
ar
X

iv
:2

50
5.

11
96

3v
2

 [
cs

.C
R

]
 9

 J
un

 2
02

5

MARVEL: Multi-Agent RTL Vulnerability Extraction
using Large Language Models

Luca Collini∗
NYU Tandon

Brooklyn, NY 11201
lc4976@nyu.edu

Baleegh Ahmad∗

NYU Tandon
Brooklyn, NY 11201
ba1283@nyu.edu

Joey Ah-kiow
NYU Tandon

Brooklyn, NY 11201
ja4844@nyu.edu

Ramesh Karri
NYU Tandon

Brooklyn, NY 11201
rkarri@nyu.edu

Abstract

Hardware security verification is a challenging and time-consuming task. For this
purpose, design engineers may utilize tools such as formal verification, linters, and
functional simulation tests, coupled with analysis and a deep understanding of the
hardware design being inspected. Large Language Models (LLMs) have been used
to assist during this task, either directly or in conjunction with existing tools. We
improve the state of the art by proposing MARVEL, a multi-agent LLM framework
for a unified approach to decision-making, tool use, and reasoning. MARVEL mimics
the cognitive process of a designer looking for security vulnerabilities in RTL code.
It consists of a supervisor agent that devises the security policy of the system-on-
chips (SoCs) using its security documentation. It delegates tasks to validate the
security policy to individual executor agents. Each executor agent carries out its
assigned task using a particular strategy. Each executor agent may use one or more
tools to identify potential security bugs in the design and send the results back
to the supervisor agent for further analysis and confirmation. MARVEL includes
executor agents that leverage formal tools, linters, simulation tests, LLM-based
detection schemes, and static analysis-based checks. We test our approach on a
known buggy SoC based on OpenTitan from the Hack@DATE competition. We
find that 20 of the 48 issues reported by MARVEL pose security vulnerabilities.

1 Introduction
Detection of hardware security vulnerabilities in Register-Transfer Level RTL code is a time-
consuming and challenging process5. Considerable research efforts have been dedicated to making
this validation process easier. These include using deterministic methods like formal methods10;18;17,
information flow tracking9;3, fuzzing16;21, and, more recently, non-deterministic methods involv-
ing the use of large language models (LLMs)1;8;20. LLMs have been used as debuggers/linters6.
They may use general guidelines for the detection of bugs, such as Common Weakness Enumera-
tions (CWEs), or may use external information (outside of source code), such as design specifications,
to aid in detection19;2. They may use external tools such as linters, formal verification, and/or simula-
tors to assist them in debugging23. While these approaches show great promise, they still require a
preset action plan. The LLM’s decision-making process may be used to determine if a segment of
code is insecure, but it is not in control of the workflow of tool usage or gathering information.

This gap in autonomous thinking can be filled by using the LLMs in an agentic workflow. By giving
an LLM the ability to develop a plan, use a tool when appropriate, and control the flow within a
framework, the LLM acts as an agent capable of making human-like decisions22. This better simulates
the thought process of an RTL designer or verification engineer while debugging a digital design.
Furthermore, the bug-hunting process might involve using multiple tools to localize the reason for a
misbehaving design iteratively. This process can be simulated in a multi-agent framework13.

∗Luca Collini and Baleegh Ahmad contributed equally to this work.

Preprint. Under review.

https://arxiv.org/abs/2505.11963v2

MARVEL is a multi-agent framework that implements a unified approach to decision-making, tool usage,
and reasoning towards the goal of RTL bug detection. It uses a Supervisor-Executor architecture11.
The supervisor manages communication and coordination among specialized executor agents. Each
executor uses a unique bug detection strategy coupled with the tools required to implement its
strategy. Linter Agent, Assertion Agent, CWE Agent, Similar Bug Agent, Anomaly Agent, and
a Simulator Agent are the executor agents. The supervisor agent identifies the security objectives
relevant to the design by traversing through directories, source code, and design specification
documents. Then it calls one executor agent at a time to determine if a given file of code has
a vulnerability that violates the security objective. The supervisor may use multiple executors before
determining whether the security objective is satisfied or not. In this process, security bugs are
identified, and a report is provided to the user with a summary of the security issues. An overview of
the multi-agent supervisor-executor flow is shown in Figure 1.

Figure 1: Supervisor-Executor Architecture.

While a similar strategy has been used for auto-
mated bug repair for software12, research efforts
for hardware description languages (HDLs) do not
present a comprehensive approach. We take inspi-
ration from software works and develop targeted so-
lutions for RTL by integrating RTL static analysis
tools and handling the unique challenges faced with
HDLs. These include identifying hardware security
objectives, using hardware CWEs, forming security
assertions, and reasoning about the outputs from these
tools from a digital design point of view. The main
contributions of this work are:

• First comprehensive framework that uses a multi-agent bug detection framework (MARVEL) for
bug detection in complex hardware designs Section 2.

• Evaluation of the MARVEL framework on a known buggy dataset taken from the Hack@DATE
2025 based on the OpenTitan SoC Section 4.

• Open sourcing implementation and results for the community through our anonymized repository.

2 MARVEL
We propose MARVEL, i.e., Multi-Agent RTL Vulnerability Extraction using LLMs. We implement
MARVEL with a Supervisor-Executor architecture. The components of MARVEL are in Figure 2. Each
LLM-based block can be implemented with different models and parameters. We ran the framework
with different models and parameters on a few instances to identify which of the currently available
models performed better at for the specific agents. Our model and parameters selection is specified
below for each agent. As models improve, they can simply be added to MARVEL.

CWE
Assistant

Assertion
Assistant

Linter
Assistant

Sim. Bug
Assistant

List
Dir

Read
File CWE DB VC Lint

VC
Formal

Verilator
SW Test

Assistant

Supervisor
Assistant

List Dir Read File Bug DB

Lint Rules
Response

RTL
Clustering

Anomaly
Assistant

Assign

CWE Agent Assertion Agent Linter Agent

Simulation Agent Similar Bug Agent

Anomaly
Agent

Complete

Supervisor Agent

Read File

Figure 2: MARVEL’s Multi-Agentic Framework. Purple denotes LLM assistants, Orange denotes tools,
and Blue denotes RAG databases. The Supervisor Agent has the ability to read from files and assign
tasks to executor agents. From the responses, it may decide to continue assigning tasks or determine
that the security analysis is complete. The Simulator, Simular Bug, CWE, Assertion, Linter and
Anomaly agents are the six executor agents. Each executor agent takes a security objective and source
rtl file from the Supervisor Agent and determines whether the security objective is met.

2.1 Overview
LLM-based agents are typically explained using four elements: Profile, Memory, Planning, and
Action. Not only does MARVEL use these modules holistically, but all seven agents of MARVEL utilize

2

https://anonymous.4open.science/r/security_agents-A31E/

these components individually as well. Each agent consists of an assistant and tools. The assistant
is an LLM agent with a specific objective, responsible for decision-making, capable of calling one
or more tools. The tools are responsible for carrying out the assistant’s recommended actions when
called and replying with the result or with an error message.

Profile: describes the roles of an agent which are usually indicated in the prompts to the LLM. This
may include priming the LLM as a domain expert and providing it with its overall big picture task.
For MARVEL, all agents (supervisor and executors) are profiled using system prompts.
Memory: stores information obtained from the environment and leverages the recorded memories to
facilitate future actions. Memory helps the agent to accumulate experiences, evolve, and behave in a
more consistent and effective manner. LLM agents use two kinds of memory. Short-term memory is
the information present in the context window that the LLM sees in the prompt. Long-term memory
is the external vector storage that agents can query and retrieve from. For MARVEL, the external vector
storages are 1) CWE Database used by the CWE-Agent, 2) known Bug Database used by the Similar
Bug-Agent, and 3) Lint Rules Database used by the linter agent. Retrieval Augmented Generation
(RAG) is used by the respective agents to retrieve relevant information from these databases.
Planning: is the decision-making process based on the information available to the LLMs (either
from the initial prompt or from previous external tool calls). LLMs use this reasoning ability to make
judgments about the workflow path to take, the tools to use, and when to conclude that a task is
done. For the supervisor agent, this planning is illustrated in deciding which executor agent to use,
deciding whether there is enough information to make a conclusion about a reported security issue,
and deciding that all security objectives have been evaluated and that it is time to produce the final
report. For each executor agent, the corresponding assistant does this planning, determining whether
the tool needs to be called and whether there is enough information to report back to the supervisor.
Action: translates the agent’s decisions into specific outcomes. This can be done through using
external tools or by the LLMs themselves. The tools for the supervisor agent include but are not
limited to the executor agents, and the tools for the executor agents are the linter, formal, simulator,
and clustering tools.

2.2 Supervisor Agent
The supervisor orchestrates the executor agents to perform the security analysis. The supervisor
agent’s system prompt is shown in Figure 3. The system prompt hints at the order and usage of the
executor agents, but the supervisor agent may call on them in any order and multiple times. The
supervisor can explore the system design by listing folder content and reading files. Files can be
retrieved with and without annotated file numbers. The latter is helpful for code files, helping the
agent report buggy line numbers correctly. Ultimately, the supervisor agent produces a report on the
security issues found in the design. We used gpt-4.1 as the LLM for the supervisor agent, selecting
a temperature of 0.14. We found the supervisor agent would exceed the context window of smaller
models, so we opted for this new OpenAI model, which has a context window of 1,047,576 tokens.
Exploratory experiments showed that a low, non-zero temperature was beneficial for MARVEL.

Supervisor’s System Prompt
You are a supervisor agent in a multi-agent system focused on identifying hardware security
vulnerabilities in RTL code. Your objective is to analyze the given SoC and generate a
detailed security report.
You have access to the following tools: <tool_list>.
Each tool specializes in a specific task:
<tools description> Instructions for analysis:
- Read the documentation to identify security features and register interface policies.
- Use Verilator, Assertion, Anomaly and Linter agents to uncover initial issues.
- If a bug is detected but not localized, use the CWE Agent to further inspect the related
security aspect in the surrounding RTL.
- After detecting any bugs, use the Similar Bug Agent to scan similar files (of the same or
of different IPs) for similar vulnerabilities.
Output Format:
<output_format_instructions> When your analysis is complete, end your response with "END".

Figure 3: Supervisor Agent’s System Prompt. It is instructed to analyze given SoC for security bugs.
It is provided information about the executor agents and is tasked to produce a security report.

2.3 Linter Agent
The linter agent consists of the linter assistant, lint tags retriever, and the lint checker. Inputs to
the linter agent are the security objective and the source code file to be analyzed for the security
objective. We use gpt-4.1-mini with a temperature of 0.2 for this agent due to its favorable

3

cost-to-performance. The linter assistant has the ability to make calls to either the lint tags retriever
or the lint checker until the task is completed or the maximum number of iterations, i.e. 6, is reached.

When used, the linter assistant first queries the lint tags retriever to obtain lint tags relevant to the
specified security objective. The lint tags retriever uses the security objective to search 1255 lint tags
from Synopsys’s VC SpyGlass linting tool’s Rules Reference guide and extract tags relevant to the
security objective. We keep an upper limit of 20 selections per query. We construct a text file with
each line consisting of the tag identifier, followed by a small description of what the tag is checking
for. Then, the linter assistant uses the lint tags to execute the lint checker on the source code file and
obtain potential lint violations. The lint checker tool populates a template tcl script for running VC
SpyGlass Lint14 with the identified lint tags and top module under analysis. The results output file
contains the lint checks violated by the digital design. The contents of the results file are sent back to
the linter assistant. If any violations are found, the linter assistant completes further analysis to filter
out false positives. This analysis is crucial to reducing the false positives observed from linter tools
and is a key advantage of our linter agent. If issues arise while running the tool, such as unknown
lint tags or top module identifiers, a message with an exception is sent back to the linter assistant for
debugging. An example of the flow of the linter agent’s operation on an improper FSM in the ADC
Control FSM module is shown in Figure 4.

Instruction to Linter Assistant from Supervisor Agent
Are there FSM related security concerns with the provided RTL:
<RTL source code> <Design filepath> <Top mopdule>
Identify relevant lint tags for the RTL to be checked for.
Then run the tests using the linting tool.
From the output of the linting tool, determine if there are security issues in the RTL.

Tool call from Linter Assistant
Tool Call: retrieve_relevant_lint_tags
Arguments: query: FSM security

Message from Lint Tags Retriever to Linter Assistant
LINT_FSM_UNREACHABLE_STATES: Do not have unreachable states in FSMs
LINT_FSM_WITHOUT_EXIT_STATE: Do not have states without exit in FSMs
...

Tool call from Linter Assistant
Tool Call: lint_checker_tool
Arguments:
- design_filepath: <path-to-adc-ip>/adc_ctrl_fsm.sv
- top_module: adc_ctrl_fsm
- lint_tags: [... ‘MissingFsmStateTransition’,
‘LINT_FSM_WITHOUT_INITIAL_STATE’, ‘LINT_FSM_UNREACHABLE_STATES’,...]

Message from Lint Checker Tool to Linter Assistant
Successfully executed lint checker tool
Report Summary:
Tag : LINT_FSM_UNREACHABLE_STATES
Description : State ‘LP_PWRUP’ is unreachable
LineNumber : 306
Statement : LP_PWRUP: begin
...

Message from Linter Assistant to Supervisor Agent
The linting tool has identified several security concerns related to the finite state
machine (FSM) in the provided RTL code. Here are the details of the findings:
*LINT_FSM_UNREACHABLE_STATES**:
- **Description**: State ‘LP_PWRUP‘ is unreachable.
- **Severity**: Error
- **Line Number**: 306
- **Details**: This state cannot be reached from any other state, which can lead to
unexpected behavior in the FSM.

Figure 4: Example linter agent flow for Improper FSM on ADC Control FSM module. Linter
assistant receives instructions to find FSM security concerns. It calls the lint tags retriever to obtain
FSM-related tags and then calls the lint checker to execute the lint tags on the ADC Control FSM.
From the output of the checker tool (LINT_FSM_UNREACHABLE_STATES tag violated), the
assistant determines that state LP_PWRUP is unreachable and points to line 306 as the bug location.

4

2.4 Assertion Agent

The assertion agent consists of the assertion assistant and the assertion checker tool. The inputs
to the assertion agent are the security objective and the source code file. We use Sonnet 3.7 with
a temperature of 0 because we found it performed better in forming meaningful assertions. The
assertion assistant forms relevant System Verilog assertion(s) for the security objective to check
the RTL for. The assertion checker then checks these assertions. The assertion agent can call the
assertion checker until it produces a falsified assertion or until the max iterations (6) is reached.
The assertion assistant uses an example of the typical structure for a concurrent assertion to form
meaningful assertion(s). Then it runs the assertions using the assertion checker tool. From the output
of the assertion checker tool, the assertion assistant determines if there are security issues. If no
falsified assertions result from the assertion checker tool, the RTL has no identified security issues.
The assertion checker tool binds the assertions to the source code, obtains all the dependencies on
the source code, populates the Tcl template script with the top module, clock, and reset signals,
and runs Synopsys’ Formal Property Verification (FPV)7 tool. The results output file contains the
assertions falsified by the digital design. Its contents are sent back to the assertion assistant. If
there was some issue running the tool, such as syntactically incorrect assertions, a message with an
exception is sent back to the assertion assistant. An example of the flow of assertion agent’s operation
on hmac_reg_top module is shown in Section A.1.1.

2.5 CWE Agent

The CWE agent comprises the CWE assistant and the CWE details retriever tool. The inputs to the
CWE agent are the security objective and the source code file. We use the Sonnet 3.7 model with a
temperature of 0.2, as we found it yielded the best results in reasoning about the relevance of CWEs
to insecure code instances. The CWE assistant can call the CWE details retriever until the task is
completed or the number of maximum iterations, i.e. 6, is reached. Typically, the assistant is asked to
identify the CWE relevant to the security issue for the RTL. Details of the CWE are augmented with
the task of determining whether there are security issues relevant to this CWE in the RTL.

The CWE details retriever does two operations. First, it uses the security objective to identify the
relevant CWE-ID. Then, it uses the CWE-ID to obtain the extended description and coded examples
of CWE instances and corresponding repairs. We use MITRE’s website to obtain the CWE name,
description, extended description, and examples. We construct a text file with each segment consisting
of the CWE identifier and description of the CWE. This text file is chunked using a recursive character
text splitter into sizes of 50, an overlap of zero, and a custom separator to indicate separation between
CWEs. These chunks are stored in a vector database so the retriever can obtain information using the
embedding scores of the query and the chunks. We query for one selection to choose the most relevant
CWE. Once the relevant CWE is identified, its extended description and examples are augmented,
and the output is sent to the CWE assistant. If the tool ran into an issue, such as an unknown CWE-ID,
a message with an exception is sent to the CWE assistant. An example of the flow of the CWE agent’s
operation on the OTBN MAC Bignum module is shown in Section A.1.2.

2.6 Similar Bug Agent

The similar bug agent consists of the similar bug assistant and the similar bug tool. The inputs to the
agent are a known buggy line of RTL and a target RTL file to search for similar bugs. We use the
Haiku-3.5 model for this agent due to its reliable performance in identifying semantically similar
RTL constructs and lower cost than Sonnet 3.7. The similar bug assistant can call the similar
bug tool to retrieve lines in an RTL file similar to a provided one. Typically, the assistant is asked
to identify RTL lines similar to a previously identified bug and determine whether these lines also
constitute bugs. The similar bug tool reads the RTL and splits it into individual lines. The lines
are embedded using OpenAI embeddings and stored in an in-memory vector store. A retriever is
constructed on top of this store to return the top 10 matches semantically closest to the original bug
line based on embedding similarity. The tool annotates the retrieved lines with the respective numbers
and returns them to the assistant. The assistant then evaluates these returned lines to determine if
they exhibit the same bug pattern as the input line. The assistant can also decide to inspect the file to
find the context of the identified lines before making a final decision. A corresponding message is
returned if no similar lines are found or the tool fails due to issues like a missing file. Otherwise, the
assistant provides a list of confirmed buggy lines with line numbers as its final output. An example of
the flow of the similar bug agent’s operation on AES is shown in Section A.1.3.

5

2.7 Anomaly Agent
The anomaly detection agent consists of the anomaly detector assistant and the RTL clustering tool.
The inputs to the anomaly agent are the security objective and the RTL source code file. This agent
is designed to detect anomalous constructs in RTL code by clustering semantically similar lines
and identifying outliers that may indicate potential security issues. We use gpt-4.1-mini as the
primary reasoning model for the assistant, as it demonstrated effective performance in analyzing
clustered constructs and identifying potential security issues. The anomaly detector assistant has the
ability to call the RTL clustering tool to aid its task. The anomaly detector tool performs two main
operations. First, it extracts all assign statements from the RTL. Then, it generates embeddings for
each construct using OpenAI’s text-embedding-3-small model. These embeddings are clustered
using DBSCAN with cosine similarity as the distance metric to form groups of semantically similar
constructs. Constructs that do not belong to any cluster (i.e., outliers) are considered anomalous.
These anomalies, along with the clusters they were compared against, are returned to the Assistant.
The Assistant evaluates whether any of the anomalous lines may represent a security vulnerability. If
no anomalies are found or if the tool encounters an error (e.g., missing file), a corresponding message
is returned to the assistant. Otherwise, the assistant reasons over the anomaly data to determine if the
anomalous lines constitute a security issue and outputs its final assessment. An example flow of the
anomaly agent’s operation on HMAC Register Top module is shown in Section A.1.4.

2.8 Simulator Agent
The simulator agent comprises the simulator assistant and the Verilator tool, and is responsible for
identifying potential security issues in RTL through simulation. The agent takes as input the name of
an IP block and uses Verilator as the underlying simulation backend. We employ the Sonnet 3.7
model for this agent due to its robust capabilities in interpreting simulation results and logs. The
simulator assistant can invoke the Verilator tool iteratively until no further tool calls are needed or the
task is completed. The Verilator tool functions in two stages. First, it retrieves all available simulation
software tests for the target IP by executing a filtered bazel query command. Next, it constructs
and runs a bazel test command to simulate the design using Verilator. The output, including logs
for failing tests, is returned to the assistant. The assistant reviews this output, particularly the logs
of failed tests, and evaluates whether any failures point to security-related bugs in the RTL. If no
tests are found or the test execution fails, the agent reports accordingly. Otherwise, it summarizes the
security issues identified, including explanations and locations in the RTL design. An example flow
of the Simulator Agent’s operation on the HMAC module is shown in Section A.1.5.

3 Experimental Evaluation
3.1 Experimental Setup
We implemented MARVEL in Python, modeling the agentic framework using LangGraph. Our im-
plementation is open source at anonymized repository. MARVEL is fully automated. The flow is
independent of the LLMs used for the different agents. New models can be plugged in easily. We
selected the model for each agent running the flow on a subset of three benchmarks, evaluating
different models and temperature parameters. We settled on the cheapest model available through
APIs that provided satisfactory results. We did not employ reasoning models as they are expensive,
slower, and do not necessarily provide better results in the electronic design automation domain4.

3.2 Benchmark
We evaluate MARVEL on a vulnerable OpenTitan earlgrey System-on-Chip (SoC) design15 obtained
from the finals of the Hack@DATE 2025 competition. Hack@DATE is a premier hardware security
capture-the-flag competition. They provide contestants with an SoC design with manually inserted
vulnerabilities akin to those found in real, deployed products. The earlgrey SoC is a high-quality, open-
source Root-of-Trust design that provides robust hardware security features. It uses the Ibex RISC-V
processor as the main core and integrates various intellectual property (IP) blocks as peripherals,
including crypto accelerators for AES, system management units for clock, power, and reset, and
I/O protocols like SPI. The SoC has an array of security features, including end-to-end data integrity,
secure boot, and side-channel first-order masking.

The IPs we analyze with MARVEL are summarized in Table 1. We report the total number of files,
design files, and design LoC of each IP. Design files only include those used to implement the IP
(i.e., excludes test files) and design LoC is the line count in those files excluding comments and
whitespace. We select these 12 IPs because they represent a wide range of functionality, ranging from
cryptography (e.g., AES) to I/O (e.g., ADC) and system management (e.g., lifecycle controller).

6

https://anonymous.4open.science/r/security_agents-A31E/

Table 1: Design IPs from OpenTitan earlgrey SoC used to evaluate MARVEL and their design size.

Design IP Description Total Files Design Files Design LoC

adc_ctrl Control and filter logic for dual Analog-to-Digital
Convertor analog block. 59 7 4159

aes Cryptographic accelerator for the Advanced Encryption
Standard (AES). 203 37 10425

csrng Supports deterministic (DRNG) and true random number
generation (TRNG) compliant with FIPS and CC. 69 12 5722

entropy_src FIPS and CC compliant entropy source used by csrng. 91 20 7750
hmac SHA-2 hash-based authentication code generator. 80 4 3613

keymgr The key manager implements the hardware component of
the identities and root keys strategy of OpenTitan. 75 14 5257

kmac Keccak-based message authentication code generator. 202 16 7571

lc_ctrl Controller to manage product device lifecycle and associated
functionality/access control. 101 11 4027

otbn Co-processor for asymmetric cryptographic operations like
Elliptic Curve Cryptography (ECC). 440 24 8279

otp_ctrl Controller for the One-Time Programmable (OTP) memory. 136 15 8612

prim Basic blocks used to implement the design; They are often
technology-dependent and can have multiple implementations. 501 164 14988

tlul Main system bus to interface the main processor core with
peripherals; implements the TileLink protocol. 87 21 2628

4 Results
The results are summarized in Table 2. For each of the 12 IPs, we evaluate the security properties
and issues identified by MARVEL. The security properties are either correctly or incorrectly identified.
Overall, 104 out of the 109 security properties are valid. The security issues are also classified
as correctly and incorrectly identified. MARVEL correctly identified 20 out of 48 reported issues,
giving a success rate of 41.7%. Correctly classified issues are further classified as correctly and
incorrectly localized. Of the 20 correctly identified security issues, 11 are correctly localized to their
line numbers, five are incorrectly localized, and four are not localized. The runtimes are reasonable,
with the longest run taking 23 minutes. The runtime depends on the tool calls, with simulation and
assertion verification being the two most time-consuming. The cost of one run spans between $1.2
and $2. The kind of analysis carried out by MARVEL would require several hours for an experienced
engineer. This highlights the potential of LLMs to speed up hardware security evaluations.

Table 2: Results summary for the 12 Design IPs in buggy OpenTitan earlgrey SoC. - indicates that
the number is not applicable, e.g., no bugs were reported by MARVEL for keymgr and lc_ctrl IPs.

Design IP Runtime
[min.]

Security Properties
Identified

Security Issues
Identified

Security Issues Localized
(from correctly identified issues)

Correct Incorrect Correct Incorrect Correct Incorrect Not localized

adc_ctrl 8.8 8 0 1 4 1 0 0
aes 18.3 8 0 4 3 2 2 0
csrng 20.4 8 0 2 2 0 1 1
entropy_src 23.0 12 1 1 4 1 0 0
hmac 8.3 12 0 5 1 3 0 2
keymgr 19.1 11 2 - - - - -
kmac 16.7 11 2 1 4 - - 1
lc_ctrl 8.9 7 0 - - - - -
otbn 7.1 7 0 4 2 4 0 0
otp_ctrl 13.7 8 0 1 2 0 1 0
prim 5.7 6 0 1 3 0 1 0
tlul 7.5 6 0 0 3 - - -

overall 157.5 104 5 20 28 11 5 4

The initial prompt contains the path to the SoC base directory. From the example sequences of action
in Section A.5 we see that the supervisor starts by exploring the SoC file structure and reading the
documentation files to identify the security properties. Then it starts calling the available tools to
check the identified security properties. The agent might inspect design files based on the tools’
feedback to confirm and localize the bugs. Figure 5 shows the normalized and absolute number of
actions performed by the supervisor agent. In every run, the supervisor agent calls each tool at least

7

Figure 5: Normalized and Absolute Supervisor Action Distribution, Overall and for single IPs

once. Prim has the lowest runtime and the highest number of actions. This is due to the high number
of file reads and directory listings, which makes sense as prim contains multiple basic blocks and has
the highest number of files in the SoC.

The roles of each agent in bugs reported by MARVEL are illustrated in Figure 6. Here we focus only
on the actions that contributed to a result in the final report. Agents might not find any issues, in this
case, the action will not contribute to the final report. If the agent is used to determine a valid security
issue, it is described as the Determinator. If it localizes the problem in addition to deciding the issue,
it is described as the Determinator and Localizer. If it is used to identify the bug but is not the final
determinator, it is described as the Helper. If it is used in the flow of incorrectly identifying a security
issue, it is defined as a False Identifier. Note that more than one agent might count as Helper or False
Identifier. Sometimes, the supervisor inspects a file and takes a decision in support or independently of
an executor agent therefore it is also listed. An agent may also not be used at the supervisor’s discretion.
The linter agent was used 11 times, once as the Determinator and Localizer, once as a Helper, and
9 times as the False Identifier. CWE agent was the most used agent: 2 times as the Determinator,

Figure 6: Roles of agents in bugs reported by MARVEL.
D=Determinator, L=Localizer, H=Helper, FI=False Id.

once as Determinator and Localizer, 7
times as a Helper, and 14 times as the False
Identifier. The assertion and similar bug
agents were used half the time for correct
identification and half the time as false iden-
tifiers. The simulator and anomaly agents
were the least used agents, used 3 times
each for bug determination. Every agent
was used at least once to identify a secu-
rity issue, and 6 of the 7 agents (all but the
anomaly agent) were used in the final deter-
mination of a security issue. This supports
the use of each agent in MARVEL flow. Sec-
tion A.2 and Section A.3 report the list of
reported issues and respective agent roles.

5 Discussion
Strengths The benefits of the Supervisor-Executor architecture of MARVEL have been demonstrated
through the interaction and coordination between agents. Based on the Design IP and corresponding
documentation, MARVEL was able to derive security objectives relevant to the IP accurately. The
supervisor agent is then able to call on the executor agents according to the file type and security
objective as shown in Figure 7. The highest frequency is for the tuple access control and interface files
(which implement most of the access control logic in the SoC), followed by FSM security for FSM and
control logic files. This shows that the supervisor agent can correctly identify the appropriate security
objectives at least for some file categories. The least used security objective is entropy, which is
suitable only for very few modules.Section A.4 explains how we assigned security objectives and files
to the respective classes. If one agent fails to provide useful information or fails to run correctly, the
supervisor executes another agent until enough information is obtained to make a judgment about the
violation of the security objective under consideration. The detailed logs of the agentic flow revealed
that MARVEL was able to iteratively improve calls to a tool until the syntactically correct call was made.
Such an example can be found in Section A.5, the multiple calls in a row to the assertion agent on
the same file are due to the tool call failing, and the supervisor agent trying again, fixing format and

8

assertions. This highlights the benefit of our agentic approach, which allows the supervisor to correct
its actions. A single-shot approach without the ability to iterate would result in unrecoverable failing
tool calls. We have demonstrated the use of hardware description language (HDL) specific tools in the
form of VC SpyGlass Lint as the linter, VC Formal as the assertion tool, and Verilator as the simulator.
LLMs can automate the scripting of these tools, with the help of templates, showing that multi-agentic
systems can be used for hardware code debugging, just like they can be used for software debugging.

Figure 7: Agent activity frequency for each security
objective and file category tuple. We only show agents
requiring a specific security objective and file category.

Limitations While MARVEL identified 20
security issues correctly, it falsely identified
28. From a security perspective, a precision
of 41.7% is good because the cost of a se-
curity issue propagating downstream in the
silicon design lifecycle increases exponen-
tially. That being said, a significant num-
ber of false positives is still a limitation of
this work. Most of the false positives are
caused by the LLMs conjuring up a secu-
rity issue when there is none, and some are
stylistic issues in the code that do not pose
a security concern. Another area for im-
provement is in localization. While MARVEL
identified 20 security issues, it only local-
ized 11 of them accurately. Sometimes the
LLM would identify locations related to the
parameter/signal definitions or the start of
FSMs, but not the actual assignments and
conditional statements containing the bug.
Determining whether the supervisor agent

is constantly calling the right agent is also challenging. To make this determination, we would need to
compare the decision-making flow of expert RTL verification engineers to MARVEL. We also observe
that assertion generation proves difficult for LLMs. While syntactically correct assertions are often
produced, meaningful assertions, corresponding to the verified security objective, are much rarer.
Some easy-to-detect bugs that individual agents can catch are not caught by MARVEL e.g., in otbn.sv
no signal is assigned to mems_sec_wipe_o port in otbn_core instantiation. This could be easily
caught if the supervisor agent had run either of the linter or the CWE agent on the otbn.sv file.

Ethical Considerations Ethical considerations must be considered when working with cyberse-
curity topics. For instance, the possibility of malicious use of the tool should be considered. This
includes both the use to find vulnerabilities with harmful intent and changes to the system prompts
that may allow the objective to be changed from bug detection to bug insertion. In both scenarios,
the user would need access to the design files, which in the industry are only accessible by trusted
employees. In the hardware domain, these scenarios are less of a concern than in the software domain.

6 Conclusion and Future Work
We developed and evaluated an LLM-based multi-agent framework for identifying security issues in
RTL code on the OpenTitan-based Hack@DATE SoC. In our Supervisor-Executor flow, an agent
can be the final Determinator of a Security issue, Determinator and Localizor, or just a Helper. Our
results show that each agent contributes to the security analysis at least as helper. MARVEL reported
48 potential security issues, of which we manually evaluated 20 as valid issues. Of the 20 correctly
identified security issues, 11 are correctly localized to their line numbers, five are incorrectly localized,
and four are not localized. Our work highlights LLMs’ potential to speed up hardware security
evaluations. Yet they augment, not replace, human expertise for critical applications. Experienced
professionals must conduct the final assessment and critical decision-making.

Future Work A natural extension of MARVEL would be to add more executor agents. These could
include agents using other techniques used for RTL security bug detection, like an Information Flow
Tracking Agent and a Fuzzing agent. Another direction for exploring multi-agent systems for RTL
security bug detection would be to employ an architecture where executor agents can communicate
directly with each other. Alternatively, a multiple hierarchy could have agents between the supervisor
and executor agents that are primed to use broad categories of tools. A Static Analysis agent could
control flow between the Linter, Assertion, and Anomaly agents, and a Known Bug agent could

9

include the CWE and Similar Bug agents. Other improvements could include a separate localizer that
relies on non-LLM-based techniques to localize the bugs based on information from the Supervisor
Agent. These could include embedding and keyword searches.

References
[1] Baleegh Ahmad, Benjamin Tan, Ramesh Karri, and Hammond Pearce. FLAG: Finding Line

Anomalies (in code) with Generative AI, June 2023. URL http://arxiv.org/abs/2306.
12643. arXiv:2306.12643 [cs].

[2] Mohammad Akyash and Hadi Mardani Kamali. Self-HWDebug: Automation of LLM Self-
Instructing for Hardware Security Verification, May 2024. URL http://arxiv.org/abs/
2405.12347. arXiv:2405.12347.

[3] Christopher Brant, Prakash Shrestha, Benjamin Mixon-Baca, Kejun Chen, Said Varlioglu, Nelly
Elsayed, Yier Jin, Jedidiah Crandall, and Daniela Oliveira. Challenges and Opportunities for
Practical and Effective Dynamic Information Flow Tracking. ACM Computing Surveys, 55
(1):17:1–17:33, November 2021. ISSN 0360-0300. doi: 10.1145/3483790. URL https:
//doi.org/10.1145/3483790.

[4] Luca Collini, Andrew Hennessee, Ramesh Karri, and Siddharth Garg. Can reasoning models
reason about hardware? an agentic hls perspective, 2025. URL https://arxiv.org/abs/
2503.12721.

[5] Ghada Dessouky, David Gens, Patrick Haney, Garrett Persyn, Arun Kanuparthi, Hareesh
Khattri, Jason Fung, Ahmad-Reza Sadeghi, and Jeyavijayan Rajendran. Hardfails: Insights
into Software-Exploitable Hardware Bugs. In Proceedings of the 28th USENIX Conference
on Security Symposium, SEC’19, pages 213–230, Santa Clara, CA, USA, 2019. USENIX
Association. ISBN 978-1-939133-06-9.

[6] Zhigang Fang, Renzhi Chen, Zhijie Yang, Yang Guo, Huadong Dai, and Lei Wang. LintLLM:
An Open-Source Verilog Linting Framework Based on Large Language Models, February 2025.
URL http://arxiv.org/abs/2502.10815. arXiv:2502.10815 [cs].

[7] VC Formal. VC Formal: Formal Verification Solution | Synopsys, 2024. URL
https://www.synopsys.com/verification/static-and-formal-verification/
vc-formal.html.

[8] Weimin Fu, Kaichen Yang, Raj Gautam Dutta, Xiaolong Guo, and Gang Qu. LLM4SecHW:
Leveraging Domain-Specific Large Language Model for Hardware Debugging. In 2023 Asian
Hardware Oriented Security and Trust Symposium (AsianHOST), pages 1–6, December 2023.
doi: 10.1109/AsianHOST59942.2023.10409307. URL https://ieeexplore.ieee.org/
abstract/document/10409307.

[9] Wei Hu, Armaiti Ardeshiricham, and Ryan Kastner. Hardware Information Flow Tracking. ACM
Computing Surveys, 54(4):83:1–83:39, May 2021. ISSN 0360-0300. doi: 10.1145/3447867.
URL https://dl.acm.org/doi/10.1145/3447867.

[10] Vighnesh Iyer, Donggyu Kim, Borivoje Nikolic, and Sanjit A. Seshia. RTL bug localization
through LTL specification mining (WIP). In Proceedings of the 17th ACM-IEEE International
Conference on Formal Methods and Models for System Design, MEMOCODE ’19, pages 1–5,
New York, NY, USA, October 2019. Association for Computing Machinery. ISBN 978-1-
4503-6997-8. doi: 10.1145/3359986.3361202. URL https://doi.org/10.1145/3359986.
3361202.

[11] LangGraph. Multi-agent supervisor, 2024. URL https://langchain-ai.github.io/
langgraph/tutorials/multi_agent/agent_supervisor/.

[12] Cheryl Lee, Chunqiu Steven Xia, Longji Yang, Jen-tse Huang, Zhouruixin Zhu, Lingming
Zhang, and Michael R. Lyu. A Unified Debugging Approach via LLM-Based Multi-Agent
Synergy, October 2024. URL http://arxiv.org/abs/2404.17153. arXiv:2404.17153
[cs].

10

http://arxiv.org/abs/2306.12643
http://arxiv.org/abs/2306.12643
http://arxiv.org/abs/2405.12347
http://arxiv.org/abs/2405.12347
https://doi.org/10.1145/3483790
https://doi.org/10.1145/3483790
https://arxiv.org/abs/2503.12721
https://arxiv.org/abs/2503.12721
http://arxiv.org/abs/2502.10815
https://www.synopsys.com/verification/static-and-formal-verification/vc-formal.html
https://www.synopsys.com/verification/static-and-formal-verification/vc-formal.html
https://ieeexplore.ieee.org/abstract/document/10409307
https://ieeexplore.ieee.org/abstract/document/10409307
https://dl.acm.org/doi/10.1145/3447867
https://doi.org/10.1145/3359986.3361202
https://doi.org/10.1145/3359986.3361202
https://langchain-ai.github.io/langgraph/tutorials/multi_agent/agent_supervisor/
https://langchain-ai.github.io/langgraph/tutorials/multi_agent/agent_supervisor/
http://arxiv.org/abs/2404.17153

[13] Xinyi Li, Sai Wang, Siqi Zeng, Yu Wu, and Yi Yang. A survey on LLM-based multi-
agent systems: workflow, infrastructure, and challenges. Vicinagearth, 1(1):9, October 2024.
ISSN 3005-060X. doi: 10.1007/s44336-024-00009-2. URL https://doi.org/10.1007/
s44336-024-00009-2.

[14] VC SpyGlass Lint. Synopsys VC SpyGlass Lint, 2022. URL https://www.
synopsys.com/verification/static-and-formal-verification/vc-spyglass/
vc-spyglass-lint.html.

[15] lowRISC contributors. Open source silicon root of trust (RoT) | OpenTitan, 2023. URL
https://opentitan.org/.

[16] Sujit Kumar Muduli, Gourav Takhar, and Pramod Subramanyan. Hyperfuzzing for SoC security
validation. In Proceedings of the 39th International Conference on Computer-Aided Design,
ICCAD ’20, pages 1–9, New York, NY, USA, November 2020. Association for Computing
Machinery. ISBN 978-1-4503-8026-3. doi: 10.1145/3400302.3415709. URL https://doi.
org/10.1145/3400302.3415709.

[17] Sayak Ray, Nishant Ghosh, Ramya Masti, Arun Kanuparthi, and Jason Fung. INVITED: Formal
Verification of Security Critical Hardware-Firmware Interactions in Commercial SoCs. In
2019 56th ACM/IEEE Design Automation Conference (DAC), pages 1–4, June 2019. ISSN:
0738-100X.

[18] Cynthia Sturton, Matthew Hicks, Samuel T. King, and Jonathan M. Smith. FinalFilter: Asserting
Security Properties of a Processor at Runtime. IEEE Micro, 39(4):35–42, July 2019. ISSN
1937-4143. doi: 10.1109/MM.2019.2921509.

[19] Shams Tarek, Dipayan Saha, Sujan Kumar Saha, Mark Tehranipoor, and Farimah Farahmandi.
SoCureLLM: An LLM-driven Approach for Large-Scale System-on-Chip Security Verification
and Policy Generation, 2024. URL https://eprint.iacr.org/2024/983. Publication info:
Preprint.

[20] Shams Tarek, Dipayan Saha, Sujan Kumar Saha, and Farimah Farahmandi. BugWhisperer:
Fine-Tuning LLMs for SoC Hardware Vulnerability Detection, 2025. URL https://eprint.
iacr.org/2025/546. Publication info: Published elsewhere. IEEE VLSI Test Symposium
(VTS) 2025.

[21] Aakash Tyagi, Addison Crump, Ahmad-Reza Sadeghi, Garrett Persyn, Jeyavijayan Rajendran,
Patrick Jauernig, and Rahul Kande. TheHuzz: Instruction Fuzzing of Processors Using Golden-
Reference Models for Finding Software-Exploitable Vulnerabilities. arXiv:2201.09941 [cs],
January 2022. URL http://arxiv.org/abs/2201.09941. arXiv: 2201.09941.

[22] Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen,
Jiakai Tang, Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei Wei, and Jirong Wen. A survey
on large language model based autonomous agents. Frontiers of Computer Science, 18(6):
186345, March 2024. ISSN 2095-2236. doi: 10.1007/s11704-024-40231-1. URL https:
//doi.org/10.1007/s11704-024-40231-1.

[23] Ke Xu, Jialin Sun, Yuchen Hu, Xinwei Fang, Weiwei Shan, Xi Wang, and Zhe Jiang. MEIC:
Re-thinking RTL Debug Automation using LLMs. In Proceedings of the 43rd IEEE/ACM
International Conference on Computer-Aided Design, ICCAD ’24, pages 1–9, New York,
NY, USA, April 2025. Association for Computing Machinery. ISBN 9798400710773. doi:
10.1145/3676536.3676801. URL https://dl.acm.org/doi/10.1145/3676536.3676801.

11

https://doi.org/10.1007/s44336-024-00009-2
https://doi.org/10.1007/s44336-024-00009-2
https://www.synopsys.com/verification/static-and-formal-verification/vc-spyglass/vc-spyglass-lint.html
https://www.synopsys.com/verification/static-and-formal-verification/vc-spyglass/vc-spyglass-lint.html
https://www.synopsys.com/verification/static-and-formal-verification/vc-spyglass/vc-spyglass-lint.html
https://opentitan.org/
https://doi.org/10.1145/3400302.3415709
https://doi.org/10.1145/3400302.3415709
https://eprint.iacr.org/2024/983
https://eprint.iacr.org/2025/546
https://eprint.iacr.org/2025/546
http://arxiv.org/abs/2201.09941
https://doi.org/10.1007/s11704-024-40231-1
https://doi.org/10.1007/s11704-024-40231-1
https://dl.acm.org/doi/10.1145/3676536.3676801

A Technical Appendices and Supplementary Material

A.1 Illustrative Examples for Executor Agents

This section includes examples of the executor agents’ detection of security issues not covered in the
main pages of this manuscript.

A.1.1 Example for Assertion Agent

Instruction to Assertion Assistant from Supervisor Agent
Are there security concerns related to the wipe secret operation in the provided RTL?
Is the wipe secret operation occurring at the appropriate conditions?
<RTL source code> <Design filepath> <Top mopdule>
Form relevant system verilog assertions for the RTL to be checked for.
These system verilog assertions should be in a dict with the key as the name and the
value as the assertion string.
An example assertions object to be sent to assertion checker tool is:
<Example Assertions>
From the output of the assertion checker tool, determine if there are security issues in
the RTL.
If there are no falsified assertions in the output from the assertion checker tool, that
means there are no verified security issues in the RTL.

Tool call from Assertion Assistant
Tool Call: assertion_checker_tool
Arguments:
- design_filepath: <path-tohmac-ip>/hmac_reg_top.sv
- top_module: hmac_reg_top
- clock_signal: clk_i
- reset_signal: rst_ni
- reset_active: 0
- assertions: {‘assertion_wipe_secret’: "property p_wipe_secret; @(posedge clk_i)
disable iff (!rst_ni) (wipe_secret_we && !reg_error) |-> (reg2hw.wipe_secret.q
== 32’h0); endproperty assertion_wipe_secret: assert property (p_wipe_secret);",
‘assertion_wipe_secret_condition’: ‘property p_wipe_secret_condition; @(posedge
clk_i) disable iff (!rst_ni) (wipe_secret_we && !reg_error) |-> (addr_hit[8]
&& reg_we); endproperty assertion_wipe_secret_condition: assert property
(p_wipe_secret_condition);’}

Message from Assertion Checker Tool to Assertion Assistant
Successfully executed: assertion checker tool
Output: There are no falsified properties.

Message from Assertion Assistant to Supervisor Agent
The assertion checker tool did not find any falsified assertions, which means there are
no verified security issues related to the "wipe secret" operation in the provided RTL.
The "wipe secret" operation is occurring under the appropriate conditions, and the secret
is being wiped correctly when the operation is triggered without any register errors.

Figure 8: Example Assertion Agent flow for wipe secret security objective for HMAC Register Top
module.

12

A.1.2 Example for CWE Agent

Instruction to CWE Assistant from Supervisor Agent
Are there security concerns related to hardware child block instantiations in the
provided RTL?
<RTL source code>
Identify the CWE relevant to the security issue for the given RTL.
Obtain details of the CWE.
Then determine if there are security issues relevant to the identified CWE in the RTL.

Tool call from CWE Assistant
Tool Call: cwe_details_retriever_tool
Arguments: security_issue: hardware child block instantiations

Message from CWE Details Retriever to CWE Assistant
CWE-1276: Hardware Child Block Incorrectly Connected to Parent System
Signals between a hardware IP and the parent system design are incorrectly connected
causing security risks.
<Extended Description> <Example 1> <Example 2>

Message from CWE Assistant to Supervisor Agent
In the provided RTL code, we need to ensure that all child block instantiations
are correctly connected to the parent system. Let’s examine the instantiations and
connections:
1. **prim_blanker Instantiations**:
- ‘prim_blanker #(.Width(WLEN)) u_operand_a_blanker‘ and ‘u_operand_b_blanker‘ are
instantiated with the enable signal hardcoded to ‘1’b1‘. This is correct if the
intention is to always enable these blankers, but it should be verified against the
design specifications.

Figure 9: Example CWE Agent flow on OTBN MAC Bignum module

A.1.3 Example for Similar Bug Agent

Instruction to Similar Bug Assistant from Supervisor Agent
This bug was previously found in another file of this design: DIP_CLEAR: data_in_prev_d
= data_in;
Please check the RTL code in the file <path-to-IP>/ip/aes/rtl/aes_cipher_core.sv for
similar bugs.

Tool call from Similar Bug Assistant
Tool Calls: similar_bug_tool
Args:
- bug: DIP_CLEAR: data_in_prev_d = data_in;
- ip_file: <path-to-IP>/ip/aes/rtl/aes_cipher_core.sv

Message from Similar Bug Tool to Similar Bug Assistant
Successfully executed: similar_bug_tool// Found similar bug in
<path-to-IP>/aes/rtl/aes_cipher_core.sv at line 585: .data_out_clear_i (
data_out_clear_i),
KEY_DEC_CLEAR: key_dec_d = key_expand_out;
Found similar bug in <path-to-IP>/aes/rtl/aes_cipher_core.sv at line 442:
KEY_FULL_CLEAR: key_full_d = key_expand_out;
Found similar bug in <path-to-IP>/aes/rtl/aes_cipher_core.sv at line 251: STATE_CLEAR:
state_d = add_round_key_out;
Found similar bug in <path-to-IP>/aes/rtl/aes_cipher_core.sv at line 234:
logic[3:0][3:0][7:0] data_in_mask;
Found similar bug in <path-to-IP>/aes/rtl/aes_cipher_core.sv at line 249: STATE_INIT:
state_d = state_init_i;
<continues>

Tool call from Similar Bug Assistant
To better understand the context, I’ll read the file to examine these lines more closely:
Tool Calls: read_file_with_line_numbers
Args:
- file_path: <path-to-IP>/ip/aes/rtl/aes_cipher_core.sv

Message from Read File Tool to Similar Bug Assistant
Successfully executed: read_file_with_line_numbers <file-content>

13

Message from Similar Bug Assistant to Supervisor Agent
After carefully analyzing the results, I found a few lines that might be similar to the
original bug, but they are not exact matches:
1. Line 461: ‘KEY_DEC_CLEAR: key_dec_d = key_expand_out;‘
- This is in a key decryption context, which is different from the original bug.
2. Line 442: ‘KEY_FULL_CLEAR: key_full_d = key_expand_out;‘
- This is in a full key context, which is different from the original bug.
3. Line 251: ‘STATE_CLEAR: state_d = add_round_key_out;‘
- This is in a state context, which is different from the original bug.
None of these lines are exact matches to the original bug ‘DIP_CLEAR: data_in_prev_d
= data_in;‘. The lines found are similar in structure (using a clear/reset state and
assigning a value), but they are in different contexts (key, state) and do not involve
‘data_in_prev_d‘.

Therefore, I cannot confidently identify any buggy lines that are direct matches to the
original bug in this file.

Figure 10: Example Similar Bug Agent flow for a similar bug previously found in aes_core.sv.

A.1.4 Example for Anomaly Agent

Instruction to Anomaly Assistant from Supervisor Agent
Are there security concerns related to the wipe secret operation in the provided RTL?
<RTL source code> <Design filepath> <Top mopdule>
Use the anomaly detector tool to identify lines in the design RTL that are anomalous.
Then determine whether the identified anomalous line(s) represent a security issue or
not.

Tool call from Anomaly Assistant
Tool Call: anomaly_detector_tool
Arguments:
- design_filepath: <path-tohmac-ip>/hmac_reg_top.sv

Message from Anomaly Detector Tool to Anomaly Assistant
Successfully executed:
Anomaly Detector tool
Output:
Here are clusters of similar verilog constructs in the RTL file:
Cluster 0:
assign status_re = addr_hit[6] & reg_re & !reg_error; assign wipe_secret_we = addr_hit[8]
& reg_we & reg_error; assign wipe_secret_wd = reg_wdata[31:0]; assign key_0_we =
addr_hit[9] & reg_we & !reg_error;
Cluster 1:
lines in cluster 1
Cluster 2:
lines in cluster 2

Message from Anomaly Assistant to Supervisor Agent
The anomaly detection tool has identified the following line as potentially anomalous:
“‘
assign wipe_secret_we = addr_hit[8] & reg_we & reg_error;
”’
This line is responsible for enabling the write operation to the ‘wipe_secret’ register.
The anomaly here is that the write enable (‘wipe_secret_we’) is conditioned on
‘reg_error’ being true, which is unusual because typically, write operations should not
proceed when there is an error condition.
Security Implications
Recommendation

Figure 11: Anomaly Agent flow for wipe secret security objective for HMAC Register Top module.

14

A.1.5 Example for Simulator Agent

Instruction to Simulator Assistant from Supervisor Agent
Run a security analysis on the aes IP.
Inspect the logs of failing runs and determine if there are security issues in the RTL.
If any security issues are found, provide a detailed explanation of the issue and its
location in the RTL code.

Tool call from Simulator Assistant
Tool Call: run_verilator_tests
Arguments:
- ip: aes

Message from Verilator Tool to Simulator Assistant
Successfully executed:
Verilator tool
Output:
...
//sw/device/tests/crypto:aes_masking_off_test_sim_qemu_rom_with_fake_keys FAILED in 4.3s
<path-to-log>/aes_masking_off_test_sim_qemu_rom_with_fake_keys
//sw/device/tests/crypto:aes_kwp_sideload_functest_sim_qemu_rom_with_fake_keys FAILED in
3.1s
<path-to-log>/aes_kwp_sideload_functest_sim_qemu_rom_with_fake_keys/test.log
//sw/device/tests/crypto:aes_sideload_functest_sim_qemu_rom_with_fake_keys FAILED in 3.1s
<path-to-log>/aes_sideload_functest_sim_qemu_rom_with_fake_keys/test.log

Executed 11 out of 45 tests: 8 tests pass, 1 fails to build, 11 fail locally and 25
were skipped.
There were tests whose specified size is too big. Use the –test_verbose_timeout_warnings
command line option to see which ones these are.

Tool Call from Simulator Assistant
I’ll examine one of the failing test logs to identify potential security issues. Let’s
look at the masking off test, which seems particularly relevant for security analysis:
Tool Call: read_file
Arguments:
- file_path: <path-to-log>/aes_masking_off_test_sim_qemu_rom_with_fake_keys

Message from Read File Tool to Similar Bug Assistant
Successfully executed: read_file <file-content>

... (a few log reads)

Message from Similar Bug Assistant to Supervisor Agent
Based on the analysis of the failing tests, I’ve identified several security issues in
the AES IP:
Security Issues Found:
1. **Masking Protection Failure (Side-Channel Vulnerability)**
- The ‘aes_masking_off_test‘ shows a failure in the CSRNG (Cryptographically Secure
Random Number Generator) interface, specifically with the reseed counter.
- This indicates that the masking countermeasures designed to protect against
side-channel attacks are not functioning correctly.
- Side-channel attacks could potentially extract secret keys by monitoring power
consumption or electromagnetic emissions during encryption operations.
2. **PRNG Reseed Mechanism Failure (Cryptographic Weakness)**
- The ‘aes_prng_reseed_test‘ reveals that the AES module continues to operate even when
entropy is disabled, which is a serious security issue.
- The test expected the AES operation to halt when entropy was disabled (at block 32),
but it continued processing until block 63.
- This means the AES implementation might be using predictable or weak randomness for its
operations, making it vulnerable to cryptanalysis attacks.
3. **Stall Mechanism Failure (Potential Fault Injection Vulnerability)**
- The ‘aes_stall_test‘ shows that the AES module does not stall as expected when back
pressure is applied.
- This could potentially be exploited in fault injection attacks, where an attacker
manipulates the timing or operation of the cryptographic module to extract sensitive
information.
- The failure indicates that the AES module might not properly handle resource contention,
which could lead to unpredictable behavior or information leakage.

Figure 12: Example Simulator Agent for AES.

15

A.2 Reported Issues

Table 3: Reported Issues.

Reported
Issue ID IP Description (As produced by LLM)

1 ADC_CTRL

All critical configuration and control registers (including filter
settings, enable controls, power management, and interrupt
controls) are directly writable by any entity with bus access.
There is no privilege-level check, lock bit, or write-once
protection for these registers. This allows potential unauthorized
modification of ADC controller behavior at runtime.

2 ADC_CTRL

In the ‘LP_SLP‘ state, when ‘wakeup_timer_cnt_q ==
cfg_wakeup_time_i‘, the FSM clears the timer but does not
assign a next state. This could result in the FSM getting stuck in
the ‘LP_SLP‘ state, leading to a potential denial of service or
unpredictable behavior.

3 ADC_CTRL

Filter control settings are directly assigned from the register
interface without any privilege or lock checks. An attacker with
register access could manipulate filter thresholds and enable bits,
potentially bypassing security logic or causing false
positives/negatives in ADC event detection.

4 ADC_CTRL
The FSM waits indefinitely for external signals (e.g.,
‘adc_d_val_i‘) without a timeout. If the expected signal never
arrives, the FSM could hang, leading to a denial of service.

5 ADC_CTRL

Registers controlling ADC operation (e.g., filter settings, power
management, interrupt enables) lack lock bits or write-once
protection. This allows runtime modification of security-critical
settings, which could be exploited to bypass filtering, trigger
false wakeups, or suppress interrupts.

6 AES

Improper REGWEN Protection*: Assertion falsified indicating
‘ctrl_aux_shadowed‘ can be written even when
‘ctrl_aux_regwen_qs‘ is not set. This allows bypassing the
intended lock on critical configuration.

7 AES *Data Output During Alert*: Assertion failed—data output may
still be enabled during alert conditions, risking data leakage.

8 AES Key clearing mux

9 AES
Key Share Separation Issue: Assertion failed—two key shares
are not always different when masking is enabled, weakening
side-channel resistance.

10 AES *PRNG Error Ignored*: The PRNG error signal is ignored, so
critical failures (e.g., all-zero state) may go undetected.

11 AES
Masking Bypass Risk: If ‘SecAllowForcingMasks‘ is enabled,
masks can be forced to constants, disabling masking and
exposing the core to side-channel attacks.

12 AES
PRNG Reseed Bypass: If ‘SecSkipPRNGReseeding‘ is
enabled, PRNG reseeding is skipped, leading to predictable
masks and reduced security.

13 CSRNG FSM can hang indefinitely in waiting states if external signals
never arrive. No timeout or recovery mechanism.

14 CSRNG Internal cryptographic state can be read even when the module is
disabled or when read enable is not asserted.

15 CSRNG Unregistered inputs/outputs and complex struct types may cause
reliability/timing issues, which could indirectly impact security.

16 CSRNG Test failure indicates possible bug in reseed counter update,
which could weaken cryptographic strength.

17 ENTROPY_SRC REGWEN/ME_REGWEN bypass, privilege escalation

16

18 ENTROPY_SRC FIFO overflow/underflow, bit-width/overflow warnings
19 ENTROPY_SRC Data path integrity, bus compare alert
20 ENTROPY_SRC Firmware override control, privilege escalation
21 ENTROPY_SRC Bit-width/overflow warnings in counters/FIFOs
22 HMAC Multi-stream digest computation bug
23 HMAC Integrity error steering failure
24 HMAC Key register readback (info leak)
25 HMAC No privilege-based access control
26 HMAC No debug mode key clearing
27 HMAC FSM/non-FSM logic mixing
28 KMAC Shadowed register errors not always propagated

29 KMAC SW can inject commands/messages during HW app, invalid key
use

30 KMAC FIFO masking allows zero mask, flush accepts new messages
31 KMAC Hard-coded key length constants (maintainability)
32 KMAC Clock gating failures (test-level)
33 OTBN Secure wipe request hardwired to 0 (critical bug)
34 OTBN FSM transitions to locked state, but secure wipe is disabled
35 OTBN Side-channel blanking bypassed
36 OTBN ISPR write commit always enabled
37 OTBN Register interface security, integrity checks, access gating
38 OTBN Secure wipe FSM logic, but undermined by controller bug

39 OTP_CTRL Possible race/timing issue: partition may not always lock in error
state (assertion failure)

40 OTP_CTRL Struct ports, unregistered IOs, unused inputs; could cause
mismatches affecting security

41 OTP_CTRL Dead code, unique sampling issue on error_o; could affect error
reporting

42 PRIM The module disables strict checking of the one-hot write-enable
vector by setting ‘.StrictCheck(0)‘

43 PRIM The ‘prim_onehot_check‘ module allows the one-hot vector to
be all zeros when ‘en_i‘ is asserted if ‘StrictCheck‘ is set to 0

44 PRIM Address checking is disabled (‘.AddrCheck(0)‘) for scalability
reasons

45 PRIM
The module generates an error signal (‘err_o‘) but relies on the
instantiating module to properly handle this signal and trigger
alerts

46 TLUL
if the register map or downstream logic expects sub-word
accesses or different alignment, this could cause silent data
corruption or access control bypass.

47 TLUL Potential for integrity bypass if integrities are not enabled in
higher-level design.

48 TLUL
Instruction fetches are only allowed if ‘en_ifetch_i‘ is enabled.
This is a positive security feature, but if ‘en_ifetch_i‘ is
incorrectly set, unauthorized instruction fetches could occur.

A.3 Roles of Agents in Reported Issues
For each reported issue, an agent may be involved in some capacity. If the agent was used in
determining a security issue as valid, it is tagged as Determinator (D). If it localizes the issue in
addition to determination of the issue, it is tagged as (D,L). If it is used in the flow of identifying the
bug but was not the final determinator, it is tagged as Helper (H). If it is used in the flow of incorrectly
identifying a security issue, it is tagged as False identifier (F). If an agent is not used at all, it is not
tagged (-). The roles played by agents for each reported issue are shown in Table 4.

17

Table 4: Roles of Agents in Reported Issues.

Reported
Issue ID Valid? Localized? CWE Similar Assertion Lint Anomaly Simulator Supervisor

1 ✗ - F F - - - - F
2 ✓ ✓ H D,L - - - - H
3 ✗ - F F - - - - F
4 ✗ - F F - - - - F
5 ✗ - F - - - - - F
6 ✗ - F - F F - - -
7 ✓ ✓ H D,L H - - - -
8 ✓ ✗ H D H - - - -
9 ✓ ✗ H D H - - - -
10 ✓ ✓ D - H - - - H
11 ✗ - F - F - - - F
12 ✗ - F - F - - - F
13 ✗ - F F F - - - -
14 ✓ ✗ - - D - - - -
15 ✗ - - - - F - - -
16 ✓ ✗ - - - - - D -
17 ✗ - F - F - - - -
18 ✓ ✓ - D,L - H H - -
19 ✗ - - - - - F - F
20 ✗ - - - F - - - F
21 ✗ - - - - F - - -
22 ✗ - - - - - - F F
23 ✓ ✓ - - D,L - - - -
24 ✓ ✓ H D,L - - - - -
25 ✓ - D - - - - - -
26 ✓ - D - - - - - -
27 ✓ ✓ - - - D,L - - -
28 ✗ - F - F - - - -
29 ✗ - F - F F - - -
30 ✗ - - - F F - - -
31 ✗ - - - - F - - -
32 ✓ ✗ - - - - - D -
33 ✓ ✓ H - H - H - D,L
34 ✓ ✓ - - D,L - - - H
35 ✓ ✓ - - D,L - - - H
36 ✓ ✓ - - - - - - D,L
37 ✗ - - - F F - - -
38 ✗ - - F - - - - -
39 ✓ ✗ - - D - - - H
40 ✗ - - - - F - - -
41 ✗ - - - - F - - -
42 ✗ - F F - - - - F
43 ✓ ✗ H H - - - - D
44 ✗ - F - - - - - F
45 ✗ - F - - - - - F
46 ✗ - - F - - - - F
47 ✗ - - - - - - - F
48 ✗ - - - - - - - F

A.4 Security Objectives and File Category Classes
This appendix describes the classification of security objectives and design files undertaken to
investigate the supervisor agent’s operational patterns across different runs. Our aim was to determine

18

if recurring tuples of agents and security objectives were present and if their selection followed a
logical basis or stochastic distribution. The outcome of this investigation is shown in Figure 7 and
analyzed in Section 5. The remainder of this section reports on the assignment methodology for each
design file and security objective to their corresponding classes.

A.4.1 Design File Classification
OpenTitan uses standardized naming schemes for design files where the first part of the file name is
the IP name, followed by the file type (e.g., control, core, reg top). We classified files based
on their postfix:

• Interface: reg_top, core_reg_top, reg_we_check, adapter_reg, adapter_sram,
lci, dai, kmac_if.

• Core: app, top, core.
• FSM/Control Logic: ctrl, controller, fsm, onehot_check, sm, main_sm,
cipher_control.

• Other: part_buf, part_unbuf, intr, state_db, cmd_stage, msgfifo,prng_masking,
ctr_drbg_cmd.

A.4.2 Security Objective Classification
We collected all security objectives used by the supervisor agent and manually classified them:

• FSM Security: state machine security, FSM security, cryptographic core
security, FSM, deadlock, FSM deadlock, improper state transitions, CWE
mapping for state management, cryptographic state access control,
error handling, state management, cryptographic state update, context
switching, state machine, context switching anomalies, illegal state
transitions, FSM stuck/faulty, FSM hardening, state transition, stuck
states, error state handling, terminal error state enforcement, sparse
encoding

• Access Control: register access, privilege escalation, reserved bits,
interrupt security, register access security, register interface
security, register access policy enforcement, register access control,
improper access, key management, register interface, access anomalies,
register interface access control, privilege enforcement, key register
confidentiality, shadow register, access policy, interface security,
register access policy, shadow register integrity, shadow register
anomalies, shadowed register integrity, key handling, message integrity,
privilege separation, integrity, illegal access prevention, memory
integrity, access control, direct access interface security, partition
locking, partition integrity, partition access control, life cycle
interface access control, privilege escalation prevention, integrity
error handling, partition lock enforcement, protocol compliance, memory
access control, memory interface security, entropy integrity, register
lock, data path integrity

• Entropy: entropy, entropy tracking, entropy usage, data leakage
• Masking: masking, masking bypass, masking enforcement, FIFO masking
• Side Channels: side-channel resistance, fault injection resistance,
fault injection, state isolation, stuck-at faults, application interface
isolation, clock bypass, volatile unlock, mutex, hardware state machine
glitch attack, denial of service, command sequencing, command injection

• Other: PRNG reseed, reseed counter, reseed counter management, secure
wipe, ECC, error propagation, ECC error propagation, token validation,
FIFO overflow/underflow

19

A.5 Sequence of Actions Reports
In this appendix, we provide two reports containing the sequence of actions for ADC crtl and AES.
Note that these logs also contain actions from the executor agents. Figure 5 only considers the
supervisor agent actions. All logs, containing the full outputs of the LLMs are available in our
anonymized repository.

Sequence of Actions for ADC ctrl
Listing directory: <path-to-IP>/adc_ctrl
Listing directory: <path-to-IP>/adc_ctrl/doc
Reading file: <path-to-IP>/adc_ctrl/doc/theory_of_operation.md
Reading file: <path-to-IP>/adc_ctrl/doc/registers.md
Listing directory: <path-to-IP>/adc_ctrl/rtl
Reading file with line numbers: <path-to-IP>/adc_ctrl/rtl/adc_ctrl.sv
Reading file with line numbers: <path-to-IP>/adc_ctrl/rtl/adc_ctrl_core.sv
Reading file with line numbers: <path-to-IP>/adc_ctrl/rtl/adc_ctrl_fsm.sv
Running verilator agent on adc_ctrl
Running verilator tests for adc_ctrl
Running anomaly detector agent on <path-to-IP>/adc_ctrl/rtl/adc_ctrl_reg_top.sv for
adc_ctrl_reg_top with security objective: register access, privilege escalation, reserved
bits
Running llm cwe checker agent on <path-to-IP>/adc_ctrl/rtl/adc_ctrl_fsm.sv for adc_ctrl_fsm
with security objective: state machine security
Running llm cwe details retriever tool on state machine security vulnerabilities
Running assertions checker agent on <path-to-IP>/adc_ctrl/rtl/adc_ctrl_fsm.sv for
adc_ctrl_fsm with security objective: state machine security
Running linter agent on <path-to-IP>/adc_ctrl/rtl/adc_ctrl_fsm.sv for adc_ctrl_fsm with
security objective: FSM security
Running lint checker tool on <path-to-IP>/adc_ctrl/rtl/adc_ctrl_fsm.sv for adc_ctrl_fsm
with lint tags: [’FsmLiveLock’, ’NoExitFsmState’, ’UnreachableStatesInFSM-ML’,
’LINT_FSM_UNREACHABLE_STATES’, ’LINT_FSM_WITHOUT_EXIT_STATE’]
Reading file with line numbers: <path-to-IP>/adc_ctrl/rtl/adc_ctrl_intr.sv
Running linter agent on <path-to-IP>/adc_ctrl/rtl/adc_ctrl_intr.sv for adc_ctrl_intr with
security objective: interrupt security
Running lint checker tool on <path-to-IP>/adc_ctrl/rtl/adc_ctrl_intr.sv for adc_ctrl_intr
with lint tags: [’ClockDomain’, ’STARC05-3.3.6.2’, ’ClockEnableRace’]
Running linter agent on <path-to-IP>/adc_ctrl/rtl/adc_ctrl_core.sv for adc_ctrl_core with
security objective: register access security
Running lint checker tool on <path-to-IP>/adc_ctrl/rtl/adc_ctrl_core.sv for adc_ctrl_core
with lint tags: [’Rule_2’, ’RegisterStuckInResetState-ML’, ’W450L’, ’UseLogic-ML’]
Running llm cwe checker agent on <path-to-IP>/adc_ctrl/rtl/adc_ctrl_core.sv for
adc_ctrl_core with security objective: register access security
Running llm cwe details retriever tool on register access control hardware
Running llm cwe details retriever tool on hardware register protection
Running llm cwe details retriever tool on hardware register access control
Reading file with line numbers: <path-to-IP>/adc_ctrl/rtl/adc_ctrl_reg_top.sv
Running linter agent on <path-to-IP>/adc_ctrl/rtl/adc_ctrl_reg_top.sv for adc_ctrl_reg_top
with security objective: register access security
Running lint checker tool on <path-to-IP>/adc_ctrl/rtl/adc_ctrl_reg_top.sv for
adc_ctrl_reg_top with lint tags: [’STARC05-1.4.3.1b’, ’W188’, ’W450L’, ’ClockEnableRace’,
’STARC05-3.3.1.4a’]

Sequence of Actions for AES
Listing directory: <path-to-ip>/aes/doc
Reading file: <path-to-ip>/aes/doc/theory_of_operation.md
Reading file: <path-to-ip>/aes/doc/registers.md
Listing directory: <path-to-ip>/aes/rtl
Running verilator agent on aes
Running verilator tests for aes
Reading file with line numbers: <path-to-ip>/aes/rtl/aes_reg_top.sv
Running linter agent on <path-to-ip>/aes/rtl/aes_reg_top.sv for aes_reg_top with security
objective: register interface security
Running lint checker tool on <path-to-ip>/aes/rtl/aes_reg_top.sv for aes_reg_top with lint
tags: [’RegInputOutput-ML’, ’RegInput-ML’, ’RegisterInfo-ML’, ’InterfaceNameConflicts-ML’,
’W256’, ’Rule_41’, ’W240’, ’W500’, ’STARC05-1.4.3.1b’, ’W401’, ’W215’, ’STARC05-1.2.1.1a’,
’STARC05-2.1.9.5’, ’InterfaceWithoutModport-ML’, ’DEBUG_LINT_PORT_STRUCT_SIGNAL’, ’W188’,
’CheckPortType-ML’, ’PortOrder_C’, ’AutomaticFuncTask-ML’, ’STARC05-1.4.1.1’]
Running assertions checker agent on <path-to-ip>/aes/rtl/aes_reg_top.sv for aes_reg_top
with security objective: register access policy enforcement
Running assertion checker tool on <path-to-ip>/aes/rtl/aes_reg_top.sv for aes_reg_top with
assertions: <assertions>
Running llm cwe checker agent on <path-to-ip>/aes/rtl/aes_reg_top.sv for aes_reg_top with
security objective: register access control, privilege escalation, improper access
Running llm cwe details retriever tool on register access control
Running llm cwe details retriever tool on privilege escalation hardware
Running llm cwe details retriever tool on improper access control hardware
Running linter agent on <path-to-ip>/aes/rtl/aes_core.sv for aes_core with security
objective: cryptographic core security, masking, key management

20

https://anonymous.4open.science/r/security_agents-A31E/

Running lint checker tool on <path-to-ip>/aes/rtl/aes_core.sv for aes_core with lint
tags: [’STARC05-1.4.3.1b’, ’STARC05-1.2.1.1a’, ’STARC05-1.3.2.1a’, ’STARC05-1.4.1.1’,
’STARC05-3.3.1.4a’, ’STARC05-1.4.3.1a’, ’STARC05-1.4.3.1a’, ’STARC05-1.1.2.2’,
’STARC05-2.1.4.5’, ’STARC05-1.2.1.1b’, ’STARC05-1.4.3.6’]
Running assertions checker agent on <path-to-ip>/aes/rtl/aes_core.sv for aes_core with
security objective: masking, key management, side-channel resistance
Running assertion checker tool on <path-to-ip>/aes/rtl/aes_core.sv for aes_core with
assertions: <assertions>
Running assertion checker tool on <path-to-ip>/aes/rtl/aes_core.sv for aes_core with
assertions: <assertions>
Running llm cwe checker agent on <path-to-ip>/aes/rtl/aes_core.sv for aes_core with
security objective: side-channel resistance, key management, masking
Running llm cwe details retriever tool on side-channel attacks in cryptographic
implementations
Running llm cwe details retriever tool on cryptographic key management vulnerabilities
Running llm cwe details retriever tool on masking in cryptographic implementations
Running linter agent on <path-to-ip>/aes/rtl/aes_cipher_control.sv for aes_cipher_control
with security objective: FSM security, sparse encoding, fault injection resistance
Running lint checker tool on <path-to-ip>/aes/rtl/aes_cipher_control.sv for
aes_cipher_control with lint tags: [’FsmUsage-ML’, ’STARC05-2.11.1.2’, ’STARC05-2.11.1.4’,
’UseDefine’, ’STARC05-2.4.1.4’, ’STARC05-2.3.5.1’, ’STARC05-1.3.1.2’, ’SepFSMLogic’,
’STARC05-1.3.2.1a’, ’MergeFlops-ML’, ’STARC05-1.2.1.1a’, ’STARC05-1.4.3.1b’,
’STARC05-2.3.1.7a’, ’STARC05-1.2.1.3’, ’STARC05-1.6.1.2’, ’SafeLatch-ML’, ’STARC05-1.4.3.6’,
’W215’, ’NoExitInFSM-ML’, ’UseSVAlways-ML’]
Running assertions checker agent on <path-to-ip>/aes/rtl/aes_cipher_control.sv for
aes_cipher_control with security objective: FSM security, sparse encoding, fault injection
resistance
Running assertion checker tool on <path-to-ip>/aes/rtl/aes_cipher_control.sv for
aes_cipher_control with assertions: <assertions>
Running assertion checker tool on <path-to-ip>/aes/rtl/aes_cipher_control.sv for
aes_cipher_control with assertions: <assertions>
Running assertion checker tool on <path-to-ip>/aes/rtl/aes_cipher_control.sv for
aes_cipher_control with assertions: <assertions>
Running llm cwe checker agent on <path-to-ip>/aes/rtl/aes_cipher_control.sv for
aes_cipher_control with security objective: FSM, sparse encoding, fault injection
Running llm cwe details retriever tool on FSM state encoding vulnerabilities
Running llm cwe details retriever tool on Sparse encoding vulnerabilities
Running llm cwe details retriever tool on Fault injection vulnerabilities in hardware
Running anomaly detector agent on <path-to-ip>/aes/rtl/aes_reg_top.sv for aes_reg_top with
security objective: register interface and access anomalies
Running anomaly detector agent on <path-to-ip>/aes/rtl/aes_core.sv for aes_core with
security objective: masking, key management, side-channel resistance
Running anomaly detector agent on <path-to-ip>/aes/rtl/aes_cipher_control.sv for
aes_cipher_control with security objective: FSM, sparse encoding, fault injection
Reading file with line numbers: <path-to-ip>/aes/rtl/aes_prng_masking.sv
Running assertions checker agent on <path-to-ip>/aes/rtl/aes_prng_masking.sv for
aes_prng_masking with security objective: entropy, PRNG reseed, masking bypass
Running assertion checker tool on <path-to-ip>/aes/rtl/aes_prng_masking.sv for
aes_prng_masking with assertions: <assertions>
Running llm cwe checker agent on <path-to-ip>/aes/rtl/aes_prng_masking.sv for
aes_prng_masking with security objective: entropy, PRNG reseed, masking bypass
Running llm cwe details retriever tool on cryptographic random number generation weakness
Running llm cwe details retriever tool on cryptographic masking bypass
Running llm cwe details retriever tool on cryptographic entropy weakness
Running similar bug agent on <path-to-ip>/aes/rtl/aes_core.sv for bug: The assertion
checking that cipher_key_clear leads to key_init_sel being set to KEY_INIT_CLEAR failed.
Running similar bug tool on <path-to-ip>/aes/rtl/aes_core.sv for bug: cipher_key_clear
leads to key_init_sel being set to KEY_INIT_CLEAR
Reading file with line numbers: <path-to-ip>/aes/rtl/aes_core.sv
Running similar bug tool on <path-to-ip>/aes/rtl/aes_core.sv for bug: cipher_key_clear
leads to key_init_sel being set to KEY_INIT_CLEAR
Running similar bug agent on <path-to-ip>/aes/rtl/aes_core.sv for bug: The assertion
verifying that the two key shares are different when masking is enabled failed.
Reading file with line numbers: <path-to-ip>/aes/rtl/aes_core.sv
Running similar bug tool on <path-to-ip>/aes/rtl/aes_core.sv for bug: key_init_cipher =
key_init_q;
Running similar bug tool on <path-to-ip>/aes/rtl/aes_core.sv for bug: assign
key_init_cipher = key_init_q;
Running similar bug agent on <path-to-ip>/aes/rtl/aes_core.sv for bug: The assertion
checking that the state shares are different when masking is enabled failed.
Reading file with line numbers: <path-to-ip>/aes/rtl/aes_core.sv
Running similar bug tool on <path-to-ip>/aes/rtl/aes_core.sv for bug: state_init[0] =
(state_in âdd_state_in) ŝtate_mask; // Masked data share
assign state_init[1] = state_mask; // Mask share
Running similar bug tool on <path-to-ip>/aes/rtl/aes_core.sv for bug: state_init[0] =
(state_in âdd_state_in) ŝtate_mask;
Running similar bug agent on <path-to-ip>/aes/rtl/aes_core.sv for bug: The assertion
verifying that data output is disabled during an alert condition failed.
Reading file with line numbers: <path-to-ip>/aes/rtl/aes_core.sv

21

Running similar bug tool on <path-to-ip>/aes/rtl/aes_core.sv for bug: data output is
disabled during an alert condition

22

	Introduction
	MARVEL
	Overview
	Supervisor Agent
	Linter Agent
	Assertion Agent
	CWE Agent
	Similar Bug Agent
	Anomaly Agent
	Simulator Agent

	Experimental Evaluation
	Experimental Setup
	Benchmark

	Results
	Discussion
	Conclusion and Future Work
	Technical Appendices and Supplementary Material
	Illustrative Examples for Executor Agents
	Example for Assertion Agent
	Example for CWE Agent
	Example for Similar Bug Agent
	Example for Anomaly Agent
	Example for Simulator Agent

	Reported Issues
	Roles of Agents in Reported Issues
	Security Objectives and File Category Classes
	Design File Classification
	Security Objective Classification

	Sequence of Actions Reports

