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ABSTRACT

As technology advances, developers continually create innovative solutions to enhance smartphone
security. However, the rapid spread of Android malware poses significant threats to devices and
sensitive data. The Android Operating System (OS) ’s open-source nature and Software Devel-
opment Kit (SDK) availability mainly contribute to this alarming growth. Conventional malware
detection methods, such as signature-based, static, and dynamic analysis, face challenges in detect-
ing obfuscated techniques such as encryption, packing, and compression in malware. Although
developers have created several visualization techniques for malware detection using deep learning
(DL), they often fail to identify the critical malicious features of malware accurately. This research
introduces MalVis, a unified visualization framework that integrates entropy and N-gram analysis
to emphasize meaningful structural and anomalous operational patterns within the malware byte-
code. By addressing significant limitations of existing visualization methods, such as insufficient
feature representation, limited interpretability, small dataset sizes, and restricted data access, MalVis
delivers enhanced detection capabilities, particularly for obfuscated and previously unseen (zero-day)
malware. The framework leverages the MalVis dataset introduced in this work, a publicly available
large-scale dataset comprising more than 1.3 million visual representations in nine malware classes
and one benign class. A comprehensive comparative evaluation was performed against existing
state-of-the-art visualization techniques using leading convolutional neural network (CNN) archi-
tectures, MobileNet-V2, DenseNet201, ResNet50, and Inception-V3. To further boost classification
performance and mitigate overfitting, the outputs of these models were combined using eight distinct
ensemble strategies. To reduce the problem of an imbalanced class distribution in the multiclass
dataset, we implemented an undersampling technique to ensure balanced learning across all types
of malware. MalVis achieved superior results, with 95.19% accuracy, 90.81% F1-score, 92.58%
precision, 89.10% recall, 87.58% Matthews Correlation Coefficient (MCC), and 98.06% Receiver
Operating Characteristic Area Under Curve (ROC-AUC). These findings emphasize the effectiveness
of MalVis in providing interpretable, accurate representation features for malware detection and
classification, offering a valuable resource for both research and real-world security applications.
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1 Introduction

Smartphones are proliferating, with projections indicating that they will exceed 7 billion by 2025, and nearly 70% using
the Android operating system [1] [2]. Due to their compact designs, these mobile devices have become indispensable,
facilitating tasks like email management, banking transactions, and the storage of sensitive health information. However,
the widespread adoption of smartphones has also drawn the attention of hackers [3], exacerbated by the open-source
nature of Android’s OS and its SDK. This vulnerability has facilitated the way for various forms of malware, including
viruses [4], [5], worms [6], adware [7, 8], spyware [9], ransomware [10], rootkits [11], trojans [12], keyloggers [13],
botnets [14], and mobileware [15]. Consequently, developing a robust defense system capable of identifying and
mitigating this wide range of threats is crucial. While traditional detection methods like signature-based [16, 17],
dynamic analysis [18], and static analysis [19] remain dominant, they often struggle with modern evasion techniques
such as code obfuscation, encryption, polymorphism, and packing. As a result, there has been a growing interest in
using advanced Deep Learning (DL) techniques to analyze malware and detect these suspicious behaviors.

S everal studies have explored the transformation of binary code or bytecode into image representations to leverage
the capabilities of Deep Neural Network (DNN) for malware detection. However, these approaches frequently fail
to capture semantic context, structural anomalies, and obfuscation pattern features critical for accurate and robust
classification.

Designing effective detection systems, particularly those utilizing visual representations, requires a thorough under-
standing of the structural composition of Android applications. The following section presents an overview of the
Android Package Kit (APK) file structure, emphasizing its core components relevant to malware analysis.

1.1 Overview of the Android APK file structure

The APK is a compressed file that the Android OS uses to distribute and install applications, consisting of core files and
folders such as the application bytecode, assets, resources, and a manifest file, as presented in Fig. 1.

Figure 1: An illustration of the structure of an Android APK file, highlighting key components such as application
bytecode, assets, resources, and the manifest file.

Visualization approaches mainly focus on analyzing the AndroidManifest.xml and Classes.dex files, as these components
provide critical insight into the structure and behavior of Android applications. The AndroidManifest.xml file specifies
essential metadata, including the application’s components, package name, and requested permissions. In contrast, the
Classes.dex file contains the executable bytecode intended for the Android Dalvik Virtual Machine (DVM), making it a
vital source for behavioral analysis. This research focuses on encoding and analyzing the Classes.dex file, given its
importance in capturing malicious behavior. Our proposed approach employs CNN models to detect hidden Android
malware threats by transforming bytecode into visual representations, focusing on highlighting anomalous operational
or structural patterns indicative of obfuscation or malicious intent.

1.2 signature-based Analysis

The signature-based detection method is widely used to recognize and detect malware. A software signature is a
unique identifier that cannot be replicated and is typically generated using hash algorithms such as RSA, MD5, SHA1,
SHA-256, and SHA-512 [16, 20]. The detection engine generates a signature for the software and compares it with a
blocklist database of signatures stored locally or in the cloud. Typically, these blacklisted databases are proprietary
assets of vendors, with restricted access granted to licensed users. A significant limitation of this method is the need for
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the detection engine to continuously refresh its blocklist database, which can lead to potential gaps in identifying new
zero-day malware [21]. As technology evolves, malware creators continue to find new techniques to evade detection,
such as code alteration, function modification, file repacking, data encoding, or null byte injection, all to generate new
signatures capable of evading security defenses [17, 22–25].

1.3 dynamic analysis

Dynamic analysis is a pivotal method for malware detection, which involves observing and understanding software
behavior during execution within a controlled and contained environment, such as a Sandbox or Virtual Machine (VM).
This technique is effective in detecting abnormal actions, such as invoking suspicious system calls [26], examining
network traffic [27], altering memory [28], and detecting errors in Logcat that invoke suspicious services from the
OS [29].

However, this method requires accessing or monitoring users’ sensitive information, which can be impractical when
managing highly confidential data [30]. Despite its promising outcomes, acquiring an extensive dataset of labeled
training data for optimal performance is often both time-consuming and costly [31]. Security researchers are increasingly
shifting to the visualization of malware based on static analysis images, which allows instant scanning of malware
images to overcome the challenges posed by new malware [32–34]. Unlike dynamic analysis methods that require days
or weeks to monitor suspicious behavior in an application, these image representations can be harmless, do not require
manual feature engineering, and resist typical obfuscation techniques employed by adversaries [35].

1.4 static analysis

Static analysis is a technique used to evaluate applications without executing them or observing their execution behavior,
which can often be demanding and time-consuming. By not requiring execution, static analysis provides a unique
assessment mode comparable to behavioral analysis techniques. One of the primary advantages of this malware
detection method is its cost-effectiveness, as it minimizes the need for additional hardware or extensive computational
resources beyond the actual analysis tool itself [19].

Despite its advantages, this approach has notable limitations. Specifically, it largely depends on identifying already
known malware patterns, which challenges its effectiveness in generalizing and detecting evolving zero-day malware.
Research efforts focus on improving the detection of suspicious activities using advanced methodologies such as
machine learning (ML) and convolutional neural network (CNN) [36, 37] to mitigate this limitation. These innovations
aim to improve the adaptability and robustness of static analysis against evolving threats.

1.5 Contributions

Our novel Android malware visualization framework uniquely integrates critical semantic and structural features
extracted from executable bytecode and transforms them into RGB representations. Unlike previous techniques, MalVis
enhances interpretability and classification accuracy while maintaining resilience against obfuscation.

Our contributions include the following:

• MalVis Dataset: Introducing MalVis, the largest Android malware visualization dataset with over 1.3 million
images across ten classes, including nine malware types and benign software that is accessible to the research
community1. Scripts for generating these various visualization methods are publicly available on GitHub at
the link2.

• Enhanced Visualization Framework: Developing an advanced MalVis framework that enhances malware
visualization by incorporating an entropy encoder with an N-gram technique. This approach utilizes the
three RGB channels to effectively capture a broader range of malware characteristics, including encryption,
compression, packing, and structural irregularities. This improves the precision of malware pattern detection
in the visualizations.

• Enhanced Multiclass Labeling: Implementing an improved multiclass labeling approach using results from
Euphony [38] and VirusTotal [39] allows precise classification and analysis of malware behavior, enhancing
targeted threat identification and classification.

• Robust Detection Model: Evaluation of the performance of the MalVis framework on several SOTA visual-
ization methods using advanced deep CNN architectures such as MobileNet-V2, DenseNet201, ResNet50,

1https://www.mal-vis.org
2https://github.com/makkawysaleh/MalVis
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and Inception-V3, combined with several ensemble techniques, to further improve detection accuracy and
generalization. The results showed that the MalVis framework achieved superior performance compared to
others.

This research builds on our previous work, “Improving Android Malware Detection Using a Bytecode-to-Image
Encoding Framework” [37] to detect anomalous structural and malicious features in Android malware. Although
traditional detection techniques such as signature-based, static, and dynamic analysis remain prevalent, visualization-
based approaches have gained popularity due to their speed and ability to highlight malicious patterns. However,
existing methods often rely on simplistic byte-to-color mappings based on byte location in the file, which overlook
semantic features and abnormal structure traits of malware. Additionally, they struggle against obfuscation, encryption,
and packing. MalVis offers a richer and more interpretable representation that enhances the classification’s robustness
and addresses existing methods’ limitations.

This paper is organized as follows. Section 1 introduces the background of Android malware threats and provides an
overview of the Android APK file structure, followed by traditional detection approaches and a summary of our key
contributions. Section 2 reviews related work, including the motivation behind visual-based detection, limitations of
existing malware image datasets, and prior grayscale and RGB encoding techniques. Section 3 details our proposed
MalVis framework, including the data generation process, bytecode-to-image transformation, and an in-depth analysis
of entropy and N-gram features through two distinct visualization approaches. Section 4 defines the performance
evaluation metrics used to assess the model’s effectiveness. In Section 5, we present experimental results across
binary and multiclass classification tasks, evaluate the impact of data balancing using undersampling, and demonstrate
performance improvements through ensemble modeling. Finally, Section 6 concludes the paper and outlines future
research directions.

2 Related Works

This section describes the motivation to adopt visual representations in malware analysis. Next, we review Android
malware visualization datasets that benchmark image-based malware detection. Finally, we discuss recent visualization-
based detection techniques, focusing on grayscale and RGB encoding methods to detect malicious patterns.

2.1 Motivation

Deep Neural Networks, especially CNNs, have shown exceptional performance across domains such as vision,
biomedical, and cybersecurity [40–43], primarily due to the availability of large, structured datasets. In malware
detection, transforming code into image representations allows CNNs to identify visual patterns of malicious behavior,
offering a scalable, non-executable, and efficient alternative to traditional analysis methods. These representations are
significantly smaller than the raw executable files (Fig. 2), reducing storage needs and execution risks.

Our approach further benefits from transfer learning by leveraging pretrained CNNs trained on massive image datasets
such as ImageNet, enabling effective pattern recognition in malware with minimal domain-specific training. Despite
these advantages, progress is hindered by limited access to large-scale, interpretable, and public malware visualization
datasets. Addressing this gap is essential for advancing robust, explainable, and reproducible malware detection
research.

2.2 Existing Malware Image Datasets

We highlight two widely known Android malware datasets: AndroZoo [44] and Drebin [45], both commonly used in
Android malware detection research. However, because our MalVis approach focuses on transforming bytecode into
images for visualization, we primarily compare MalVis with other existing image-based datasets in this section.

Scott Freitas et al. [46] introduced the MalNet database, a substantial contribution to the field with over 1.2 million
malware images spanning 47 types and 696 families. While their direct byte-to-location color mapping method is
innovative within the Android application structure, our dataset, MalVis, offers enhancements in the form of over
1.3 million images, with a particular focus on addressing malware obfuscation techniques. This focus improves the
effectiveness of Android malware detection, as discussed in more detail by Makkawy et al. [37].

Virus-MNIST, proposed by David A. et al. [4], is a large publicly available malware image dataset. The dataset includes
51,880 grayscale images of malware, classified into nine virus classes and one benign class, all formatted as [32× 32]
images. The dataset represents the malware classification problem, like the famous MNIST dataset used for handwriting
recognition. Malware images are generated by converting the first 1,024 bytes of Portable Executable (PE) files into
[32× 32] grayscale images. Although Virus-MNIST introduces a significant step towards standardizing malware image
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Figure 2: Comparison of average file sizes in DEX executables vs malVis PNG representations across malware
categories (with size reduction percentages)

datasets, its representation of malware using only the first 1,024 bytes may result in a lack of capturing the complete
characteristics of the malware [47].

L. Nataraj et al. [48] presents the MalImg dataset, which offers a straightforward and efficient malware visualization
and classification method. Using image processing techniques, this approach classifies malware samples based on
their similarity to specific malware types, utilizing standard image features. MalImg achieves a notable classification
accuracy of 98% on a dataset comprising 9,458 samples across 25 distinct malware types. However, with this limited
dataset size, there is a possibility that the model is overfitting to the specific characteristics of these samples.

Table 1 summarizes public and private image-based malware datasets, including MalVis, MALNET-IMAGE, and
Virus-MNIST, providing details on the number of classes and dataset size. Despite existing visualization contributions,
these methods face some limitations. As observed by Kunwar et al. [49], MalNet encodes malware bytecode based
on byte location in the executable file, lacks resilience to obfuscation, and does not identify suspicious behaviors.
Virus-MNIST [4] uses only the first 1,024 bytes of PE files, limiting its representational scope. In contrast, MalVis
combines entropy and N-gram analysis to generate color-encoded RGB representations that emphasize abnormal
structures, encryption, packing, and compression behaviors. Our experiments show that this richer visual encoding
enhances model interpretability and improves classification performance. A detailed discussion of the MalVis dataset
and its visualization approach is presented in Section 3.

Table 1: Summary of image-based malware datasets detailing the number of classes, dataset sizes, and availability.

Dataset # Classes Dataset Size Public Private
MalVis 10 1,300,822 ✓

MalNet [46] 696 1,262,024 ✓

AndroDex [50] 180 24,746 ✓

Virus-MNIST [4] 10 51,880 ✓

Malimg [51] 25 9,458 ✓

Microsoft [52] 9 108,000 ✓

IVMD-2013 [36] 2 37,000 ✓

AdvAndMal [53] 12 5,560 ✓

Halil-2020 [54] 2 29,100 ✓
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2.3 Visualization Strategies for Malware Detection

As image-based malware detection has become a powerful paradigm for analyzing Android applications, it bypasses
manual feature engineering through automated visual pattern recognition. Current approaches primarily focus on two
types of representations:

2.3.1 Grayscale Image Encoding

The foundational work by Nataraj et al. [48] established grayscale conversion by mapping binary bytes to pixel values
in the range (0–255), revealing structural patterns in malware families. Modern implementation includes DexRay by
Nadia Daoudi et al. [55]; it converts DEX bytecode into 1D grayscale vectors (1×128×128) for CNN classification,
achieving 96% F1-score while resisting obfuscation. Despite its highest accuracy, their approach resulted in smaller-size
grayscale images that could be affected by more data loss in the representations. In another instance, Wang et al. [56]
developed a novel scheme that combines static and dynamic analysis with CNN for efficient malware detection and
classification. Their method integrates a Convolutional Block Attention Module (CBAM) with CNN to detect malware
similarities using grayscale images from the MalImg and Microsoft datasets. However, their experiment was conducted
on a relatively small dataset of approximately 20,000 samples covering 25 types of malware, which could be affected
by model overfitting.

2.3.2 RGB Image Encoding

Advanced malware variants often exhibit more sophisticated patterns and behaviors that are difficult to capture using
standard grayscale or single-channel representations. Additional color channels are required to encode these complex
characteristics, enabling richer feature representation and enhancing the model’s ability to detect subtle malicious traits.
Asim et al. [57] introduced a technique that transforms APK files into lightweight RGB images utilizing a predefined
dictionary and an intelligent mapping mechanism. Their method converts the AndroidManifest.xml permissions into
ASCII values, which are then aggregated and encoded into a single color value.

While this approach facilitates the image-based representation of APK features in RGB channels, it suffers from
significant information loss due to the summation of ASCII values, which flattens each permission into a single
numerical value. This reduction hinders the model’s ability to capture detailed permission information, thus limiting its
effectiveness in capturing nuanced malicious behaviors.

Progress in this field is hindered by the scarcity of publicly available visualized malware datasets [58] and the need
for robust methodologies to capture malware patterns and behaviors [46] effectively. The MalVis dataset aims to
tackle these challenges by providing comprehensive representations of malware, which convert abnormal operational
and structural patterns in bytecode into visual forms. In addition, it includes multiclass labels for accurate malware
classification and analysis, thereby improving targeted threat identification.

3 Methodology

This section describes the methodology for collecting and constructing the MalVis dataset, including data generation and
construction, MalVis bytecode-to-image visualization, CNN architectures with experiment settings, and environment
setup.

3.1 Data Generation and Construction

The MalVis generation process uses a subset of the AndroZoo dataset [44], a key resource in Android research
encompassing 24,743,375 applications collected from platforms like the Google Play Store. The binary classification
dataset consists of 49,150 malware and 135,324 benign samples. The multiclass malware dataset utilizes Euphony [38]
to categorize malware into 289 distinct classes. For training purposes, we focus on the nine largest classes to enhance
labeling accuracy and reduce false positives, avoiding samples with multiple labels. We also verify these samples using
Virustotal [39] to ensure reliability. The refined dataset primarily included malware samples, along with an addition of
135,324 benign samples sourced from AndroZoo. Figure 3 presents the distribution of nine malware and the benign
class within 1,300,822 application visualizations.

3.2 MalVis bytecode-to-image visualization

The MalVis bytecode-to-image visualization process begins by extracting Dalvik Executable (DEX) files from Android
APKs using AndroGuard [59], a well-known reverse engineering tool. This step yields the classes.dex files, as
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Figure 3: Distribution of malware types and benign in MalVis.

illustrated in Fig. 9 4⃝. These .dex files consist of byte values in the range of 0x00 to 0xFF. These values are first
converted into a one-dimensional array of unsigned integers, where each value is between 0 and 255. These integers
correspond directly to the pixel color intensities. The 1D array is reshaped into a two-dimensional grayscale image
with a fixed width and height of 256 pixels to visualize the bytecode. This transformation employs Nearest-Neighbor
Interpolation (NNI) and the Pillow library in Python, ensuring consistent image dimensions while preserving the
original byte sequence structure.

Shannon entropy is applied to the executable dex file using a 32-byte sliding window to determine the red and blue
channels. These channels are defined by distinct formulas motivated by [60], as described in our earlier paper [37].
Each formula utilizes Shannon entropy 1 differently to highlight regions of considerable randomness, which may
indicate encryption or obfuscation. Note

H(X) = −
N∑
i=1

P (xi) log2(P (xi)), (1)

where

• H(X): Represents the Shannon entropy of the random variable X , which measures the uncertainty or
randomness in the 32-byte sequence.

• P (xi): The probability of observing the specific ith outcome or byte value xi. It is calculated as the frequency
of xi in the 32-byte sequence divided by the total number of bytes (32).

• N : Denotes the total number of unique outcomes for the random variable X . For a single byte, N = 256
(corresponding to values {0, 1, 2, ..., 255}).

• xi: Refers to a specific byte value in the range {0, 1, 2, ..., 255}. In the context of a sliding window of 32
bytes, it represents the ith byte in the sequence.

• log2: The logarithm to base two is commonly used in entropy calculations to express the result in units of bits.

Given the varied types of malware introduced by the MalVis dataset, we have explored techniques to improve the
recognition of these variations. Our analysis focuses on extending our earlier approach [37] from two color channels
(red and blue) to three channels by encoding additional feature into the green channel of RGB images using two primary
encoding methods:

• Classbyte Encoding: We adopt the Classbyte encoder introduced by Duc-Ly et al. [34], which maps semantic
features of bytecode to varying intensities of the green channel. We selected this method due to its effectiveness
and comparable performance to our previously employed entropy-based encoding for binary classification
tasks.

• N-gram Structural Encoding: We incorporate N-gram representations derived from byte sequences to
capture the malware bytecode’s underlying structural patterns and contextual dependencies. This technique,
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commonly used in malware detection research [61, 62], enriches the green channel with statistical features
that reflect code regularities and anomalies, thereby enhancing the capability to distinguish between different
malware types.

The following subsections discuss the implications of these methods for advancing malware visualization.

3.2.1 Approach MalVis-A

This approach uses the Classbyte representation, which performs similarly to the entropy encoder in binary classification.
It translates the features identified by the four Classbyte colors into four distinct shades of green in the green channel, as
illustrated in Fig. 4 1⃝. The method highlights sections of bytecode containing both clear-text printable and non-printable
ASCII characters and null byte areas, as illustrated in Fig. 4 2⃝. These distinctions assist in analyzing the bytecode to
determine whether it has been encrypted or injected with null bytes to evade malware detection.

The previously generated red and blue channels are combined with the newly constructed green channel, resulting in
MalVis-A RGB images, as shown in Fig. 4 3⃝. Unfortunately, this approach did not yield the desired improvement in
the accuracy of multiclass classification. Further results of the analysis and evaluation of this approach are presented in
Section 5.

Figure 4: Overview of constructing the MalVis-A visualization method, resulting in RGB image representations using
the Classbyte encoding in the green channel and encoding entropy in the red and blue channels.

3.2.2 Approach MalVis-B

This approach utilizes the N-gram method, which has been extensively studied for malware anomaly detection. The
approach is particularly relevant for Android applications, which are often written in Java and Kotlin, thus inheriting
the programmatic structure. Abnormalities are detected when the byte sequences differ from the typical bytecode
structure using the green channel depicted in Fig. 5 2⃝. One of the key goals of MalVis is to bridge the gap between raw
visualization and interpretability. Unlike prior methods that map byte values to color values without semantic linkage,
our framework encodes interpretable attributes: entropy highlights encrypted or compressed code regions. At the same
time, N-gram transitions emphasize structural irregularities in bytecode. This mapping allows security analysts and
researchers to visually associate distinct color patterns with specific malware behaviors, such as repacking functions or
obfuscation.

Figures (6-8) further clarify this concept. For example, the script in Fig. 6 below depicts a simple Java code for a ’for’
loop before it is compiled into bytecode. The bytecode often reveals specific patterns that represent the underlying
syntax and structure of the program. The keyword ’for’ indicates the presence of a loop followed by an initialization
statement, a condition, and an increment surrounded by braces (· · · ), while curly braces {· · · } denote the loop’s body.

Running "javac For_Loop.java" compiles the code into a bytecode file named "For_Loop.class", which the DVM uses
to execute the program, as demonstrated in Fig. 7.

8
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Figure 5: Overview of constructing the MalVis-B visualization method using the N-gram encoding in the green RGB
channel.

// For_Loop.java
public class Main {
public static void main(String[] args) {
for (int i = 0; i < 5; i++) {

System.out.println(i);
}

}

Figure 6: An example of a simple for-loop written in Java.

As illustrated by the MalVis-B algorithm in Fig. 10, we implemented the Bi-gram method on the raw bytes using
a two-byte window to recognize anomalies in the bytecode’s operational structure. Using Bi-gram on the bytecode
represents the transition between instructions as listed in Fig. 8.

The Bi-gram method can detect obfuscated code by identifying irregular Bi-gram patterns. A two-byte window size
allows for detecting simple structural patterns, while larger windows capture more complex ones. However, this
decision involves a trade-off that requires more computational resources and time to generate over 1.3 million images.
Given limited resources, this study used a two-byte window size. Further research could optimize the window size for
improved performance.

The Bi-gram formula is

Bi-gram value = b1 × 28 + b2, (2)

which takes two consecutive bytes, b1 and b2, to compute the Bi-gram value. The multiplication of the first byte b1 by
28 = 256 shifts it to higher-order in the combined value, which is then added to the b2 value, as shown in line 16 of the
Algorithm, Figure 10. The resulting Bi-gram value represents the degree level of a green pixel and is normalized to the
range [0, 1] by dividing by the maximum possible value of (256× 256)− 1 = 65, 535 as described by

g =
Bi-gram value
(256× 256)− 1

=
b1 × 256 + b2

65, 535
. (3)

Finally, if the byte is the last in the file, it is reset to 0, as detailed in lines 18 and 19 of the Algorithm, Fig. 10. Hence,
MalVis presents a conceptually innovative visualization design that maps meaningful malware properties to distinct
visual domains. Consequently, MalVis is more effective and better aligned with the objectives of explainable malware
classification. This approach has demonstrated improved accuracy in the context of multiclass MalVis, and both
representation techniques are evaluated in Section 5.
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// For_Loop.class
iconst_0 // Push 0 into the stack.
istore_1 // Store 0 to local variable 1.
LoopStart:
iload_1 // Load variable 1 (i) into the stack.
iconst_5 // Push 5 into the stack.
if_icmpge EndLoop // Compare i and 5, jump to EndLoop if i >= 5.
getstatic // Access System.out.
iload_1 // Load variable 1 (i) into the stack.
invokevirtual // Call System.out.println(i).
iinc 1, 1 // Increment variable 1 (i++).
goto LoopStart // Jump to the start of the loop.
EndLoop:

Figure 7: Translation of a Java for-loop into its equivalent JVM instructions in bytecode form after compilation.

iconst_0 istore_1 // Initialization of i to 0.
istore_1 iload_1 // Load the stored value of i.
iconst_5 if_icmpge //Conditional jump.
getstatic iloa_1 // Prepare to print the value of i.
invokevirtual iinc // After printing, increment i.
iinc goto // Jump back to the start of the loop.

Figure 8: Representation of the employed Bi-gram approach on the Java instructions capturing the semantic transition
of these instructions.

Algorithm 1 MalVis-B Visualization Algorithm
1: Input: Data array data of bytecode, symbol map symbol_map, index x
2: Output: RGB values in the range [0, 255]
3: e← Entropy(data, 32, x, len(symbol_map)) ▷ Calculate entropy using a window size of 32 bytes
4: function CURVE(v)
5: f ← (4v − 4v2)4

6: f ← max(f, 0)
7: return f
8: end function
9: if e > 0.5 then

10: r ← curve(e− 0.5) ▷ Red component is determined by the scaled entropy value
11: else
12: r ← 0 ▷ If entropy is less than or equal to 0.5, set red component to 0
13: end if
14: b← e2 ▷ Blue component is proportional to the square of entropy
15: if x < len(data)− 1 then
16: n_gram_value← (data[x]≪ 8) + data[x+ 1] ▷ Compute 2-byte n-gram value
17: g ← n_gram value

65535
▷ Normalize n-gram value to [0, 1] for green component

18: else
19: g ← 0 ▷ If at the last byte, the green component is set to 0
20: end if
21: return [int(255 · r), int(255 · g), int(255 · b)] ▷ Return RGB values scaled to the range [0, 255]

Figure 10: Algorithm illustrating the generation of RGB image representation in the MalVis-B approach, utilizing
entropy for the red and blue channels and N-gram for the green channel.

3.3 The Impact of Entropy and N-gram on MalVis representations experiments

In this section, we further investigate the sensitivity and interpretability of MalVis visualizations. We conducted
a controlled analysis by applying targeted transformations to a benign Android application, specifically WhatsApp
Classes.dex. The goal was to investigate and quantify the impact of encryption and unstructured operations in bytecode
changes on the RGB image representations generated by our framework.
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Figure 9: A schematic illustration of the proposed framework architecture is organized into four distinct rows. The
first row details the data collection and labeling process. The second row focuses on feature extraction. The third row
constructs and generates RGB images using entropy and N-gram methods. The bottom row describes the training process,
including visualization techniques, CNN models, ensemble methods, and both binary and multiclass classifications.

3.3.1 Obfuscation Detection captured by Entropy in Red and Blue Channels

In this experiment, we applied AES-256 encryption in Electronic Codebook (ECB) mode to the initial 30% of the
Classes.dex bytecode. This encryption caused a noticeable entropy shift, particularly affecting image representations’
red and blue channels. Entropy, which quantifies randomness over 32-byte windows, increased significantly in high-
entropy areas, leading to brighter pixel intensities. This effect simulates obfuscation techniques that malware creators
use to evade detection. As a result, the red and blue channels in Fig. 11 display brighter pixels in the top-left region,
highlighting the encrypted sections in the representation.
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Figure 11: The impact of 30% AES-256 encryption on Classes.dex file captured by the entropy encoder in the red and
blue channels of MalVis representations.

3.3.2 Unstructured bytecode Insertion captured by N-gram in Green Channel

In this experiment, we examined the structural sensitivity of the green channel by injecting random, unstructured
operations into the initial 30% of the Classes.dex file. This action disrupted the byte sequence, causing noticeable
distortions in the N-gram values, significantly impacting the green channel. MalVis-B, which utilizes bi-gram formulas
to detect abnormal operational patterns, recorded these disturbances as increased bi-gram values, resulting in brighter
pixel values within green-channel textures, as depicted in Fig. 12. These deviations were apparent when visualized next
to an unchanged sample, highlighting the effectiveness of the green channel in detecting structural anomalies.

Figure 12: The impact of injecting 30% randomized unstructured operations to Classes.dex file captured by the N-gram
encoder in the green channels of MalVis-B representations.

3.4 Model Architecture and Experiment Settings

To assess the effectiveness of our proposed approach, we used a selection of well-recognized CNN models, including
MobileNetV2, ResNet50, DenseNet201, VGG16, and InceptionV3. These models were applied to our generated
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visualizations and baseline comparison methods. The employed CNN models have proven highly effective in malware
detection because they capture intricate patterns and features within image data [46, 63]. To ensure consistency across
the CNN models, all images were resized to 224× 224 pixels using nearest neighbor interpolation to align with the
input dimensions required by the models. The dataset was partitioned into 80% for training, 10% for validation, and
10% for testing. The batch size 64 was chosen based on empirical experimentation, as it provided an optimal trade-off
between training speed and memory consumption on our GPU setup. The training was conducted over 50 epochs and
carefully monitored to mitigate overfitting. This setup allowed for consistent and accurate assessments of the models’
performance across different visualization techniques.

3.5 Environment Setup

MalVis visualization and model training were generated using an Ubuntu Server 22.04 LTS OS with x86 64 architecture.
The hardware setup included a 16-core AMD Ryzen Threadripper PRO 5955WX processor, 128 GB of DDR4 RAM at
3200MHz, and an NVIDIA RTX A6000 graphics card. The system was configured within a controlled environment to
ensure accurate results and minimize external influences.

4 Performance Measures

To ensure fairness when comparing the visualization methods and evaluating our proposed approaches alongside the
baseline methods presented in Table 2, we employed accuracy, precision, recall, ROC-AUC, and MCC as validation
metrics in the binary classification context. Similarly, the same metrics were employed for consistent evaluation in
multiclass classification, as demonstrated in Table 3. The accuracy (4) indicates the percentage of instances correctly
identified among the entire set of samples. The F1-score (5) provides a harmonic mean of the model’s precision and
recall, accounting for false positives and false negatives. Precision (6) refers to the proportion of true positives in
relation to all positive predictions made. Recall (7) denotes the fraction of actual positives correctly identified by the
model. ROC-AUC measures the area under the receiver operating characteristic curve, highlighting the balance between
sensitivity and specificity. The MCC (8) serves as a metric to assess classification performance, factoring in true and
false positives and true and false negatives.

Accordingly,

Accuracy =
TP + TN

TP + TN + FP + FN
, (4)

F1-score = 2× P ×R

P +R
, (5)

Precision =
TP

TP + FP
, (6)

Recall =
TP

TP + FN
, (7)

and

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
, (8)

where TP, TN, FP, and FN represent true positive, true negative, false positive, and false negative, respectively.

5 Results

This section provides a comparative analysis of the performance of the newly introduced visualizations, MalVis-A and
MalVis-B, compared to baseline methods, namely MalNet [46] and Classbyte, as detailed in the following subsections:

5.1 Evaluation of MalVis-A and MalVis-B Performance Compared to Other Methods on a Binary
Classification Dataset

All methods used the same settings and were trained on identical subsets of training data to ensure a fair comparison.
As shown in Table 2, the MalVis-A approach, which combines Classbyte and Entropy, did not improve classification
performance as expected. Instead, it disrupted the patterns captured by the entropy encoder, as shown in Fig. 13.
Encoding the four colors of the Classbyte method into a single green channel erases and replaces previously detected
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Table 2: Comparison of visualization approaches using different CNN models. Abbreviations in the table include MNv2
(MobileNet-V2), DN201 (DenseNet201), RN50 (ResNet50), and INC-V3 (Inception-V3). Bold values highlight the
highest score for each metric within the respective model.

Approaches Models Accuracy F1-score Precsion Recall MCC R-AUC

Classsbyte Encoder [34]

MNv2 91.60% 85.42% 79.43% 92.39% 80.02% 96.91%
DN201 94.38% 89.39% 89.93% 88.85% 85.57% 97.57%
RN50 93.02% 86.51% 89.22% 83.97% 81.88% 96.38%
INC-V3 94.38% 89.03% 92.73% 85.62% 85.38% 97.75%
VGG16 93.18% 87.33% 86.46% 88.22% 82.68% 96.17%

MalNet Encoder [46]

MNv2 92.78% 85.63% 91.16% 80.74% 81.10% 97.11%
DN201 89.66% 83.16% 74.46% 90.11% 77.27% 96.91%
RN50 86.34% 67.60% 91.92% 53.46% 63.22% 94.69%
INC-V3 94.82% 90.01% 92.69% 87.47% 86.58% 97.84%
VGG16 93.87% 88.02% 91.80% 84.54% 84.04% 97.38%

Entropy-based [37]

MNv2 93.85% 88.10% 90.88% 85.50% 84.03% 97.57%
DN201 95.32% 91.30% 90.54% 92.07% 88.10% 98.25%
RN50 93.14% 86.50% 90.96% 82.47% 82.10% 97.11%
INC-V3 94.94% 90.43% 91.12% 89.75% 86.99% 97.93%
VGG16 93.59% 87.00% 94.64% 80.49% 83.25% 97.45%

MalVis-A

MNv2 91.97% 84.05% 89.22% 79.45% 78.94% 96.76%
DN201 94.95% 90.28% 92.60% 88.08% 86.92% 98.15%
RN50 93.64% 87.47% 92.03% 83.34% 83.40% 97.38%
INC-V3 94.18% 88.63% 92.50% 85.07% 84.87% 97.88%
VGG16 92.81% 86.38% 87.26% 85.52% 81.50% 96.89%

MalVis-B∗

MNv2 95.04% 90.57% 91.76% 89.42% 87.22% 98.14%
DN201 95.22% 90.91% 92.16% 89.69% 87.68% 98.19%
RN50 95.08% 90.60% 92.35% 88.91% 87.30% 98.18%
INC-V3 95.19% 90.81% 92.58% 89.10% 87.58% 98.06%
VGG16 94.60% 89.89% 89.68% 90.11% 86.21% 97.90%

*The results denote the optimal proposed method, referred to as MalVis-B.

patterns. In contrast, the proposed MalVis-B method, which utilizes entropy and N-gram visualization, outperformed
other methods in most CNN models except for DenseNet201.

Although DenseNet201 did not show significant improvements across all metrics, it demonstrated superior precision,
highlighting the model’s effectiveness in accurately distinguishing true positives from false positives. The observed
limitations in the remaining metrics are attributed to the highly imbalanced dataset outlined in Section 3.1, where the
prevalence of benign samples significantly exceeds that of malware. This imbalanced dataset was further addressed in
the multiclass dataset evaluation detailed in Section 5.3.

These experiments demonstrate that existing methods, including Classbyte and MalNet, provide limited semantic
and structural variation, resulting in suboptimal performance for malware classification tasks. In contrast, MalVis-
B outperforms these approaches by integrating both entropy and N-gram patterns, producing meaningful visual
representations that more effectively expose obfuscation, encryption, and other malicious behaviors. Notably, our earlier
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Figure 13: Figure showing the disruption caused by MalVis-A encoding of classbyte in the green channel, which
impacts patterns captured by the entropy encoder compared to the representations by MalVis-B.

method relying solely on entropy [37] did not achieve comparable performance, underscoring the value of combining
multiple feature types. This highlights the need for enhanced visualization techniques that improve both interpretability
and classification accuracy. Accordingly, MalVis-B was selected for the subsequent advanced multiclass classification
experiments to better distinguish between diverse malware types.

5.2 Evaluation of MalVis-B Performance on Imbalanced Multiclass Dataset

The evaluation of the MalVis-B representation in the imbalanced multiclass malware classification task, presented in
Table 3, demonstrated that the ResNet50 model achieved the highest performance. It achieved an overall accuracy
of 94.03%, F1-score of 83.54%, and Precision of 83.34%, surpassing the performance of state-of-the-art multiclass
malware classification approaches [46]. The analysis of the confusion matrix, presented in Fig. 14, A to E reveals
significant challenges in differentiating between the majority and minority classes within the imbalanced multiclass
dataset. The darker column for the adware class suggests a bias due to its higher frequency in the training set, as shown
in Fig. 3.

A deeper inspection of the confusion matrix Fig. 14 reveals frequent misclassification between Adware, Trojan,
and Spyware classes. These malware types often share similar bytecode structures and use comparable obfuscation
techniques, leading to visually overlapping patterns in the entropy and N-gram channels. For example, packed adware
and spyware samples may exhibit high-entropy values with irregular n-gram sequences, which confound the classifier.
These findings highlight the need for refined feature selection and possibly more semantic augmentation in future
visualization efforts. This highlights the effect of class imbalance, leading to biased decision boundaries that favor the
majority class at the expense of consistent performance across all classes.

Various strategies can address this imbalance, such as oversampling minority classes, undersampling majority classes,
applying class weighting in the loss function, and using ensemble methods [64, 65]. The following sections cover
applying undersampling to majority classes and discuss the evaluation of eight different ensemble methods in detail.

5.3 Evaluation of MalVis-B Performance using Undersampling on a Balanced Multiclass Dataset

We applied undersampling to the majority classes to address the imbalanced class distribution, creating a more balanced
dataset. Although oversampling minority classes is the most effective data balancing method [64], we opted for
undersampling due to limited computational resources and the time constraints associated with training the oversampled
method. Table 4 presents the evaluation results for undersampling with MalVis-B. The confusion matrix in Fig. 15,
models B to F , highlights improved differentiation between majority and minority classes. Despite a 15-20%
reduction in overall performance relative to the results of the imbalanced dataset (Table 3), we discuss ensemble
methods to boost model performance in the following section.
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Table 3: Performance results of different models on the MalVis-B imbalanced multiclass dataset.

Models MalVis-B Multi-Class

A F1 P R MCC ROC-AUC

MNv2 83.27% 83.05% 82.89% 83.27% 67.49% 93.67%
DN201 82.81% 81.81% 81.74% 82.81% 65.27% 95.29%
RN50 84.03% 83.54% 83.34% 84.03% 68.53% 94.03%
INC-V3 80.18% 78.67% 78.74% 80.18% 59.95% 93.39%
VGG16 82.56% 81.99% 81.72% 82.56% 65.42% 91.87%

Table 4: Performance results after undersampling approach on the large-MalVis dataset

Models MalVis-B Multi-Class

A F1 P R MCC ROC-AUC

MNv2 61.71% 61.86% 62.16% 61.71% 57.47% 89.36%
DN201 66.29% 66.06% 65.98% 66.29% 62.57% 91.24%
RN50 65.00% 64.81% 64.77% 65.00% 61.12% 90.58%
INC-V3 64.43% 64.37% 64.43% 64.43% 60.48% 90.35%
VGG16 60.70% 60.23% 60.02% 60.70% 56.36% 89.35%

5.4 Evaluation of MalVis-B Performance using Ensemble Models on a Balanced Multiclass Dataset

To address the performance impact caused by the undersampling approach, we explored the application of various
ensemble methods. The aim was to take advantage of the combined strengths of all CNN models, which enhanced both
the models’ performance and robustness. The ensemble methods implemented and evaluated include:

• Average Voting: Combines predictions by averaging the probabilities of all CNN models.

• Majority Voting: Determines the final class by selecting the most predicted by individual models.

• Weighted Voting: Assigns different weights to CNN models based on their prediction accuracy. We preserve
the ranking performance of the models and assign weights corresponding to their place in the ranking.

• Min Confidence Voting: Only consider a model’s prediction when it meets the minimum required confidence
level. In our implementation, a confidence threshold of 60% was selected.

• Soft Voting: Uses the predicted class probabilities to decide the final output.

• Median Voting: Determines decisions by selecting the median of predicted class probabilities.

• Rank-Based Voting: Ranks predictions from models and aggregates ranks to select a class.

• Stacking Ensemble: Trains a new model to integrate the predictions of the base model and improve perfor-
mance.

In Table 5, the Min Confidence Voting ensemble achieved the highest performance across all evaluation metrics
except for ROC-AUC. These results signify superior performance compared to the results in the unbalanced dataset
shown in Table 3. The confusion matrix in Fig. 15 in box A illustrates that the Min Confidence Voting ensemble
demonstrated enhanced performance by producing a more pronounced diagonal shape. This indicates an improved
ability to accurately detect the more challenging classes compared to the CNN models shown in boxes B to F after
undersampling. Moreover, the Stacking ensemble achieved the highest ROC-AUC metric, attributable to its ability
to integrate predictions from multiple models, thereby leveraging their strengths to improve overall performance in
distinguishing different classes.

These findings underline the effectiveness of ensemble methods, particularly Min Confidence Voting and Stacking, in
handling multiclass classification challenges on the Large-MalVis dataset.
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Table 5: Performance results of different ensemble methods on the Large-MalVis multiclass dataset after undersampling
evaluation.

Ensemble Methods MalVis-B Multi-Class

A F1 P R ROC-AUC

Average Voting 66.25% 65.15% 65.36% 66.25% 81.49%
Majority Voting 63.15% 61.40% 63.70% 63.15% 79.79%
Weighted Voting 64.79% 63.15% 63.90% 64.79% 80.72%
Min Confidence Voting 88.65% 86.32% 89.02% 88.65% 86.41%
Soft Voting 66.25% 65.15% 65.36% 66.25% 81.49%
Median Voting 64.51% 63.49% 64.39% 64.51% 80.54%
Rank-Based Voting 63.23% 63.12% 64.34% 63.23% 79.82%
Stacking Ensemble 83.61% 83.33% 83.50% 83.61% 90.99%

6 Conclusions

This research establishes the critical importance of visualizing Android malware to safeguard user data and smartphone
security. We introduced MalVis, the largest publicly available image-based dataset for Android malware, containing
over 1.3 million samples. To complement this resource, we developed a novel visualization framework that transforms
bytecode into RGB images by integrating entropy and N-gram encoding techniques. This method effectively captures
encryption, compression, structural, and operational anomaly patterns within the malware.

Through extensive evaluation, MalVis consistently outperformed existing visualization-based detection approaches,
achieving 95.19% accuracy, 90.81% F1-score, 92.58% precision, 89.10% recall, 87.58% Matthews Correlation
Coefficient, and a 98.06% ROC-AUC. Beyond its strong performance, MalVis delivers a conceptually innovative
framework that links visual representations to the semantic characteristics of malware, enhancing interpretability and
classification robustness. This dataset and framework provide a valuable foundation for advancing research in malware
classification, adversarial resilience, and explainable threat detection.
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Figure 14: Confusion matrices of CNN models trained on the imbalanced multiclass MalVis dataset with the MalVis-B
approach.
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Figure 15: Confusion matrices for CNN models trained on a balanced multiclass MalVis dataset and the optimal
ensemble method.
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