/10.3233/JCS-2006-14203
https://doi.org/10.1109/SP.2011.12
https://doi.org/10.1109/CSFW.2006.16
https://doi.org/10.1109/SECPRI.1995.398926
https://doi.org/10.1145/3408987
https://rocq-prover.org/
https://doi.org/10.1109/SECPRI.1995.398927
https://doi.org/10.1109/CSFW.1999.779776
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1007/978-3-540-37621-7_9
https://doi.org/10.1109/CSFW.2005.15
https://doi.org/10.1007/978-3-642-31933-4

Nonmalleable Progress Leakage

Matvey Soloviev, Musard Balliu, and Roberto Guanciale. 2024. Security Properties through the Lens of Modal Logic. In 37th

IEEE Computer Security Foundations Symposium (CSF ’24). https://doi.org/10.1109/CSF61375.2024.00009

Marcelo Sousa and Isil Dillig. 2016. Cartesian Hoare Logic for Verifying 𝑘-Safety Properties. In 37th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI ’16). https://doi.org/10.1145/2908080.2908092

Deian Stefan, Alejandro Russo, John C. Mitchell, and David Mazières. 2011. Flexible Dynamic Information Flow Control in

Haskell. In 4th ACM SIGPLAN Haskell Symposium (HASKELL ’11). https://doi.org/10.1145/2034675.2034688

Hiroshi Unno, Tachio Terauchi, and Eric Koskinen. 2021. Constraint-Based Relational Verification. In 33rd International
Conference on Computer Aided Verification (CAV ’21). https://doi.org/10.1007/978-3-030-81685-8_35

Ron van der Meyden. 2007. What, Indeed, Is Intransitive Noninterference?. In 12th European Symposium on Research in
Computer Security (ESORICS ’07). https://doi.org/10.1007/978-3-540-74835-9_16

Dennis Volpano and Geoffrey Smith. 1997. Eliminating Covert Flows with Minimum Typings. In 10th IEEE Computer Security
Foundations Workshop (CSFW ’97). https://doi.org/10.1109/CSFW.1997.596807

Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. 1996. A Sound Type System for Secure Flow Analysis. Journal of
Computer Security (JCS) 4, 2–3 (1996), 167–187. https://doi.org/10.3233/JCS-1996-42-304

LucasWaye, Pablo Buiras, Dan King, Stephen Chong, and Alejandro Russo. 2015. It’s My Privilege: Controlling Downgrading

in DC-Labels. In 11th International Workshop on Security and Trust Management (STM ’15).
Drew Zagieboylo, G. Edward Suh, and AndrewC.Myers. 2019. Using Information Flow to Design an ISA that Controls Timing

Channels. In 32nd IEEE Computer Security Foundations Symposium (CSF ’19). https://doi.org/10.1109/CSF.2019.00026

Steve Zdancewic and Andrew C. Myers. 2001. Robust Declassification. In 14th IEEE Computer Security Foundations Workshop
(CSFW ’01). https://doi.org/10.1109/CSFW.2001.930133

Steve Zdancewic and Andrew C. Myers. 2003. Observational Determinism for Concurrent Program Security. https:

//doi.org/10.1109/CSFW.2003.1212703

Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazières. 2011. Making Information Flow Explicit in

HiStar. Commun. ACM 54, 11 (Nov. 2011), 93–101. https://doi.org/10.1145/2018396.2018419

A FULL CALCULUS RULES
We now present the full semantic and typing rules of the core calculus from Section 4. The big-step

semantic rules for expression are in Figure 6 and the small-step rules for all commands are in

Figure 7. The typing rules for expressions are in Figure 8. Figure 3 in Section 4.2 contains all typing

rules for commands.

⟨𝑒, 𝜎⟩ ⇓ 𝑛

⟨𝑥, 𝜎⟩ ⇓ 𝜎 (𝑥) ⟨𝑛, 𝜎⟩ ⇓ 𝑛
⟨𝑒1, 𝜎⟩ ⇓ 𝑛1 ⟨𝑒2, 𝜎⟩ ⇓ 𝑛2
⟨𝑒1 ⊗ 𝑒2, 𝜎⟩ ⇓ (𝑛1 ⊗ 𝑛2)

Fig. 6. Big-step operational semantics for expressions.

https://doi.org/10.1109/CSF61375.2024.00009
https://doi.org/10.1145/2908080.2908092
https://doi.org/10.1145/2034675.2034688
https://doi.org/10.1007/978-3-030-81685-8_35
https://doi.org/10.1007/978-3-540-74835-9_16
https://doi.org/10.1109/CSFW.1997.596807
https://doi.org/10.3233/JCS-1996-42-304
https://doi.org/10.1109/CSF.2019.00026
https://doi.org/10.1109/CSFW.2001.930133
https://doi.org/10.1109/CSFW.2003.1212703
https://doi.org/10.1109/CSFW.2003.1212703
https://doi.org/10.1145/2018396.2018419

Ethan Cecchetti

⟨𝑒, 𝜎⟩ 𝛼−−→ ⟨𝑒′, 𝜎′⟩

[E-Stop]

⟨skip, 𝜎⟩
stp

−−→ ⟨stop, 𝜎⟩
[E-Assign]

⟨𝑒, 𝜎⟩ ⇓ 𝑛 𝑥 ∈ dom(𝜎)

⟨𝑥 B 𝑒, 𝜎⟩
a(𝑥,𝑛)
−−−−−→ ⟨skip, 𝜎 [𝑥 ↦→ 𝑛]⟩

[E-SeqStep]

⟨𝑐1, 𝜎⟩
𝛼−−→

〈
𝑐′
1
, 𝜎′

〉
𝑐′
1
≠ stop

⟨𝑐1 ; 𝑐2, 𝜎⟩
𝛼−−→

〈
𝑐′
1
; 𝑐2, 𝜎

′〉 [E-SeqSkip]

⟨skip ; 𝑐, 𝜎⟩ •−−→ ⟨𝑐, 𝜎⟩

[E-IfN]

⟨𝑒, 𝜎⟩ ⇓ 𝑛 𝑛 ≠ 0

⟨if 𝑒 then 𝑐1 else 𝑐2, 𝜎⟩
•−−→ ⟨𝑐1, 𝜎⟩

[E-If0]

⟨𝑒, 𝜎⟩ ⇓ 0

⟨if 𝑒 then 𝑐1 else 𝑐2, 𝜎⟩
•−−→ ⟨𝑐2, 𝜎⟩

[E-While]

⟨while 𝑒 do 𝑐, 𝜎⟩ •−−→ ⟨if 𝑒 then (𝑐 ; while 𝑒 do 𝑐) else skip, 𝜎⟩

[E-PDownStep]

⟨𝑐, 𝜎⟩ 𝛼−−→
〈
𝑐′, 𝜎′

〉
𝑐′ ≠ stop〈

pdownℓ 𝑐, 𝜎
〉 𝛼−−→

〈
pdownℓ 𝑐

′, 𝜎′
〉 [E-PDownSkip] 〈

pdownℓ skip, 𝜎
〉 pd(ℓ)
−−−−−→ ⟨skip, 𝜎⟩

Fig. 7. Full small-step operational semantics for commands.

Γ ⊢ 𝑒 : ℓ

Γ(𝑥) = ℓ

Γ ⊢ 𝑥 : ℓ Γ ⊢ 𝑛 : ℓ

Γ ⊢ 𝑒1 : ℓ
Γ ⊢ 𝑒2 : ℓ

Γ ⊢ 𝑒1 ⊗ 𝑒2 : ℓ

Γ ⊢ 𝑒 : ℓ′
ℓ′ ⊑ ℓ

Γ ⊢ 𝑒 : ℓ

Fig. 8. Typing rules for expressions.

	Abstract
	1 Introduction
	2 Label Model
	3 Progress-Sensitive Hyperproperties
	3.1 Noninterference and Leakage-Free Progress
	3.2 Robust Declassification
	3.3 Nonmalleable Information Flow

	4 A Core Calculus for Secure Progress Leakage
	4.1 Operational Semantics
	4.2 Type System
	4.3 Example Revisited
	4.4 Program Behavior and Indistinguishability
	4.5 Proving Security

	5 Inferring Progress Downgrades
	5.1 Label Structure
	5.2 Inference Algorithm
	5.3 Soundness, Completeness, and Correctness
	5.4 Efficiency and Minimality

	6 Proof Approach and Rocq Details
	6.1 Proving Security
	6.2 Inference Properties

	7 Related Work
	8 Conclusion
	References
	A Full Calculus Rules

