
ar
X

iv
:2

50
5.

12
12

8v
1

 [
cs

.C
R

]
 1

7
M

ay
 2

02
5

Back to Square Roots: An Optimal Bound on the
Matrix Factorization Error for Multi-Epoch

Differentially Private SGD

Nikita P. Kalinin
Institute of Science and Technology (ISTA)

Klosterneuburg, Austria
nikita.kalinin@ist.ac.at

Ryan McKenna
Google Research

mckennar@google.com

Jalaj Upadhyay
Rutgers University
New Jersey, USA

jalaj.upadhyay@rutgers.edu

Christoph H. Lampert
Institute of Science and Technology (ISTA)

Klosterneuburg, Austria
chl@ist.ac.at

Abstract

Matrix factorization mechanisms for differentially private training have emerged
as a promising approach to improve model utility under privacy constraints. In
practical settings, models are typically trained over multiple epochs, requiring
matrix factorizations that account for repeated participation. Existing theoretical
upper and lower bounds on multi-epoch factorization error leave a significant
gap. In this work, we introduce a new explicit factorization method, Banded
Inverse Square Root (BISR), which imposes a banded structure on the inverse
correlation matrix. This factorization enables us to derive an explicit and tight
characterization of the multi-epoch error. We further prove that BISR achieves
asymptotically optimal error by matching the upper and lower bounds. Empirically,
BISR performs on par with state-of-the-art factorization methods, while being
simpler to implement, computationally efficient, and easier to analyze.

1 Introduction

Private machine learning has become increasingly important as the use of sensitive data in model
training continues to grow. Ensuring privacy while maintaining model accuracy presents a critical
challenge, particularly in fields like healthcare, finance, and personal data analysis. Differential
Privacy (DP) has emerged as a fundamental framework for formalizing privacy guarantees in machine
learning. It provides a mathematically rigorous way to limit the influence of any individual data
point on the model’s output, thereby preserving privacy. One effective approach to achieving DP in
iterative training is through the use of structured noise mechanisms that balance privacy guarantees
with model utility.

In this work, we focus on the Matrix Factorization Mechanism for ensuring DP, a method extensively
studied in recent years in the context of private learning (Kairouz et al., 2021; Denisov et al., 2022;
Fichtenberger et al., 2023; Henzinger et al., 2023; Andersson & Pagh, 2023; Henzinger et al., 2024;
Kalinin & Lampert, 2024; Andersson & Pagh, 2025; Henzinger & Upadhyay, 2025; Henzinger et al.,
2025). The idea behind this approach is to add a correlated noise to the gradients to preserve accuracy
of the model training, with correlation matrix C ∈ Rn×n.

The concept of multi-epoch participation with matrix factorization was first introduced by Choquette-
Choo et al. (2023), where the problem was formulated as an optimization problem over banded

Preprint. Under review.

https://arxiv.org/abs/2505.12128v1

matrices. However, a key limitation of existing methods is the lack of precise theoretical guarantees
on the factorization error in multi-epoch participation. While Kalinin & Lampert (2024) established
a general lower bound and provided an upper bound for Square Root Factorization, the error bounds
for Banded Square Root Factorization, where the correlation matrix C is made p-banded, remained
imprecise.

In this work, we propose a novel approach to matrix factorization: rather than imposing a banded
structure on the correlation matrix C, we introduce a banded inverse square root, enforcing the
banded structure on C−1. This shift1 offers several key advantages. First, it allows for precise
control over the resulting factorized matrices, enabling us to derive explicit upper bounds on the
factorization error with clear dependence on the bandwidth. Second, the method is computationally
efficient, as it requires one just to convolve the previous noise with a quickly computable fixed
sequence of coefficients, which can be done for instance via Fast Fourier Transform (FFT), making it
suitable for large-scale machine learning tasks. Most importantly, we prove that our method achieves
asymptotically optimal factorization error: we establish a new lower bound that matches our
upper bound, closing a significant theoretical gap in the literature.

By refining the theoretical understanding of banded factorization in multi-epoch settings, our work
provides both theoretical insights and practical benefits for privacy-preserving ML training. Our main
contributions are:

1. We introduce a new factorization method, the Banded Inverse Square Root (BISR), which
is scalable, efficient, and agnostic to the underlying training objective.

2. We prove that BISR is asymptotically optimal, by deriving tight upper and lower bounds on
the multi-epoch factorization error, with explicit dependence on bandwidth and workload
properties.

3. We conduct a thorough empirical evaluation, comparing BISR to existing techniques in multi
participation training—including Banded Square Root (BSR), Buffered Linear Toeplitz
(BLT), and Banded Matrix Factorization (Band-MF), showing that BISR achieves a higher
or comparable accuracy for the large matrix sizes.

4. In the low-memory regime, we propose an optimization method, BandInvMF, which
directly optimizes the coefficients of the matrix C−1. This approach achieves error rates
comparable to state-of-the-art factorization methods, while being easy and efficient to
implement.

2 Background

Matrix Factorization (MF). MF mechanisms provide a promising approach to the private matrix
multiplication problem, which has applications in continual counting and Stochastic Gradient Descent
for machine learning. Specifically, we aim to estimate the product of a public matrix of coefficients
A ∈ Rn×n and a private matrix X ∈ Rn×d. Instead of doing so directly, we adopt a factorization
A = BC, allowing us to estimate AX privately as ÂX = B(CX + Z) or, equivalently, ÂX =
A(X + C−1Z). Here, Z ∼ N (0, sI) is appropriately scaled Gaussian noise, which ensures that
CX + Z is private; the multiplication by B preserves the privacy guarantees due to DP’s post-
processing property.

The choice of factorization A = BC can significantly impact the quality of the private estimation.
We quantify the approximation quality by the expected Frobenius error of the estimated product,

E(B,C)2 =
1

n
EZ∥AX − ÂX∥2F, (1)

where ∥ · ∥F is the Frobenius norm. An elementary analysis (Li et al., 2015) shows that

E(B,C)2 =
s2

n
∥B∥2F, (2)

and that the required noise strength, s, scales proportionally to the sensitivity of the matrix C. Let
X ∼ X ′ indicates that the update vector sequences differ only in entries corresponding to a single
data item. Then sensitivity of the matrix C is defined as

1The inverse correlation matrix has been receiving more attention recently. In the concurrent work McMahan
& Pillutla (2025), the authors consider the inverse correlation matrix of BLT.

2

sens(C) := sup
X∼X′

∥CX − CX ′∥F (3)

Private SGD. In this work, we consider the task of model training with SGD with (optional)
weight decay and momentum. The corresponding update equations are θi+1 = αθi − mi+1 and
mi+1 = βmi + xi, where θ1, . . . , θn ∈ RD are the model parameters after each update step,
x1, . . . , xn are the gradient vectors computed in each update step, 0 < α ≤ 1 is the weight decay
factor, and 0 ≤ β < 1 is the momentum strength 2.

Following Kalinin & Lampert (2024), we rewrite the dynamics in the matrix form as Θ = Aα,βX ,
with Θ = (θ1, . . . , θn)

⊤ ∈ Rn×D, X = (x1, . . . , xn)
⊤ ∈ Rn×D, and Aα,β is the SGD workload

matrix defined as follows:

Aα,β =

1 0 · · · 0

α+ β 1 · · · 0
...

...
. . .

...
n−1∑
k=0

αkβn−1−k
n−2∑
k=0

αkβn−2−k · · · 1

 ∈ Rn×n. (4)

Note that, in contrast to the naive MF setting, in the SGD case any input data (gradient) xi depends
on the previously computed model parameters, θi−1, that is, we aim for adaptive privacy. However,
Denisov et al. (2022) shows that for Gaussian noise, adaptive privacy follows from the non-adaptive
one, i.e., it suffices for us to solve the case in which the X matrix is an arbitrary fixed data matrix.
Consequently, we estimate Aα,βX privately using the form Âα,βX = Aα,β(X +C−1Z). This form
corresponds to running SGD, but each individual gradient update is perturbed by a correlated noise
vector. That has the advantage that we do not need to store any previous gradients, and we can rely
on any existing implementation of the SGD procedure.

In multi-epoch SGD, each data sample might contribute to more than one gradient update vector. As
a suitable notion of sensitivity, we adopt the setting of b-min-separated repeated participation (two
participations of any data point occur at least b update steps apart). The resulting sensitivity can be
bounded as Choquette-Choo et al. (2023):

sensk,b(C) ≤ max
π∈Πk,b

√∑
i,j∈π

|(C⊤C)[i,j]| (5)

where Πk,b = {π ⊂ {1, ..., n} : |π| ≤ k ∧ ({i, j} ⊂ π ⇒ i = j ∨ |i− j| ≥ b)} represents the set of
possible b-min-separated index sets with at most k participation. This bound becomes an equality if
all entries of C⊤C are non-negative.

Optimal factorization. Better choices of factorization matrices can achieve the same privacy levels
with less added noise, potentially leading to higher utility. Therefore, various factorizations have
been proposed and studied theoretically as well as empirically.

Choquette-Choo et al. (2023) defines the optimal factorization as the one that minimizes the expected
approximation error (1), and proposed an optimization problem to (approximately) compute this
factorization. A downside of this approach is that the optimization problem is computationally
expensive and the numeric solution does not provide theoretical insights, such as the optimal (i.e.
lowest) rate of growth of the approximation error.

On the other hand, a square root factorization introduced by Henzinger et al. (2024), is an explicit
factorization, defined by Aα,β = C2

α,β . Kalinin & Lampert (2024) showed that the factorization error
of the square root factorization under multi-epoch participation is worse than that of the optimal
factorization and they introduced banded square root (BSR) factorization, which is defined by making
the matrix Cα,β banded. A limitation of BSR is that its guarantees are implicit in terms of the used
bandwidth, which does not allow concluding how they relate to the optimal multi-epoch factorization
at a theoretical level.

2For simplicity of exposition, we use an implicit learning rate of 1. Because of the linearity of the operations,
the general case can be recovered by pre-scaling x1, . . . , xn accordingly.

3

3 Banded Inverse Square Root Factorization

In this section, we present our main theoretical results: we prove a new lower bound on the achievable
approximation error (Theorem 1), we introduce the BISR factorization (Definition 1), and we prove
that BISR achieves this (therefore optimal) rate (Theorem 2).

We first show an improved version of the lower bounds of the approximation error for general
factorizations from Kalinin & Lampert (2024) in Section 4.
Theorem 1 (General Multi-Participation Lower Bound). Let Aα,β ∈ Rn×n be the SGD workload
matrix (4). In the multi-participation setting with separation 1 ≤ b ≤ n and k = ⌈n

b ⌉, for any
factorization Aα,β = BC, it holds

E(B,C) =

{
Ω(

√
k log n+ k) if α = 1,

Ωα(
√
k) if α < 1.

(6)

As our second main contribution, we now introduce the BISR factorization for multi-epoch SGD.
Definition 1 (Banded Inverse Square Root (BISR)). For a given workload matrix A, let C be the
matrix square root (i.e. C2 = A) with positive values on the diagonal. Let Cp be the matrix obtained
by: i) computing the inverse matrix C−1, ii) imposing a banded structure with p bands by setting all
elements below the p-th diagonal to zero, iii) inverting the resulting banded matrix back. Then, we
denote by BISR the matrix factorization A = BpCp, with Bp = A(Cp)−1.

BISR can be seen as an alternative realization of the insights behind the BSR (Banded Square Root)
factorization from Kalinin & Lampert (2024). There, the intuition was that making the matrix C p-
banded reduces its sensitivity without increasing the Frobenius norm of the subsequent postprocessing
matrix too much, thereby resulting in an overall reduction of the approximation error. The authors
did not derive exact rates, though, because the dependence on p is not explicit.

For BISR, we instead make the matrix C−1 p-banded. This also leads to a reduction of the approxima-
tion error compared to the non-banded case, but with two additional advantages. First, the resulting
algorithm is time- and memory-efficient because the product of (Cp)−1Z can be represented as a
convolution with p elements. Therefore, the computation can be performed efficiently: in a streaming
setting, only p rows of the matrix Z need to be stored at any time, while in an offline setting (which
requires more storage), it can be accelerated further using the Fast Fourier Transform. Second, and
mainly, it allows us to derive more explicit expressions of the approximation error with respect to the
bandwidth p, as illustrated by the following theorem proved in Section 4.
Theorem 2 (BISR Approximation Error). For 1 ≤ p ≤ n and 1 ≤ k ≤ n

b the following upper bound
holds for the matrix factorization error of the BISR Aα,β = Bp

α,βC
p
α,β (as in Definition 1):

E(Bp
α,β , C

p
α,β) =

Oβ

(√
k log p+

√
nk
b +

√
nk log p

p +
√

kp log p
b

)
for α = 1,

Oα,β(
√
k) for α < 1.

(7)

For comparison, Kalinin & Lampert (2024) proved a bound O
(√

nk log p
p

)
+ Op(

√
k) on the

approximation error of the BSR in the case α = 1, β = 0. While the first term also appears in (7), the
second is non-informative about the effect of the bandwidth, p, and therefore does not allow making
a statement about the optimality of the BSR.

In contrast, Theorem 2 is explicit about the role of p. Choosing its value such that the occurring terms
in (7) are minimized, we obtain the following corollary.
Corollary 1 (Optimized BISR Approximation Error). Let Aα,β = Bp

α,βC
p
α,β be the BISR factor-

ization defined of Definition 1. For 1 ≤ b ≤ n let k = ⌈n
b ⌉. Then, for p∗ ∼ b log b, the matrix

factorization error admits the following optimized upper bound:

E(Bp∗

α,β , C
p∗

α,β) =

{
Oβ

(√
k log n+ k

)
, for α = 1,

Oα,β(
√
k), for α < 1.

(8)

Comparing (8) with (6), we obtain as direct corollaries.

4

Corollary 2 (Tightness of Theorem 1). The lower bounds of Theorem 1 are tight, in the sense that
there exists a factorization method that achieves them.

Corollary 3 (Rate-optimality of BISR). No matrix factorization method can achieve better rates
than BISR.

Following the work of Andersson & Yehudayoff (2025), we show that the space complexity of the
matrix (Cp

α,β)
−1 is equal to p, meaning that exact multiplication with a random real vector z in a

streaming setting, performing continuous operations, requires storing p real values (not including the
memory needed to store the matrix coefficients). This implies that, for memory-efficient computation,
one must either use a small bandwidth p or consider approximate multiplication. We formally state
the result in the following lemma:

Lemma 1. The space complexity—defined as the minimum buffer size required by a streaming
algorithm to correctly process an input—for computing the product of the Toeplitz matrix (Cp

α,β)
−1

with an arbitrary vector z ∈ Rn, for n ≥ 2p− 1, is exactly p, and at least n−5
2 for C−1

α,β .

4 Proofs

Proof of Lemma 1. Throughout this proof, we use only results from Andersson & Yehudayoff (2025),
and thus any reference to a theorem or lemma should be understood as coming from that work. We
use their Lemma 7, which lower-bounds the space complexity of a Toeplitz matrix using the rank
of a corresponding Hankel matrix of its coefficients. The matrix C−1

α,β has a generating function
f =

√
(1− αx)(1− βx). The proof of their Corollary 16 implies that the Hankel matrix H[f] has

corank at most 3. Thus, Lemma 7 implies that C−1
α,β has space complexity at least n+1

2 − 3. For the
matrix (Cp

α,β)
−1, the generating function is a rational function of degree p; therefore, for n ≥ 2p− 1,

their Theorem 2 implies that the space complexity is exactly p, concluding the proof.

Proof of Theorem 1. We use the probabilistic method in Lemma 9 to obtain the bounds Ωα(
√
k) for

α < 1 and E(B,C) = Ω(
√
k log n) for α = 1. It remains to prove that for α = 1, we also have the

lower bound E(B,C) = Ω(k).

We begin with the following observation: given a matrix C, we can compute an optimal participation
scheme represented by a vector with ones at positions corresponding to participating columns,
denoted by π∗

C . As a lower bound, we consider a specific participation vector π1, with ones in
columns indexed by 1 + ib for i ∈ [0, k − 1], such that |π1| = k. By construction, we have
sensk,b(C) := ∥Cπ∗

C∥2 ≥ ∥Cπ1∥2. Therefore, the error can be bounded as follows:

E(B,C) =
1√
n
∥B∥F sensk,b(C) ≥ 1√

n
∥B∥F ∥Cπ1∥2 ≥ 1√

n
∥BCπ1∥2 =

1√
n
∥A1,βπ1∥2. (9)

As a lower bound, we consider β = 0 as ∥A1,βπ1∥2 ≥ ∥A1,0π1∥2. The elements of the matrix A1,0

are positive and non-increasing. Therefore, by Theorem 3, the (k, b)-sensitivity of A1,0 is exactly
∥A1,0π1∥2. By Theorem 9 from Kalinin & Lampert (2024), this sensitivity is at least k

√
n√
3

, resulting
in the lower bound:

E(B,C) ≥ k√
3
= Ω(k), (10)

which concludes the proof.

4.1 Proof of Theorem 2

Before proving the main theorem, we state several properties of BISR decomposition, except for the
ones taken from prior work, we provide their proofs in the appendix.

We first re-state the analytic form of the coefficients of C = A1/2.

Lemma 2 (Theorem 1 in Kalinin & Lampert (2024) – Square Root of the Matrix Aα,β). For k ≥ 0,

let rk =
∣∣∣(−1/2

k

)∣∣∣. For 0 ≤ β < α ≤ 1, the square root matrix Cα,β = A
1/2
α,β has the following

5

explicit form:

Cα,β =

1 0 · · · 0

cα,β1 1 · · · 0
...

...
. . .

...
cα,βn−1 cα,βn−2 · · · 1

 with coefficients cα,βk =

k∑
j=0

αjβk−jrjrk−j , (11)

The follow lemma provides analytic expressions for the elements of the inverse matrix C−1
α,β .

Lemma 3 (Inverse Square Root of the Matrix Aα,β). For k ≥ 0, let r̃k = (−1)k
(
1/2
k

)
= −rk

2k−1 =

−1
2k−1

∣∣∣(−1/2
k

)∣∣∣ . The inverse of the matrix Cα,β = A
1/2
α,β defined in (2), for 0 ≤ β < α ≤ 1, is

C−1
α,β =

1 0 . . . 0

c̃α,β1 1 . . . 0
...

...
. . .

...
c̃α,βn−1 c̃α,βn−2 . . . 1

 , where c̃α,βk =

k∑
j=0

r̃jβ
j r̃k−jα

k−j . (12)

We can now compute the values of the matrices Bp
α,β and Cp

α,β using the following lemmas.

Lemma 4 (Bounds on diagonals of Bp
α,β). The matrix Bp

α,β in the BISR factorization is a lower
triangular Toeplitz matrix. The values on its diagonals are

(1, cα,β1 , cα,β2 , . . . , cα,βp−1, b
α,β
p , . . . , bα,βn−1) where 0 ≤ bα,βi ≤ αic

1,β/α
p−1 for i ≥ p (13)

where c
1,β/α
i for 1 ≤ i ≤ p− 1 is as defined in equation (11) .

Lemma 5 (Bounds on diagonals of Cp
α,β). The matrix Cp

α,β in the BISR factorization is a lower

triangular Toeplitz matrix. The values on its diagonals are (1, cα,β1 , cα,β2 , . . . , cα,βp−1, g
α,β
p , . . . , gα,βn−1),

where c
1,β/α
i (for 1 ≤ i ≤ p− 1) is as defined in equation (11) and

0 ≤ gα,βi ≤ αi min
(
c
1,β/α
i , c1,β/αp γi−p

β/α

)
for γβ/α =

(
1 +

(1− β/α)2

4p(1 + β/α)

)−1

and i ≥ p.

(14)

We then use the multi-participation sensitivity stated in the form of the following theorem.

Theorem 3 (Theorem 2 from Kalinin & Lampert (2024)). Let M be a lower triangular Toeplitz
matrix with decreasing non-negative entries m0 ≥ m1 ≥ m2 ≥ . . .mn−1 ≥ 0 on the diagonals.
Then the sensitivity of M in the setting of b-min-separation is

sensk,b(M) =
∥∥∥ k−1∑

j=0

M[·,1+jb]

∥∥∥
2

(15)

where M[·,1+jb] denotes the (1 + jb)-th column of M .

To apply Theorem 3 we need to prove that the values of the matrix Cp
α,β are decreasing, which we

formulate by the following lemma

Lemma 6 (Decresing values). The values (1, cα,β1 , . . . , cα,βp−1, g
α,β
p , . . . , gα,βn−1) of matrix Cp

α,β as
defined in Lemma 5 are decreasing.

To prove Theorem 2, we use Lemma 4 to bound the Frobenius norm ∥Bp
α,β∥F . Then, Theorem 3,

together with Lemma 6, provides an explicit way to express the sensitivity sensk,b(Cα,β). To bound
the sensitivity, we apply Lemma 5 to bound individual values. The product of the bounds on ∥Bp

α,β∥F
and sensk,b(Cα,β) yields the result. The full proof of Theorem 2 can be found in the appendix.

6

103 104

Bandwidth (p)

14

16

18

20

22

24

RM
SE

BSR
BISR
p= b

(a) α = 1, β = 0

103 104

Bandwidth (p)

100

120

140

160

180

200

RM
SE

BSR
BISR
p= b

(b) α = 1, β = 0.9

103 104

Bandwidth (p)

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8

RM
SE

BSR
BISR
p= b

(c) α = 0.999, β = 0

Figure 1: RMSE comparison for Banded Square Root (BSR) and Banded Inverse Square Root (BISR)
methods across varying bandwidths (p). The results are shown for a fixed matrix size of n = 16384
and a participation number of k = 8.

5 Experiments

In this section, we present numerical results from evaluating various factorization methods in the
multi-participation regime.

We first study the effect of using different bandwidths for BSR and BISR, as shown in Figure 1. We
found that, in most settings, the optimal bandwidth for BSR is equal to the separation parameter b,
whereas for BISR, the optimal value is not only different from b but can also perform noticeably
worse when b is used. Therefore, in future comparisons with BISR, we propose optimizing over the
bandwidth to find an optimal value p∗ whenever computationally feasible.

We compare BISR with several other methods, including Banded Square Root (BSR), Banded
Matrix Factorization (BandMF), introduced by McKenna (2025), and Buffered Linear Toeplitz (BLT),
introduced by Dvijotham et al. (2024) and adapted for multi-participation training by McMahan et al.
(2024). We use a buffer size of 4, as recommended, and observe that the error saturates quickly as the
buffer size increases. We use BandMF with bandwidth equal to b, as we did not observe any benefit
from using a larger bandwidth. Moreover, we conjecture that optimal multi-epoch participation can
always be achieved on a banded lower triangular matrix with bandwidth b.

We emphasize that BLT has only been described, analyzed, and implemented for prefix-sum matrices.
Therefore, we do not show BLT results for momentum and weight decay plots. For all methods
except BISR, we use efficient implementations from the jax-privacy library (Balle et al., 2025).

Our experiments (Figure 2) show that banded inverse square root factorization consistently matches
or exceeds BSR in quality across all regimes and outperforms it in scenarios with a large number
of participations. The improvement is particularly pronounced when the participation count is
high (k = 16). BISR achieves RMSE comparable to that of BLT, but has the advantage of easier
implementation for both factorization and training, as it only requires convolving previous noise with
a fixed set of coefficients—an "embarrassingly parallel" operation (see McKenna (2025)). While
BandMF achieves slightly better RMSE at k = 16, it requires solving a computationally expensive
optimization problem, making it impractical for matrix sizes beyond n = 4096.

6 From BISR to BandInvMF

In the previous sections, we established that BISR has asymptotically optimal rate for large bandwidths
p ∼ b log b. However, in practice, one might want to work with a smaller value of p to save memory
and computational resources. In this section, we showcase a modification to BISR with improved
practical properties in this regime. We propose to keep the construction of a banded inverse matrix
with Toeplitz structure, but to set its values not by the closed form expressions (12) but by a numeric
optimization. Specifically, we optimize an upper bound on b-min separation participation, given by
Equation 5.

For the sake of numerical optimization, we assume that the optimum is achieved for indices of
the form i + kb. This assumption can be justified, as we observed that the resulting solution for
matrix C is positive and decreasing, which guarantees optimality. We use banded inverse square root

7

factorization as an initialization for the coefficients. We provide an efficient JAX implementation in
the Appendix (see Algorithm 1) as well as the convergence plots in Figure 5.

The numerical results are presented in Figure 3 referred to as BandInvMF. We observe that the error
decreases drastically even with the addition of a single band, compared to a trivial factorization. This
observation is supported theoretically by the following lemma.
Lemma 7. Let the matrix C−1

λ = LTT(1,−λ, 0, . . . , 0) be a lower triangular Toeplitz matrix with 1
on the main diagonal and −λ on the subdiagonal. Then, for a single participation and the prefix sum
matrix A1,0, we can prove the following bound on the matrix factorization error:

inf
λ∈(0,1)

E(A1,0C
−1
λ , Cλ) = O(n1/4) (16)

Proof. If the matrix C−1
λ is given by LTT(1,−λ, 0, . . . , 0), then its inverse is Cλ =

LTT(1, λ, λ2, . . . , λn−1). The product A1,0C
−1
λ = LTT(1, 1 − λ, . . . , 1 − λ), which leads to the

following error:

E(A1,0C
−1
λ , Cλ)

2 =
1

n

(
1 + (1− λ)2(n− 1)

) n−1∑
k=0

λ2k =
(1 + (1− λ)2(n− 1))(1− λ2n)

n(1− λ2)
. (17)

Therefore,

inf
λ∈(0,1)

E(A1,0C
−1
λ , Cλ)

2 ≤

(
2− 1

n

) (
1−

(
1− 1√

n

)n)
√
n

≤ 2√
n
, (18)

when λ =
√
1− 1√

n
as 1− λ ≤ 1− (1− 1√

n
) = 1√

n
. The bound follows.

This lemma shows that the optimized inverse banded matrix factorization can achieve an asymptot-
ically better bound than a trivial factorization A × I , which yields an error of O(

√
n). Moreover,

from Theorem 2, for small p, the leading term for banded inverse square root factorization remains
of order O(

√
n). Therefore, we advocate for optimizing the coefficients when the bandwidth is

small. However, we do not see any benefit from using this optimization for a full matrix, as it is
more straightforward and computationally efficient to optimize over the coefficients of the matrix C
directly.

We compare Band-Inv-MF with other methods for training the model on CIFAR-10 (see Figure 4),
both with and without amplification by subsampling. For a fairer comparison, we use a recently

101 102 103 104 105 106

Iterations (n)

12
14
16
18
20
22
24
26
28

RM
SE

BSR (p= b)
BISR (p= p *)
BandMF (p= b)
BLT

(a) k = 16, α = 1, β = 0

101 102 103 104 105

iterations (n)

60
80

100
120
140
160
180
200
220

RM
SE

BSR (p= b)
BISR (p= p *)
BandMF (p= b)

(b) k = 16, α = 1, β = 0.9

101 102 103 104 105

iterations (n)

11.5
12.0
12.5
13.0
13.5
14.0
14.5

RM
SE

BSR (p= b)
BISR (p= p *)
BandMF (p= b)

(c) k = 16, α = 0.999, β = 0

101 102 103 104 105 106

Iterations (n)

4

6

8

10

RM
SE

BSR (p= b)
BISR (p= p *)
BandMF (p= b)
BLT

(d) k = 4, α = 1, β = 0

101 102 103 104 105

iterations (n)

10
20
30
40
50
60
70
80

RM
SE

BSR (p= b)
BISR (p= p *)
BandMF (p= b)

(e) k = 4, α = 1, β = 0.9

101 102 103 104 105

iterations (n)

3.5

4.0

4.5

5.0

5.5

RM
SE

BSR (p= b)
BISR (p= p *)
BandMF (p= b)

(f) k = 4, α = 0.999, β = 0

Figure 2: RMSE across varying matrix sizes for different factorization methods under multiple
optimizer settings and participation levels.

8

2 4 6 8 10 12 14 16
Bandwidth (p)

10

20

30

40

50

60

RM
SE

BSR
BISR
BLT
BandInvMF
BandMF

(a) k = 4, α = 1, β = 0

2 4 6 8 10 12 14 16
Bandwidth (p)

100

200

300

400

500

600

RM
SE

BSR
BISR
BandInvMF
BandMF

(b) k = 4, α = 1, β = 0.9

2 4 6 8 10 12 14 16
Bandwidth (p)

5
10
15
20
25
30
35
40

RM
SE

BSR
BISR
BandInvMF
BandMF

(c) k = 4, α = 0.999, β = 0

2 4 6 8 10 12 14 16
Bandwidth (p)

20

40

60

80

100

120

RM
SE

BSR
BISR
BLT
BandInvMF
BandMF

(d) k = 16, α = 1, β = 0

2 4 6 8 10 12 14 16
Bandwidth (p)

200

400

600

800

1000

1200

RM
SE

BSR
BISR
BandInvMF
BandMF

(e) k = 16, α = 1, β = 0.9

2 4 6 8 10 12 14 16
Bandwidth (p)

20

30

40

50

60

70

80

RM
SE

BSR
BISR
BandInvMF
BandMF

(f) k = 16, α = 0.999, β = 0

Figure 3: RMSE across different factorizations and optimization parameters α, β, with small band-
width.

2 4 6 8 10
Epochs

10

20

30

40

50

60

Ac
cu

ra
cy

 (%
)

DP-SGD
BSR (p= 4)
BISR (p= 4)
Band-Inv-MF (p= 4)
Band-MF (p= 4)

(a) Amplified

2 4 6 8 10
Epochs

10

20

30

40

50

60

Ac
cu

ra
cy

 (%
)

DP-SGD
BSR (p= 4)
BISR (p= 4)
Band-Inv-MF (p= 4)
Band-MF (p= 4)

(b) Non-amplified

Figure 4: CIFAR-10 accuracy for small bandwidth (low-memory regime). Both the amplified (left)
and non-amplified (right) results show that inverse factorization methods, BISR and Band-Inv-MF,
achieve significantly higher accuracy compared to Band-MF. Both plots correspond to (9, 10−5)-DP,
with training performed using momentum β = 0.9 and weight decay α = 0.9999, which we found to
be optimal. The tables with hyperparameters (Table 1) and accuracies (Table 2) can be found in the
appendix.

proposed bins-and-balls subsampling mechanism (Chua et al., 2025), which combines the accuracy
benefits of Poisson subsampling with improved implementation efficiency. More importantly, it
supports the matrix mechanism via the MCMC accountant (Choquette-Choo et al., 2024a,b), even
when the matrix C is not banded. Our results indicate that in a low-memory regime, inverse correlation
matrix methods—BISR and Band-Inv-MF—achieve significantly higher accuracy than BSR and
Band-MF, and consistently outperform DP-SGD, with and without amplification.

7 Discussion

This work demonstrates that imposing a banded structure on the inverse correlation matrix, rather
than on the matrix itself, leads to both theoretical and practical benefits for differentially private
training across multiple participations. Our Banded Inverse Square Root (BISR) method enables
explicit factorization, supporting clean error analysis and efficient implementation.

9

We prove that BISR achieves asymptotically optimal factorization error by improving upon previously
established lower bounds and showing that BISR matches the asymptotics precisely, thereby closing
a fundamental gap in the theory.

In the low-memory regime, we find it beneficial to optimize directly over the coefficients of the
inverse correlation matrix. Our Band-Inv-MF method achieves a lower matrix factorization error
compared to BISR. However, these improvements do not yet translate to gains in model accuracy
when training with the amplification by subsampling. Future research should focus on optimizing the
matrix coefficients while explicitly accounting for amplification, in order to bridge this gap.

Acknowledgments

We thank Arun Ganesh for providing the code for the MCMC accountant. We thank Joel Andersson
and Monika Henzinger for valuable comments on the early version of the draft. We thank Christian
Lebeda for a fruitful discussion on the lower bound theorem. Jalaj Upadhyay’s research was funded
by the Rutgers Decanal Grant no. 302918 and an unrestricted gift from Google. This work is
supported in part by the Austrian Science Fund (FWF) [10.55776/COE12] and the Scientific Service
Units (SSU) of ISTA through resources provided by Scientific Computing (SciComp).

References
Andersson, J. D. and Pagh, R. A smooth binary mechanism for efficient private continual observation.

In Conference on Neural Information Processing Systems (NeurIPS), 2023.

Andersson, J. D. and Pagh, R. Streaming private continual counting via binning. In IEEE Conference
on Secure and Trustworthy Machine Learning (SaTML), 2025.

Andersson, J. D. and Yehudayoff, A. On the space complexity of online convolution, 2025.
arXiv:2505.00181.

Balle, B., Berrada, L., Charles, Z., Choquette-Choo, C. A., De, S., Doroshenko, V., Dvijotham, D.,
Galen, A., Ganesh, A., Ghalebikesabi, S., Hayes, J., Kairouz, P., McKenna, R., McMahan, B.,
Pappu, A., Ponomareva, N., Pravilov, M., Rush, K., Smith, S. L., and Stanforth, R. JAX-Privacy:
Algorithms for privacy-preserving machine learning in JAX, 2025. URL http://github.com/
google-deepmind/jax_privacy.

Böttcher, A. and Grudsky, S. M. Toeplitz Matrices, Asymptotic Linear Algebra, and Functional
Analysis. Springer, 2000.

Choquette-Choo, C. A., Ganesh, A., McKenna, R., McMahan, H. B., Rush, J. K., Thakurta, A. G.,
and Zheng, X. (Amplified) banded matrix factorization: A unified approach to private training. In
Conference on Neural Information Processing Systems (NeurIPS), 2023.

Choquette-Choo, C. A., Ganesh, A., Haque, S., Steinke, T., and Thakurta, A. Near exact privacy
amplification for matrix mechanisms. In International Conference on Learning Representations
(ICLR), 2024a.

Choquette-Choo, C. A., Ganesh, A., Steinke, T., and Thakurta, A. Privacy amplification for matrix
mechanisms. In International Conference on Learning Representations (ICLR), 2024b.

Chua, L., Ghazi, B., Harrison, C., Leeman, E., Kamath, P., Kumar, R., Manurangsi, P., Sinha, A.,
and Zhang, C. Balls-and-Bins sampling for DP-SGD. In Conference on Uncertainty in Artificial
Intelligence (AISTATS), 2025.

Denisov, S., McMahan, H. B., Rush, J., Smith, A., and Thakurta, G. A. Improved Differential
Privacy for SGD via optimal private linear operators on adaptive streams. In Conference on Neural
Information Processing Systems (NeurIPS), 2022.

Dvijotham, K., McMahan, H. B., Pillutla, K., Steinke, T., and Thakurta, A. Efficient and near-optimal
noise generation for streaming differential privacy. In Symposium on Foundations of Computer
Science (FOCS), 2024.

10

http://github.com/google-deepmind/jax_privacy
http://github.com/google-deepmind/jax_privacy

Fichtenberger, H., Henzinger, M., and Upadhyay, J. Constant matters: Fine-grained complexity of
differentially private continual observation using completely bounded norms. In International
Conference on Machine Learing (ICML), 2023.

Henzinger, M. and Upadhyay, J. Improved differentially private continual observation using group
algebra. In Symposium on Discrete Algorithms (SODA), 2025.

Henzinger, M., Upadhyay, J., and Upadhyay, S. Almost tight error bounds on differentially private
continual counting. In Symposium on Discrete Algorithms (SODA), 2023.

Henzinger, M., Upadhyay, J., and Upadhyay, S. A unifying framework for differentially private sums
under continual observation. In Symposium on Discrete Algorithms (SODA), 2024.

Henzinger, M., Kalinin, N. P., and Upadhyay, J. Binned group algebra factorization for differentially
private continual counting, 2025. arXiv:2504.04398.

Kairouz, P., McMahan, B., Song, S., Thakkar, O., Thakurta, A., and Xu, Z. Practical and private
(deep) learning without sampling or shuffling. In International Conference on Machine Learing
(ICML), 2021.

Kalinin, N. and Lampert, C. H. Banded square root matrix factorization for differentially private
model training. In Conference on Neural Information Processing Systems (NeurIPS), 2024.

Li, C., Miklau, G., Hay, M., McGregor, A., and Rastogi, V. The matrix mechanism: Optimizing
linear counting queries under Differential Privacy. International Conference on Very Large Data
Bases (VLDB), 2015.

McKenna, R. Scaling up the banded matrix factorization mechanism for differentially private ML. In
International Conference on Learning Representations (ICLR), 2025.

McMahan, H. B. and Pillutla, K. An inversion theorem for Buffered Linear Toeplitz (BLT) matrices
and applications to streaming differential privacy, 2025. arXiv:2504.21413.

McMahan, H. B., Xu, Z., and Zhang, Y. A hassle-free algorithm for private learning in practice:
Don’t use tree aggregation, use BLTs. In Conference on Empirical Methods on Natural Language
Processing (EMNLP), 2024.

Strang, G. A proposal for Toeplitz matrix calculations. Studies in Applied Mathematics, 1986.

11

Appendix

Key Inequalities and Relationships

This section compiles the fundamental inequalities and key relationships employed throughout this
study. Each entry is presented with a concise explanation of its origin or the context in which it arises.

1. rk =

∣∣∣∣(−1/2

k

)∣∣∣∣ = 1

4k

(
2k

k

)
Henzinger et al. (2024)

2.
1√

π(k + 1)
≤ rk ≤ 1√

πk
Lemma 2.1 from Dvijotham et al. (2024)

3.
p−1∑
k=0

rk ≤ 1 +
1√
π

p−1∑
k=1

1√
k
≤ 1 +

2
√
p

√
π

Integral inequality.

4.
p−1∑
k=0

r2k ≤ 1 + log p Lemma 8

5. cα,βk =

k∑
j=0

αjβk−jrjrk−j Theorem 1 from Kalinin & Lampert (2024)

6. c1,βk ≤ c1,βk−1

[
1− (1− β)2

2k

]
for k ≥ 1. Lemma 12

7.
k∑

j=0

c1,βj =

k∑
j=0

rjβ
j r̃k−j In the proof of Lemma 11

8.
k∑

j=0

c1,βj βk−j =

k∑
j=0

rβj r̃k−j In the proof of Lemma 11

9.
k∑

j=0

c̃1,βj (1− βk−j+1)

1− β
= c1,βk In the proof of Lemma 11

10. rk(1− β) ≤
k∑

j=0

c̃1,βj ≤ c1,βk (1− β) Lemma 11

11.
log(k + 1)

4
≤

k−1∑
j=0

(c1,βj)2 ≤ 1 + log k

(1− β)2
Lemma 8

12.
αk

2
√
k + 1

≤ cα,βk ≤ αk

(1− β/α)
√
k + 1

Lemma 8

13. 1 ≤
k−1∑
j=0

(cα,βj)2 ≤ 1

(α− β)2
log

(
1

1− α2

)
Lemma 8

14. r̃k = (−1)k
(
1/2

k

)
=

−1

2k − 1
rk Lemma 3

15. c̃α,βk =

k∑
j=0

r̃jβ
j r̃k−jα

k−j Lemma 3

16. r̃k(1 + β) ≤ c̃1,βk ≤ 0 Lemma 10

12

A Proofs

Lemma 8 (Lemma 7 from Kalinin & Lampert (2024)). For k ∈ {1, . . . , n} it holds for cα,βi as
defined in equation (11):

log(k + 1)

4
≤

k−1∑
i=0

(c1,βi)2 ≤ 1 + log k

(1− β)2
(19)

for α = 1, and otherwise

1 ≤
k−1∑
i=0

(cα,βi)2 ≤ 1

(α− β)2
log

(
1

1− α2

)
. (20)

Lemma 9. Let Aα,β ∈ Rn×n be the SGD workload matrix (4). In the multi-participation setting
with separation 1 ≤ b ≤ n and k = ⌈n

b ⌉, for any factorization Aα,β = BC, it holds that

E(B,C) =

{
Ω(

√
k log n), α = 1

Ω(
√
k), α < 1

(21)

Proof. Here, we refine Theorem 8 from Kalinin & Lampert (2024) by removing the assumption that
the scalar products between the columns of the matrix C are non-negative, i.e., C⊤C ≥ 0. We first
prove that

sensk,b(C)2 ≥ 1

4b
∥C∥2F . (22)

To do so, we lower bound the b-min separation participation by the (k, b)-participation, where we
have a fixed b separation between vectors but are allowed to include only a subset of them. This
splits the set of all column indices into b disjoint subsets Sj for j ∈ [1, b] with |Sj | ≤ k. Then, the
following inequality holds:

sensk,b(C)2 ≥ max
j∈[1,b]

sup
S⊆Sj

∥∥∥∥∥∑
i∈S

C[:,i]

∥∥∥∥∥
2

2

, (23)

where C[:,i] denotes the i-th column of the matrix C.

To prove a lower bound, we use the probabilistic method. Consider i.i.d. random variables ϵi ∼
Bernoulli(12). Then:

sup
S⊆Sj

∥∥∥∑
i∈S

C[:,i]

∥∥∥2
2
≥ E

∥∥∥∑
i∈Sj

C[:,i]ϵi

∥∥∥2
2
=

1

2

∑
i∈Sj

∥C[:,i]∥22 +
1

4

∑
i ̸=i′

i,i′∈Sj

⟨C[:,i], C[:,i′]⟩

=
1

4

∑
i∈Sj

∥C[:,i]∥22 +
1

4

∥∥∥∑
i∈Sj

C[:,i]

∥∥∥2
2
≥ 1

4

∑
i∈Sj

∥C[:,i]∥22.

(24)

Thus,

sensk,b(C)2 ≥ max
j∈[1,b]

1

4

∑
i∈Sj

∥C[:,i]∥22 ≥ 1

4b

n∑
i=1

∥C[:,i]∥22 =
1

4b
∥C∥2F . (25)

Therefore,

E(B,C) =
1√
n
∥B∥F sensk,b(C) ≥ 1

2
√
nb

∥B∥F ∥C∥F ≥ 1

2
√
nb

∥BC∥2 =
1

2
√
nb

∥Aα,β∥2.

(26)
The spectral norm of the matrix Aα,β has been lower bounded in Lemma 8 of Kalinin & Lampert
(2024) by Ω(n log n) for α = 1, and by Ω(n) for α < 1. Substituting k = ⌈n

b ⌉ concludes the
proof.

13

Lemma 3 (Inverse Square Root of the Matrix Aα,β). For k ≥ 0, let r̃k = (−1)k
(
1/2
k

)
= −rk

2k−1 =

−1
2k−1

∣∣∣(−1/2
k

)∣∣∣ . The inverse of the matrix Cα,β = A
1/2
α,β defined in (2), for 0 ≤ β < α ≤ 1, is

C−1
α,β =

1 0 . . . 0

c̃α,β1 1 . . . 0
...

...
. . .

...
c̃α,βn−1 c̃α,βn−2 . . . 1

 , where c̃α,βk =

k∑
j=0

r̃jβ
j r̃k−jα

k−j . (12)

Proof. The matrix for the momentum matrix is given by:

Aα,β = Aα,0 ×Aβ,0 =

1 0 · · · 0
α 1 · · · 0
...

...
. . .

...
αn−1 αn−2 · · · 1

×

1 0 · · · 0
β 1 · · · 0
...

...
. . .

...
βn−1 βn−2 · · · 1

 . (27)

The inverse square root then takes the form:

C−1
α,β = C−1

α,0 × C−1
β,0, (28)

since all lower triangular Toeplitz (LTT) matrices commute (see Strang (1986) or Böttcher & Grudsky
(2000)). Therefore, it suffices to prove that the inverse square root of the matrix C−1

α,0 is a lower
triangular Toeplitz matrix with elements r̃iαi, which would imply the stated formula for c̃α,βk , since
the product of LTT matrices is given by the convolution of their elements.

The proof for the matrix C−1
α,0 is based on the identities of the generating functions of the sequences

rk and r̃k, derived simultaneously using the binomial formula:

(1− αx)−1/2 =

∞∑
k=0

(
−1/2

k

)
(−1)kαkxk =

∞∑
k=0

rkα
kxk,

(1− αx)1/2 =

∞∑
k=0

(
1/2

k

)
(−1)kαkxk =

∞∑
k=0

r̃kα
kxk.

(29)

Then the generating function of the product of the matrices Cα and the proposed C−1
α is given by:

∞∑
n=0

xn

[
n∑

k=0

rkα
kr̃n−kα

n−k

]
= (1− αx)1/2 × (1− αx)−1/2 = 1, (30)

implying that r̃iαi are indeed the coefficients of C−1
α , which concludes the proof.

Lemma 10 (Bounds on diagonal entries of C−1
1,β). The diagonal elements of the inverse square root

of the momentum matrix C−1
1,β defined in equation (12) with parameter 0 ≤ β < 1, denoted as

(1, c̃1,β1 , c̃1,β2 , . . . , c̃1,βn−1), satisfy the following inequality:

r̃k(1 + β) ≤ c̃1,βk ≤ 0, for k ≥ 1. (31)

Proof. The values c̃1,βk are given by the convolution of r̃k and βkr̃k:

c̃1,βk =

k∑
j=0

r̃j r̃k−jβ
j = (1 + βk)r̃k +

k−1∑
j=1

r̃j r̃k−jβ
j . (32)

Since r̃j is negative for j ≥ 1, the summation term is positive. Furthermore, 1 + βk ≤ 1 + β, and
since r̃k is negative, we obtain the lower bound:

c̃1,βk ≥ r̃k(1 + β). (33)

This bound is tight for k = 1 as c̃1,β1 = − 1+β
2 .

14

For the upper bound, we first consider the special cases. When β = 0, we have c̃1,0k = r̃k < 0. For
β = 1, we formally obtain:

c̃1,1k =

k∑
j=0

r̃j r̃k−j =

1, k = 0,

−1, k = 1,

0, otherwise.
(34)

This follows from the observation that C−1
1 × C−1

1 = A−1
1 , which has the structure described in the

equation.

Since the inequality holds for k = 1, we now consider k ≥ 2, where c̃1k = 0. We show the following,
which establishes the upper bound:

Proposition 1 (Monotonicity of diagonal elements of C−1
1,β). Let c̃1,βk be the diagonal elements of

C−1
1,β defined in equation (12). Then c̃1,βk is an increasing function of β, varying from r̃k at β = 0 to

0 at β = 1.

Proof. To do so, we differentiate c̃1,βk with respect to β:

dc̃1,βk

dβ
= kr̃kβ

k−1 +

k−1∑
j=1

r̃j r̃k−jjβ
j−1 = βk−1

kr̃k +

k−1∑
j=1

r̃j r̃k−jjβ
j−k

 . (35)

To prove that this expression is positive, we analyze the term in brackets. As β → 0, the term tends
to positive infinity since r̃j r̃k−j are positive and j − k is negative. Moreover, this term is decreasing
as β → 1, so it suffices to check its non-negativity at β = 1, i.e.,

dc̃1,βk

dβ

∣∣∣∣
β=1

≥ 0 (36)

Setting β = 1 in equation (35), we have

dc̃1,βk

dβ

∣∣∣∣
β=1

= kr̃k +

k−1∑
j=1

r̃j r̃k−jj. (37)

To show this, we use an auxiliary identity for the values r̃jj:

r̃jj = − rjj

2j − 1
=

−1

2

(
rj +

rj
2j − 1

)
=

−rj
2

+
r̃j
2
. (38)

Using the identity (38) in equation (37), we obtain:

d(c̃1,βk)

dβ

∣∣∣∣
β=1

=
1

2
r̃k − 1

2
rk +

1

2

k−1∑
j=1

r̃j r̃k−j −
1

2

k−1∑
j=1

rj r̃k−j

=
1

2

k∑
j=0

r̃j r̃k−j −
1

2

k∑
j=0

rj r̃k−j = 0.

(39)

Since both sums vanish for k ≥ 2, this concludes the proof of Proposition 1.

This completes the proof of the lemma.

Lemma 6 (Decresing values). The values (1, cα,β1 , . . . , cα,βp−1, g
α,β
p , . . . , gα,βn−1) of matrix Cp

α,β as
defined in Lemma 5 are decreasing.

15

Proof. The first p values are decreasing, as shown in Kalinin & Lampert (2024). For the remaining
values, we prove that

gα,βp+k − gα,βp+k+1 =

p−1∑
j=1

(−c̃α,βj)(gα,βp+k−j − gα,βp+k+1−j) ≥ 0. (40)

In Lemma 10, we prove that (−c̃α,βj) ≥ 0, so each term in the summation is non-negative. Since
the differences (gα,βi − gα,βi+1) are also non-negative by the induction step, the inequality follows,
completing the proof.

Lemma 11 (Bound on the matrix diagonal sum of C−1
1,β). The diagonal elements of the inverse square

root of the momentum matrix C−1
1,β defined in equation (12) with parameter 0 ≤ β < 1, denoted as

(1, c̃1,β1 , c̃1,β2 , . . . , c̃1,βn−1), satisfy the following inequality:

rk(1− β) ≤
k∑

j=0

c̃1,βj ≤ c1,βk (1− β), for k ≥ 1. (41)

Here c̃1,βi is as defined by equation (12).

Proof. We first state several properties of the sums of c̃1,βj :

(1)

k∑
j=0

c̃1,βj =

k∑
j=0

r̃jβ
jrk−j , (2)

k∑
j=0

c̃1,βj βk−j =

k∑
j=0

rjβ
j r̃k−j , (3)

k∑
j=0

c̃1,βj (1− βk−j+1)

1− β
= c1,βk

(42)

which can be derived from equating the coefficients of the following generating function identities,
respectively:

(1)
[√

1− x
√
1− βx

]
× 1

1− x
=

√
1− βx√
1− x

(2)
[√

1− x
√
1− βx

]
× 1

1− βx
=

√
1− x√
1− βx

(3)
[√

1− x
√
1− βx

]
×
[

1

1− βx

1

1− x

]
=

1√
1− x

√
1− βx

(43)

Upper Bound. First, we rewrite the expression as follows by multiplying and dividing by 1− β

the terms c̃1,βj :

k∑
j=0

c̃1,βj − c1,βk (1− β) = (1− β)

k∑
j=0

c̃1,βj (1− βk−j+1 + βk−j+1)

1− β
− c1,βk (1− β)

= β

k∑
j=0

c̃1,βj βk−j = β

k∑
j=0

rjβ
j r̃k−j

= βk+1
k∑

j=0

r̃jβ
−jrk−j ,

(44)

where the third equality follows from equation 42 (2). For β = 0, the expression is identically 0. So,
now consider when β > 0. We want to show that

k∑
j=0

r̃jβ
−jrk−j ≥ 0 (45)

for all β ∈ (0, 1].

16

As β increases from 0 to 1, the sum is clearly increasing, since the only positive term does not have
a β multiplier. For β = 1, the sum equals zero, as the sequences r̃j and rj have inverse generating
functions. Therefore, the sum remains negative, concluding the proof of the upper bound.

Lower Bound.

For the lower bound, using equation (42) and the recurrence relation of r̃j stated in Lemma 3, we get
k∑

j=0

c̃1,βj − rk(1− β) =

k∑
j=0

r̃jβ
jrk−j − rk(1− β) =

k∑
j=1

r̃jβ
jrk−j + βrk

= β

rk −
k∑

j=1

rj
2j − 1

rk−jβ
j−1

 ≥ β

rk −
k∑

j=1

rj
2j − 1

rk−j

≥ β

k∑
j=0

r̃jrk−j = 0,

(46)

concluding the proof. In the above, the first inequality follows from the fact that 0 < β ≤ 1. The fact
is trivially true for β = 0.

Lemma 12 (Bound on diagonal values of the matrix C1,β). The diagonal values of the matrix C1,β

(see equation (11)) with parameter 0 ≤ β < 1, denoted as (1, c1,β1 , c1,β2 , . . . , c1,βn−1), satisfy the
inequality:

c1,βk ≤ c1,βk−1

[
1− (1− β)2

2k

]
for k ≥ 1. (47)

Proof. We first prove that
c1,βk−1 − c1,βk ≥ (rk−1 − rk)(1− β). (48)

Using the expression of c1,βk , we have

c1,βk−1 − c1,βk − (rk−1 − rk)(1− β) =

k−1∑
j=0

rjrk−1−jβ
j −

k∑
j=0

rjrk−jβ
j − (rk−1 − rk)(1− β)

= β(rk−1 − rk) +

k−1∑
j=1

rj(rk−j−1 − rk−j)β
j − rkβ

k

= βk

β1−k(rk−1 − rk) +

k−1∑
j=1

rj(rk−j−1 − rk−j)β
j−k − rk

(49)

We note that rk is a decreasing sequence; therefore, the first two terms inside the brackets are positive,
and the powers of β in front of them are non-positive. Therefore, as a lower bound, we can substitute
β = 1 inside the sum:

c1,βk−1 − c1,βk − (rk−1 − rk)(1− β) ≥ βk

rk−1 − rk +

k−1∑
j=1

rj(rk−j−1 − rk−j)− rk

= βk[rk−1 − 2rk + (1− rk−1)− (1− 2rk)] = 0

(50)

Using this inequality, we obtain:

c1,βk

c1,βk−1

=
c1,βk−1 − (c1,βk−1 − c1,βk)

c1,βk−1

≤ 1− rk−1 − rk

c1,βk−1

(1− β)

= 1− rk−1

2k
· 1− β

c1,βk−1

≤ 1− (1− β)2

2k
,

(51)

concluding the proof.

17

Lemma 4 (Bounds on diagonals of Bp
α,β). The matrix Bp

α,β in the BISR factorization is a lower
triangular Toeplitz matrix. The values on its diagonals are

(1, cα,β1 , cα,β2 , . . . , cα,βp−1, b
α,β
p , . . . , bα,βn−1) where 0 ≤ bα,βi ≤ αic

1,β/α
p−1 for i ≥ p (13)

where c
1,β/α
i for 1 ≤ i ≤ p− 1 is as defined in equation (11) .

Proof. The first p values are identical to the square root factorization cα,βi due to the uniqueness of
the inverse. The remaining values satisfy the following recurrence:

bα,βi =

p−1∑
j=0

c̃α,βj

αi−j+1 − βi−j+1

α− β
= αi

p−1∑
j=0

c̃
1,β/α
j

1− βi−j+1

1− β/α
= αib

1,β/α
i . (52)

Therefore, it suffices to prove that b1,βi ≤ c1,βp−1, since we can then substitute β with β/α.

b1,βi =

p−1∑
j=0

c̃1,βj

1− βi−j+1

1− β
=

1

1− β

p−1∑
j=0

c̃1,βj − βi+1−p

p−1∑
j=0

c̃1,βj

βp−j

1− β

=
1

1− β

p−1∑
j=0

c̃1,βj + βi+1−p

p−1∑
j=0

c̃1,βj

(−βp−j + 1− 1)

1− β

=
1− βi+1−p

1− β

p−1∑
j=0

c̃1,βj + c1,βp−1β
i+1−p.

(53)

We now use Lemma 11 to first show that b1,βi ≥ 0, since the sum of c̃1,βj is non-negative and all other
terms are positive. Second, we establish that:

b1,βi ≤ 1− βi+1−p

1− β
(1− β)c1,βp−1 + c1,βp−1β

i+1−p = c1,βp−1, (54)

which completes the proof.

Lemma 5 (Bounds on diagonals of Cp
α,β). The matrix Cp

α,β in the BISR factorization is a lower

triangular Toeplitz matrix. The values on its diagonals are (1, cα,β1 , cα,β2 , . . . , cα,βp−1, g
α,β
p , . . . , gα,βn−1),

where c
1,β/α
i (for 1 ≤ i ≤ p− 1) is as defined in equation (11) and

0 ≤ gα,βi ≤ αi min
(
c
1,β/α
i , c1,β/αp γi−p

β/α

)
for γβ/α =

(
1 +

(1− β/α)2

4p(1 + β/α)

)−1

and i ≥ p.

(14)

Proof. The first p values of Cp
α,β are the same as those of Cα,β since the matrix is Lower Triangular

Toeplitz (LTT). For the subsequent values, we first prove the following inequality by induction:

gα,βi =

p−1∑
j=1

(−c̃α,βj)gα,βi−j ≤
p−1∑
j=1

(−c̃α,βj)cα,βi−j ≤
i∑

j=1

(−c̃α,βj)cα,βi−j = cα,βi = αic
1,β/α
i . (55)

We observe that for all sequences cα,βi , c̃α,βi , and gα,βi , we can factor out αi by replacing β with β/α.
Therefore, it suffices to prove the inequality g1,βi ≤ c1,βp γi−p

β , after which we may substitute β with
β/α. For the subsequent p values, we establish the stated bound g1,βi ≤ c1,βp γi−p

β using Lemma 12.

g1,βp+k

c1,βp γk
β

≤
c1,βp+k

c1,βp

(
1 +

(1− β)2

4p(1 + β)

)k

=

k∏
j=1

(
1− (1− β)2

2(p+ j)

)(
1 +

(1− β)2

4p(1 + β)

)
≤ 1. (56)

18

Since each term in the product is less than 1 for 2p+2j ≤ 4p, the inequality holds. For the induction
step, we show:

g1,βp+k

c1,βp γk
β

=
1

c1,βp γk
β

p−1∑
j=1

(−c̃1,βj)g1,βp+k−j ≤
p−1∑
j=1

(−c̃1,βj)γ−j
β =

p−1∑
j=1

(−c̃1,βj)

(
1 +

(1− β)2

4p(1 + β)

)j

.

(57)

For convenience, we denote ϕβ = (1−β)2

1+β < 1. To proceed, we use the following auxiliary inequality
for j ≤ p− 1: (

1 +
ϕβ

4p

)j

≤ e
jϕβ
4p ≤ 1 +

5jϕβ

16p
, (58)

since ex ≤ 1 + 1.25x for x ≤ 1
4 . Combining this inequality with Lemma 11, we obtain:

g1,βp+k

c1,βp γk
β

≤
p−1∑
j=1

(−c̃1,βj)

(
1 +

5jϕβ

16p

)
≤ 1− rp−1(1− β) +

5ϕβ

16p

p−1∑
j=1

(−c̃1,βj)j. (59)

By Lemma 10, we can upper bound:

(−c̃1,βj)j ≤ (−r̃j)j(1 + β) =
jrj

2j − 1
(1 + β) ≤ rj(1 + β). (60)

Using the known bounds 1√
π(j+1)

≤ rj ≤ 1√
πj

, we conclude:

g1,βp+k

c1,βp γk
β

≤ 1− 1− β
√
πp

+
5(1− β)2

16p
√
π

p−1∑
j=1

1√
j
≤ 1− 1− β

√
πp

+
5(1− β)2

16p
√
π

· 2√p

≤ 1− 1− β
√
πp

(
1− 5

8
(1− β)

)
< 1,

(61)

where for the second inequality we used the integral estimate
∑k−1

j=1 j
−1/2 ≤

∫ k

0
x−1/2dx = 2

√
k.

Thus, we have shown that
g1,β
p+k

c1,βp γk
β

≤ 1 for all k, which completes the proof.

Theorem 2 (BISR Approximation Error). For 1 ≤ p ≤ n and 1 ≤ k ≤ n
b the following upper bound

holds for the matrix factorization error of the BISR Aα,β = Bp
α,βC

p
α,β (as in Definition 1):

E(Bp
α,β , C

p
α,β) =

Oβ

(√
k log p+

√
nk
b +

√
nk log p

p +
√

kp log p
b

)
for α = 1,

Oα,β(
√
k) for α < 1.

(7)

Proof. We begin with the case α < 1. To analyze this, we first consider the Frobenius norm:

∥Bp
α,β∥2Fr

n
≤

p−1∑
i=0

(cα,βi)2 +

n−1∑
i=p

(bα,βi)2 ≤
p−1∑
i=0

(cα,βi)2 + (c
1,β/α
p−1)2

n−1∑
i=p

α2i

≤ 1

(α− β)2
log

(
1

1− α2

)
+

α2p

1− α2
= Oα,β(1),

(62)

where for the second inequality we used Lemma 4, and for the third inequality Lemma 7 from Kalinin
& Lampert (2024).

For the (k, b)-sensitivity of the matrix Cp
α,β , we use the fact that it is element-wise bounded by the

full matrix Cα,β (see Lemma 5). For Cα,β , we apply a bound from Theorem 7 of Kalinin & Lampert
(2024), yielding sensk,b(Cα,β) = Oα,β(

√
k), which concludes the case α < 1.

19

For α = 1, we use Lemma 4 to get:

∥Bp
1,β∥2Fr

n
≤

n−1∑
i=0

(b1,βi)2 =

p−1∑
i=0

(c1,βi)2 +

n−1∑
i=p

(c1,βp−1)
2 =

1

(1− β)2

p−1∑
i=0

r2i +
1

(1− β)2

n−1∑
i=p

r2p−1

≤ 1

(1− β)2

[
1 + log p+

n− p

pπ

]
= Oβ

(
log p+

n

p

)
.

(63)

Next, we bound the sensitivity under k, b participation. Using Theorem 3, combined with Lemma 6
we obtain:

sens2k,b(C
p
1,β) =

k−1∑
j=0

k−1∑
i=0

⟨(Cp
1,β):,ib, (C

p
1,β):,jb⟩. (64)

We split the sum into the following four terms:

sens2k,b(C
p
1,β) =

k−1∑
i=0

k−1∑
j ̸=i

min(p+ib,n)−1−jb∑
t=0

c1,βt c1,βjb−ib+t︸ ︷︷ ︸
S1

+

k−1∑
i=0

k−1∑
j ̸=i

min(p−1,n−1−jb)∑
t=0

c1,βt g1,βjb−ib+t︸ ︷︷ ︸
S2

+

k−1∑
i=0

k−1∑
j ̸=i

n−1−jb∑
t=p

g1,βt g1,βjb−ib+t︸ ︷︷ ︸
S3

+

k−1∑
i=0

min(p−1,n−1−ib)∑
t=0

(c1,βt)2 +

n−1−ib∑
t=p

(g1,βt)2

︸ ︷︷ ︸

S4

(65)

Step 1 (S1 Bound) We note that the case b < p < n has not been considered in Kalinin & Lampert
(2024) and is technically more challenging. Consider the half of the sum where j > i. The sum
requires jb− ib ≤ p− 1; otherwise, the upper limit would be negative. We bound the sum as follows:

min(p+ib,n)−1−jb∑
t=0

c1,βt c1,βjb−ib+t ≤
rjb−ib

1− β
+

1

π(1− β)2

p−1+ib−jb∑
t=1

1√
t(jb− ib+ t)

≤ 1

(1− β)2

1 + 1

π

p−1+ib−jb∫
0

dx√
x(jb− ib+ x)

=

1

(1− β)2

[
1 +

1

π
f

(
jb− ib

p− 1 + ib− jb

)]
,

(66)

where f(a) = 2 log

(√
1
a + 1 +

√
1
a

)
. We then use the following auxiliary inequality for the

function f(a):

f(a) = log

(
1

a
+ 1

)
+ 2 log

(
1 +

1√
a+ 1

)
≤ log

(
1

a
+ 1

)
+ 2 log 2. (67)

This results in the following inequality:

min(p+ib,n)−1−jb∑
t=0

c1,βt c1,βjb−ib+t ≤
1

(1− β)2

[
1 +

2 log 2

π
+

1

π
log

(
p− 1 + ib− jb

jb− ib

)]
1jb−ib≤p−1.

(68)

We can now upper bound the double sum:

k−1∑
i=0

k−1∑
j ̸=i

min(p+ib,n)−1−jb∑
t=0

c1,βt c1,βjb−ib+t ≤
2

(1− β)2

k−1∑
i=0

min(k−1,i+⌊ p−1
b ⌋)∑

j=i+1

[
3

2
+

1

π
log

(
p− 1

jb− ib

)]
.

(69)

20

The first term gives us:

2

(1− β)2

k−1∑
i=0

min(k−1,i+⌊ p−1
b ⌋)∑

j=i+1

3

2
≤ 3k

(1− β)2

⌊
p− 1

b

⌋
. (70)

The second term is more involved. First, we upper bound the upper limit of the sum min(k − 1, i+
⌊p−1

b ⌋) by i+ ⌊p−1
b ⌋, since the summands are positive. We can then upper bound the expression by:

k−1∑
i=0

i+⌊ p−1
b ⌋∑

j=i+1

log

(
p−1
b

j − i

)
= log

k−1∏
i=0

(p−1
b)⌊

p−1
b ⌋

(⌊p−1
b ⌋)!

= k log
(p−1

b)⌊
p−1
b ⌋

(⌊p−1
b ⌋)!

. (71)

Using the auxiliary inequality k! ≥ (ke)
k, we show that:

log
(p−1

b)⌊
p−1
b ⌋

(⌊p−1
b ⌋)!

≤
⌊
p− 1

b

⌋
log

p− 1

b
−
⌊
p− 1

b

⌋
log

⌊
p− 1

b

⌋
+

⌊
p− 1

b

⌋
=

⌊
p− 1

b

⌋
log

{
p− 1

b

}
+

⌊
p− 1

b

⌋
≤
⌊
p− 1

b

⌋
.

(72)

Resulting in:

k−1∑
i=0

k−1∑
j ̸=i

min(p+ib,n)−1−jb∑
t=0

c1,βt c1,βjb−ib+t ≤
1

(1− β)2

(
3k

⌊
p− 1

b

⌋
+

2

π
k

⌊
p− 1

b

⌋)

≤ 4k

(1− β)2

⌊
p− 1

b

⌋
,

(73)

which concludes this part of the calculations.

Step 2 (Bound S2). We can bound the inner sum as follows, assuming that jb− ib ≥ p:

min(p−1,n−1−jb)∑
t=0

c1,βt g1,βjb−ib+t ≤ c1,βp

p−1∑
t=0

c1,βt γjb−ib+t−p
β = c1,βp γjb−ib−p

β

p−1∑
t=0

c1,βt γt
β

≤ c1,βp γjb−ib−p
β

p−1∑
t=0

c1,βt ≤
rpγ

jb−ib−p
β

(1− β)2

(
1 +

1√
π

p−1∑
t=1

1√
t

)

≤
rpγ

jb−ib−p
β

(1− β)2

(
1 +

2
√
p

√
π

)
≤

3γjb−ib−p
β

(1− β)2

(74)

For our specific choice of γβ = 1 − ϕβ

4p+ϕβ
=
(
1 +

ϕβ

4p

)−1

, where ϕβ = (1−β)2

1+β . We rewrite the
bound using the following auxiliary inequality:

γ−p
β =

(
1 +

ϕβ

4p

)p

≤ eϕβ/4 ≤ e1/4 ≤ 4

3
, (75)

This yields the upper bound for the whole sum:

k−1∑
i=0

k−1∑
j ̸=i

min(p−1,n−1−jb)∑
t=0

c1,βt g1,βjb−ib+t ≤
8

(1− β)2

k−1∑
i=0

k−1∑
j=i+1

γjb−ib
β ≤

8kγb
β

(1− β)2(1− γb
β)

(76)

We bound γb
β in the following way:

γb
β =

(
1− ϕβ

4p+ ϕβ

)b

≤ e
−

bϕβ
4p+ϕβ = e−

bϕβ
p

p
4p+1 ≤ e−

bϕβ
5p (77)

21

Thus,
k−1∑
i=0

k−1∑
j ̸=i

min(p−1,n−1−jb)∑
t=0

c1,βt g1,βjb−ib+t ≤
8k

(1− β)2(γ−b
β − 1)

≤ 8k

(1− β)2(e
bϕβ
5p − 1)

≤ 40kp(1 + β)

b(1− β)4
.

(78)

Step 3 (Bound S3) We first bound the inner sum, assuming j > i:
n−1−jb∑

t=p

g1,βt g1,βjb−ib+t ≤ (c1,βp)2
n−1−jb∑

t=p

γt−p
β γjb−ib+t−p

β

≤
(c1,βp)2γjb−ib

β

1− γ2
β

≤
(c1,βp)2γjb−ib

β (4p+ ϕβ)

2ϕβ

≤
r2p(4p+ 1)γjb−ib

β

2ϕβ(1− β)2
≤

5r2pγ
jb−ib
β p

2ϕβ(1− β)2

≤
5γjb−ib

β

2πϕβ(1− β)2
≤

γjb−ib
β (1 + β)

(1− β)4
.

(79)

This yields the upper bound:

k−1∑
i=0

k−1∑
j ̸=i

n−1−jb∑
t=p

g1,βt g1,βjb−ib+t ≤
2(1 + β)

(1− β)4

k−1∑
i=0

k−1∑
j=i+1

γjb−ib
β ≤ 10kp(1 + β)2

b(1− β)6
. (80)

analogously to the previous step.

Step 4 (Bound S4) We bound the sum of squared column norms as follows:
k−1∑
i=0

min(p−1,n−1−ib)∑
t=0

(c1,βt)2 +

n−1−ib∑
t=p

(g1,βt)2

 ≤ k

(1− β)2

[
p−1∑
t=0

r2t +
r2p

1− γ2
β

]

≤ k

(1− β)2

[
1 + log p+

5(1 + β)

2π(1− β)2

]
.

(81)

Step 5 (Combination) Combining all steps together, we bound the k, b sensitivity as follows:

sens2k,b(C
p
1,β) =

k−1∑
j=0

k−1∑
i=0

⟨(Cp
1,β):,ib, (C

p
1,β):,jb⟩

≤ k

(1− β)2

(
1 + log p+

5(1 + β)

2π
+ 10

p(1 + β)

b(1− β)2

(
4 +

1 + β

(1− β)2

)
+ 4

⌊
p− 1

b

⌋)
≤ k(1 + β)2

(1− β)6

(
2 + log p+ 54

p

b

)
(82)

Thus,

E(Bp
1,β , C

p
1,β)

2 ≤ k(1 + β)2

(1− β)8

(
1 + log p+

n− p

pπ

)(
2 + log p+ 54

p

b

)
(83)

And

E(Bp
1,β , C

p
1,β) = Oβ

(
√
k log p+

√
nk

b
+

√
nk log p

p
+

√
kp log p

b

)
. (84)

22

B Additional Materials

0 5 10 15 20 25
Steps

6

7

8

9

10
RM

SE

iterations = 256
iterations = 1024
iterations = 4096
iterations = 16384

(a) k = 4, α = 1, β = 0

0 5 10 15 20 25
Steps

40

50

60

70

80

RM
SE

iterations = 256
iterations = 1024
iterations = 4096
iterations = 16384

(b) k = 4, α = 1, β = 0.9

0 5 10 15 20 25
Steps

5.2

5.4

5.6

5.8

6.0

6.2

RM
SE

iterations = 256
iterations = 1024
iterations = 4096
iterations = 16384

(c) k = 4, α = 0.999, β = 0

0 5 10 15 20 25
Steps

14

16

18

20

22

RM
SE

iterations = 256
iterations = 1024
iterations = 4096
iterations = 16384

(d) k = 16, α = 1, β = 0

0 5 10 15 20 25
Steps

120

140

160

180

200

220

RM
SE

iterations = 256
iterations = 1024
iterations = 4096
iterations = 16384

(e) k = 16, α = 1, β = 0.9

0 5 10 15 20 25
Steps

12

13

14

15

16

17

RM
SE

iterations = 256
iterations = 1024
iterations = 4096
iterations = 16384

(f) k = 16, α = 0.999, β = 0

Figure 5: Convergence of Band-Inv-MF under different settings: for participation numbers k = 4, 16,
with and without momentum (β) and weight decay (α), across various matrix sizes (iterations). In
general, we observe that 20 steps are sufficient for the procedure to converge.

Table 1: Hyperparameters for CIFAR-10 Experiments. We train all methods with and without
amplification to achieve (9, 10−5)-differential privacy. Training uses a weight decay of 0.9999,
momentum of 0.9, and batch size 512. Noise multipliers are computed via an MCMC accountant for
the amplified case, and as σϵ,δ × sensk,b(C) for the non-amplified case, assuming 10 training epochs.

Method Noise Multiplier Learning Rate bandwidth Clip Norm

Amplified

DP-SGD 1.2 0.1 1 10
BSR 2.3 0.3 4 10
BISR 4.4 0.7 4 10
Band-MF 2.4 0.3 4 10
Band-Inv-MF 8.2 0.4 4 10

Non-amplified

DP-SGD 1.8 0.1 1 10
BSR 3.3 0.2 4 10
BISR 5.8 0.7 4 10
Band-MF 3.5 0.2 4 10
Band-Inv-MF 9.1 0.5 4 10

Table 2: CIFAR-10 experiments with and without amplification, for ε = 9, δ = 10−5 showing test
accuracy (%) over 10 epochs. Mean ± standard error computed over 3 runs.

Method Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5 Epoch 6 Epoch 7 Epoch 8 Epoch 9 Epoch 10

Amp.

DP-SGD 12.7 ± 2.2 28.0 ± 1.1 34.4 ± 0.4 37.6 ± 0.7 39.8 ± 1.2 41.6 ± 0.2 42.3 ± 0.8 42.8 ± 0.3 43.5 ± 0.4 44.6 ± 0.7
BSR 28.3 ± 0.7 40.2 ± 1.1 43.6 ± 1.1 46.5 ± 0.9 48.0 ± 2.0 48.8 ± 1.4 48.9 ± 1.4 49.4 ± 0.7 49.2 ± 1.2 49.8 ± 0.3
BISR 32.3 ± 0.7 42.7 ± 1.1 47.5 ± 1.1 50.3 ± 0.9 52.8 ± 2.0 56.5 ± 1.4 57.9 ± 1.4 58.5 ± 0.7 60.5 ± 1.2 61.8 ± 0.3
Band-MF 27.7 ± 2.0 38.5 ± 0.3 43.1 ± 1.6 43.7 ± 1.8 46.8 ± 0.8 47.7 ± 0.3 48.2 ± 0.6 47.8 ± 2.6 49.1 ± 0.6 50.0 ± 0.4
Band-Inv-MF 23.6 ± 2.8 34.6 ± 1.3 40.0 ± 2.4 44.6 ± 1.3 48.6 ± 1.0 50.4 ± 1.0 50.6 ± 0.5 53.4 ± 0.8 56.2 ± 0.6 57.4 ± 1.2

Non-Amp.

DP-SGD 19.5 ± 3.0 31.0 ± 1.1 36.7 ± 0.2 37.2 ± 0.4 37.7 ± 1.2 39.3 ± 2.0 39.8 ± 1.2 39.1 ± 0.3 39.5 ± 0.5 39.0 ± 0.7
BSR 25.4 ± 1.2 36.7 ± 1.2 40.8 ± 1.1 41.6 ± 2.0 43.6 ± 0.9 44.5 ± 0.7 45.0 ± 0.9 44.4 ± 2.1 45.3 ± 1.8 45.2 ± 0.8
BISR 31.8 ± 1.5 41.7 ± 2.2 45.4 ± 1.4 48.5 ± 1.3 51.1 ± 1.0 51.4 ± 2.7 53.8 ± 1.0 54.0 ± 1.2 55.5 ± 0.8 56.2 ± 0.2
Band-MF 25.9 ± 1.5 36.7 ± 0.9 41.1 ± 1.4 43.2 ± 1.3 42.8 ± 1.4 45.0 ± 0.2 45.5 ± 0.4 45.4 ± 1.8 46.7 ± 0.9 45.8 ± 0.2
Band-Inv-MF 27.4 ± 3.0 36.0 ± 2.5 39.5 ± 2.4 43.7 ± 1.2 46.7 ± 0.5 47.0 ± 2.0 49.7 ± 1.7 53.5 ± 0.5 54.4 ± 1.5 57.9 ± 0.4

23

1 import jax_privacy
2 from jax_privacy.dpftrl_mechanisms import toeplitz
3 import jax.numpy as jnp
4 import functools
5 import numpy as np
6

7 def expected_mean_error(inv_coef , n, k, workload_coef) -> float:
8 inv_coef = jnp.pad(inv_coef , (0, n - inv_coef.size))
9 B_norm_squared = toeplitz.mean_error(noising_coef=inv_coef , n=n,

workload_coef=workload_coef , skip_checks=True)
10

11 coef = toeplitz.inverse_coef(inv_coef)
12 min_sep = n // k # assume divisible
13

14 sensitivity_squared = toeplitz.minsep_sensitivity_squared(coef ,
min_sep , k, n, skip_checks=True)

15

16 return sensitivity_squared * B_norm_squared
17

18 def compute_square_root(x, n) -> np.ndarray:
19 y = np.zeros(n)
20 y[0] = np.sqrt(x[0])
21 for k in range(1, n):
22 y[k] = (x[k] -np.dot(y[1:k], y[1:k][:: -1])) / (2 * y[0])
23 return y
24

25 def init(n, p, alpha = 1.0, beta = 0.0) -> jnp.ndarray:
26 x = jnp.array ([1, -alpha - beta , alpha * beta] + [0]*(n-3))
27 return jnp.array(compute_square_root(x, n)[:p])
28

29 def Band_Inv_MF(n, b, k, p, alpha , beta , steps = 20):
30 # compute workload matrix
31 M = jnp.array ([(alpha ** (k + 1) - beta ** (k + 1)) / (beta -

alpha) for k in range(n)])
32

33 # initialize with BISR coefficients
34 C_inv_init = init(n, p, alpha , beta)
35

36 # optimize!
37 C_inv_opt = toeplitz.optimize_banded_toeplitz(
38 n=n,
39 bands=p,
40 strategy_coef=C_inv_init ,
41 loss_fn=functools.partial(expected_mean_error , k=k,

workload_coef=M),
42 max_optimizer_steps=steps ,
43)
44 return C_inv_opt

Listing 1: Python code for Band-Inv-MF factorization. The function "Band_Inv_MF" takes the
matrix size (n), the minimum separation (b), the number of participations (k), the bandwidth (p), the
weight decay (α), the momentum (β), and the number of optimization steps.

24

	Introduction
	Background
	Banded Inverse Square Root Factorization
	Proofs
	Proof of Theorem 2

	Experiments
	From BISR to BandInvMF
	Discussion
	Proofs
	Additional Materials

